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Abstract: Turbidite-associated black shale of the Semanggol Formation is extensively distributed in
the northwestern part of the Western Belt, Peninsular Malaysia. The black shale occurs as a dark grey
to black and thick to medium-bedded deposit. It represents the distal part of submarine fan system
(outer-fan) overlying interbedded sandstone to shale facies of the mid-fan and conglomeratic pebbly
sandstone facies of the inner-fan. Field observations and its widespread occurrence have resulted
in the black shale being considered as a potential analog for a source rock in offshore Peninsular
Malaysia. The present study includes detailed mineralogical (XRD, SEM, and EDX analysis), inorganic
geochemical (major oxides, trace elements TEs, and rare earth elements REEs), and Rock-Eval pyrolysis
analyses of the black shale samples, collected from the Gunung Semanggol, Bukit Merah, and Nami
areas in northwestern Peninsular Malaysia. The primary focus of this study is to investigate the
provenance, paleoredox conditions, paleoclimate, sedimentary rate, paleoproductivity, and upwelling
system that would be helpful to understanding the role of these parameters in the enrichment of
organic matter (OM) in the black shale. The Rock-Eval analysis shows that the black shale of the
Semanggol Formation comprises type-III kerogens, which suggests organic input from a terrestrial
source. The black shale also contains mature to postmature organic matter. Based on the mineralogical
analysis, the mineral composition of the black shale comprises illite and kaolinite, with abundant
traces of quartz and feldspar as well as few traces of titanium and zircon. Inorganic geochemical
data designate black shale deposition in a passive margin setting that has experienced moderate
to strong weathering, semi-arid to hot arid climate, and moderate sedimentation rate. Ratios of
Ni/Co, U/Th, and V/(V+Ni) along with slightly negative to positive Ce* anomalies and UEF-MoEF

cross-plot unanimously indicate anoxic/dysoxic water conditions that are suitable for organic matter
preservation. Geochemical proxies related to modern upwelling settings (i.e., Cd/Mo, Co vs. Mn)
show that the deep marine black shale was strongly influenced by persistent upwelling, a first-order
controlling factor for organic matter enrichment in the distal part (outer fan of the submarine fan
system) of the Semanggol Basin. However, productivity-controlled upwelling and a high sedimentary
rate, as well as high-productivity in oxygen-depleted settings without strong anoxic conditions, has
played an essential role in the accumulation of organic matter.

Keywords: Keywords: black shale; organic matter enrichment; paleoenvironment; paleoproductivity;
upwelling; trace elements; Semanggol Formation
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1. Introduction

Gravity-driven turbidity currents underwater cause sediment loads to deposit when these
currents lose energy. These sediments are usually normally graded and ideally form a sequence
of sedimentary rocks recognized as a Bouma sequence [1]. Over the last few decades, there has
been a substantial increase in the impact of turbidite-associated deposits on worldwide petroleum
reserves [2]. Turbidite-associated black shale plays an essential role in the petroleum system as a
source and seal rock at many offshore and onshore sedimentary basins worldwide. Many efforts have
been made by various researchers to find out the accumulation, maturation, and generation of organic
matter (OM) in these host rocks by utilizing organic and inorganic geochemical proxies. Fortunately,
the Triassic turbidite-associated Semanggol black shale in northwestern Peninsular Malaysia offers
a splendid opportunity to conduct organic and inorganic geochemical studies that could further
assist in determining the rock’s association with depositional conditions and the enrichment of the
organic matter.

Importantly, outcrop-based studies on the geochemical characteristics of turbidite-associated black
shale can be helpful in interpreting sedimentary environments systematically. Currently, geochemical
approaches are extensively employed for deciphering and reconstructing depositional settings because
of their reliable, easily reproducible, and efficient results [3,4]. Recently some studies have used
different redox-sensitive trace element proxies to understand palaeodepositional conditions and organic
matter enrichment [5–10]. Algeo and Maynard [11] and Tribovillard et al. [12] reported that rocks
with a high total organic content (TOC ) are mostly enriched in redox-metals (e.g., As, Cr, Mo, Re,
Sb, U, and V) and/or have a high content of sulphide-forming trace elements (e.g., Cd, Co, Cu, Ni,
Pb, and Zn), and most probably have different degrees of enrichment caused by dissimilar redox
conditions. Sweere et al. [13] and Rimmer [14] set different standard values for differentiating between
upwelling and restricted basin settings by utilizing Cd/Mo ratios and Mo enrichment factors (EFs).
Moreover, molybdenum (Mo) is considered to be the best diagnostic element for sediment deposition
under seawater sulfate-reducing conditions [14]. In addition, less attention has been given to organic
matter enrichment, paleoproductivity, and ancient upwelling analysis of the turbidite-associated black
shale of the Semanggol Formation based on geochemical methods. These geochemical studies can also
be more valuable in depicting paleoenvironment fluctuations.

For the present study, samples of turbidite-associated black shale were collected from three
locations: (1) Gunung Semanggol, 98 km northwest of Ipoh city, North Perak; (2) Bukit Merah, 90 km
northwest of Ipoh city, North Perak; and (3) Nami areas, 50 km northwest of Alor Setar, North Kedah
(Figure 1A). The samples were collected for the analysis of paleo-redox conditions (MoEF, UEF, V/Cr),
paleoproductivity (Baxs, Sixs, Pxs), terrestrial influx (Al, Ti), sedimentation rate (La/Yb)N, and evidence
of an ancient upwelling system (Cd/Mo, Co vs. Mn). The objectives of the study are (1) to develop a
better understanding towards the reconstruction of a depositional system of the turbidite-associated
black shale of the Semanggol Formation; (2) to investigate the hypothesis of deep marine upwelling
and develop an understanding of the parameters controlling the organic matter accumulation in the
Semanggol Formation; and (3) to determine the paleoenvironment, paleoproductivity, paleoredox
conditions, and sedimentation rate during black shale deposition. The findings from current research
can be applied in the study of other tectonically confined foreland basins, and can further contribute to
understanding the sedimentary controls on hydrocarbon potentiality of the deposits in such settings,
especially in the Semanggol Basin.

2. Geological Setting

Peninsular Malaysia belongs to the Southeast Asian continental core of Sundaland and possesses
two tectonic blocks/terranes, the Sibumasu block in the west and the East Malaya block in the east,
which were brought together during the Late Triassic times [15,16]. The Bentong–Raub Suture Zone is
the area of separation between the two blocks [17,18]. During the Paleozoic–Mesozoic, northward
migration of Southeast Asian continental blocks resulted in the opening and closure of oceanic gateways
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in the east and west of Panthalassa (Figure 1B). This oscillating nature of oceanic basins in the Tethyan
region during the Permian–Triassic resulted in a changing of the ocean currents and further deep marine
upwelling, which affected the climatic patterns and distribution of biota (e.g., ammonite dispersal
of Brayard [19]) (Figure 1B). Following this, Peninsula Malaysia was uplifted and exposed during
the early Mesozoic, and marine sediments were deposited mainly in two areas of the Central Belt
(i.e., the northwestern Kodiang-Semanggol and Gua Musang-Semantan depocenters) [20] (Figure 1C).
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Figure 1. (A) Simplified geological map of Peninsular Malaysia showing the distribution of black shale
outcrops [21]; (B) Paleogeographic location of Indochina and Sibumasu blocks during the Late Permian
to Late Triassic period [16]; (C) The cross-section (A-A’) presents the subsurface structural framework.
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With the advent of the Mesozoic Era, a large part of the Peninsula was uplifted and remained
subaerially exposed. Marine sedimentation was centered in the northwestern Kodiang-Semanggol
depocenter and the Gua Musang-Semantan depocenter in the Central Belt. The deposition of the
Semanggol Formation commenced into the Kodiang-Semanggol depocenter. Later, the basin truncated
into three small basins by thrust/wrench faulting because of tectonic instability during Triassic times [20].

Late Permian-Triassic rocks of the Western Belt outcropping in North Perak were first discovered
by Alexander [22], who gave the rock name as the Semanggol Formation. Rocks having similar
characteristics were also observed in the northern and southern parts of Kedah [23–25]. Before the
discovery of “radiolarian assemblages” of Late Permian age from the Chert Member of this
formation [26–29], the whole formation was considered to be Triassic in age. Conodonts from
the middle Chert Member represent Middle Triassic, whereas the overlying Rhythmite Member is a
Late Triassic deposit [30] (Figure 2). Katsuo [31] further subdivided the Semanggol Formation into
seven lithofacies. With regards to regional distribution, outcrops of this formation in the northwest can
be found extensively in three “mini basins” of north Perak and north and south Kedah [31–33]. It has
been proposed that these three widely separated sub-basins of sediment accumulation were once a
continuous basin that was truncated by strike-slip faulting [30,34]. The Semanggol Formation consists
of two dominant lithofacies: (1) conglomerate-sandstone facies with intraformational conglomerate
representing inner fan; and (2) rhythmically interbedded sandstone showing mid-fan and black shale
facies representing the outer fan setting of the deep-marine fan system (Figure 3). The active convergent
environment and intense volcanism played a pivotal role in the development of deep-marine fan
systems of the Semanggol turbidite deposits [35]. Therefore, the fan system of turbidite deposits
experienced intensive tectonism along with granitic intrusion (e.g., Sintok Batholith [36]) and basin
inversion during the Late Triassic [20].
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Figure 3. (A–D) Stratigraphic log and field photographs of the Semanggol Formation, 1-Gunung
Semanggol section, North Perak; (E–H) Stratigraphic log and field photographs of the Semanggol
Formation, 2-Bukit Mearh section, North Perak.

3. Materials and Methods

A total of 10 representative samples were subjected to mineralogy and inorganic geochemistry
analyses and Rock-Eval pyrolysis to characterize the black shale.
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Before analysis, the samples were passed through the process of washing, drying, crushing,
and grounding in an agate mortar to obtain grains with sizes finer than 200 mesh (75 µm). Some of
these analyses, such as TOC, XRD, and SEM with EDX, were performed at the Geosciences Department,
Universiti Teknologi PETRONAS, Malaysia. The same suite of samples was also used for Rock-Eval
pyrolysis conducted by the CGG Professional Laboratory, Aberdeen, United Kingdom; however,
analyses for major oxides, trace elements (TEs), and rare earth elements (REEs) were performed at the
ACME Lab, Canada.

The mineralogical composition of the black shale was determined by XRD and SEM with EDX.
For XRD analysis, both bulk and clay fractions of the black shale were used. Bulk rock samples were
pulverized by agate mortar and placed in the X-ray frame. The clay fractions were separated by placing
10 g of the sample in a 600 mL beaker diluted with 1 M acetic acid to remove the carbonates. After some
time, when there was no more reaction in the solution, the residue was washed with distilled water.

For the removal of organic matter, the samples were treated with 30% concentrated hydrogen
peroxide (H2O2). Complete disaggregated rock samples were washed with distilled water several
times to suspend all clay particles. Suspended clay fractions were then sucked by a dropper and
placed onto glass slides and left to dry. Three slides were prepared for every four samples: (1) one for
untreated, (2) second slide treated with ethylene glycol vapor at 60 ◦C for 1 h, and (3) third slide heated
at 550 ◦C for 3 h. Both bulk shale samples and clay fractions were analyzed by utilizing the Bruker D8
X-ray generator with Ni-filtered Cu–Kα, operated at 40 kV and 25 mA. For the bulk samples, scanning
showed a limited range between 2◦ and 80◦ 2θ, while for clay fractions it varied from 2◦ to 40◦ 2θ.

The external morphology (texture), mineral chemical composition, crystalline structure,
and orientation of materials were analyzed using SEM. Moreover, the chemical composition of
selected spots in the prepared samples was determined using SEM coupled with EDX. Four samples
were prepared for this purpose, with a dimension of about 70 mm in diameter and 50 mm in height.
To remove the moisture, samples were dried in an oven overnight at a temperature of around 35 ◦C.
After the moisture removal, samples were coated with a thin layer of carbon to prevent charge buildup
and to obtain a clear image of the target material.

Major oxide (e.g., SiO2, Na2O, Al2O3, Fe2O3, TiO2, CaO, K2O, MnO, MgO, and P2O5) compositions
were analyzed by XRF using a Philips PW 2400 X-ray spectrometer. The tube voltage was 40 kV,
and the current was 60 mA. Powder samples were heated up to 1000 ◦C for 6 h to determine the loss on
ignition (LOI). Inductively coupled plasma mass spectrometry (ICP-MS) was applied to estimate trace
and rare earth elements. Analytical uncertainties were about 0.01 to 1 for all oxides, trace elements,
and rare earth elements. The finely grounded samples were entirely dissolved in HF (38%) and HNO3

(68%) in capped Teflon bombs on an electric hot plate (~150 ◦C) for 24 h. The solution was evaporated
to near dryness and redissolved in 2 mL of 6 mol/L HNO3 in capped Teflon bombs at 150 ◦C for
two days. The samples were evaporated near to dryness, then 1 mL of 6 mol/L HNO3 was added,
and the solutions were further diluted for analysis (e.g., [37]). The same set of 10 samples was used to
determine TOC content at the Department of Petroleum Geosciences, Universiti Teknologi PETRONAS,
Malaysia, by using a Source Rock Analyzer (SRA; Weatherford). Further, for Rock-Eval pyrolysis,
about 10 mg of each sample was sent to the CGG professional Laboratory, Aberdeen, United Kingdom.

Location of Sample Collection

The outcrops of the turbidite-bearing succession of the Semanggol Formation were measured
from three sections: (1) Gunung Semanggol, North Perak; (2) Bukit Merah, North Perak; and (3) Nami,
North Kedah (Figure 1A). The samples were collected from black shale horizons as shown in Figures 3
and 4. Triassic black shale of the Semanggol Formation is dark grey to medium light grey, thin to
medium bedded intercalated with fine sandstone/or siltstone with a thickness of 15 to 20 m. The upper
contact was not exposed in most of the sections. In contrast, the lower contact has thinly bedded
sandstone-siltstone and interbedded shale, which is further overlain by conglomerate dominated facies.
The samples were carefully taken from outcrops by removing some weathered layers to avoid any
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contamination of weathering material. Furthermore, 1–2 kg of fresh rock samples were appropriately
labeled and packed in plastic bags.
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4. Results

4.1. Sedimentary Characteristics

Nine sedimentary facies (Facies Fsg1–Fsg9) (Table 1) were identified in the Semanggol Formation
and characterized into four major facies associations (FAs): (1) FA I, channel-fill complex; (2) FA II, levee
or overbank; (3) FA III, distal lobes; and (4) FA IV, mass transport complexes (MTCs). The study area is
dominated by the channel axis, levee deposits, and distal lobes within submarine fan settings [38].
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Table 1. Facies table of the Triassic turbidites bearing part of the Semanggol Formation, Peninsular
Malaysia [37].

Facies
Code Description Process Interpretation

Sediment Transport
and Depositional

Process
Significant Changes

Facies 1 (F1) Clast-supported
conglomerate

Interpreted as lower
portions of

high-concentrated,
coarse-grained turbidity

current deposits that
eroded and incorporated

ripped-up mud-clasts
during transportation

Massive: “Freezing”
on decreasing

bottom slopes due to
intergranular friction

and cohesion

Increased rate
of

density/energy,
deposition, bed
amalgamation,

and
fluidization
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Most of these
sandstone–mudstone

couplets were
formed during the
waning, tractional
phase of turbidity

current flow,
followed by the

suspension settling
of sand and a

combination of
tractional reworking
of suspension-fed silt

and clay material
and low rates of

suspension fall-out
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Table 1. Cont.

Facies
Code Description Process Interpretation

Sediment Transport
and Depositional

Process
Significant Changes

Facies 6 (F6) Typical bouma
facies Tabcd

Has resulted from
gradual single waning
low-density turbidity

flow followed by wider
tractional modification at
late stages and sediment
fallout from suspension

Low-density
turbidity current

and/or suspension
fallout from a

waning flow density
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1 0.55 502 30 50 70 9 13 0.38 80 

2 9.2 560 25 50 870 3 9 0.21 75 

3 11.71 611 20 60 910 1 8 0.25 80 

4 0.21 452 70 60 100 29 48 0.54 70 

5 0.48 490 40 30 170 8 21 0.33 70 
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transport (which
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4.2. Organic Geochemistry

TOC is shown in Table 2 along with the Rock-Eval pyrolysis for the 10 samples. The total organic
carbon content range between 0.20 and 11.69 wt.% (average: 3.03 wt.%), but a sample from Gunung
Semanggol shows exceptionally high TOC content, with values of 11.69 wt.%. TOC content decreasing
according to the sample location (i.e., from Gunung Semanggol (0.21–11.69 wt.%, average: 4.42 wt.%)
to Bukit Merah (0.36–2.57 wt.%, average: 1.35 wt.%) and Nami (0.55–3.67 wt.%, average: 2.11 wt.%).

Table 2. TOC (wt.%) content along with Rock-Eval pyrolysis of black shale from the
Semanggol Formation.

Location Sample TOC
(wt.%)

Tmax
(◦C)

S1
(ppm)

S2
(ppm)

S3
(ppm)

HI
(mg/g TOC)

OI
(mg/g TOC) PI S1 + S2

Gunung
Semanggol

1 0.55 502 30 50 70 9 13 0.38 80
2 9.2 560 25 50 870 3 9 0.21 75
3 11.71 611 20 60 910 1 8 0.25 80
4 0.21 452 70 60 100 29 48 0.54 70
5 0.48 490 40 30 170 8 21 0.33 70

Bukit
Merah

6 0.36 313 30 40 120 11 33 0.43 40
7 1.12 367 20 20 121 2 11 0.49 80
8 2.57 359 30 50 180 2 7 0.38 70

Nami
9 0.55 510 30 40 90 9 11 0.37 170

10 3.67 608 50 120 220 3 6 0.29 130

The hydrogen index (HI) of the 10 selected samples fluctuate from 1 to 29 mg/(g of TOC)
(average: 8 mg/(g of TOC)), and the oxygen index (OI) varies from 6 to 48 mg/(g of TOC) (average:
17 mg/(g of TOC)) (Table 2). Plots of HI−Tmax [39] and HI-OI [40] (Figure 5A,B) show that majority
of black shale samples possessed type-III kerogen, while only two samples indicate type-II kerogen.
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The Tmax values range between 313 ◦C and 610 ◦C for all samples, indicating immature to post-mature
thermal evolution. The production index (PI) values vary from 0.21 to 0.52 (average: 0.37). The plot of
TOC vs. S1 (Figure 5C) can be utilized to distinguish between non-indigenous (allochthonous) and
indigenous hydrocarbons (autochthonous). This plot shows that the majority of the studied black
shale samples characterized as allochthonous hydrocarbons, meaning that the organic matter was not
produced by the source rock itself.
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Triassic turbidite black shale from Peninsular Malaysia [39]. (B) Cross-plot of oxygen index (OI)
vs. hydrogen index (HI) [40]. (C) Plot of TOC vs. S1 used to distinguish between non-indigenous
(allochthonous) and indigenous hydrocarbons (autochthonous).

4.3. Inorganic Geochemical Analysis

4.3.1. Major Oxides

The concentrations of major oxides in the black shale of the Semanggol Formation are shown in
Table 3, including SiO2 (71.34%), Al2O3 (15.66%), Fe2O3 (1.28%), and K2O (3.71%). Some major elements
are less than 1%, such as MgO (0.65%), CaO (0.019%), TiO2 (0.73%), P2O5 (0.03%), and MnO (0.02%).

Table 3. Major oxide concentrations and geochemical anomalies (CIA, CIW and C-value) of black shale
from the Semanggol Formation.

Formation Semanggol

Section Gunung Semanggol Bukit Merah Nami

Sample 1 2 3 4 5 6 7 8 9 10

SiO2 71.64 70.7 66.93 69.8 75.96 70.1 75.6 72.3 69.18 71.2
Al2O3 15.8 17.2 20.14 17.89 11.99 14.4 12.51 13.31 18.13 15.3
Fe2O3 1.22 1.11 1.23 1.08 1.12 1.39 1.46 1.44 1.54 1.23
MgO 0.88 0.73 0.7 0.82 0.5 0.43 0.52 0.69 0.7 0.57
CaO 0.02 0.03 0.01 0.02 0.01 0.01 0.02 0.02 0.02 0.03

Na2O 0.08 0.06 0.09 0.05 0.06 0.04 0.07 0.06 0.07 0.01
K2O 3.74 3.71 4.25 3.02 3.04 3.21 3.29 4.54 4.68 3.69
TiO2 0.77 0.89 0.94 0.91 0.52 0.54 0.64 0.56 0.83 0.76
P2O5 0.06 0.05 0.04 0.01 0.03 0.1 0.02 0.01 0.04 0.02
MnO 0.01 0.04 0.02 0.01 0.01 0.05 0.02 0.01 0.01 0.02
LOI 5.6 5.33 5.4 5.1 6.6 6.3 5.7 5.6 4.6 5.1

TOC (wt.%) 0.54 9.2 11.69 0.21 0.48 0.36 1.12 2.57 0.55 3.67
CIA 80.45 81.90 82.24 85.27 79.40 81.54 78.73 74.23 79.17 80.40
CIW 99.37 99.48 99.51 99.61 99.42 99.65 99.29 99.40 99.51 99.74

C-Values 0.39 0.41 0.73 0.56 0.20 0.28 0.31 0.40 0.35 0.40
Al/Na 140.90 204.51 159.64 255.26 142.56 256.83 127.50 158.26 184.77 148

LOI: Loss On Ignition; CIA: Chemical Index of Alteration; CIW: Chemical Index of Weathering; C-Value: the ratio of
Σ (Fe + Mn + Cr + Ni + V + Co)/Σ (Ca + Mg + Sr + Ba + K + Na).

Al2O3 and TiO2 are representative of the detrital component in the black shale of the Semanggol
Formation because of their immobility during diagenesis, and are often regarded as a useful proxy for
detrital influx [12,41]. Silica dioxide (SiO2) showed a strong positive correlation with Al2O3 and TiO2

and a negative correlation with Fe2O3, CaO, Na2O, P2O5, and MnO (Figure 6A). Aluminium oxide
exhibited a strong positive correlation with SiO2 and TiO2 (0.81) and a negative correlation with Fe2O3,
CaO, Na2O, P2O5, and MnO (Figure 6B). According to Parrish [42], nutrient-rich elements supply to
support marine biological life ultimately lead to organic matter enrichment.

Different equations have measured the degree of weathering of fine-grained sedimentary rocks,
(i.e., Nesbitt and Young’s [43] equation for the Chemical Degree of Alteration (CIA) and Harnois’s [44]
equation for the Chemical Index of Weathering (CIW), as shown in Equations (1) and (2), respectively:

CIA =

[
Al2 O3

CaO + Al2 O3 + N2 O + K2 O

]
× 100 (1)

CIW =

[
Al2 O3

CaO + Al2 O3 + N2 O

]
× 100 (2)

The CIA and CIW values for black shale from three sections are listed in Table 3. The black shale
CIA values ranged from 79.40 to 85.27 (average: 81.85) for the Gunung Semanggol section, 74.23 to
81.54 (average: 78.16) for the Bukit Merah section, and 79.17 to 80.40 (average: 79.78) for the Nami
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section. On the other hand, CIW values ranged between 99.28 and 99.73 for the black shales of all the
three sections. All three sections had higher CIA values (CIA: 69) for black shales than post-Archean
Australian shale (PAAS) [45], indicating their origin from a more weathered source as compared
to PAAS.

Type of Clay

Compositional variations of clay minerals have been used to approximate paleolatitudes with
similar climatic conditions. According to Einsele [46], the concentration of illite clay minerals can
advocate humid-temperate climates. Moreover, chlorite and illite clays are frequently found in
areas that have previously been subjected to tectonic uplift as well as in cold desert areas [47,48].
The occurrence of illite clay minerals is also common at mid-latitudes in deep-marine sediments,
and the formation of “mixed-layer clays” indicates a very low intensity of chemical weathering [48].
For this reason, different cross-plots of Schlumberger [49] and Cullers and Podkovyrov [50], such as
Th vs. K (Figure 6C) and SiO2 vs. Al2O3 (Figure 6D), respectively, are utilized to depict the type of clay
as well as the variation of clay minerals within black shale horizons.
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Figure 6. Cross-plots illustrating (A) SiO2 correlation with major oxides; (B) Al2O3 correlation with
major oxides; (C) K (wt.%) vs. Th (ppm) [49]; (D) Al2O3 vs. SiO2 (wt.%) representing the clay type in
black shale samples [50].

4.3.2. Trace Elements

In Table 4, TE compositions of the black shale samples are shown from three sections. The most
abundant TEs in black shale included Ba, Zr, Rb, V, W, Sr, and Y. The remaining TE concentrations were
lower than 30 ppm (Table 4). The enrichment factor (EF) has previously been considered to further
characterize the degree of enrichment of TEs in the rocks [14,51,52].
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Table 4. Concentrations of selected trace elements (TEs) (ppm) and their ratios of black shale from the
Semanggol Formation.

Formation Semanggol

Section Gunung Semanggol Bukit Merah Nami

Sample 1 2 3 4 5 6 7 8 9 10

La 57.6 56.1 74.4 77.3 35.8 33.7 81.9 66.7 38.9 31.4
Sc 15 14 17 16 12 12 15 14 9.0 11
Th 1.3 1.1 1.4 1.0 0.8 0.9 1.2 1.3 1.0 1.1
Hf 5.9 6.2 8 7.1 7.3 6.3 5.4 5.7 9.2 8.3
Co 5.3 4.2 3.0 2.1 1.0 2.3 2.7 2.4 2.3 2.3
Zr 222.4 215.1 268.6 222.8 271.7 217.1 182.4 171.1 351.9 322.1
Cr 68.4 615.8 88.9 75.3 47.9 54.7 13.7 6.8 82.1 75.3
Sr 35.9 33.2 33.7 31.7 32.5 29.5 31.3 44.1 49 37.1
Cu 23.8 19.2 1.0 3.1 2.1 2.6 36.1 32.5 7.8 6.5
Ga 20.9 19.2 21.1 13.2 12.6 19.2 21.7 17.1 16.2 15.3
Rb 175.5 166 165.5 144.2 130.9 171.1 183.2 154.3 144 131.2
Ni 23 19 20 17 20 22 29 21 20 27
U 3.5 3.3 3.7 3.1 3.2 2.9 3.9 3.2 2.8 2.3
V 123 131 145 111 106 144 150 121 97 101
Cr 0.011 0.09 0.013 0.011 0.007 0.008 0.002 0.001 0.012 0.011

Ni/Co 4.34 4.52 6.67 8.10 20.00 9.57 10.74 8.75 8.70 11.74
U/Th 0.19 0.17 0.16 0.15 0.25 0.25 0.21 0.18 0.21 0.19

V/(V+Ni) 0.84 0.87 0.88 0.87 0.84 0.87 0.84 0.85 0.83 0.79
Co/Th 4.08 3.82 2.14 2.1 1.25 2.56 2.25 1.85 2.30 2.09
La/Th 3.15 2.92 3.13 3.63 2.84 2.93 4.43 3.79 2.88 2.57
Sr/Cu 1.51 1.73 33.70 10.23 15.48 11.35 0.87 1.36 6.28 5.71
Ga/Rb 0.12 0.12 0.13 0.09 0.10 0.11 0.12 0.11 0.11 0.12

For the enrichment factor, each element is first normalized by aluminium (Al), which is considered
as one of the most significant detrital fractions; next, a comparison of these normalized values to their
equivalent average shale is made [51,52]. In Equation (3), elementsample represents the investigated
shale sample, and elementaverage shale represents the average shale [53].

EFelement = (element/Al)sample/(element/Al)average shale (3)

Therefore, if the EFelement is greater than 1, the TEs are enriched relative to average shale, whereas
an EFelement value less than 1 indicates depletion [12].

Distribution of TEs based on EF averages (Table 5) shows that W, As, Cs, Hf, Zr, Th, Pb, Rb, Sc, Ga,
and V are enriched relative to average shale, where the enrichment of these TEs may have been related
to organic matter and/or clay mineral deposition [54]. On the other hand, Sr, Co, Cu, Ni, Nb, Mo,
and Ba are relatively depleted, representing the weathering of black shale [55,56] (Figure 7). Ratios of
Zr/Hf 35 ± 2 suggest that the trace element data are reliable within the range of sedimentary and
igneous rocks, and not affected by anomalous hydrothermal processes [57]. The average ratio of Zr/Hf
for the studied black shales is 34.98.

4.3.3. Bioproductivity Proxies

Phosphorus (P) and nitrogen (N) are the vital nutrient elements of marine organisms. Phosphorus
is considered an essential element of skeletal material and metabolic processes [12]; for this reason,
phosphorus is widely utilized as an indicator of paleoproductivity. To reduce the effects of authigenic
minerals and the dilution of organic matter on P content in terrigenous detrital fractions, ratios of
P/Ti or P/Al are considered for the evaluation of paleoproductivity because titanium and aluminium
originate from terrigenous sources. In the studied black shales, P/Ti ratios range between 0.008 and
0.13 (average: 0.04), and the mean value of Semanggol black shale was lower than average black shales
values (0.79 ± 1.63) [58].
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Table 5. Enrichment factors (EFs) for the selected trace elements of black shale samples from the
Semanggol Formation.

Sample No. EFBa EFZr EFRb EFV EFSr EFPb EFAs EFNi EFGa EFTh EFSc EFCu EFCs EFU

1 0.43 1.46 1.32 1.00 0.12 0.97 0.68 0.35 1.16 1.61 1.22 0.55 3.74 1.32
2 0.34 1.50 1.15 0.97 0.10 0.96 0.53 0.27 0.98 1.55 1.04 0.41 3.02 1.14
3 0.18 1.39 0.98 0.92 0.09 0.32 0.09 0.24 0.92 1.64 1.08 0.01 1.52 1.09
4 0.21 1.30 0.96 0.79 0.09 0.45 0.13 0.23 0.64 1.65 1.14 0.06 1.57 1.03
5 0.99 2.36 1.30 1.13 0.15 3.57 6.90 0.40 0.92 1.46 1.28 0.06 1.90 1.59
6 0.77 1.57 1.41 1.28 0.11 2.79 3.89 0.37 1.17 1.11 1.07 0.06 1.62 1.20
7 0.88 1.52 1.74 1.54 0.13 0.91 1.26 0.56 1.52 2.05 1.54 1.07 2.28 1.85
8 0.47 1.34 1.38 1.16 0.18 0.79 1.29 0.38 1.12 1.84 1.35 0.90 2.35 1.44
9 0.31 2.02 0.94 0.68 0.15 1.55 5.29 0.27 0.78 1.03 0.63 0.15 1.5 0.92

10 0.37 2.26 1.02 0.84 0.135 1.49 6.13 0.43 0.87 1.10 0.92 0.15 1.6 0.89
Average 0.50 1.67 1.22 1.03 0.13 1.38 2.62 0.35 1.01 1.50 1.13 0.34 2.1 1.2

EFelement = (element/Al)sample/(element/Al)average shale. Mean Al content for average shale is 8.84% from Rimmer [14].
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Figure 7. EFs of selected trace elements in the Semanggol black shale. A horizontal red dashed line
(EF = 1) indicates an element enrichment or depletion of these TEs.

Barite is also used as a paleoproductivity indicator because the accumulation rate of barite in
marine deposits exhibits a positive correlation with primary productivity [59,60]. Ratios of Ba/Ti or
Ba/Al can be applied to approximate paleoproductivity [61]. Ba divided with Ti or Al eliminates the
dilution impact of different components. Thus, both ratios are representative of the quantity of marine
organisms in the ancient sea. Ba/Al ratios vary from 18.1 to 95.34, with an average of 48.55.

4.3.4. Rare Earth Elements (REEs)

The concentrations of REEs and related geochemical indicators for the studied samples are shown
in Table 6. The total REE (

∑
REE) concentrations of the 10 black shale samples vary between 169.25 and
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341.57 ppm, with an average value of 254.46 ppm (Table 6) having higher concentrations relative to
North American shale composite (NASC) (i.e., 173.21 ppm), post-Archean Average Australian shale
(PAAS) (i.e., 183.03 ppm), and upper continental crust (UCC) (i.e., 146.4 ppm) [62,63].

Table 6. Rare earth element (REE) concentrations (ppm) and calculated REE ratios along with different
anomalies of black shale samples from the Semanggol Formation.

Elements Sample-1 Sample-2 Sample-3 Sample-4 Sample-5 Sample-6 Sample-7 Sample-8 Sample-9 Sample-10

La 57.60 56.10 74.40 77.30 35.80 33.70 81.90 66.70 38.90 31.40
Ce 113.50 101.20 142.20 121.90 72.70 89.10 141.10 111.20 80.60 99.30
Pr 12.24 17.40 16.10 9.40 7.63 13.20 15.30 19.10 10.60 12.50
Nd 44.50 49.50 57.70 39.30 28.40 56.10 64.20 63.90 31.70 29.80
Sm 8.37 7.60 10.14 11.40 5.66 6.69 10.97 9.71 6.23 5.78
Eu 1.60 1.20 1.90 1.70 1.23 2.20 2.07 1.98 1.35 1.21
Gd 7.27 6.30 8.21 7.74 5.24 6.10 8.65 4.78 5.81 5.01
Tb 1.08 1.01 1.20 1.10 0.80 0.70 1.22 1.14 0.91 1.30
Dy 6.19 7.21 6.97 5.87 4.56 5.21 6.73 4.90 5.23 6.01
Ho 1.25 1.21 1.41 1.43 0.95 0.99 1.24 1.23 0.99 0.98
Er 3.46 3.21 4.13 4.01 2.78 3.31 3.63 2.87 3.02 2.61
Tm 0.52 0.49 0.60 0.45 0.41 0.57 0.52 0.39 0.44 0.53
Yb 3.36 3.21 3.94 3.71 2.67 3.40 3.50 2.12 2.86 2.76
Lu 0.51 0.55 0.60 0.48 0.42 0.50 0.54 0.41 0.46 0.39

ΣREE 261.45 256.19 329.50 285.79 169.25 221.77 341.57 290.43 189.10 199.58
Average 26.15 25.62 32.95 28.58 16.93 22.18 34.16 29.04 18.91 19.96
ΣLREE 237.81 233.00 302.44 261.00 151.42 200.99 315.54 272.59 169.38 179.99
ΣHREE 23.64 23.19 27.06 24.79 17.83 20.78 26.03 17.84 19.72 19.59

LREE/HREE 10.06 10.05 11.18 10.53 8.49 9.67 12.12 15.28 8.59 9.19
(La/La*)N 1.13 0.53 1.08 2.86 1.18 0.94 1.88 0.72 0.64 0.35
(Ce/Ce*)N 0.95 1.14 0.96 0.68 0.95 1.25 0.89 1.10 1.08 1.26
(Pr/Pr*)N 0.98 1.39 1.01 0.77 0.95 1.03 0.91 1.27 1.19 1.29
(Eu/Eu*)N 0.94 1.46 1.05 0.58 0.84 1.35 0.94 1.30 1.05 1.12
(Gd/Yb)N 1.29 1.17 1.24 1.24 1.17 1.07 1.47 1.34 1.21 1.08
(La/Yb)N 1.26 1.29 1.39 1.54 0.99 0.73 1.72 2.32 1.00 0.84

ΣLREE: Total Concentrations of LREEs (LREE = La − Eu); ΣHREE: Total Concentrations of HREEs (HREE = Gd −
Lu); ΣREE: Total Concentrations of REEs (ΣREE = ΣLREE + ΣHREE); L/H: ΣLREE/ΣHREE; (La/La*)N = La/(3 ×
PrN− 2 ×NdN); (Ce/Ce*)N = 2 × PrN/(LaN + PrN); (Pr/Pr*)N = 2 × PrN/(CeN + NdN); (Eu/Eu*)N = EuN/[(SmN × 0.67)
+ (TbN × 0.33)]; Post-Archean Average Australian Shale (PAAS)-Normalized. PAAS data from Wedepohl [41].

The Eu and Ce anomalies were measured using Equations (4) and (5) from Bau and Dulski [64]
Dai et al. [65], respectively.

EuN/EuN∗ = EuN/[(SmN × 0.67) + (TbN × 0.33)] (4)

CeN/CeN∗ = CeN /
(1

2
LaN +

1
2

PrN

)
(5)

Sample-1, -3, -4, -5, and -7 ((Ce/Ce*)N = 0.68–0.96) show negative Ce* anomalies, and Sample-1, -4,
-5, and -7 ((Eu/Eu*)N = 0.58–0.94) show negative Eu* anomalies (Table 6). All other samples display
positive Ce* and Eu* anomalies.

Typically, the sedimentary rate of shale has been determined by utilizing the (La/Yb)N ratio [66,67].
The ratios of the studied shale vary from 0.73 to 2.32 (average: 1.31) (Table 6), representing a high
sedimentary rate during the black shale deposition in the Semanggol Basin. This high rate of
sedimentation would result in weak fractionation of REEs, which is consistent with the trends of the
PAAS-normalized REE distribution patterns for different black shale samples.

4.4. Mineralogical Compositions

The analyses by SEM coupled with EDX propose that the black shale samples are predominantly
comprised of clay minerals like kaolinite and illite along with quartz, feldspar, pyrite, and some heavy
metals like zircon and titanium.

The flakes of kaolinite have shown a deformed morphology and undefined outlines with curved
and bent flakes (Figure 8A). The composition of kaolinite is also evident from the EDX pattern where
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Al and Si represent their elemental composition (Figure 8B). Illite consists of crumbled plates with
unclear outlines under SEM micrographs (Figure 8C) about 2 µm in size. EDX spectra displaced the
elemental composition of typical illite where Al, Si, and K are the main constituents (Figure 8D).
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Figure 8. (A) SEM photo of the kaolinite in the clay fraction of the black shale from the Gunung
Semanggol section; (B) EDX pattern of kaolinite showing Al, Si, O, Fe, and Ti peaks for the studied
black shale from the Gunung Semanggol section; (C) SEM photo of illite in the clay fraction of the black
shale from the Nami section; (D) EDX pattern of kaolinite displaying peaks of Al, Si, O, and K that
characterize the illite composition for the black shale from the Nami section; (E) X-ray diffraction pattern
of the clay fraction separated from the black shale from the Gunnug Semanggol section; (F) X-ray
diffraction pattern of the clay fraction separated from the black shale from the Nami section.

The XRD results are shown in Figure 8E, F for clay fractions of the Semanggol Formation. Illite and
kaolinite are the only clay minerals interpreted in the XRD spectrum for the studied black shale. Illite



Minerals 2020, 10, 915 18 of 34

diffraction peaks can be noted at d = ∼10.02 and 5.02 Å. The X-ray diffraction spectral of the Semanggol
illite correlates well with that of the pure illite (d = 10.1, 5.00, and 3.38 Å). In contrast, kaolinite
diffraction peaks can be identified at d = ∼7.17, 4.36, and 3.58 Å. Non-clay minerals are also noticeable
(predominantly quartz grains). Therefore, the XRD pattern of black shale reveals that illite, kaolinite,
and quartz were major constituents of Semanggol shale. Furthermore, values of illite crystallinity (IC)
in the black shale samples fluctuated between 0.20◦ and 0.40◦ ∆2θ (average: 0.30◦ ∆2θ). Based on the
illite crystallinity classification chart, the values of the IC fall under the anchizone [68].

5. Discussion

5.1. The Terrigenous Influx and Weathering Intensity

Aluminium (Al), titanium (Ti), silica (Si), and zirconium (Zr) are considered detrital proxies [69].
The concentration of Al (aluminium) is principally associated with aluminosilicate clay content,
while the concentration of Ti (titanium) is also related to clay minerals but also with some heavy
metals like ilmenite and rutile [70]. The strong positive correlation of Al2O3 with TiO2 in the black
shale proposes that the presence of TiO2 linked to aluminosilicate detrital fractions (Figure 6B).
Moreover, insignificant fluctuations of Al2O3 and TiO2 indicate that terrestrial detrital input is relatively
stable [51,63]. The input of detrital fractions significantly influences organic matter accumulation and
the composition of black shale in several ways: (1) It can dilute the organic matter content and slow
down the rate of sedimentation; (2) Aluminosilicate clay minerals can hold the organic matter by an
adsorption effect; (3) Detrital influx can also regulate organic matter degradation proficiency and burial
rates [14,71]. The bivariate plot of Al2O3 and TiO2 exhibits weak to moderate positive correlations
with TOC (r2 = 0.22). Further, (Zr + Rb)/Sr (7.38–13.6 with a mean of 11.42) and Zr/Rb (1–2.53 with a
mean of 1.64) ratios are also used to distinguish between the siliciclastic and carbonate contents of
rocks. Higher values suggest less carbonate content and a more siliciclastic influx [5].

5.2. Paleoredox Conditions

Recently Algeo and Liu [7] reported that enrichment factors of redox-sensitive trace metals
such as U, Mo, Zn, Pb, Ni, Cu, Cd, and V are the most reliable redox identities. These elements
are enriched in anoxic conditions, while Mn is depleted [6,12]. The paleoredox conditions has been
interpreted by using ratios of different TEs (e.g., U/Th, Ni/Co, and V/(V+Ni)) that are sensitive
to redox environments [14,51,72,73]. Further, their ratios became reduced in the water columns
due to upwelling oxidation conditions [14]. To differentiate between anoxic, dysoxic, and oxic
environments, a reference standard has previously been established based on the ratios of U/Th, V/Cr,
Ni/Co, and V/(V+Ni) [12,72,73]. Ratios of V/(V+Ni) greater than 0.6 and 0.8 show strongly reducing
conditions [74]. Ni/Co ratios less than 5 indicate an oxic environment, from 5 to 7 dysoxic, and greater
than 7 dysoxic to suboxic–anoxic [73]. U/Th values <0.75 show oxic conditions, from 0.75 to 1.25
dysoxic, and >1.25 suboxic–anoxic [73].

In the studied black shale samples, the ratios of U/Th, Ni/Co, and V/(V+Ni) vary from 0.15 to
0.25, 4.34 to 20.0, and 0.79 to 0.88, with averages of 0.20, 9.31, and 0.85 respectively. The majority of
V/(V+Ni) ratios indicate an anoxic environment, while ratios of Ni/Co in a few samples indicate oxic
to dysoxic environments (Table 4). In the studied black shale, EFs of V, U, Mo, and Pb are slightly
enriched in a few samples, while in several they were depleted. Other redox-sensitive elements such as
Ni, Cr, Co, Cu, and Zn were depleted in all investigated samples. Jones and Manning [73] considered
that U/Th ratios are a more reliable identity for interpreting redox conditions rather than other trace
elements. Therefore, EFs of U, Th, and U/Th exhibit dominantly oxic conditions during the deposition
of black shales. The perturbation in the redox condition was associated with the depositional condition
of Triassic turbidites, which was tectonically controlled. During the Middle Triassic times, due to
basin segmentation, thermally driven uplift and subsidence linked to Sukhothai Arc likely played
a vital role in the sea level fluctuation during deposition [75,76]. This volcanic (tectonic)-controlled
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agitation observed throughout the deposition of Semanggol turbidite deposits greatly influenced the
relative sea level in the Semanggol Basin, which triggered sporadic shallowing and deepening events.
These events are best interpreted at basin margins and further explain the configuration of the basin.
According to Algeo and Liu [7], various factors influence the behavior of sensitive trace elements
in the depositional basin. The geological setting of the Semanggol Basin was not constant during
Mesozoic times, and continuously changed from a passive to active continental margin due to the
subduction of the Sibumasu block under the Indochina East Malaya block [76,77]. Moreover, these
redox-sensitive metals display a weak to negative correlation with TOC (Figure 9A). Sample-1, -3, -4,
-5, and -7 show negative anomalies ((Ce/Ce*)N = 0.68 – 0.96), while other rock samples display slightly
positive Ce* anomalies, indicating oxic conditions (Table 6). Mo and U, both trace elements were
enriched in reducing conditions and their chemical behaviors varied considerably during deposition.
The concentration of authigenic U in marine sediments initiates at the Fe+2-Fe+3 redox boundary under
suboxic environments [78], while enrichment of authigenic Mo under euxinic conditions needs the
presence of hydrogen sulfide (H2S) [79,80]. One of the major differences between Mo and U is the
transfer of authigenic Mo from the water column into sediments; however, the removal of U is unaltered
by the particulate Mn/Fe-oxyhydroxide process [81]. Therefore, a cross-plot of Mo–U is a realistic proxy
by which to inspect redox conditions [82,83]. Ratios of MoEF against UEF show that the deposition of
Semanggol black shale trends from unrestricted marine to anoxic conditions (Figure 9B). Moreover,
the bivariate plot of MoEF and UEF against TOC reveals a weak positive correlation (Figure 9C),
indicating that redox-controlled organic matter accumulation effects become strong towards the deep
marine environment.

5.3. Paleoclimatic Conditions

The concentrations of some major oxides and TEs were used to infer the paleoenvironmental
conditions of fine-grained siliciclastic rocks [56,84,85]. Consent has been attained by previous
findings [86–89] that Fe, V, Cr, Mn, Co, and Ni reasonably concentrate under moist climatic conditions.
Conversely, the increase in water alkalinity because of evaporation enables precipitation of saline
minerals under arid climates; consequently, concentrations of Ca, Na, Mg, K, Ba, and Sr are relatively
enriched. Regarding different geochemical behaviors of these two groups, their ratios of Σ(Fe + Mn +

Cr + Ni + V + Co)/Σ(Ca + Mg + Sr + Ba + K + Na) (termed as C-value) are considered to be a climate
proxy and used broadly for paleoclimate interpretation [86–89]. Therefore, the different scientists
have suggested that C-values of 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0 represent arid, semi-arid,
semi-arid to semi-humid, semi-humid, and humid climates, respectively [86–89].

The C-values for the analyzed black shale samples ranged between 0.20 and 0.73 with an average
value of 0.40 (Table 3), possibly reflecting a semi-arid to semi-humid environment. Some TE ratios like
Sr/Cu and Ga/Rb can also be used to categorize the paleoclimate [85,90]. Ga is generally enriched in
kaolinite clay mineral, indicating a warmer and humid climate [85,91], while Rb is mostly associated
with illite minerals, inferring cold and arid climatic conditions [85]. Commonly, fine-grained clastic
sedimentary rocks are categorized into warm and humid climatic conditions with low Sr/Cu and high
Ga/Rb ratios [92]. Sr/Cu ratios between 0.87 and 5.0 are indicative of warm-humid environments,
but values of more than 5.0 represent hot-arid climatic conditions [85,90].

Ratios of Sr/Cu and Ga/Rb in black shale differ from 0.87 to 33.70 and 0.09 to 0.13, with an average
of 8.82 and 0.11, respectively. Overall, both indicators suggest that the Semanggol Basin fluctuated
between humid-arid thresholds and hot–arid climatic conditions during the Triassic period (Figure 9D).
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Figure 9. (A) Cross-plot of TOC vs. redox metals showing a very weak to negative correlation;
(B) Cross-plot of the enrichment factor of MoEF against UEF. The lines display Mo/U ratios equal to
seawater (SW). The patterns of UEF and MoEF are compared to the model of Algeo and Tribovillard [83];
(C) Correlation of TOC against UEF and MoEF showing a moderate positive correlation; (D) Ratios of
Sr/Cu vs. Ga/Rb illustrating climatic conditions in the Semanggol Basin during Triassic black shale
deposition; (E) Graph bar showing the concentrations of Babio and Baterr in the black shale sample;
(F) Plot of TOC content vs. Baxs, Pxs, and Sixs showing a weak to moderate positive correlation with
paleoproductivity indicators.

The diagenetic and metamorphic effects on phyllosilicate minerals can be approximated by the
crystallinity index (IC). The value of the IC index decreases as thermal overprinting increases on
clay minerals. Therefore, IC values are utilized to investigate the conversion of smectite to illite and
characterize the diagenetic/low-grade metamorphic effects in different zones (e.g., [93,94]). IC index
values higher than >0.42◦ ∆2θ indicate late diagenetic illite, whereas values from 0.42◦ to 0.25◦ ∆2θ
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outline the anchizone [95]. Illite crystallinity (IC) index values of the studied black shales varied from
0.2◦ to 0.4◦ ∆2θ (average: 0.28◦ ∆2θ), representing low IC values overall. Based on the illite crystallinity
classification diagram, the values of the IC fall under the anchizone [68]. The content of illite varies
from 43% to 56%, which is far less than for over-mature rocks [96]. Furthermore, The dominance of
kaolinite clay mineral indicates a deep tropical weathering and hot humid climatic conditions [97].

5.4. Paleosalinity

The paleosalinity levels during the deposition of these turbidites were measured by ratios of
Rb/K [98] and Sr/Ba [99,100]. Ratios of Rb/K ≤ 0.004 infer freshwater column, 0.004 ≤ 0.006 designates
a fresh to brackish water environment, and >0.006 values suggest fully marine water conditions.
According to Li et al. [100] and Zhen et al. [99], ratios of Sr/Ba more than 1 show saline water
conditions, from 1.0 to 0.6 represent brackish environments, and less than 0.6 indicate freshwater
conditions. The Rb/K ratios (0.003 to 0.006; average: 0.005) for black shales of the Semanggol Formation
are characteristic of freshwater to brackish water conditions, while the Sr/Ba ratios (0.05 to 0.17;
average: 0.11) indicate a freshwater environment during deposition.

5.5. Paleoproductivity

During the burial and remineralization, low TOC concentration is generally considered to be related
with photosynthetic primary paleoproductivity and the rate of organic matter deposition [101,102].
Enrichment of Cu, Pb, Zn, Ni, Cd, Mo, and V is high in organic carbon zones, and these metals become
adsorbed in stratified water column either electrostatically or via oxygen-containing functional groups
onto terrestrial organic matter (OM) and carried away by the fluvial system, finally to be incorporated
into the sediments. The disintegration of OM subsequently releases the adsorbed metals and results
in the formation of sulphide minerals and V-bearing clays. In the studied black shale samples, V,
Pb, and Mo are enriched in a few samples while depleted in all others. In this regard, TOC contents
are used as a reliable paleoproductivity indicator when combined with other TE anomaly indicators
like element Ba. Ba shows a nutrient-type behavior as mirrored by the correlation of Ba and organic
carbon in the oceanic waters [59,103]. The relationship is used to assess the amount of organic carbon
approaching the seafloor, though Ba and TOC concentrations in the analyzed samples presented a
weak correlation, demonstrating different sources. Besides the biogenic Ba (Babio) source, there are
various sources for Ba accumulation in marine sediments, including: (1) a benthic organism’s secretion;
(2) detrital aluminosilicates; and (3) hydrothermal solution/precipitates [59]. In the studied samples,
no evidence is identified related to the hydrothermal origin of Ba. To distinguish between Babio and
Baterr (terrestrial), the following equations are used [59,103]:

Babio = Batot − Baterr (6)

Baterr = Altot × (Ba/Al)terr (7)

In Equations (6) and (7), Ba/Alterr is the background Ba/Al ratio, and here the PAAS values are
used. Altot is the aluminium content in the samples, Babio is the biogenic Ba content, and Batot is
the total bulk Ba in the samples. The black shale samples exhibited a low concentration of biogenic
Ba, as shown in Figure 9E. This suggests that the bulk Ba in sediments was sourced from terrestrial
input. Ba/Al/or Baxs ratios are effectively used as a paleoproductivity proxy [61]. Ba/Al shows a weak
correlation against TOC.

Phosphorus is commonly removed from the marine water column as sediments have undergone
assimilation into OM or by attachment to metal-oxyhydroxides [104]. In the oxic environment,
authigenic phosphate precipitates through the adsorption and complexation processes with
Fe-oxyhydroxides or by biological means as polyphosphates that are stable after burial [12,105,106].
Under anoxic conditions, phosphorus moves into sediment porewater, which is likely to diffuse back into
above water column [106–108]. Ratios of P/Ti are used to determine paleo-oceanic conditions [58]. In the
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Semanggol black shales, the P/Ti value (0.004) was very low compared to PAAS (0.13). Furthermore,
there is very weak correlation between P and TOC (−0.089) (Figure 9F), indicating that P cannot be
considered a true image of paleoproductivity. Enrichment of Phosphorus is among the most reliable
parameters in differentiating between the organic-rich sediments deposited in different environments
like the Black Sea (restricted basin) vs. the Gulf of California (continental margin upwelling zone);
therefore, P is more efficiently reduced in sediments of upwelling settings [109]. Sometimes in upwelling
zones, sulphide-oxidizing bacteria unable to remove the porewater P during apatite deposition have
resulted in a high concentration of phosphorites under anoxic conditions [110].

Besides P and Ba, the excess content of Si is one of the valuable paleoproductivity indicators
for sediments deposited under reducing conditions [51]. The Semanggol Formation is rich in silica,
and the occurrence of radiolarian assemblages, bivalve Claraia sp., Halobia, Posidonia, and Daonella
multilineata have been reported by former researchers [111–113]. Thus, the excess concentration of
SiO2 fractions in the sediments comparative to the normative terrigenous level can be regarded as
biogenic in origin. Weak-to-moderate positive correlations (i.e., r2 = 0.21) can be recognized between
Sixs and TOC (Figure 9F), which further verify the reliability of Sixs as a paleoproductivity proxy.
However, this moderate correlation suggests that the limited nutrient flux in the deep-marine black
shale is due to a deficiency in nutrient supply or a less effective recycling of phosphorus. Additionally,
Si interpreted as a productivity proxy, but strong correlation of Si with Al (r2 = 0.8) reflected that silica
has detrital origin. However, occurrence of radiolarians confirms biogenic silica as well as upwelling.

5.6. Geochemical Evidence of Ancient Upwelling

To distinguish between oxygen-depleted water in continental margin upwelling (i.e., Peru and
Namibian Margins) and restricted (i.e., black sea) settings, a suite of TE proxies comprising Mo,
Cd, Mn, and Co are utilized to characterize these basins [13]. The continental margin upwelling
regions are described by high primary productivity at the expense of an excess nutrient supply and
development of an oxygen minimal zone (OMZ), which in turn accelerated the consumption of oxygen
through degradation of OM [114,115]. In contrast, the restricted basin limited the OM re-supplies
as well as the deep-water circulation and ventilation because of the enhanced consumption rate of
oxygen through the disintegration of OM [83]. Cadmium (Cd) and Mo are typically enriched in
upwelling rocks, while concentrations of Co and Mn are depleted [115]. Ratios of Cd/Mo, Co ×Mn,
and MnEF × CoEF such as 0.1, 0.4, and 0.5 in terms of boundary limits are used to discriminate among
upwelling and restricted settings [13] (Figure 10A–C). Sweere et al. [13] have discussed the difference
between upwelling and restricted basin settings based on Cd/Mo ratios. Cd/Mo ratios above 0.1 are
related to upwelling settings, while ratios below 0.1 are characteristic of hydrographically restricted
settings. Sweere et al. [13] has also explained the relationship between the Cd/Mo ratio and TOC
content of the rocks, proposing the validity of a proxy regardless of the amount of TOC enrichment.
Relatively low organic matter (TOC ~3%) and trace metal contents might be attributable to a relatively
higher proportion of metals from detrital phases. The investigated black shale had an average ratio
of Cd/Mo as 1.40 (varying from 0.05 to 3.9, except for one sample showing values less than 0.1),
which indicates strong upwelling conditions (Figure 10A) and suggests that black shale was exposed to
stable upwelling conditions in a reducing environment. The low concentration of Cd suggests seasonal
upwelling (Figure 10D). In the investigated black shales, the relationship between the Al and Co ×Mn
is very weak. Moreover, the upwelling system was typically deprived of Co and Mn contents, while the
restricted basin was enriched with Co and Mn via dominant influxes of Co- and Mn-rich river waters.
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Figure 10. (A) plot of TOC (wt.%) content vs. Cd/Mo; (B) Al (wt.%) vs. Co (ppm) ×Mo(wt.%); (C) Al
(wt.%) vs. CoEF ×MnEF; (D) Mo (ppm) vs. Cd (ppm) plot showing the characteristic of a restricted
setting (inferred conditions based on modern settings, after Sweere et al. [13]); (E) Cross-plot of Cd vs.
Mo, indicating a negative correlation between these two trace elements; (F) Discriminating diagram of
Zr/Sc vs. Th/Sc [116], revealing that sediments of black shale of the Semanggol Formation show signs
of sedimentary recycling.

On the contrary, a negative correlation (Figure 10E) is observed between both elements as increased
Mo concentrations were accompanied by constant low Cd concentrations, indicating a strong upwelling
environment (Figure 10D). Low values of Co (ppm) × Mn (wt.%) (0.007–0.13, average: 0.04) and
MnEF × CoEF values (0.008–0.09, average: 0.036) also point towards the upwelling of the continental
margin where the concentrations of manganese (Mn) and cobalt (Co) were decreased by deep oceanic
waters, resulting in weak enrichment of authigenic Mn and Co [13] (Figure 10B,C). The correlation
between Zr/Sc and Th/Sc [116] reveals that sediments of black shale of the Semanggol Formation
experienced sedimentary recycling (Figure 10F).
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5.7. Impact of Geological Events on Depositional History

During the Late Triassic, due to segmentation and intensified subsidence of the Gua
Kodiang-Semanggol Basin, a gradual deepening of the sea level occurred towards the western
side, and the depositional environment shifted from oxic to anoxic in the deeper parts of the basin,
establishing favorable conditions for organic matter accumulation (Figure 11). The eastern side of the
Semanggol Basin was dominated by shallow water facies like conglomerate-sandstone, which were
deposited under high-energy conditions due to progressive regression during the last stage of the
Indosinian Orogeny, and deposition took place in the oxic water column [20,75].
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Figure 11. Block diagram illustrating the formation, accumulation, and deposition of organic matter in
the Semanggol Basin during the Triassic.

In marine sediments, organic matter dominantly hosting the distribution of Hg and reducing
conditions also played a pivotal in the uptake without the contribution of TOC content. Hg can be used
as a volcanic proxy, as its ratios are not significantly altered by redox conditions and can be employed
to estimate the various environmental information [7]. The weak relationship between Hg/TOC
(r2 = 0.2) was observed in the Semanggol black shale. Moreover, frequent volcanism occurred during
Semanggol Formation deposition [20,76,77,117,118]. Higher concentrations of biological relevant
nutrient elements were also introduced into seawater during volcanic eruption [119], thus enhanced
growth of cyanobacterial activity resulted in increased marine primary productivity [120]. Conversely,
modern equivalents reveal that fertilization of one cycle of oceanic water through volcanic activity
commonly has a duration of few weeks to months [121,122]. However, during the Triassic the volcanic
activity was widespread [20,76,77,117,118]. Still, this period of volcanic-induced seawater fertilization
is like a flash relating to the geological time scale of million years. The correlation among parameters of
CIA, salinity, and redox condition parameters could be indicative of the impact of volcanic eruptions on
the deep water environment. The negative relationship between CIA and Sr/Ba (r2 =−0.11) (Figure 12A),
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may indicate that the input of volcanic ash caused an increase in deep-marine salinity and nutrient
salts, possibly due to volcanic ash being commonly covered with soluble salt coatings [123]. In support
of this argument, there is a strong positive correlation between Sr/Ba and Ba/Al (r2 = 0.81) (Figure 12B)
that is consistent with an increase in nutrients leading to the flourishing of marine organisms [100].

5.8. Organic Matter Enrichment

The mechanisms that have controlled the enrichment of organic matter in the geological record
have been extensively studied for the last few decades [69,124,125]. There are certain favorable
geological conditions for the preservation and accumulation of organic matter that are interconnected
with three main factors: (1) preservational environments/or oxygen deficiency environments; (2) high
paleoproductivity (organic carbon fluxes); and (3) sedimentation rate [13,126–128].

To estimate the significance of productivity against preservation, the discrimination diagram of
Sweere et al. [13] can be used. It shows that majority of the samples fall into the productivity-controlled
upwelling sector except two samples projected to be in the preservation-controlled upwelling field
(Figure 12C). Therefore, the Semanggol basinal setting is most probably similar to the Namibian margin
setting based on a scatter plot of Co (ppm) ×Mn (wt.%) vs Cd/Mo. The deeper part of the Semanggol
Basin was substantiated to be impacted by persistent upwelling where the primary productivity was
increased and adequate, or where excess OM was transported to deeper part of the basin. The moderate
correlation between TOC and Sixs shows that the OM fluxes that increased with the enhanced primary
productivity (Figure 6C) resulted in a combined effect of primary productivity and preservation,
which are controlling factors for OM accumulation. Moreover, anoxic-oxic conditions prevailed in the
upwelling OMZ, which could be a contributing factor to the burial and preservation of OM. However,
this is assumed to be the secondary controlling factor for the accumulation of OM at the deeper part of
the Semanggol Basin.

Our present findings are supported by the weak correlation between Ba and TOC, which suggests a
more terrestrial Ba influx relative to biogenic Ba. Enrichment of Cu, Pb, Zn, Ni, Cd, Mo, and V is high in
organic carbon zones, and these metals adsorbed in stratified water column either electrostatically or via
oxygen functional groups onto terrestrial organic matter (OM) before being carried away by the fluvial
system and being incorporated into the sediments. The deposition of OM subsequently released the
adsorbed metals and resulted in the formation of sulphide minerals and V-bearing clays. In the studied
black shale samples, V, Pb, and Mo were enriched in a few samples while depleted in all others [14].
Therefore, organic matter enrichment was controlled mainly by primary productivity, which increased
as a result of increased nutrient flux during a time of sea level fluctuations [102]. A cross-plot of TOC
vs. Mo shows that black shale samples are projected in the Black Sea field, and some samples fall in the
Framvaren Fjord area. This indicates that the environment of the Semanggol Basin was continuously
changing during the deposition of Triassic black shale (Figure 12D). Mo is strongly enriched in modern
reducing sediments where free H2S is present, with the Black Sea reduced sediments containing
2–40 ppm [81]. Such levels are considerably higher than the average Mo concentrations in normal
shales (2.6 ppm) [53] and black shales (10 ppm) [129]. The black shale under investigation had a
concentration of Mo from 0.1 to 4.4 with an average of 0.95, which is significantly lower than Black
Sea sediments, average shale, and black shale values. In fore-deep basin settings, sea-level rise and
erosion from high land areas could carry the nutrient-rich sediments as well as terrestrial organic
matter into the basin, causing photosynthetic phytoplankton blooms and increasing the generation of
organic matter. Both enhanced oxygen consumption for microorganism breathing and organic matter
decomposition could have caused oxygen depletion in the water column, specifically in deeper part of
the basin.
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Figure 12. (A) Sr/Ba vs. CIA; (B) Ba/Al vs. Sr/Ba; (C) scatter plot of Co (ppm) ×Mn (wt.%) vs. Cd/Mo
showing a majority of the samples plotted in the field of productivity-controlled upwelling, except for
two samples plotted as upwelling-controlled preservation [13]; (D) Plot of TOC (wt.%) content vs. Mo
(ppm) showing depositional conditions for the black shale samples [130].

According to Tenger et al. [131], if the values of a sedimentary rate are close to 1 or more than
1, the sedimentary rate is considered to be fast. In the present study, the sedimentary rate fluctuate
between 0.69 and 2.31 (average: 1.31), inferring a high sedimentation rate during black shale deposition,
which would further cause the dilution of organic matter.

As discussed earlier, the high concentration of detrital elements such as Al, Ti, Si, and Th are
sourced from aluminosilicate minerals during the deposition of black shale. The high rate of clastic
input is probably related to increased fluxes of freshwater [132], which could raise the stratification
rate. The stratification of the Semanggol Basin water favored organic matter preservation [133,134].

The preservation of organic matter in sediments involves various complex physical and chemical
processes, and various primary controlling factors have been examined for OM burial and preservation
in siliciclastic rocks. Different clay minerals also play a vital role in the preservation of OM besides the
redox and primary productivity conditions [66]. Kennedy et al. [135] reported that carbon compounds
attached to clay mineral surfaces are due to adsorption effects and are significant in the preservation
and burial of organic carbon. According to Ross and Bustin [51], the surface area of clay minerals
provides physical protection to the OM and further helps in enriching sedimentary rocks with clay and
organic materials [136]. Elements such as Si, Al, Ti, and K are commonly related to clay minerals [54].
The strong positive correlation among these elements (i.e., Al, Si, and Ti, but not K) and the occurrence
of kaolinite, illite, and mixed clay layers reveal that these elements (i.e., Si, Al, K, and Ti) originated from
these clay minerals. The weak-to-moderate positive correlation of SiO2, Al2O3, and K2O with TOC
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(0.15, 0.23, and 0.005) indicates that clay minerals may not play a significant role in the preservation of
organic matter.

6. Conclusions

On basis of mineralogical, geochemical, and Rock-Eval pyrolysis analyses of turbidite-associated
black shale in the Semanggol Formation, the following conclusions have been drawn.

(1) Mineralogical analysis reveals that dominant clay minerals in turbidite-associated black shale are
kaolinite and illite, and non-clays like quartz with traces of feldspar and pyrite, and some heavy
metals including zircon and titanium, are also detected. Th vs. K2O, and SiO2 vs. Al2O3, show
that the dominant clay mineral types are illite and kaolinite with mixed clay layers, indicating a
humid-to-temperate climate at mid-latitude.

(2) The occurrence of type-III kerogens designate in the black shale and organic matter content is
supposed to occur in mature to postmature phase.

(3) CIA and CIW values indicate moderate to strong weathering conditions, anoxic-oxic oxygen
levels, semi-arid to hot-arid climatic conditions, and a high sedimentary rate.

(4) Paleosalinity of the basin is approximated based on Rb/K and Sr/Ba ratios, which suggest fresh to
brackish and freshwater conditions. Intermittent volcanic nutrient fluxes caused an increase in
salinity of water that led to the flourishing of marine organisms.

(5) Paleo-upwelling conditions derived from various cross-plots (such as Al vs. Co ×Mn; Al vs. CoEF

×MnEF; Mo vs. Co; and Co ×Mn vs. Cd/Mo) reveal that upwelling-controlled paleoproductivity
and preservation have major control over the enrichment of organic matter, while the role of the
sedimentary rate is comparatively less significant.
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