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Abstract: The paper presents new data on the internal structure of super-deep (sublithospheric)
diamonds from Saõ-Luiz river placers (Brazil) and from alluvial placers of the northeastern Siberian
platform (Yakutia). The sublithospheric origin of these diamonds is supported by the presence
of mineral inclusions corresponding to associations of the transition zone and lower mantle.
The features of morphology and internal structure have been studied by optical and scanning electron
microscopy (SEM), cathodoluminescence topography (CL), and electron backscatter diffraction (EBSD)
techniques. Diamonds typically have complicated growth histories displaying alternating episodes
of growth, dissolution, and post-growth deformation and crushing processes. Most crystals have
endured both plastic and brittle deformation during the growth history. Abundant deformation and
resorption/growth features suggest a highly dynamic growth environment for super-deep diamonds.
High temperatures expected in the transition zone and lower mantle could explain the plastic
deformations of super-deep diamonds with low nitrogen content.
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1. Introduction

Previous studies indicate that most diamonds have been formed at depths of 120–200 km at
pressures of 4–6.5 GPa and temperatures of 950–1300 ◦C [1–6]. However, a small number of diamonds
(less than 1% of diamonds worldwide [7]) apparently crystallized at higher depths in the transition
zone of the upper mantle (>410 km) or even in the lower mantle (>660 km). These so-called super-deep
diamonds seem to form in the sublithospheric mantle either in primary mantle rocks or in subducted
mafic rocks of the oceanic lithosphere [8,9]. Mineral inclusions in super-deep diamonds could be
divided into three paragenetic groups: (1) metaperidotitic (comparable with the peridotitic upper
mantle paragenesis), according to experimental data and study of inclusions in natural super-deep
diamonds [10–12] containing ferropericlase (Mg,Fe)O + bridgmanite (Mg,Fe)SiO3 + jeffbenite (former
tetragonal almandine–pyrope phase, TAPP) (Mg,Fe)3Al2Si3O12 + Ca-perovskite CaSiO3 + olivine
(Mg,Fe)2SiO4; (2) metabasic (equivalent to the eclogitic upper mantle paragenesis) with majoritic garnet,
Ca-perovskite Ca(Si,Ti)O3, stishovite SiO2 + Al2SiO5, Ca–Al-silicate (CAS), NAL (new aluminum
phase) and CF (calcium–ferrite structured phase); and (3) carbonatitic (equivalent to Ca-rich mantle
material) comprising Ca-silicates (e.g., merwinite), Ca–Mg–Fe carbonates, and Na–K–Ca carbonates.
Hutchison et al. [13] suggested that metabasic diamonds dominate in the transition zone, but the lower
mantle mostly carries diamonds with metaperidotitic inclusions. Super-deep diamonds were reported
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in various worldwide localities [13–15], i.e., alluvial placers of the Saõ-Luiz river in Brazil [16,17] and
northeastern Siberian Platform [18,19].

The study of the internal structure of diamonds for the reconstruction of growth processes
remains relevant because of the wide diversity of morphological and mineralogical characteristics
of natural diamond crystals. Most of these data concern lithospheric diamonds because of their
greater abundance. There is little data regarding the internal structure of super-deep diamonds.
Agrosi et al. [20] studied the internal structures of two super-deep diamond samples non-destructively
by X-ray diffraction topography (XRDT) and micro Fourier transform infra-red spectroscopy (µFTIR).
Results showed that both samples are affected by complex plastic deformation. Hayman et al. [21]
explored the internal structure of super-deep diamonds from Rio-Soriso (Brazil) and revealed that
examination of cut diamonds under cathodoluminescence topography (CL) provides information
about the diamond’s history, such as growth conditions, deformation, and resorption. Moreover,
in super-deep diamonds, plastic deformation appears around inclusions due to retrograde phase
transformations [22,23]. For sublithospheric diamonds, deformation is assumed to be much stronger
than that observed in lithospheric diamonds due to greater pressure and temperature. Hence plastic
deformation features of diamonds in the sublithospheric mantle may be much more complex and
perhaps only distinguished by applying a combination of techniques [20]. In this work, we have studied
the internal structures and deformation features of sublithospheric diamonds using multiple specific
methods. The results of this study contribute to the understanding of the growth and post-growth
histories of such diamonds at the levels of the transition zone and lower mantle.

2. Samples and Methods

In this work, we studied twelve diamonds (1.2–2.3 mm in size) from alluvial placers of São-Luiz
(Juina, Brazil) and one diamond from Kholomolokh alluvial placer (northeastern Siberian platform)
(Figures 1 and 2). The Juina province (Brazil) is a well-known location with the highest proportion
of super-deep diamonds [14,15,17,24–26]. There are also reports of the presence of super-deep
diamonds on the Siberian platform [18,19]. Super-deep diamonds from São-Luiz in the present study
contain mineral inclusions of majoritic garnet, coesite (suggested former stishovite), Ca–Si-perovskite,
ferropericlase, and magnesite (Table 1) [22,25–27]. Majoritic garnet has been detected in diamonds from
Kholomolokh [19]. Majoritic garnet inclusions in studied diamonds indicate their formation at different
levels of the transition zone, whereas ferropericlase represents the lower mantle association [8,9].
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Figure 2. Microphotographs of super-deep diamonds. (a) SL-34; (b) SL-52; (c) SL-55; (d) SL-16; (e) SL-2;
(f) SL-24; (g) SL-82; (h) SL-74; (i) HH-11. (a–h) super-deep diamonds from São-Luiz alluvial placers
(Juina, Brazil); (i) super-deep diamond crystal from Kholomolokh placer (Yakutia, Russia).

Table 1. Sample description.

Sample Inclusions [Ntotal], ppm %B Locality

C-2 Maj–Grt <5 (core)–38 (rim) 100 São-Luiz (Juina, Brazil)
SL-74 Maj–Grt 10 (core)–37 (rim) 100–65 -

SL-52a Maj–Grt 7 (core)–51 (rim) 100 -
SL-34 Maj–Grt + Ca–Si-Prv <5 (core)–9 (rim) 100 -
SL-16 Coe + Maj–Grt 25 (core)–38 (rim) 100 -
SL-40 Coe <5 (core)–8 (rim) 100 -
SL-2 Coe <5 (core) - -
SL-55 Coe + Cpx <5 (core)–7 (rim) 100 -
SL-82 fPer <5 (core) - -
SL-52 Mgs <5 (core) - -
SL-23 fPer + CaSiO3 <5 (core)–10 (rim) 100 -
SL-24 fPer 14 (core) 100 -

HH-11 Maj–Grt <5 (core)–115 (rim) 60 Kholomolokh alluvial (Yakutia)

Maj–Grt—majoritic garnet; Ca–Si-Prv—Ca–Si-perovskite; Coe—coesite (former stishovite?); Cpx—clinopyroxene;
fPer—ferropericlase; Mgs—magnesite.

The morphological features of diamonds were examined by stereomicroscope Zeiss Stemi 506
and scanning electron microscope (SEM) HITACHI TM-1000 (Hitachi High-Technologies Corporation,
Tokyo, Japan) installed at Novosibirsk State University with an accelerating voltage of 15 kV and a
working distance of 15 mm. Afterward, the crystals were polished into plates 200–400 microns thick to
investigate their internal structure.

Birefringence patterns of polished plates have been observed using a Zeiss Axioscop 40 polarizing
microscope. CL patterns of diamond plates were studied using an Oxford Centaurus detector on
the SEM Leo-1430VP (accelerating voltages of 12–15 kV and an electron beam current of ~0.5 mA)
in the Analytical Center for Multi-Element and Isotope Research SB RAS (Novosibirsk, Russia).
The electron backscatter diffraction (EBSD) analysis was performed with the use of the Oxford
Instruments HKL detector (Oxford Instruments, Abingdon, Oxfordshire, UK) mounted to a Hitachi
S-3400 N scanning electron microscope (SEM) (Hitachi High-Technologies Corporation, Tokyo, Japan)
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at an accelerating voltage of 20 kV and a ∼1 nA electron beam, with a tilt of 70◦ and an aperture of
200 µm. Electron backscatter diffraction (EBSD) analysis uses the diffraction patterns generated by
the interaction of the SEM electron beam and a crystalline sample to determine the crystallographic
orientation of the material. Kikuchi patterns from each individual point were automatically indexed
by the Oxford data collection software (Oxford Instruments, Abingdon, Oxfordshire, UK), and the
deviation from the basic orientation in the diamond grain was mapped by EBSD. The accuracy of the
determination of misorientations by this technique is estimated to be in the range 0.5–1.0◦. EBSD was
done using the infrastructure of the Shared-Use Center “Siberian Synchrotron and Terahertz Radiation
Center (SSTRC)” based on VEPP-3/VEPP-4M/NovoFEL of BINP SB RAS.

Infrared spectra of the studied diamonds were recorded on polished plates using a Bruker Vertex
70 FTIR spectrometer equipped with a HYPERION 2000 microscope in V.S. Sobolev Institute of Geology
and Mineralogy (Novosibirsk, Russia). Local spectra were measured using an aperture of 60 × 60 µm
in the spectral range of 370–4000 cm−1 with 30 scans at a resolution of 2 cm−1, and the content of
N-centers was calculated by a standard procedure. The intrinsic absorption of the diamond (12.3 cm−1

at 2030 cm−1) was taken to be the internal standard [28]. The content of N-defects was determined by
the ratios proposed in [29–31].

3. Results and Discussion

3.1. Morphology

The diamonds were presented by single crystals and intergrowths (Figure 3). Some samples were
flattened and elongated (e.g., SL-16) or distorted in other ways (e.g., SL-24). Several diamonds were
intergrowths of crystals with the same morphological features (e.g., SL-2). Diamond SL-16 (Figure 3d)
had a Star of David shape, which represents the peritropic twin of two crystals orientated by spinel law
at 180◦ to each other [32]. Some diamonds (e.g., SL-55, SL-16, SL-82; Figure 3c,d,h) were mechanically
broken or damaged.
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Figure 3. Morphology of studied super-deep diamonds (backscattered electron image). (a) SL-34;
(b) SL-52; (c) SL-55; (d) SL-16; (e) SL-2; (f) SL-24; (g) C-2; (h) SL-82; (i) HH-11. (a–h) super-deep diamonds
from São-Luiz alluvial placers (Juina, Brazil); (i) super-deep diamond crystal from Kholomolokh placer
(Yakutia, Russia).
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The crystals showed typical resorption features and retained only relics of primary growth
morphologies [33–37]. The primary octahedral morphology manifested in many studied samples
(e.g., SL-34, SL-55, SL-16; Figure 3a,c,d). These crystals have convex rounded surfaces observed near
the crystal edges, which suggest their partial resorption. The shape of these crystals represents the
transition from octahedron and rounded rhombic dodecahedron (so-called dodecahedroid). The relics
of octahedral faces often show deep trigonal etch-pits (Figure 4a,b). The trigonal etch-pits are oriented
in the opposite direction from the underlying face (negative trigons [38]). The number and size of the
negative trigons, which differ even in individual crystals, may be caused by dislocations of different
types and with impurity agglomerations, microcracks, and other surface defects [39,40].
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Figure 4. Surface microrelief features of super-deep diamonds (backscattered electron image).
(a) Triangular etch pits on the relics of (111) plane, Sample HH-11; (b) Sample SL-34; (c) drop-shaped
hillocks on the rounded surface of SL-2 diamond; (d) striation on the rounded surface of SL-55 diamond.

Resorbed rounded surfaces generally developing on the edges of octahedral crystals correspond
to the dodecahedroid or tetrahexahedroid shape. These shapes are extreme resorption forms observed
in experiments [34,35], and they are common for many natural diamonds [41–43]. Diamond HH-11
(Figure 3i) from Kholomolokh alluvial deposit (Yakutia, Russia) is a typical rounded crystal of
predominantly tetrahexahedroid shape (Figure 3f). The characteristic microrelief features of resorbed
rounded surfaces are striations and drop-shaped hillocks (Figure 4c,d).

3.2. IR Characteristics

Nitrogen is the most common structural impurity in natural diamonds [44]. Based on the nitrogen
content detected by IR spectroscopy, diamonds are classified into nitrogen-containing type I and
nitrogen-free type II [45–47]. Generally, type I diamonds can contain C-, A-, and B-centers [45].
Type Ib diamonds contain single substitutional nitrogen atoms in the diamond lattice (C-center),
representing the initial stage of nitrogen incorporation into the lattice of the diamond according to the
theory of transformation of nitrogen defects in diamonds as a function of temperature and annealing
time [48–51]. Type IIa diamonds are almost or entirely devoid of impurities whereas type IIb diamonds
contain significant boron impurities. Type IaA diamonds are characterized by a pair of nitrogen atoms
(A-center) substituting for two carbon atoms in adjacent positions of the crystal lattice [52], representing
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the second stage of nitrogen aggregation. Finally, four nitrogen atoms tetrahedrally arranged around a
vacancy (B-center) [53] and B’-center or platelets, with a planar defect consisting of interstitial carbon
atoms, probably decorated with nitrogen atoms [54]. Diamonds of type IaB are the final stage of
nitrogen aggregation. The nitrogen concentration and aggregation state may reflect the conditions of
diamond formation and their subsequent thermal evolution [44].

Nitrogen characteristics of super-deep diamonds from the São-Luiz alluvial deposit were
previously described in [55–57]. FTIR spectroscopy has revealed local variations in nitrogen defects
in diamonds from São-Luiz and Kholomolokh alluvial placers (Table 1). Diamonds from São-Luiz
contain less than 51 ppm of nitrogen; in fact, many of them have zones with no detectable (<5 ppm)
nitrogen and thus can be classified as type IIa. Previous studies have revealed the high proportion
of nitrogen-free type II diamonds among super-deep diamonds [8,10–13]. The studied diamonds
with detectable nitrogen were characterized by an extremely high nitrogen aggregation state (100% of
B centers in most cases, type IaB diamonds) due to high temperatures of the transition zone and
lower mantle. The presence of a band centered at 3107 cm−1 and attributed to hydrogen-containing
defects [58] was detected only in diamonds containing nitrogen. Figure 5 depicts the representative
FTIR spectra of super-deep diamonds (SL-52). The core of this diamond contains less than 7 ppm of
nitrogen, whereas the rim has 50 ppm of totally aggregated nitrogen (pure IaB-type) accompanied
with a higher-intensity 3107 cm−1 band. Diamond HH-11 from Kholomolokh alluvial placers had an
internal zone containing no nitrogen (type II), whereas the nitrogen concentration in the outer zone
reaches 115 ppm with an aggregation state of ~60%B [19].
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3.3. Birefringence

Birefringence in diamonds is an anomalous optical property. The interference pattern of anomalous
birefringence is not expected in minerals of cubic syngony and may indicate a high degree of deformation
of their crystal structure. Its appearance in diamonds is the result of lattice strains, modifying its
natural isotropic properties [59,60]. Polarized microscopy observation of polished plates of super-deep
diamonds shows anomalous birefringence patterns that may be related to deformation features of
studied diamonds (Figure 6). The birefringence patterns of some studied diamonds have a specific
“tatami” configuration, which is attributed to plastic deformation [60–62]. The birefringent lamellae
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are crystallographically defined and commonly occur parallel to an octahedral plane. In some samples,
there can be more than one set of intersecting lamellae (e.g., samples SL-34, SL-82; Figure 6a,h), running
parallel to different sets of octahedral planes.Minerals 2020, 10, 18 7 of 14 
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crystals, CL has revealed evidence of brittle deformation (Figure 7c–e). Such evidence of brittle 
deformation includes displaced growth zones and dissolution surfaces along internal healed cracks; 
however, these do not extend to the surface of the crystals. These healed cracks are terminated by 
younger growth zones, indicating that they appeared before diamond growth was complete or 
between distinct growth events. Diamond HH-11 from Kholomolokh is distinguished by two distinct 
zones (Figure 7d) and a majoritic garnet at its core. 

Figure 6. Birefringence patterns of double-polished plates from super-deep diamonds. (a) SL-34;
(b) SL-52; (c) SL-55; (d) SL-16; (e) SL-2; (f) SL-24; (g) C-2; (h) SL-82; (i) HH-11. (a–h) super-deep diamonds
from São-Luiz alluvial placers (Juina, Brazil); (i) super-deep diamond crystal from Kholomolokh placer
(northeastern Siberian Platform).

3.4. Cathodoluminescence

Cathodoluminescence (CL) images of diamonds help to visualize zonation and growth sectors,
apparently due to different distributions of impurities of nitrogen and other structural defects [62,63].
CL images of the polished plates of the diamonds studied here visualize their complex growth histories
(Figure 7). The crystals typically show several contrasting growth zones that may have thin-layered
concentric zoning. The profiles of growth zones often have an irregular shape indicating that the
morphology was distorted from the initiation of crystal growth. Many samples exhibit elements of
octahedral zonation. Various zones of the crystals have traces of plastic deformations as a series of thin
lines (deformation lamellae) intersecting different growth zones of the crystals. These features of the
internal structure have also been detected in many previously described super-deep diamonds derived
from different depth regimes [10,12,15,20,56,64–66].

CL images of many diamonds from São-Luiz suggest fluctuations in their growth and post-growth
histories. For example, samples SL-34, SL-16, and SL-82 (Figure 7a,d,h) show oscillating zonation
with alternating flat octahedral growth zones and curved resorbed surfaces. In some studied crystals,
CL has revealed evidence of brittle deformation (Figure 7c–e). Such evidence of brittle deformation
includes displaced growth zones and dissolution surfaces along internal healed cracks; however, these
do not extend to the surface of the crystals. These healed cracks are terminated by younger growth
zones, indicating that they appeared before diamond growth was complete or between distinct growth
events. Diamond HH-11 from Kholomolokh is distinguished by two distinct zones (Figure 7d) and a
majoritic garnet at its core.
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Figure 7. Cathodoluminescence images of polished plates of super-deep diamonds from São-Luiz
deposit, Brazil: (a–h) and Kholomolokh alluvial placer (Yakutia): (i). (a) SL-34; (b) SL-52; (c) SL-55;
(d) SL-16; (e) SL-2; (f) SL-24; (g) C-2; (h) SL-82; (i) HH-11. (a–h) super-deep diamonds from
São-Luiz alluvial placers (Juina, Brazil); (i) super-deep diamond crystal from Kholomolokh placer
(Yakutia, Russia).

This study has revealed episodes of growth and dissolution in most studied super-deep diamonds.
Other common features are plastic and brittle deformations. Brittle deformation took place at the
different stages of the formation of the studied diamonds. A shift of growth zones along fractures in
some diamonds indicates brittle strains between different growth episodes. Such brittle deformations
could occur at different stages of crystal formation, but, in many cases, the crystals have undisturbed
outer growth zones. The episodes of growth, dissolution, and deformation may proceed at different
levels in the transition zone and lower mantle, as suggested by the mineral inclusions.

3.5. EBSD

The EBSD technique is generally employed for precise determination of textural features of
crystals expressed as the lattice orientation relationships between the crystal blocks. Misorientation of
the diamond structure immediately around the inclusions ranges from 2◦ to 5◦, as previously described
in [22,23]. It has been used as the evidence for phase transitions in mineral inclusions of bridgmanite,
CaSi- and CaTiSi-perovskites, SiO2 (stishovite?), and Mg2SiO4 (ringwoodite?) [22]. The absence of
deformation near ferropericlase and majoritic garnet inclusions suggests the lack of phase transitions
with dramatic volume changes.

In this study, we used the EBSD technique to analyze the misorientations of crystal structure in
super-deep diamonds (Figures 8–10). The studied diamonds have a mosaic internal structure and, in
some cases, consist of several units (blocks or subindividuals). Deformation lines are observed in many
studied diamonds (Figures 8b–d and 9). Some samples demonstrate several subindividuals significantly
misorientated to each other up to 60◦ (Figure 10a,b). The misorientations at such significant angles
certainly testify to the polycrystalline texture of these samples. Most likely, they were initially formed
as intergrowths or aggregates. Nevertheless, evidence of plastic deformation, which is expressed in
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the form of small misorientations of the crystal structure of diamonds, is recorded inside the single
subindividuals of the intergrowths (Figure 10c,d).Minerals 2020, 10, 18 9 of 14 
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Within individual crystals (or subindividuals), the lattice misorientation can reach up to 5◦

but is usually less than 2◦. These misorientations within the diamond crystals result from the
plastic deformation that can occur during growth and post-growth stages. It has been shown
that nitrogen-containing diamond deforms plastically and fractures more easily for a given set
of experimental conditions than diamonds with very low levels of nitrogen but high dislocation
densities [67]. The expected temperatures for the formation of super-deep diamonds in the transition
zone and lower mantle (1400–1600 ◦C and more) are significantly higher than those defined for
“ordinary” lithospheric diamonds (950–1300 ◦C). These higher temperatures could explain why even
nitrogen-free super-deep diamonds can easily be plastically deformed.

A combination of different analytical techniques (CL, birefringence imaging, IR spectroscopy as
well as EBSD) was used to improve understanding of the effects of plastic deformation on nitrogen
aggregation, impurity and defect migration in diamonds [67]. Evans and Wild [68] suggested that in
a bend experiment, the transition between brittle and ductile behavior for type II diamonds occurs
within the temperature range of 1400 to 1600 ◦C. According to these data, we suggest that brittle
deformation of super-deep diamonds could occur in subduction zones because of the relatively low
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temperatures in the slab. New results on deformations in super-deep diamonds could potentially be
applied to establish specific geological processes in the transition zone and lower mantle. Some of the
observed deformation features, however, could be attributed to the ascent of the diamond through
shallower parts of the mantle (within a kimberlite or precursor melt) rather than processes occurring in
the lower mantle/transition zone.Minerals 2020, 10, 18 10 of 14 
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Figure 10. Misorientation patterns of super-deep diamonds with large misorientations of subindividuals
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degrees). (a,c) SL-2; (b,d) SL-55. (a,b) EBSD maps over large parts of the polished plates showing a
change in orientation. (c,d) EBSD maps of single subindividuals of samples.

4. Conclusions

The internal structures and deformation features of super-deep diamonds have been studied
by several methods. These diamonds contain mineral inclusions that indicate their formation at
different levels of the transition zone and lower mantle association. The super-deep diamonds were
of an irregular shape with signs of partial dissolution. These diamonds contained either no nitrogen
(type IIa) or a low amount of nitrogen in an extremely aggregated form (Type IaB). All studied
diamonds contained defects, such as inclusions or microcracks, and had strained internal structures,
which can be attributed to plastic deformation. CL has revealed episodes of growth, dissolution,
and deformation (both plastic and brittle) in many super-deep diamonds. These episodes may occur at
different levels in the transition zone and lower mantle. EBSD demonstrates a mosaic internal structure
of diamonds with misorientation up to 5◦ (usually less than 2◦) within an individual crystal (or blocks).
These misorientations result from the plastic deformation that appears in diamonds during growth and
post-growth stages at high temperatures. The nitrogen-containing diamond deforms plastically and
fractures more easily, for a given set of experimental conditions, than diamonds with very low levels of
nitrogen but high dislocation densities. Abundant deformation and resorption/growth features suggest
a highly dynamic growth environment for super-deep diamonds. Higher temperatures expected in the
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transition zone and lower mantle could explain the plastic deformations of super-deep diamonds with
low nitrogen content.
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