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Abstract: The alkaline igneous rocks of the Chompolo field (Aldan shield, Siberian craton),
previously defined as kimberlites or lamproites, are more correctly classified as low-Ti lamprophyres.
The emplacement age of the Ogonek pipe (137.8 ± 1.2 Ma) and the Aldanskaya dike (157.0 ± 1.6 Ma)
was obtained using 40Ar/39Ar K-richterite dating. The Chompolo rocks contain abundant xenocrysts
of mantle minerals (chromium-rich pyropic garnets, Cr-diopsides, spinels, etc.). The composition
of the mantle xenocrysts indicates the predominance of spinel and garnet–spinel lherzolites, while
the presence of garnet lherzolites, dunites, harzburgites, and eclogites is minor. The Chompolo
rocks are characterized by large-ion lithophile element (LILE) and Light Rare Earth Element (LREE)
enrichments, and high field strength element (HFSE) depletions. The rocks of the Ogonek pipe
have radiogenic Sr (87Sr/86Sr (t) = 0.70775 and 0.70954), and highly unradiogenic εNd(t) (−20.03
and −20.44) isotopic composition. The trace element and isotopic characteristics of the Chompolo
rocks are indicative of the involvement of subducted materials in their ancient enriched lithospheric
mantle source. The Chompolo rocks were formed at the stage when the Mesozoic igneous activity
was triggered by global tectonic events. The Chompolo field of alkaline magmatism is one of the
few available geological objects, which provides the opportunity to investigate the subcontinental
lithospheric mantle beneath the south part of the Siberian craton.

Keywords: Siberian craton; Aldan shield; alkaline magmatism; mantle source; lamprophyre; trace
elements; isotopic data

1. Introduction

Studying the mineralogy and geochemistry of intraplate alkaline magmatism is one of the best
tools we have to understand the composition and evolution of the deep continental lithosphere.
Alkaline igneous rocks are products of the mantle melting processes and often contain mantle xenoliths
and xenocrysts. These rocks are known to host economically significant deposits of critical metals such
as Nb, Ta, and rare earth elements (REE) [1,2]. During the past few decades, increased attention has
been given to high-Mg alkaline volcanism after the discovery of non-kimberlite diamond deposits,
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such as those in the lamproites of Western Australia [3–5] and in alkaline lamprophyres [6], including
the 2.7-Ga diamond-bearing lamprophyres from Wawa Superior Province, Canada [7].

Usually, occurrences of K-alkaline magmatism, according to their tectonic position, are subdivided
into orogenic or anorogenic types [8], and characterized by specific geochemical features (reflected in
the concentration of Ti, Nb, Zr and other elements). These geochemical differences are conditioned by
subduction-related (or collision) tectonic setting and suggest an important role of “crustal” material in
their petrogenesis. In some cases, the “orogenic” geochemical signatures are observed in the alkaline
rocks formed in the stable cratonic setting. Relevant characteristics provide evidence about the complex
geological history of the region and suggest the formation of a mantle source of K-rich melts long before
the melts’ emplacement [8,9]. The rocks of Aldan alkaline province of Mesozoic magmatism, which
formed in the ancient cratonic setting, also belong to the aforementioned category and demonstrate
that geochemical signatures of ancient subduction processes were involved in producing the ancient
source of potassic magmatism [10,11].

There are numerous manifestations of alkaline magmatism in the Aldan province of the Siberian
craton (Yakutia, Russia), which were intruded over a spectrum of ages in the early and late Proterozoic,
Devonian, Mesozoic and Cenozoic times [12,13]. The two largest events formed the Early Proterozoic
Chara–Aldan (1818–1870 Ma) and Mesozoic Lena Aldan sub-provinces [14,15], which include several
alkaline rock fields: the Tobuk–Khatystyr field, the Lower and Upper Yakokut fields, and the Murun
and Lomam plutons (Figure 1) [11,14,16–18].

The alkaline igneous rocks of Chompolo field were first discovered in 1957–1958; they were
initially classified as kimberlites due to their typical mineralogy, including mantle-derived pyrope,
Cr–spinel, and Cr–diopside [19]. The rocks were also categorized as kimberlites in later studies [20–24].
However, alternative interpretations of the Chompolo rocks categorized them as lamprophyres or
lamproites [11,14,16,18,25,26]. The above-listed papers presented petrographic, mineralogical and
chemical data mainly discussing the ‘Aldan lamproites’, including the well-investigated rocks of the
Tobuk–Khatystyr field, the Lower and Upper Yakokut fields, and the Murun and Lomam plutons.
Some authors attributed the Chompolo rocks to the Aldan lamproite series without evidence [11].
Kornilova [25] first indicated the difference between the Chompolo rocks and kimberlites or lamproites.

Lamprophyric rocks have been misclassified as kimberlites previously. For example, the
lamprophyres of the Navajo field were initially also called kimberlites [27]. Such confusion is related
to the similarity in the texture of the brecciated rocks, the presence of xenocrysts of high-pressure
mantle minerals, and the attempt to discover potentially diamondiferous kimberlites. In this study, we
present new geochronological, isotopic, geochemical and mineralogical data on the Chompolo rocks
and insights into the mantle source of these rocks.

2. Geological Background

The Siberian craton (~4 × 106 km2, also referred to as the North Asian craton) was assembled by
the accretion of Archean cratons and Paleoproterozoic and Mesoproterozoic terranes. The main stage of
the complicated process of craton formation was 3.4–3.1 Ga [28], followed by stages of metamorphism
and tectonic amalgamation at periods of 2.5–2.7 and 2.0–1.9 Ga, respectively [29,30].

The Chompolo field of alkaline magmatism is located within the Amga tectonic mélange zone
in the southern part of the Siberian craton (Figure 1). The Amga tectonic mélange zone was
formed at 1.9 Ga [31] and separates the West Aldan granite–greenstone terrane and the Central
Aldan granulite–orthogneiss superterrane (Figure 1). The Amga zone is represented by a series of
sub-meridional faults, separating fragments of the Archean and Early Proterozoic granulite–orthogneiss
and granite–greenstone complexes. In terms of kinematics, thrust faults and strike–slip faults prevail
among the faults of the Amga zone. The West Aldan composite terrane (WAD) consists of several
terranes represented by orthogneisses of tonalite–trondhjemite composition and greenstone belts of
Archean age. The WAD terrane accretion occurred about 2.6 Ga and was accompanied by granite
formation (Charodakan Granite Complex) and granulite metamorphism of all complexes [30,31].
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The Central Aldan Superterrane (CA), consisting of the Archean and Paleoproterozoic rocks of the
Nimnyr granulite–orthogneiss and the Sutam granulite–paragneiss terranes (Figure 1), dates to the
peak of metamorphism around 2.1–1.9 Ga [31].

Figure 1. Tectonic structure of the Aldan–Stanovoy shield (modified from [30]) and local geology
of the Chompolo field (A). Black pentagons mark the locations of alkaline rock fields and massifs:
Rb—Ryabinoviy; Tm—Tommot; Sg—Seligdar; Tb—Tobuk–Khatystyr field, Yk—the Lower and Upper
Yakokut fields.

The early Paleoproterozoic stage of the Siberian craton formation is reflected in multiple subduction,
collision and accretion events that provide evidence for the merging of the terranes into the general
present-day structure of the Siberian craton. Between 2.5–2.0 Ga, the Central Aldan, Daldyn and Tyung
terranes formed a single amalgamated block accompanied by the Billyakh–Fedorov island arc and
aconcurrently subducting oceanic crust under the newly formed crustal block [32,33].

Within the Aldan province, multiple alkaline magmatic events occurred in the early and late
Proterozoic, Devonian, Mesozoic and Cenozoic times [12,13]. The most voluminous Mesozoic
magmatic activity includes several magmatic pulses and occurred during the range from 180 to 120 Ma,
with temporal progression from subalkaline to potassic and ultrapotassic magmatism [11,34,35].
The Mesozoic stage was characterized by a wide diversity of alkaline rocks with ultramafic to silica-rich
compositions, which form large massifs of complex composition, ring volcanic–plutonic complexes,
dykes, diatremes, subvolcanic bodies, laccoliths. It is believed that the stage of Mesozoic igneous
activity was triggered by the global tectonic events related to the final closure of the Mongol–Okhotsk
Ocean south of the Aldan shield [10,36].

The geological structure of the Chompolo area involves the formation of two structural levels:
a crystalline basement and a platform cover. The lower structural level is represented by Archean
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quartzites and high-alumina gneisses. Sediments of the upper structural level belong to the Late
Proterozoic–Early Cambrian age, and are represented by dolomites and limestones with interlayers of
conglomerates and sandstones with carbonate cement (Figure 1). The Chompolo field is comprised of
magmatic pipe-like bodies (e.g., the Ogonek, Gornaya, Sputnik, Pereval’naya, and Intrusions 29 and
104), some of which are complicated by apophyses, dyke bodies (e.g., Aldanskaya and Kilier-East)
and veins (e.g., Osenniye) [37]. The thoroughly explored Aldanskaya dyke extends for 800 m with
a width of 25 m. Ogonek is described as consisting of an isometric main body 80 m × 100 m and a
dyke more than 250-m long in its northern part. The Chompolo lamprophyres are located in an area of
about 25 km × 10 km (Figure 1A) and are confined to one local tectonic zone. There are four main fault
directions within the Chompolo field, but alkaline rocks are related only to the sub-meridional fault
system. Morphologically, the faults represent fractures with displacement amplitudes of 40–60 m at
sub-vertical angles. This fault system, which is up to 45 km in length, is associated with different rock
types of various ages, suggesting a long history of active movement [38].

Repeated attempts to determine the age of Chompolo rocks have not yet yielded reliable results.
The available age estimates of the Chompolo rocks are controversial. A pre-Jurassic age has been
suggested based on the discovery of pyropes in Lower Jurassic sediments [37], and a post-Early Triassic
age was inferred by Bogatikov et al. [14], while Rb-Sr isochron dating of lamprophyre from Intrusion
104 (bulk sample) gave a younger age of 131 ± 4 Ma [39].

3. Sampling and Analytical Techniques

3.1. Sample Preparation

Only the near-surface zone of the investigated rock bodies was available for sampling. Rock
and mineral samples were collected from seven bodies (Aldanskaya, Ogonek, Sputnik, Gornaya,
Perevalnaya, Kilier-East and Intrusion 104) during fieldwork in 2012 and 2013 (Figure 1A, Table 1).
The heavy mineral fractions were separated by gravity differentiation in the water and then by using
bromoform with a specific gravity of 2.89.

Before conducting whole-rock analyses, the samples were pre-sawn into 3–5-mm-thick slabs from
which central parts were selected for analysis. The selected fragments were crushed into 1–2-mm
grains and cleaned of obvious xenogenic particles under a binocular microscope. The resulting pure
samples were then triturated in an agate mortar.

Garnet, pyroxene, spinel, amphibole, mica, and apatite samples 0.5–3 mm in diameter were picked
from heavy mineral fractions for detailed investigations. Sample preparation included mounting
mineral grains in epoxy resin and cutting and grinding to reveal grain centers, followed by a final polish.

3.2. Analytical Methods

Investigations were carried out at the Analytical Center for Multi-Elemental and Isotope Research,
Siberian Branch, at the Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy
of Sciences (IGM SB RAS, Novosibirsk).

The petrography of the rocks was examined in thin sections using a petrographic polarizing
microscope (OLYMPUS BX-51, Olympus Corporation, Tokyo, Japan). Mineral chemistry was
determined on a JEOL JXA-8100 electron microprobe (JEOL Ltd., Tokyo, Japan) with an accelerating
voltage of 20 kV, a beam current of 50 nA [40], and a counting time of 5 s for background and 10 s for
peaks. The same spot diameter of 2.5–3 µm was used for all minerals. The following standards were
used for the quantification of the elements: diopside (Si-Kα, Ca- Kα), albite (Na-Kα), fluorphlogopite
(F-Kα, K-Kα), TiO2 (Ti-Kα), Fe2O3 (Fe-Kα), NdPO4 (Nd-Lα), PrPO4 (Pr-Lα), CePO4 (Ce- Lβ), LaPO4

(La-Lα), Sr-glass (Sr-Lα), Ba-glass (Ba-Lα). The analytical data were reduced using CITZAF procedures.
Detection limits were <0.05 wt% for all elements analyzed. The energy-dispersive spectroscopy (EDS)
analyses of minerals in thin sections were carried out on a Tescan MIRA 3 LMU scanning electron
microscope (TESCAN, Brno, Czech Republic) coupled with an INCA EDS 450 microanalysis system
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with a liquid nitrogen-free large-area EDS X-Max-80 Silicon Drift Detector (Oxford Instruments, Oxford,
UK). The analytical conditions were 20 kV, 1 nA and a signal accumulation time of 40 s.

Whole-rock compositions were measured by X-ray fluorescence analysis (ARL-9900-XP
spectrometer, Applied Research Laboratories, Austin, TX, USA). For theanalysis, the sample powder
was fused at a ratio of 1:9 with a mixture of lithium tetraborate, lithium metaborate, and lithium
bromide to prepare glass beads. The detection limits were 0.05 wt% for MgO, 0.04 wt% for Na2O, and
0.01 wt% for other major oxides. The loss on ignition (LOI) was measured by weight loss calculating
after sample heating during 2.5 h at a temperature of 960 ◦C. Trace elements of the whole-rock samples
were determined on a Finnigan MAT ELEMENT high-resolution inductively coupled plasma mass
spectrometer with a U-5000AT+ ultrasonic nebulizer (Teledyne Cetac, Omaha, NE, USA). Samples
were digested using the Li metaborate fusion method and subsequent dissolution of the fusion in
dilute HNO3. This method makes it possible to expand the list of analyzed elements (including Rb, Sr,
Y, Ba, Th, and U) without changing the sample preparation conditions [41]. The calibration was carried
out against the BHVO-1 external standard. For most of the elements, the standard deviation from the
average was less than 5%.

The 40Ar–39Ar dating was performed on two grains of K-richterite by nine- and ten-step heating in
the temperature range from 500 to 1130 ◦C [42]. K-richterite grains, together with biotite MSA-11 (age
311.0 ±1.5 Ma) used as monitor, were placed into an Al-foil package and stacked in a silica tube. For the
calibration of the weighted standard samples of biotite MSA-11, the international standard biotite
(Lp-6) and muscovite (Bern 4 m) were used [43]. The silica tubes were irradiated in the water-cooled
channel of the research reactor of Tomsk Polytechnic University (PTI TPU). The temperature in the
reactor did not exceed 100 ◦C. The Ar isotope composition was measured on the ARGUS multi-collector
mass spectrometer from GV-Instruments, Wythenshave, Manchester, UK. Before the measurements,
the samples were outgassed at 300 ◦C. Additional purification of Ar took place in Zr and Ti-Al SAES
getters which were cooled by liquid nitrogen. The measurement errors given in the text and in the
figures are ±1σ.

Confocal Raman spectroscopy study was performed on a Horiba Jobin Yvon LabRAM HR800
microspectrometer (HORIBA, Kyoto, Japan) with a 532.1 nm Ar laser equipped with an Olympus BX41
microscope (Olympus Corporation, Tokyo, Japan). We used the OPUS 5.0 software (Bruker Optik
GmbH, Ettlingen, Germany) for the peak position fitting in the Raman spectra and the RRUFF project
database and CrystalSleuth application (http://rruff.info/) for mineral identification [44].

Determinations of isotope composition and concentrations of Rb, Sr, Sm and Nd were conducted
at the Institute of Geology and Geochemistry, Ekaterinburg, Russia. The weight of the dissolved
samples was 100 mg, with isotope tracer added to each sample to determine the concentration of
elements through the isotope dilution method. Chemical separation of Rb and Sr was performed
using 2 mL of cation-exchange resin Bio-Rad AG 50 × 8, followed by purification of Sr in 3.7 mL of
resin. Separation of Sm and Nd was performed in two stages following the method of Pin et al. [45],
involving the collection of total REE using Bio-Rad AG 50 × 8 resin and subsequent separation of
Sm and Nd by step eluting through LN7a resin. More detail information about isotopic analyses is
provided in the Supplementary Materials.

Isotope compositions were analyzed in static mode on a TRITON Plus multicollector mass
spectrometer (Thermo Fisher Scientific (Bremen) GmbH, Germany). The total procedural blank
concentrations were 0.02, 0.2, 0.1 and 0.08 ng for Rb, Sr, Nd and Sm, respectively. The measured 87Sr/86Sr
and 143Nd/144Nd ratios were normalized to 88Sr/86Sr = 8.37521 and 148Nd/144Nd = 0.24157. During this
study, the analytical results for standards were as follows SRM 987 87Sr/86Sr = 0.710256 (±11) and Nd
IGEM 143Nd/144Nd = 0.512402 ± 9, which corresponds to La Jolla 143Nd/144Nd = 0.511851. Multiple
analyses of the BHVO-2 standard show the 0.2% precision of the 147Sm/144Nd ratio determinations.
The calculation of εNd and Sm–Nd model age (TDM) used modern values for homogeneous
chondrite reservoir (CHUR)—143Nd/144Nd = 0.512630, 147Sm/144Nd = 0.1960 [46], and depleted
mantle (DM)—143Nd/144Nd = 0.513151, 147Sm/144Nd = 0.2136 [47].

http://rruff.info/
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4. Results

4.1. Petrography

Chompolo igneous rocks are dominantly inequigranular medium to fine clastic volcanic breccias
with a flow texture and a medium- to fine-grained matrix (Figure 2a). The rocks show variable degrees
of post-magmatic alteration. In contrast, Pereval’naya and Intrusion 104 pipe rocks have a massive
structure and do not contain much country rock clastic material (5–10 vol%) (Figure 2g–i). These rocks
have a porphyritic texture with 15–30% phenocryst content (Table 1). Rocks from the Aldanskaya,
Sputnik, Gornaya, Ogonek and Kilier-East bodies have a variation in volcaniclastic texture. Autoliths
and wall-rock clasts occupy 20% to 60% of the rock volume. Autoliths are less abundant and include
numerous feldspar laths and variable amounts of opaque minerals (Figure 2b,c), and are similar to the
breccia matrix in terms of their mineral composition. Quartzites (32%), gneiss (28%), leucogranites
(24%), and granites (7%) were noted among the studied crustal xenoliths. A few garnet-bearing
microxenoliths of the lower crust were also found. Sedimentary rocks and a variable amount of mica
minerals were also present (Figure 2d).

Figure 2. Photomicrographs of medium- to fine-clastic volcanic breccias and a fine-grained matrix
Ogonek pipe (a,d); autoliths from Gornaya (b) and Perevalnaya (c) pipes; Cr–spinel (e) and garnet (f)
xenocrysts from Ogonek volcanic breccias; Apatite accessory phase in the matrix of Intrusion 104 rocks’
(g); K-feldspar (sanidine) in the cryptocrystalline matrix and phlogopite microphenocrysts replaced by
secondary reddish-brownish aggregates of the Intrusion 104 rocks’ (h); pseudomorphs after olivine in
the Pereval’naya pipe rocks’ (i). Abbreviations based on [48].
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Table 1. The mineral assemblage of Chompolo rocks.

Name
Lat./Long.

Cognate Minerals
Mantle Xenocrysts Secondary Minerals

Matrix Phenocrysts Accessory
Minerals

Aldanskaya
58◦43′56.7”/123◦09′22.4” Kfs, Phl Phl, Amp (Prg-Ed),

Di-Aug, Ol1
Prp, Di, Ol1,
Cr-Spl, Pilm

Cal, Chl, Sme, Kln, Vrm

Ogonek
58◦49′51.7”/123◦09′54.8” Kfs, Phl Phl, rare Di-Aug, Ol1 Ap Prp, Di, Ol1, Cr-Spl

Cal, Chl, Gth, Sme, Kln,
Vrm, Qz

Gornaya
58◦41′20.5”/123◦06′38.8” Kfs, Phl Di-Aug, Phl Ap Prp, Di, En,

Ol1, Cr-Spl, Chl, Sme, Vrm, Gth

Sputnik
58◦42′24.8”/123◦09′38.5” Kfs Phl, Amp (Mg-Hbl), Ol1 Ap Prp, Di, Ol1, Cr-Spl, Chl, Sme, Vrm, Gth,

Pereval’naya
58◦40′51.9”/122◦59′58.6” Kfs, Phl Di-Aug, Phl, rare Amp Ap Prp, Di, Cr-Spl, Cal (Dol), Hem, Qz

Intrusion 104
58◦47′18.4”/123◦12′40.5” Kfs, Phl Di-Aug, Phl, Ol1,

rare Amp
Ap - Chl, Sme, Vrm

Abbreviations based on [48]: Cr-Spl—chromium spinel, Di-Aug—diopsidic augite, Mg-Hbl—magnesian hornblende,
Prg-Ed—pargasite-edenite, Ol1—pseudomorphs after olivine, Pilm—picroilmenite. Lat./Long.—Latitude/Longitude.

The modal mineralogy of the studied rocks is listed in Table 1. K-feldspar (sanidine), phlogopite,
chlorite, and opaque minerals are the main minerals of the cryptocrystalline matrix (Figure 2).
The variety of K-feldspar of magmatic origin appears as 20–100 µm prismatic microphenocrysts of
sanidine. The interclast material of the Aldanskaya dyke and the Sputnik and Ogonek pipes also
contain melanocratic phenocrysts, which are represented by alkali amphiboles or chloritized phlogopite
with reddish-brownish aggregates, possibly formed by the replacement of the mica minerals (Figure 2h).
Gornaya and Pereval’naya phenocrysts are clinopyroxene and phlogopite. Intrusion 104 phenocrysts
are clinopyroxene, phlogopite and rare amphibole. Olivine in the Chompolo rocks is represented as
pseudomorphs of serpentine, chlorite, carbonate aggregates, and found in the Pereval’naya, Ogonek,
Sputnik, Intrusion 104 pipes and in the Aldanskaya dyke samples taken from 5 m below the surface.
(Figure 2i). Altered olivine crystals are difficult to divide into xenocrystic and phenocrystic ones. Given
the presence of mantle xenocrysts in the Chompolo rocks, olivine is represented by both varieties.

Apatite is an accessory phase and occurs in rocks as 10–50 µm euhedral grains (Figure 2g). All
samples contain mica, vermiculite, smectite, kaolinite, and chlorite as replacement phases of feldspar
or mica.

Opaque minerals are represented by magnetite and rare grains of rutile, as well as sulfides
(pyrite, pentlandite). In most cases, the Fe-bearing opaque minerals in the rock matrix are replaced by
secondary hydroxide minerals.

Xenocrysts include garnets, pyroxenes, amphiboles, Cr-spinel, as well as sporadic rutiles and
zircons, and solitary grains of ilmenite (Figure 2e). Garnets vary in color from orange to saturated
purple without any visual inhomogeneity and are characterized by an irregular or rounded shape.

They are usually coated with secondary mineral aggregates (chlorite and carbonate) (Figure 2f).
Most of the Cr–spinel grains are rounded or sometimes perfectly shaped octahedra, but some have
irregular shapes. The latter are common of interstitial spinels found in xenoliths of spinel and garnet–
spinel peridotite, pyroxenite and in kimberlite-hosted garnet–spinel–pyroxene intergrowths [49].
Among clinopyroxenes, zoned grains with sharp-bordered outer rims are present (Figure S1). The Cpx
rims often contain mineral inclusions represented by spinels, olivines, amphiboles or phlogopites.

No ilmenite was detected in thin sections by optical microscopy, and only trace amounts were
found as small broken fragments (0.5–1 mm) in heavy mineral concentrate samples of eluvium from
Chompolo rocks.

4.2. Geochronology

We used 40Ar–39Ar K-richterite dating to determine the age of the rocks from the Aldanskaya dyke
and Ogonek pipe. Age determinations were carried out on two relatively large grains of K-richterite
with weights of 24.79 mg (Ogonek) and 30.59 mg (Aldanskaya). These amphibole grains were
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hand-picked from the heavy mineral concentrates and verified to be K-richterite by means of Raman
spectroscopy. The high isotopic system closure temperature of the amphiboles (500–550 ◦C) [50,51]
provided a minimal gap between the emplacement of the magmatic body and the starting of the
‘isotopic clock’. Seven temperature steps for each sample, accounting for 99% of the gas released,
formed a finely defined plateau age of 157.0 ± 1.6 Ma and 137.8 ± 1.2 Ma for 13Al507 (Aldanskaya)
and 13Al613 (Ogonek), respectively (Figures 3 and S2, Table S1).

Figure 3. 40Ar–39Ar plateau ages of K-Richterite (13Al507 and 13Al613) samples from Aldanskaya and
Ogonek alkaline rocks of Chompolo field. The temperatures for each step of heating are shown (◦C).

4.3. Mineral Chemistry

4.3.1. Olivine

Published data on the composition of olivines from the Chompolo rocks are restricted to
Mg# = Mg/(Mg + Fe)= 0.94–0.95 and CaO contents from 0.25–0.34 wt% [22].

Olivine inclusions were also found in the rims of zoned clinopyroxene grains (Figures 4 and S1).
Olivine inclusions are characterized by relatively low Mg# = 0.81–0.87 and concentrations of
MnO = 0.23–0.35 wt%, CaO = 0.21–0.48 wt%, and NiO = 0.27–0.33 wt%.

Figure 4. Pyroxene compositions projected onto the pyroxene classification diagram En-Fs-Wo [52].
Green rhombs represent the composition of the clinopyroxene rims; arrows reflect directions of chemical
composition change from cores to rims.

4.3.2. K-Feldspar

The varieties of K-feldspar usually contains <1 wt% Na2O (sometimes up to 3 wt% Na2O)
and 0.3–0.8 wt% Fe2O3. Contents of BaO up to 1.8 wt% may occur in the outer part of the zoned
sanidine grains. The fine-grained matrix of the breccias contains large quantities of sanidine that are
characterized by Fe2O3 content in amounts of 0.3–1.5 wt%.
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4.3.3. Clinopyroxene

Clinopyroxenes (Cpx) occur as isolated 0.2–2.0 mm grains in heavy mineral concentrate samples,
some enclosing or intergrown with opaque minerals. All studied clinopyroxenes from Chompolo
rocks are Mg-augites (Cpx I group) or diopsides (Cpx II group) according to the classification scheme
in the system MgSiO3–FeSiO3–CaSiO3 (Figure 4, Table S2) [52].

Mg-augites represent Cpx group I, which is characterized by low Mg/(Mg + Fetot) and
Ca/(Ca + Mg + Fetot) molar ratios (Mg# = 0.85–0.94; Cako = 0.41–0.48, respectively). Mg-augites
prevail in the Perevalnaya pipe (87% of all clinopyroxenes) and occur in lesser amounts in the Gornaya
pipe and Aldansky dyke (36% and 22%, respectively). The rocks of the Ogonek pipe contain only
about 1% of the group I Cpx, and they are totally absent in the Sputnik pipe. This group of pyroxenes
is characterized by a significant difference in chemical composition relative to other Cr-diopsides
and can be easily distinguished by its low Al2O3 (0.17–0.86 wt%) and Cr2O3 (0.21–1.42 wt%) content.
In addition to the low number of trivalent cations, the group I clinopyroxenes are characterized by low
Na2O contents in the range of 0.43–0.99 wt% (average 0.58 wt%). The amount of FeO is in the range of
2.1–5.6 wt% (on average 3.32 wt%) and the MnO content is 0.05–0.27 wt% (on average 0.11 wt%).

Cr-bearing diopsides are present in almost all magmatic bodies of the Chompolo field, with
the exception of Intrusion 104. The studied Cr-diopsides can be combined into a large group (II;
see Figure 4) with a characteristic Ca/(Ca + Mg) ratio ranging between 48 and 52 and a high Cr2O3

(0.8–4.34 wt%) and Al2O3 (0.80–8.9 wt%) content relative to the group I Cpx (Table S2). Group II Cpx
are also characterized by a wide range of Mg/(Mg + Fetot) molar ratios in the limits of 0.79–0.96 where
the average value of 1030 analyses is 0.94. The diopsides also contain low amounts of TiO2, up to
0.47 wt% (on average 0.11–0.16 wt%). The group II Cpx are characterized by a negative correlation of
Mg# with Na2O and Al2O3. In group II, the Na2O content was higher (0.33–4.96 wt%) and MnO was
relative to group I Cpx.

4.3.4. Mica

Minor amounts of mica occur in the Sputnik pipe and the Aldanskaya dyke: up to 2-mm euhedral
grains of phlogopite to siderophyllite minerals (Table S3). Mica microphenocrysts have a composition
with high Al2O3 (13.1–16.8 wt%) and especially FeO (8.3–21.6 wt%) contents, a wide range of TiO2

(1.7–5.5 wt%), with 0.1–0.6 wt% BaO, 0.3–1.7 wt% F and up to 1.1 wt% Cl (Figure 5).

Figure 5. Al2O3 vs. TiO2 (a) and FeOT (b) in micas from Sputnik pipe (1), Aldanskaya dyke (2) and
mica inclusions in Cpx rims from the Aldanskaya dyke (3); blocks mark compositions of orangeite (O)
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and lamproite (L) microphenocrysts and evolutionary trends based on [53–55]; field of lamprophyres are
shown according to [27]. This covers the majority of published mica compositions from lamprophyres
(4, n = 1310); the Geochemistry of Rocks of the Oceans and Continents (GEOROC) database (http:
//georoc.mpch-mainz.gwdg.de) was used.

The phlogopites included in the rims of zoned clinopyroxenes from the Aldanskaya dyke
(Figures S1 and 5) are characterized by relatively high MgO content (23.0–25.1 wt%), lower Al2O3

(9.4–13.5 wt%) and not a very wide range of TiO2 (0.3–1.2 wt%) (Table S3).

4.3.5. Amphibole

The amphiboles are mainly of Ti-K-pargasite-edenite varieties with minor Fe–chermakite,
Mg–gastingsite, and Mg–hornblende. They have 0.7–3.3 wt% TiO2 with high Mg# 0.81–0.96. The contents
of K2O vary from 0.3 to 2.5 wt% (Figure 6b, Table S4).

K-richterite crystals are transparent, greenish-yellow, regularly shaped 1–2-mm platelets without
visible zoning. The amphiboles from a non-oriented sample of the Aldanskaya dyke show Raman
shifts in perfect accordance with K-richterite XIII-83/5 from the Geological Museum of the Institute of
Geology and Mineralogy (Novosibirsk) (Figure S3) and with the standard R060034 from the RRUFF
database [44].

The analyzed K-richterite samples (Table S4) show low amounts of TiO2 (0.05–0.12 wt%), Cr2O3

(0.07–0.26 wt%), and Al2O3 (<0.48 wt%), minor amounts of F (<0.34 wt%), and high Na/K = 1.2–4.3. K2O
contents vary from 1.2 to 5.07 wt%, while FeOT and Na2O remain relatively constant (1.9 ± 0.25 wt%
and 4.1 ± 0.44 wt% on average, respectively) (Figure 6a).

4.3.6. Apatite

Based on the concentration of Sr, F, Cl and the sum of other REE elements (Nd, Ce, La, Pr),
the apatites can be divided into three varieties (Table S5). The first variety is characterized by a
low concentration of REE elements (0.1–1.7 wt%) and elevated volatile contents (F + Cl) that reach
1.9–4.6 wt%. The second variety of apatite is the most prevalent and is characterized by a slightly
elevated concentration of REE elements (0.42–2.9 wt%) and decreased volatile contents (F + Cl) that vary
within the range of 0.6–1.55 wt%. Six grains belong to a high-Sr variety of apatite with a concentration
of SrO in the range of 4.5–15.6 wt% and low volatile contents (F + Cl = 0.53–0.97 wt%).

4.3.7. Garnets

The garnets were classified into paragenetic types in accordance with the existing scheme for
mantle-derived garnets [56,57], including screening them from crustal varieties. Mantle garnets prevail
in the Aldanskaya dyke and in the Sputnik, Gornaya, and Ogonek pipes, while crustal and eclogitic
garnets dominate in the Perevalnaya and Kilier-East pipes (Table 2).

Figure 6. Cr2O3 (wt%) vs. FeOt (wt%) in K-richterite from Aldanskya dyke; fields for K-richterite

http://georoc.mpch-mainz.gwdg.de
http://georoc.mpch-mainz.gwdg.de
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from mica–amphibole–rutile–ilmenite–diopside (MARID) and peridotite samples are shown based on [58]
and references therein (a). Ti-Na/K (expressed as a.p.f.u.) variations in amphibole compositions in
lamprophyres of Chompolo field, calc-alkaline (CA) and shoshonitic lamprophyres [59–63], cratonic [5,64–72]
and orogenic lamproites [73–76] (b). Minette, lamproite and mica–amphibole–rutile–ilmenite–diopside
(MARID) fields modified from [54].

Table 2. Genetic types of garnets from the Chompolo dikes and pipes (%).

Object n UC LC E DE LPL HPL HTL W HD

Sputnik 140 1.2 4.0 5.8 0.6 70.4 9.8 6.9 1.2 0.1
Ogonek 317 4.2 6.9 7.8 0.2 60.3 15.9 1.2 0.2 3.2
Gornaya 323 6.4 10.8 7.8 2.3 51.1 18.6 0.9 0.7 1.4

Aldanskaya 260 5.3 12.2 11.4 0.3 46.5 22.4 0.8 0.0 1.1
Kilier-East 18 33.7 32.0 18.5 0.0 10.7 5.1 0.0 0.0 0.0

Perevalnaya 131 25.8 71.9 2.3 0.0 0.0 0.0 0.0 0.0 0.0
Intrusion 104 116 95.2 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Numbers correspond to types of garnets derived from: upper crust (UC); lower crust granulite (LC) [77]; eclogite
(E); potentially diamondiferous eclogite (DE); LP lherzolite (LPL); HP mantle lherzolite (HPL); HT lherzolite (HTL)
[78,79]; wehrlite (W); and harzburgite-dunite (HD) [57]. Megacrysts garnets were not found [80].

The peridotitic garnets from the Chompolo alkaline rocks, with a total number of 1040 analyses,
are depicted in the CaO-Cr2O3 diagram (Figure 7, Table S6). All garnets are chromium pyropes with
Cr2O3 content from 0.5 to 9.92 wt% and Mg# in the range of 0.62–0.86. However, the majority of
pyropes (73%) are characterized by a narrower range in Mg# (0.77–0.81). The CaO content varies
between 1.85 and 10.29 wt%, and TiO2 does not exceed 0.47 wt%. The pyropes are enriched with MnO
with values usually more than 0.4, up to 1.29 wt%.

Figure 7. Cr2O3 (wt%) vs. CaO (wt%) correlation in pyrope garnets from Aldanskaya dyke and
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Sputnik, Gornaya, and Ogonek pipes [57]. Letters stand for parageneses: H = harzburgite–dunite,
L = lherzolite, W = wherlite.

The pyropes can be characterized by paragenetic types according to the CaO-Cr2O3 discrimination
diagram. Most of the mantle garnets are lherzolitic (Figure 7), with more abundant low-pressure
lherzolite varieties and some high-pressure lherzolite garnets containing up to 10 mol% of knorringite.
The population of mantle garnets includes small percentages of dunite–harzburgite and wehrlitic
garnets but lacks megacrystalline and high-temperature lherzolitic varieties common to kimberlites,
as well as subcalcic high-Cr varieties. The abnormal character of the composition of these pyropes
is expressed in a distinct trend of partitioning their compositions on the Cr2O3-CaO discrimination
diagram. The discrepancy stems from a different ratio of Cr2O3 and CaO contents, owing to the high-Cr
part of the trend falling on the field of wherlitic garnets.

4.3.8. Cr-Spinel

We analyzed Cr-spinels that were 0.2–2 mm macrocrysts (over 1000 grains), selected from the heavy
mineral concentrates of five bodies (Table S7). The content of major oxides in Cr-spinels (Figure S4)
varies within broad ranges (3.5–50.9 wt% Al2O3, 18.6–63.5 wt% Cr2O3, and 6.1–19.1 wt% MgO). They,
likewise, have large ranges of Cr# as molar 100 × Cr/(Cr + Al), from 20 to 86, and are characterized by
a close negative correlation between Cr and Al (Figure S4). The ratio 100 × Fe/(Fe + Mg) (Fe#) also
varies broadly from 23.7 to 69.5. The TiO2 content in most spinels is below 0.5 wt% with a maximum of
1.6 wt%. The spinel populations from different bodies have generally similar compositions with Cr2O3

being the highest in those from the Ogonek and Sputnik pipes and the Aldan dyke (63.5, 63.2, and
62.6 wt%, respectively), which is commensurate with Cr2O3 in diamond-related spinels [81].

Spinels included in the rims of zoned clinopyroxene are characterized by high FeO content
(Figure S1).

4.3.9. Ilmenite

Ilmenites from the Aldanskaya dyke are of two main chemical types (Table S8), one being more
magnesian MgO (4.6–11.2 wt%) and containing more MnO, Cr2O3, NiO (0.3–0.7, 1.4–2.3, 0.14–0.21 wt%,
respectively) and Al2O3 than the other. Another type of ilmenite occurs in the Gornaya, Ogonek and
Perevalnaya pipes, hemoilmenite, which contains up to 90.5 mol% ilmenite, 9.9 mol% geikelite, and
35.5 mol% hematite components, with relatively high amounts of Al2O3 and Cr2O3 (0.3 and 1.08 wt%,
respectively). Hemoilmenite with such a composition is known from African [82,83] and Yakutian
kimberlites [84].

4.4. Geochemistry

As mentioned above, the rocks are characterized by different degrees of post-emplacement
modifications, carbonization and hydration, which is reflected in the high LOI values for most of
samples. Thus, it is reasonable to take into account, with accuracy, the CaO and MgO oxides (decreased
MgO and elevated CaO concentrations in some samples), as they have undergone apparent weathering
reactions to the relatively inert TiO2 and P2O5 oxides (Table S9).

4.4.1. Major Elements

The Chompolo rocks are ultrapotassic with high K2O (1.8–5.5 wt%) (Figure 8a, low Na2O
(0.2–1.4 wt%), and high K2O/Na2O ratio (up to 26, mostly 2.5–7). Silica content is higher for Intrusion
104 rocks (54 wt% SiO2) in comparison with Aldanskaya and Ogonek rocks, which have lower silica
content (mostly 38–50 wt% SiO2). All samples in most cases have high Mg# = molar Mg/(Mg + Fe),
ranging from 0.65 to 0.85, with some exceptions for samples with elevated CaO and reduced MgO
amounts due to post-magmatic alteration (Table S9). High concentrations of Al2O3 (7.2–12.8 wt%) in
the rocks results in sub-unity values of (K2O + Na2O)/Al2O3 = 0.4–0.7. Taking into account their low
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sodium concentrations, in the K2O/Al2O3 vs. SiO2 diagram (Figure 8b), the studied rock samples are
plotted onto the field of the Roman-type ultrapotassic magmas based on Foley et al. [85]. Concentrations
of TiO2 and P2O5 are low and vary in the ranges of 0.4–0.7 wt% and 0.1–0.9 wt%, respectively.

Figure 8. K2O vs. Na2O diagram [85] (a); bold line dividing alkaline and subalkaline rock series based
on [86]; major element variation diagrams of K2O/Al2O3 vs. SiO2 for ultrapotassic rocks subdivided
into three main groups: group I lamproites, group II kamafugites and group III Roman Province, based
on [85] (b); Field for Central Aldan lamproites plotted according to [11]. Al2O3 vs. TiO2 diagram for
the Chompolo rocks (c); filled black symbols are data from this work and empty symbols are data
from [25]; data for worldwide orogenic and anorogenic lamproites (data from [87] and references there
in) are reported for comparison.

4.4.2. Trace Elements

The primitive mantle-normalized (PM-normalized) multi-element patterns and chondrite-normalized
rare earth element (REE) patterns of the Chompolo rocks are plotted in Figure 9a,b along with group I
kimberlites [87], Leucite Hills lamproites [88] and Central Aldan lamproites [11]. The analogous element
patterns for lamprophyres and minettes from Canada, USA and China [89–93] are plotted in separate
figures (Figure 9c,d).

Figure 9. Primitive mantle (PM)-normalized trace element abundances (a,c) [94], and chondrite-normalized
rare earth element (REE) patterns [95] in Chompolo rocks (solid black line) (b,d). (a) Chompolo rocks
together with lamproites from Leucite Hills (black dash line), according to [88]; group I kimberlites (blue
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field), according to [87]; Aldan lamproites (red field), according to [11]; (b) lamproites from Leucite
Hills (black dash line), according to [88]; group I kimberlites (blue field), according to [87]; Aldan
lamproites (red field), according to [11]; (c) representative CA and shoshonitic lamprophyre patterns
from Canada, USA and China compared with the range of Chompolo alkaline rocks (shaded field)
(data sources: [89–93]); (d) CA lamprophyres from Taihang Mountains, north China (blue dash line),
according to [90]; generation I (black dotted line) and generation II (red dotted line) minettes from
Yunnan Province, China [89]; CA and shoshonitic lamprophyre patterns from Canada [91,92].

Obviously, the multi-element and rare earth element patterns of the Chompolo rocks are almost
equivalent to the “Aldan lamproites” and fit very closely with the minettes.

The degree of trace element enrichment of the Chompolo rocks and “Aldan lamproites” is up to
an order of magnitude less than that of other lamproites (Figure 9a). The Chompolo PM-normalized
multi-element patterns are characterized by high enrichment in large-ion lithophile elements (LILE:
Rb, Ba, Cs), sharp troughs in some high field strength elements (HFSE: Ti, Nb, Ta), as well as high
Pb concentration. The rocks also show a low fluctuation of Zr and Hf and a lower concentration of
strontium relative to “Aldan lamproites”. The La/Nb and K/Nb ratios for the Chompolo rocks are
higher than for most known lamproites and lamprophyres and are commensurate with those for
the “Aldan lamproites” (Figure 10a). Compared to typical kimberlites and lamproites, Chompolo
rocks have low (La/Yb)N ratios (17.3–39.3) and a weak Eu anomaly, with Eu/Eu* ratios of 0.81–0.96
(Figure 9b).

Figure 10. Variations in K/Nb versus La/Nb for Chompolo rocks (a) and εNd vs. 87Sr/86Sr for
lamproite (lamprophyre) occurrences of Aldan shield with new data for the Chompolo alkaline rocks
(b). For comparison, the fields for kimberlites, lamproites and lamprophyres are given. Abbreviations
correspond with kimberlites (KL), Western Australia olivine WA (ol) and leucite WA (le) lamproites,
Leucite Hills lamproites (LH), Navajo volcanic field (NJ), Smoky Butte (SB). Description for symbols
given in Figure 8. Data sources for (b): [11,53,96,97].

4.4.3. Nd–Sr Isotopes

Sr and Nd isotopic ratios for the Ogonek pipe are reported in Table S10 and plotted in Figure 10b.
Initial isotope ratios were calculated, accepting 138 Ma as the emplacement age. The initial 87Sr/86Sr
ratios are 0.70954 and 0.70775, whereas the initial 143Nd/144Nd ratios are 0.51150 and 0.51163 with
unradiogenic εNdt values of −20 on the εNdt versus 87Sr/86Srt plot (Figure 10b).

Both isotope systems have compositions that correspond to the most-evolved end of the mantle
reservoir that has undergone a long-term process of Light Rare Earth Element (LREE) enrichment and
moderate Rb/Sr enrichment. The model age values obtained for the Ogonek pipe samples, calculated
relative CHUR (TCHUR) and depleted mantle (TDM) yield—1926 Ma and 2350 Ma, respectively.
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The difference between Rb, Sr, Sm and concentrations obtained by ICP-MS and isotope dilution for
the Og-5 sample (Tables S9 and S10) is possible due to the varies of crustal rock clasts in aliquots
analyzed by ICP-MS and the isotopic technique. A relatively high radiogenic 87Sr/86Sr ratio of the Og-4
sample is outside of the common intraplate lamprophyre values, and Aldan alkaline complexes, in
particular. This indicates the Sr isotopic disequilibrium and Sr loss of this sample that is related to a
postmagmatic alteration.

5. Discussion

5.1. Geochronology

There much interest in obtaining the emplacement ages of the Aldanskaya and Ogonek magmatic
bodies due to their better accessibility for studies. As mentioned above, there is published research
that identifies a Rb-Sr Early Cretaceous age for the Intrusion 104 body [39]. Unfortunately, the Rb-Sr
isochron method is very sensitive to weathering processes [98] and thus it is better to use a method that
is insensitive to the hydrothermal alteration of the rocks whenever possible. The rocks also contain
some zircon grains, but these obviously have a crustal origin based on their size, morphology and very
old age (older than 1700 Ma, unpublished data). Other minerals suitable for the U-Pb dating method
have not yet been found in the Chompolo rocks.

Despite the difficulties, we were able to find K-amphiboles that be used to date the rocks.
The results of the age determinations for the Ogonek pipe (137.8 ± 1.2 Ma) and the Aldanskaya dyke
(157.0± 1.6 Ma) were obtained using the 40Ar-39Ar method of dating the K-richterites and demonstrated
uniform plateau ages from the argon-release spectra (Figure 3). The significant difference in the Ar-Ar
ages of K-richterites from the Ogonek pipe and the Aldanskaya dyke can be explained by several
pulses of magmatism. That is clearly seen in the geological structure of the Ogonek pipe, which is
complicated by a 250-meter-long dyke. The age-related relationships between diatreme and dyke are
unknown. The resulting ages correspond to the Mesozoic stage of alkaline magmatism that occurred
widely within the Aldan shield.

5.2. Xenocrysts as Evidence of the Deep Mantle Source of the Rocks

There is some evidence that relatively MgO-poor rocks can bear mantle xenolith or xenocrysts.
Among the earlier published evidence, the fact that that xenolith-bearing lamprophyres were
fractionated after xenolith incorporation was published by Wright [99]. An abundance of mantle-type
ultramafic xenoliths (lherzolites, harzburgites) and xenocrysts (interpreted as a product of xenoliths
disintegration), as well as eclogite xenoliths, in a variety of lamprophyres, were reported in the overview
by Rock [85]. In particular, xenoliths of garnet-bearing peridotites and xenocrysts of mantle minerals
were recorded in minettes of the Navajo volcanic field [100]. Post-Archean calc-alkaline lamprophyres
(minettes and spessartites) of the Wawa and Abitibi subprovinces (Canada) bear ultramafic xenoliths
and microdiamonds [91].

A feature of Chompolo rocks is the presence of xenocrysts of minerals that originate from
the lithospheric mantle. However, mantle xenoliths that are common in kimberlites were not
found in the Chompolo rocks, in contrast to the intergrowths of pyropes and clinopyroxenes that
occurred regularly. All other occurrences of alkaline magmatism within the Aldan alkaline province,
including lamproites of the Yakokut complex, Ryabinovyi, Murun and Lomam complexes, the
Molbo dyke, rocks of the Tobuk–Khatystyr field (with the exception of the Yagodka pipe) and others
(Figure 1) [11,13,14,17,101,102], are devoid of garnet-bearing mantle xenoliths and xenocrysts of pyrope
garnets and probably originated from shallower depths.

The compositional features of the investigated pyropes, Cr-spinels and clinopyroxenes indicate
the dominance of spinel and garnet–spinel lherzolites in the mantle section, while minerals of garnet
lherzolites, dunites, harzburgites and eclogites are less abundant. PT estimates of the lithosphere based
on thermobarometric mineral methods show values of 2.9–3.6 GPa and temperatures of 710–770 ◦C [103].
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However, these estimates have been made for a limited sample collection of mantle pyropes with
inclusions. Previous estimations based on single-mineral thermobarometry of Cpx, Opx and pyropes
demonstrate the same range of 2.0–4.2 GPa for pressure [104].

5.3. Rock Classification Based on Mineralogical Features and Whole-Rock Chemistry

The affiliation of the Chompolo rocks with the lamprophyres is based on mineralogical and
geochemical criteria summarized in the second edition of the subcommission recommendations of the
International Union of Geological Sciences (IUGS) on the systematics of igneous rocks [105].

The Chompolo rocks were originally classified as kimberlites for their typical mantle mineralogy
comprised of pyrope, Cr spinel, and Cr diopside [19,22–24]. Although Chompolo igneous rocks contain
xenocrysts of mantle minerals, their mineral and chemical composition clearly indicate that they are
not kimberlites [105]. Alkaline volcanic rocks commonly have a large variation in concentrations of
major oxides [106,107]. This compositional diversity is due to fractional crystallization upon magma
ascent, contamination, the incorporation of xenogenic material, and hydrothermal–metasomatic
processes [87,108]. The Chompolo rocks underwent secondary alteration processes as well. The ratio
of major oxide concentrations and the LOI demonstrate that, in the studied rocks, the CaO and, in
some cases, MgO concentrations were modified. These changes are caused by the replacement of
magnesium and calcium silicates (olivine, clinopyroxene) by secondary minerals under the influence
of CO2-enriched aqueous solution. As a consequence of these processes, in some cases (Ald-3, Table S9)
elevated silica concentrations are also observed. For this reason, the aforementioned elements cannot
be discussed further.

The ultrapotassic character of the Chompolo rocks (K2O/Na2O is mostly 2.5–7) matches that
of lamproite, but does not align with the compositional criteria of typical lamproite, which is
characterized by a molar ratio of K2O/Al2O3 > 0.8 and (K2O + Na2O)/Al2O3 > 1, according to [105,109].
In addition, the low TiO2 and relatively lower Ba, Sr, Zr, and La contents of the rocks are not typical for
lamproites [105]. In fact, the PM-normalized trace elements pattern and chondrite-normalized REE of
Chompolo rocks are similar to those of the Central Aldan lamproites and Chinese lamprophyre and
minettes [89,90]. However, the rocks should not be defined solely by their whole-rock chemistry and,
in this respect, chemistry in combination with mineral composition features establishes more reliable
criteria to properly identify the affinity of the Chompolo rocks. Mineralogy (Table 1) and chemistry
(Table S9), as well as the textural and structural features of alkaline igneous rocks of the Chompolo
field, can be summarized as follows. These rocks form veins or dykes and volcanic pipes that are
characteristic of lamproites or lamprophyres and are characterized by a medium- to fine-grained
porphyritic texture. The micro- to crypto-crystalline matrix consists mostly of sanidine and products
of its chemical weathering, such as micas, chlorite, and minor opaque minerals. The matrix encloses
micro-phenocrysts and some altered olivine, sanidine, mica (Fe- and Al-rich phlogopite-siderophyllite),
apatite and amphibole (pargasite-edenite) phenocrysts. The presence of small amounts of carbonate
minerals is due to secondary hydrothermal processes and the rocks bear signatures of carbonation and
silicification (Ogonek and Perevalnaya pipes).

The cognate mineralogy of the Chompolo rocks comprise olivine, sanidine, mica, clinopyroxene,
amphibole and accessory minerals like apatite. The K-feldspar (sanidine) are represented both as
phenocrysts and as a matrix mineral component. Minor to trace amounts of Ba and Fe2O3 in the K-feldspar
composition, along with Na-K-Ba within-grain zoning, are characteristic of the lamprophyre series of
rocks [110]. Low Na2O and CaO concentrations at variable Fe2O3 are also typical of K-feldspar from
lamproites [54] and orangeites [53]. Matrix K-feldspar with an Fe2O3 impurity is common to minettes [27].

The mica is compositionally proximal to those from calc-alkaline (CA) lamprophyres (minettes)
and ultramaphic (UM) lamprophyres (alnoites), which show high Al2O3 and FeO and broadly varying
TiO2 contents (Figure 5). Phlogopites with the composition described for the Chompolo rocks are
common to all lamprophyre varieties but strongly differ from lamproite micas, which show significantly
lower Al2O3 [105,111].
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A lamproite designation could be supported by some aspects of the Chompolo mineralogy, for
example the Al- and Na-depleted clinopyroxene (augite) (<1 wt% Al2O3 and <1 wt% Na2O), but a
similar composition of clinopyroxene is also typical for CA lamprophyres [110]. Although K-richterite
is one of the diagnostic minerals of lamproites, it may also be present in lower quantities in CA
lamprophyres. As for the K-richterite restricted to the Ogonek pipe and Aldanskaya dyke, it has a
low TiO2 concentration that is more typical of amphiboles of CA lamprophyres [110]. K-richterites
from the Chompolo rocks are compositionally proximal to alkaline amphiboles from the Bohemia
minettes [112] and the Yinniugou ultramafic lamprophyres [113]. The xenogeneic origin of K-richterites
in the Chompolo lamprophyres is also possible. K-richterites are found in mantle peridotites and
the mica–amphibole–rutile–ilmenite–diopside (MARID) suite and can be a metasomatic phase [58],
taking into account the evidence of mantle metasomatism recorded in pyropes from the Chompolo
lamprophyres [103,114]. However, the composition of K-richterites from the Aldanskaya dyke has
obvious differences—lower FeO and Cr2O3 contents relative to K-richterite from peridotites and the
MARID suite (Figure 6a). Mica are not MARID in composition either (Figure 5), while rutile is rare and
ilmenite is almost absent.

Ca-amphiboles (Ti-K-pargasite-edenite), which are a characteristic mineral in CA lamprophyres,
and are almost absent in lamproites [27], are more widely represented in the studied rocks from the
Sputnik pipe and Aldanskaya dyke. Amphiboles of lamproites and calc-alkaline (and shoshonitic)
lamprophyres are easily distinguishable in terms of their Ti vs. Na/K ratio. For comparison, the groups
of aforementioned amphiboles from well-known occurrences are plotted on the Ti vs. Na/K (as a.p.f.u.)
discrimination diagram (Figure 6b).

Apatite is an accessory mineral that commonly occurs in different types of alkaline rocks. Impurities
of SiO2 are typical for kimberlitic apatite [115–117]. Significant SiO2 concentrations (up to 3.61 wt%) are
recorded in Kasma 45, and Kasma 47 archetypal kimberlites, and the Kuusamo Area [118]. Compositionally
similar F apatite with SrO more than 1 wt% is common for lamproites [53], but apatite in the latter category
usually contains 0.2–0.4 wt% to 18 wt.% BaO [53], which is absent in the Chompolo samples.

There are no ‘forbidden’ minerals for lamproites in Chompolo rocks, but typical lamproite
minerals, such as leucite or Ba-Ti-Zr-bearing minerals (priderite, wadeite, lindsleyite, etc.), are also
absent. The studied rocks fit all the main criteria for the identification of a rock in the lamprophyre
series: the mineral and chemical composition of the rocks, the texture, the form of the geological bodies,
and the specific chemical composition of rock-forming minerals.

Based on petrographic, mineralogical and geochemical data, the studied rocks definitely belong
to lamprophyres according to the published criteria [105,109,119,120]. Mineralogically, these rocks are
closer to minettes with their potassic feldspar and phlogopite in the matrix. A more precise classification
of the Chompolo rocks is difficult, which can be explained by heteromorphism [27]. According to the
provided “equations” [27], the mineral assemblages in minettes, vogesites, kersantites and spessartites
can form in chemically equivalent magmas with the final mineral assemblage dependent on the local
emplacement conditions.

5.4. Isotopic and Trace Element Data

According to their significantly unradiogenic Nd isotope composition (Et = −20) and moderately
radiogenic Sr isotope composition (0.7077, 0.7095), the source of the Chompolo rocks corresponds
to an enriched mantle reservoir that has been isolated from the convective asthenosphere for a long
time prior to melt formation. The unradiogenic Nd (Et = down to −25) and moderately radiogenic Sr
isotopic compositions (0.70499-0.70822) are typical of Aldan shield alkaline complexes like Tommot,
Lomam, Ryabinoviy, Yakokut, Murun, Bilibinskiy, and Khani [10,11,121,122]. Close Sr-Nd isotopic
ratios of the Chompolo rocks and “Aldan lamproites”, including aforementioned alkaline complexes,
evidenced that they derived from the same mantle reservoir.

Most lamproites worldwide show minor HFSE depletion relative to elements with similar degrees of
incompatibility. Overall, the HFSE, Th, U and LREE display unusually low concentrations for lamproites
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or kimberlites. The PM-normalized trace element pattern and chondrite-normalized REE of Chompolo
rocks are close to those of the Central Aldan lamproites and Chinese lamprophyres and minettes [89,90].

The characteristic trace element composition of the Chompolo rocks with enrichment in LILE and
LREE alone, and with negative Nb-Ta and Ti anomalies in the PM-normalized trace elements diagram are
indicative of an origin from a source affected by a water-rich metasomatic agent [123,124]. In general,
the above-mentioned anomalies and the peak in Pb make the trace element distribution very similar to
global subducting sediments (GLOSSII, [125]; see Figure 9). Pearce [126] showed the tendency of Th to
concentrate in the continental crust relative to Nb and Ta, which are generally depleted. This element’s
behavior can be used for understanding crustal contributions in volcanic rocks’ petrogenesis. The lines of
equal Th/Nb ratio are shown on the Th/Y versus Nb/Y diagram (Figure 11a) that also contains average
points of the lower and upper crust [127], as well as GLOSSII in [125]. Mantle arrays are characterized by
a restricted range of the Th/Nb ratio (<0.17) relative to crustal rocks, which have a significantly higher
Th/Nb ratio (up to 1.9) [96]. The high Th/Nb ratio of the Chompolo rocks suggests crustal involvement in
the mantle source, especially close to the upper continental crust (UCC) or GLOSSII in terms of the Th/Nb
ratio. The lower continental crust has lower Th/Nb ratios than the Chompolo rocks; nevertheless, it cannot
be excluded from the mixing end member for a relatively more Th-enriched mantle source. Relatively
high Th/La (0.20–0.42) and high Ba/Nb (75–329) ratios and low Sm/La (0.12–0.23) and Ce/Pb (3.1–4.6) ratios
confirm that the mantle source was modified by a crustal component (Figure 11b). The occurrence of the
crustal component is also supported by a wide distribution of Paleoproterozoic zircon grains and crustal
garnets (Table 2) in the studied intrusions.

A widely used model of shoshonite—calc-alkaline lamprophyre genesis—suggests a
metasomatized subcontinental lithosphere mantle (SCLM) source that has been enriched by
H2O-bearing fluids released from an ancient subducted oceanic crust with (terrigenous/pelagic)
sediment contributions [128–130]. In this way, contamination by the continental crust cannot be
discounted; nevertheless, the Chompolo rocks have relatively high Mg# = 0.65–0.68. In addition, the
Nb/U ratio of the Chompolo rocks (3.6–10.3) is significantly less than the values for midocean ridge
basalts or ocean island basalts (OIB) (Figure 11c). On the Nb/U vs. Nb diagram the Chompolo rocks’
values are located below or opposite the field of the continental crust values, suggesting that the
enrichment of U relative to Nb could not be produced by a simple mixing of mantle and crustal sources.

Figure 11. Discrimination diagrams for Chompolo rocks: (a) Th-Nb proxy for crustal input diagram
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based on [96]; (b) variations in Th/La versus Sm/La based on [131]; (c) Nb/U versus Nb (ppm) plot
based on [132]; (d) Ba (ppm) versus Nb/Y plot for Chompolo rocks based on [133]. Data sources:
upper continental crust (UCC), lower continental crust (LCC) from [127]; global subducting sediments
(GLOSSII) from [125]; primitive mantle (PM) and midocean ridge basalts (MORB) from [134].

However, it is easy to see that the Nb versus Nb/U ratio for Chompolo rocks is located within
the GLOSSII field, suggesting the contribution of a sediment-rich source. The melt, produced by
experimental modelling of a 10% melting of modified GLOSS [135], demonstrates the same geochemical
features (i.e., enrichment in the highly incompatible elements, negative Ta-Nb and positive Pb anomalies,
and less pronounced relative depletion in Zr and Hf) that are observed in the studied Chompolo rocks.
Bulatov et al. [135] concluded that these features of the partial melts are merely inherited from the
geochemical signature of the GLOSS composition.

It was shown experimentally that Sr and Ba are more soluble in aqueous fluid than REE at high P
and T conditions [136]. The contribution of a LILE-enriched aqueous fluid can be evaluated from Sr/Nd
and Ba/La ratios, which should be high (i.e., >17 and >40, respectively) [137–139]. In the Chompolo
rocks, relatively high ratios of Sr/Nd (with the majority in the range of 16–25) and Ba/La (19–60)
are observed, which confirms the LILE addition to the ancient mantle source by an aqueous-rich
metasomatic agent. The trend shows Ba increasing at a constant Nb/Y ratio, which also indicates a
fluid-related enrichment of the mantle source (Figure 11d).

High K2O contents, as well as a positive correlation of La/K and La/Ba ratios with La that was
exhibited by the Chompolo rocks (Table S9), suggest that a potassic phase is present in the mantle source
region [140]. Such a mantle reservoir has to contain K-bearing phases, such as mica or amphibole, to be
a source of potassic magmatism. Melts in equilibrium with phlogopite are expected to have an Rb/Sr
ratio higher than 0.05, and a Ba/Rb ratio lower than 30 [141,142]. The Chompolo rocks demonstrate
ranges of 0.07–0.37 for Rb/Sr ratios and a range of 6.8–23.4 for Ba/Rb ratios that are more consistent
with a mantle source containing phlogopite. Additional evidence of metasomatic processes in the
mantle source of the Chompolo rocks is the broad positive correlation between Zr and K (Ba) that point
toward a Zr-bearing phase (crichtonite group minerals) that is associated with phlogopite and potassic
amphiboles [143,144]. Low TiO2 content in the rocks along with a high Nb/Ta ratio with respect to the
primitive mantle indicate the presence of a Ti-rich phase (rutile or amphibole) in the mantle source that
has remained in the residue during partial melting, as also indicated by the negative Ti anomaly on the
PM-normalized trace element patterns.

All this evidence supports the formation of an enriched mantle source of Chompolo alkaline
rocks under the effect of two combined processes related to the partial melting of recycled crust and
the infiltration of aqueous fluids released from subducted crustal material. In the case, if there was
significant sediment partial melting, the mantle source would not have a suitable composition to
produce alkaline magmas due to the fact that such partial melts are too SiO2 rich. The peculiarities of
trace element distribution also suggest that the partial melting was not the major factor that controlled
the enrichment processes of the mantle source of the Chompolo rocks. LILE and LREE elements are
mobile and enrich the mantle source with the help of an aqueous-rich metasomatic agent released from
a subducted slab. This type of metasomatic process is required by the geochemistry of the Chompolo
rocks and their mantle-derived xenocrysts as well.

5.5. Metasomatic Mineral Assemblages in the Pyropes from the Central Aldan SCLM

Mineral assemblages in the pyropes from the Central Aldan subcontinental lithospheric mantle
(SCLM) were described previously in separate studies [103,114,145,146]. The composition of mineral
inclusions in lherzolitic and harzburgitic Cr-pyropes from the Aldanskya dyke and Ogonek pipe is
evidence of metasomatic mineral associations in the mantle under the Aldan shield. Garnet xenocrysts
from the Chomopolo rocks host mineral inclusions enriched in volatile (e.g., carbonates, mica and
amphibole) and incompatible trace elements (e.g., crichtonite group minerals, Nb-rutile and mica).
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These garnets enclose graphite coexisting with forsterite, diopside, Ba-Cl-phlogopite, tschermakite,
rutile, magnesiochromite, Mg-ilmenite, apatite, chalcopyrite, dolomite, magnesite and lindsleyite
inclusions [28]. The parental peridotites were interpreted as fragments of the lithospheric mantle,
which was metasomatized by C-bearing fluids derived from a paleosubduction slab. Obviously, the
magmatic source of the initial melts of the lamprophyres has to come from below the metasomatized
region of the SCLM to capture the mantle xenocrysts. On the other hand, these events—the SCLM
metasomatism and the Mesozoic stage of alkaline magmatism—could be distant in terms of time.

5.6. Geodynamic Implications

According to the discrimination diagram based on the compilation of Lustrino et al. [147], it is
evident that alkaline rocks of the Aldan shield, including ‘Russian lamproites’, have similar values of
Al2O3 and TiO2, like orogenic lamproites worldwide (Figure 8c). Nevertheless, their position on the
diagram is distinctive from the field of typical ‘orogenic lamproites’ because of their decreased TiO2

and Al2O3 contents. As shown by Vollmer [9] and Nelson [8], the concentrations of Ti, Nb and Zr may
not correctly reflect the geodynamic setting of these rocks if their mantle sources were formed long
before melt generation and emplacement.

This enriched mantle source of the Aldan shield could have a complex history that includes a
stage of metasomatic enrichment that is related to the tectonic history of the region. Geochemical
signatures similar to Chompolo rocks are characteristic for the Mesozoic potassic alkaline rocks of the
Aldan shield [10,11,148]. As a result of the magmatic activity in the interval of J1–K1, several massifs
of complex composition were formed (the Ryabinoviy, Yakokut, Tommot, Zametniy, Orto-Salaa, and
Robkiy), as well as dyke swarms and diatremes (explosion pipes) in the north-central part of the
Aldan shield (see large square, Figure 1) [10,12]. The close isotopic signatures of the enriched ancient
mantle source are reflected in the rocks of Neoarchean lamprophyres of the Khani massif [149], as
well as in the 1880 Ma Seligdar carbonatites (Figure 1) [122]. The model age calculated relative to
the DM for the Ogonek pipe (2.35 Ga) is an estimate of the time when the depleted mantle of the
Aldan shield underwent enrichment by LREE. This age is consistent with the model Nd and Hf ages
calculated for alkaline rocks of the Central Aldan province, which are in the range of 1.5–3 Ga, with
average values of about 2.0–2.1 Ga, and fall in the same line of Nd evolution as the Seligdar and
Khani massifs [10,11,122]. These authors go on to suggest that a large amount of the enriched mantle
source beneath the Aldan shield has undergone several melting episodes during post-Archean history,
producing the series of rocks of the Aldrean alkaline province. The resulting model ages correspond to
a long amalgamation period of the Siberian Craton and, in particular, the Aldan shield (2.5–2.6 and
2.1–1.9 Ga) [30,31]. The amalgamation of the terranes into the general structure of the Siberian Craton
was inevitably accompanied by multiple subduction, collision and accretion events. In particular, the
Central Aldan, Daldin and Tyung terranes formed a single amalgamated block accompanied by the
Billyakh–Fedorov island arc and subducting oceanic crust under the newly formed microcontinent in
the period 2500–2000 Ma [32,33]. Finally, during the Mesozoic tectono-magmatic activity of the central
Aldan shield area, the ancient enriched mantle reservoir was melted, giving rise to diverse alkaline
magmatism, including the lamprophyres of the Chompolo field.

6. Conclusions

Chompolo rocks are not kimberlites or lamproites but rather bear signatures of low-Ti lamprophyres
on the basis of petrographic, mineralogical, and chemical criteria. 40Ar–39Ar ages show that the
Chompolo rocks were emplaced in the Late Jurassic or Early Cretaceous Periods.

Unlike the majority of “Aldan lamproites”, the Chompolo rocks contain xenocrysts of the
minerals of their mantle origin, including mantle-derived pyropes. The lithospheric mantle in the area
corresponds to the lithosphere of Precambrian cratons consisting of harzburgite–dunite, garnet and
spinel lherzolite, and eclogite.
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A two-stage model for the formation of Chomplo lamprophyres was suggested: (1) the formation
of an isolated ancient enriched mantle source, and (2) the magma generation and emplacement
stage. These stages are distant from each other in geological time. The unique trace element and
isotopic characteristics of the ancient enriched source in the SCLM region, chemically isolated from the
underlying convecting mantle, was formed as a result of the interaction with fluids and melts ascending
from subducting slabs, approximately 2.4 billion years ago. This enriched source was formed during
major episodes that amalgamated the Aldan superterrane in the Paleoproterozoic–Archean periods.
During Mesozoic tectono-magmatic activity, this mantle source underwent partial melting. As a result,
the rocks of the Aldan alkaline province, including the Chompolo field, were produced.

As the source of Chompolo lamprophyres spent a significant amount of time isolated from the
asthenosphere, the lithospheric mantle in the area may have extended to a greater depth than was
estimated by mantle xenocrysts, very probably into the diamond stability field. This leaves open the
possibility to discover deeply derived, potentially diamond-bearing rocks in the Central Aldan area.
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