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Abstract: A multi-objective bi-matrix game model based on fuzzy goals is established in this paper.
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1. Introduction

When the bet is a small amount of money, the multi-objective bi-matrix game model is accurate.
In real life, however, the interests of the relationship are more complex, particularly in some areas
of the economy where the interests of the two players is precisely opposite. It is well known that
these games are two person non-zero-sum games, called multi-objective bi-matrix games. Therefore,
the research of multi-objective bi-matrix game problems has become more and more widespread in
recent years.

The fuzzy set theory was introduced initially in 1965 by Zadeh [1]. The fuzziness occurring in
game problems is categorized as fuzzy game problems. Single objective fuzzy game problems and
related problems attached a wide range of research [2–9]. Tan et al. [5] presented a concept of the
potential function for solving fuzzy games problems. They also reached a conclusion that the solution
of fuzzy games and the marginal value of potential functions are equivalent. Chakeri et al. [10] used
fuzzy logic to determine the priority of the pay-off based on the linguistic preference relation and
proposed the notion of linguistic Nash equilibriums. Fuzzy preference relation has been widely used
in fuzzy game theory [7–9,11]. At the same time, they [11] utilize the same method [10] to determine
the priority of the pay-off based on fuzzy preference relation. In order to deal with this game model, a
new approach was put forward. Moreover, Sharifian et al. [6] also applied fuzzy linguistic preference
relation to fuzzy game theory.

The notions of max–min and min–max values were the earliest applied to solve the multi-objective
game model in [12]. Roy et al. [13] presented solution procedures in view of the multi-objective
bi-matrix game model. Besides, they [14] applied fuzzy optimization means to solve the fuzzy
multicriteria bi-matrix game model. Nishizaki et al. [15–17] solved the multi-objective bi-matrix game
via the resolution approach. Chen et al. [18,19] proposed an alternative technique for solving fuzzy
multi-objective bi-matrix game problems through genetic algorithms in [20]. Angelov [21] proposed a
new concept of the optimization problem based on degrees of satisfaction. Precup [22] introduced a
new optimisation criteria in the development of fuzzy controllers with dynamics based on an attractive
development method. In order to solve numerical optimization problems, a new algorithm was
introduced in [23]. Ghosn et al. [24] investigated the use of parallel genetic algorithms in order to
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discuss the open-shop scheduling problem. Roy et al. [25] provided a mathematical optimization
model for solving the multiple objective bi-matrix goal game problem on account of the entropy
circumstance. Additionally, to solve the formulated mathematical model, they proposed a solution
procedure of the fuzzy optimization method.

Since Wierzbicki [26] proposed equilibrium solutions for game problems, he analysed
multi-objective game models based on pay-offs related to scalarising functions. There is a debate about
the existence of equilibrium solutions of multicriteria bi-matrix games put forward by Borm et al. [27].
Nishizaki et al. [17] studied an equilibrium solution of multi-objective bi-matrix games. Qiu et al.
[28] discussed the relationship of two fuzzy numbers via the lower limit− 1

2 of the possibility degree.
They also concluded that the equilibrium solution of multiple objective fuzzy games and the optimal
solution of multi-objective linear optimization problems are of equal value. Bector et al. [2] only
considered a single objective bi-matrix game based on fuzzy goals. Having gained enlightenment from
[2,29–31], we will consider a multiple objective bi-matrix game based on fuzzy goals, so as to obtain
better results.

The outline of this paper is as follows. Section 2 is about basic definitions and recalls results with
regard to a crisp multi-objective bi-matrix game. In Section 3, a multi-objective bi-matrix game model
based on fuzzy goals is established. Section 4 presents a kind of multicriteria, non-linear programming
problem in some special cases. The results of this paper are demonstrated through a numerical example
in Section 5.

2. Preliminaries

In this section, we recall some basic definitions and preliminaries. Further, we shall describe a
crisp multi-objective bi-matrix game model in [29].

Definition 1. [32] The set of mixed strategies for Player I is denoted by:

Sm = {x = (x1, x2, · · · , xm)
T ∈ Rm|

m

∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, · · · , m.} (1)

Similarly, the set of mixed strategies for Player II is denoted by:

Sn = {y = (y1, y2, · · · , yn)
T ∈ Rn|

n

∑
j=1

yj = 1, yj ≥ 0, j = 1, 2, · · · , n.} (2)

where xT is the transposition of x, Rm and Rn are m- and n-dimensional Euclidean spaces.

The multiple pay-off matrices of Player I and Player II in multi-objective bi-matrix games are
denoted by [29]:

A1 =

 a1
11 · · · a1

1n
...

. . .
...

a1
m1 · · · a1

mn

 , · · · , Ar =

 ar
11 · · · ar

1n
...

. . .
...

ar
m1 · · · ar

mn

 (3)

and

B1 =

 b1
11 · · · b1

1n
...

. . .
...

b1
m1 · · · b1

mn

 , · · · , Bs =

 bs
11 · · · bs

1n
...

. . .
...

bs
m1 · · · bs

mn

 (4)

respectively. Here, Player I and Player II have r and s objectives, respectively. Without any loss of
generality, we assume that the Player I and Player II are both maximized players.
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A multi-objective bi-matrix game (MOBG) model is taken as:

MOBG = (Sm, Sn, Ak(1, 2, · · · , r), Bl(l = 1, 2, · · · , s)).

Definition 2. [25] Let A = (A1, A2, · · · , Ar). When Player I chooses a mixed strategy x ∈ Sm, the expected
pay-off of Player I is denoted by:

E (x, y) = xT Ay = [E1 (x, y) , E2 (x, y) , · · · , Er (x, y)]
=
[
xT A1y, xT A2y, · · · , xT Ary

]
=

[
m
∑

i=1

n
∑

j=1
a1

ijxiyj,
m
∑

i=1

n
∑

j=1
a2

ijxiyj, · · · ,
m
∑

i=1

n
∑

j=1
ar

ijxiyj

] (5)

Similarly, let B = (B1, B2, · · · , Bs), when Player II chooses a mixed strategy y ∈ Sn, the expected pay-off
of Player II is denoted by:

E (x, y) = xT By = [E1 (x, y) , E2 (x, y) , · · · , Es (x, y)]
=
[
xT B1y, xT B2y, · · · , xT Bsy

]
=

[
m
∑

i=1

n
∑

j=1
b1

ijxiyj,
m
∑

i=1

n
∑

j=1
b2

ijxiyj, · · · ,
m
∑

i=1

n
∑

j=1
bs

ijxiyj

] (6)

Definition 3. [29] Suppose Dk = {xT Aky : (x, y) ∈ Sm × Sn} ⊆ R be the domain of kth pay-offs of Player I.
Then a fuzzy goal g̃k

I of Player I corresponding to the kth pay-offs is a fuzzy set on Dk, whose the membership
function is defined by:

ug̃k
I

: Dk → [0, 1], (7)

Similarly, suppose Dl = {xT Bly : (x, y) ∈ Sm × Sn} ⊆ R be the domain of lth payoff of Player II. Then a
fuzzy goal g̃l

I I of Player II corresponding to the lth pay-offs is a fuzzy set on Dl , whose the membership function
is defined by:

vg̃l
I I

: Dl → [0, 1]. (8)

3. A Multi-objective Bi-matrix Game with Fuzzy Goals

In this section, we first introduce the concepts of fuzzy sets and fuzzy numbers.
A fuzzy set F̃ of R is characterized by a membership function uF̃ : R→ [0, 1] [1]. An α-level set

of F̃ is given as [F̃]α = {x ∈ R : uF̃(x) ≥ α} for each α ∈ (0, 1]. A strict α-level set of F̃ is given by
(F̃)α = {x ∈ R : uF̃(x) > α} for each α ∈ (0, 1]. We define the set [F̃]0 by [F̃]0 = {x ∈ R : uF̃(x) > 0},
where F denotes the closure of a crisp set F. A fuzzy set F̃ is said to be a fuzzy number if it satisfies the
following conditions [33]:

(1) F̃ is normal, i.e., there exists an x0 ∈ R such that uF̃(x0) = 1;
(2) F̃ is convex, i.e., uF̃(λx1 + (1− λ)x2) ≥ min{uF̃(x1), uF̃(x2)}, for all x1, x2 ∈ R and λ ∈ [0, 1];
(3) F̃ is upper semi-continuous;
(4) [F̃]0 is compact.

In the following, we establish a multi-objective bi-matrix game model in the fuzzy environment.
Suppose Sm, Sn, Ak (k = 1, 2, · · · , r), and Bl (l = 1, 2, · · · , s) be as introduced in Section 2.

Definition 4. Let A = (A1, A2, · · · , Ar). When Player I chooses a mixed strategy x ∈ Sm, an aspiration level
of Player I with respect to the kth pay-offs is denoted by:

Vk
0 = max

y∈Sn
Ek (x, y) = max

y∈Sn
xT Aky, (k = 1, 2, · · · , r).
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Similarly, let B = (B1, B2, · · · , Bs), when Player II chooses a mixed strategy y ∈ Sn, an aspiration level
of Player II with respect to the lth pay-offs is denoted by:

W l
0 = max

x∈Sm
El (x, y) = max

x∈Sm
xT Bly, (l = 1, 2, · · · , s).

Therefore, we obtain that the multi-objective bi-matrix game based on fuzzy goals, denoted by
MOBGFG, can be presented as:

MOBGFG = (Sm, Sn, Ak, Bl , Vk
0 ,&, W l

0,., (k = 1, 2, · · · , r; l = 1, 2, · · · , s)) (9)

where & and . are the fuzzified versions of symbols ≥ and ≤, respectively in [34].
Let t, a, and p ∈ R (p > 0), then the membership function of the fuzzy set F̃ defining the fuzzy

inequality t &p a, where this fuzzy inequality t &p a can be interpreted as “t essentially greater than or
equal to a with tolerance error p”, can be defined by [2]:

uF̃(t) =


1, t ≥ a,
1− ( a−t

p ), a− p ≤ t ≤ a,
0, t < a− p.

(10)

Based on the above discussion, let pk
0 and p

′k
0 (k = 1, 2, · · · , r) (respectively, ql

0 and q
′l
0 (l =

1, 2 · · · , s)) be the positive tolerance errors of Player I (respectively, Player II) about the fuzzy
inequalities, with respect to kth pay-offs (respectively, lth pay-offs). Thus the game MOBGFG
model becomes:

MOBGFG = (Sm, Sn, Ak, Bl , Vk
0 , pk

0, p
′k
0 , W l

0, ql
0, q

′l
0 ,&,., (k = 1, 2, · · · , r; l = 1, 2, · · · , s)) (11)

Definition 5. (x̄, ȳ) ∈ Sm × Sn is called a pair of equilibrium solution of the game (MOBGFG) model if:

xT Ak ȳ .pk
0

Vk
0 , k = 1, 2, · · · , r; ∀x ∈ Sm,

x̄T Bly .ql
0

W l
0, l = 1, 2, · · · , s; ∀y ∈ Sn,

x̄T Ak ȳ &
p′k0

Vk
0 , k = 1, 2, · · · , r,

x̄T Bl ȳ &
q′l0

W l
0, l = 1, 2, · · · , s.

(12)

In order to deal with the above game (MOBGFG) model, we can get the following theorem.

Theorem 1. Suppose (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2) if and only if we have that
(x̄, ȳ) is a pair of equilibrium solution of the game (MOBGFG) model. Additionally, λ̄ is the security level of
satisfaction of Player I and Player II. Vk

0 (k = 1, 2, · · · , r) and W l
0 (l = 1, 2, · · · , s) are the aspiration levels of

Player I and II, respectively.

(MONLP2) max λ (13)

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤W l

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥W l

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

Proof. Since (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model. By using
Definition 5, we can get that the equilibrium solution of the game (MOBGFG) model and the
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following multiple objective fuzzy optimization problem (MOFOP) are of equal value.

(MOFOP) Find (x, y) ∈ Sm× ∈ Sn subject to:

Ak
i y.pk

0
Vk

0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BTl

j x.ql
0
W l

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky&

p′k0
Vk

0 , (k = 1, 2, · · · , r),

xT Bly&
q′l0

W l
0, (l = 1, 2, · · · , s),

(14)

where Ak
i (i = 1, 2, · · · , m) is the ith row of the matrix Ak and Bl

j (j = 1, 2, · · · , n) is the jth column of

the matrix Bl .
By using (9), we obtain that membership functions uk

i (Ak
i y), (i = 1, 2, · · · , m) (respectively,

vl
j(BlT

j x), (j = 1, 2, · · · , n)) of fuzzy inequalities Ak
i y .pk

0
Vk

0 (∀y ∈ Sn) (respectively, BlT

j x .ql
0

W l
0

(∀x ∈ Sm)) can be presented as:

uk
i (Ak

i y) =


1, Ak

i y ≤ Vk
0 ,

1− Ak
i y−Vk

0
pk

0
, Vk

0 ≤ Ak
i y ≤ Vk

0 + pk
0,

0, Ak
i y ≥ Vk

0 + pk
0,

(15)

and

vl
j(BlT

j x) =


1, BlT

j x ≤W l
0,

1−
BlT

j x−W l
0

ql
0

, W l
0 ≤ BlT

j x ≤W l
0 + ql

0,

0, BlT

j x ≥W l
0 + ql

0.

(16)

respectively.
Similarly, we have that the non-linear membership functions of the fuzzy inequalities xT Aky &

p′k0
Vk

0 (respectively, xT Bly &
q′l0

W l
0) can be expressed as:

ug̃k
I
(xT Aky) =


1, xT Aky ≥ Vk

0 ,

1− Vk
0−xT Aky

p′k0
, Vk

0 ≥ xT Aky ≥ Vk
0 − p

′k
0 ,

0, xT Aky ≤ Vk
0 − p

′k
0 ,

(17)

and

vg̃l
I I
(xT Bly) =


1, xT Bly ≥W l

0,

1− W l
0−xT Bly

q′l0
, W l

0 ≥ xT Bly ≥W l
0 − q

′l
0 ,

0, xT Bly ≤W l
0 − q

′l
0 .

(18)

respectively.
Inspired by [35], by combining (10)–(13) we obtain that the problem (MOFOP) model is

equivalent to the multicriteria non-linear programming (MONLP1) problem.
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(MONLP1) max λ

Subject to λ ≤ 1− Ak
i y−Vk

0
pk

0
, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

λ ≤ 1−
BlT

j x−W l
0

ql
0

, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

λ ≤ 1 + xT Aky−Vk
0

p′k0
, (k = 1, 2, · · · , r),

λ ≤ 1 + xT Bl y−W l
0

q′l0
, (l = 1, 2, · · · , s),

0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(19)

That is, by simplifying the above problem, that is equal to:

(MONLP2) max λ

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤W l

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥W l

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(20)

Then, we have that (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model if and
only if (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2).

(MONLP2) max λ

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤W l

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥W l

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(21)

Remark 1. Let λ̄ = 1 and suppose (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2). Then, we
obtain that the game (MOBG) model is a special case of the game (MOBGFG) model.

Remark 2. Let λ̄ = 1 and suppose (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2). Then the
problem (MONLP2) model changes into:

(MONLP3) max λ

subject to Ak
i y ≤ Vk

0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,
BlT

j x ≤W l
0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky ≥ Vk
0 , (k = 1, 2, · · · , r),

xT Bly ≥W l
0, (l = 1, 2, · · · , s),

0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(22)
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4. Special Case:

In this section, we present a multicriteria non-linear programming problem in some special cases.

Theorem 2. Let Vk
0 = ak, pk

0 = p
′k
0 = ak − ak, W l

0 = b
l
, and ql

0 = q
′l
0 = b

l − bl . Suppose (x̄, ȳ) are a pair
of equilibrium solutions of the game (MOBGFG) model if and only if (x̄, ȳ, λ̄) is an optimal solution of the
problem (MONLP4).

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn,

(23)

where
ak = min

x∈Sm
min
y∈Sn

xT Aky = min
x∈Sm

min
y∈Sn

ak
ij, ak = max

x∈Sm
max
y∈Sn

xT Aky = max
x∈Sm

max
y∈Sn

ak
ij,

bl = min
x∈Sm

min
y∈Sn

xT Bly = min
x∈Sm

min
y∈Sn

bl
ij, b

l
= max

x∈Sm
max
y∈Sn

xT Bly = max
x∈Sm

max
y∈Sn

bl
ij.

Proof. Since (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model and Vk
0 = ak, and

pk
0 = p

′k
0 = ak − ak, W l

0 = b
l
, ql

0 = q
′l
0 = b

l − bl . By using Definition 5 and Theorem 1, we can get that
the equilibrium solutions of the game (MOBGFG) model and the following multiple objective fuzzy
optimization problem (MOFOP1) are of equal value.

(MOFOP1) Find (x, y) ∈ Sm× ∈ Sn subject to

Ak
i y .ak−ak ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BTl

j x .
b

l−bl b
l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky &ak−ak ak, (k = 1, 2, · · · , r),

xT Bly &
b

l−bl b
l
, (l = 1, 2, · · · , s),

(24)

Inspired by [2,29], now combining (10), (11), (12) and (13), we take membership functions
uk

i (Ak
i y) (i = 1, 2, · · · , m), vl

j(BlT

j x) (j = 1, 2, · · · , n), ug̃k
I
(xT Aky) and vg̃l

I I
(xT Bly) (k = 1, 2, · · · , r; l =

1, 2, · · · , s) as:

uk
i (Ak

i y) =


1, Ak

i y ≤ ak,

1− Ak
i y−ak

ak−ak , ak ≤ Ak
i y ≤ 2ak − ak,

0, Ak
i y ≥ 2ak − ak,

(25)

vl
j(BlT

j x) =


1, BlT

j x ≤ b
l
,

1−
BlT

j x−b
l

b
l−bl

, b
l ≤ BlT

j x ≤ 2b
l − bl ,

0, BlT

j x ≥ 2b
l − bl .

(26)

ug̃k
I
(xT Aky) =


1, xT Aky ≥ ak,

1− ak−xT Aky
ak−ak , ak ≥ xT Aky ≥ ak,

0, xT Aky ≤ ak,

(27)
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and

vg̃l
I I
(xT Bly) =


1, xT Bly ≥ b

l
,

1− b
l−xT Bl y

q′l0
, b

l ≥ xT Bly ≥ bl ,

0, xT Bly ≤ bl .

(28)

Similarly, we obtain that the problem (MOFOP1) model changes into:

(MONLP5) max λ

subject to λ ≤ 1− Ak
i y−ak

ak−ak , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

λ ≤ 1−
BlT

j x−b
l

b
l−bl

, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

λ ≤ 1 + xT Aky−ak

ak−ak , (k = 1, 2, · · · , r),

λ ≤ 1 + xT Bl y−b
l

b
l−bl

, (l = 1, 2, · · · , s),

0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(29)

That is, the problem (MONLP5) model is equal to:

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn.

(30)

Then, we have that (x̄, ȳ) is a pair of equilibrium solutions of the game (MOBGFG) model if and
only if (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP4).

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn.

(31)

Theorem 3. Suppose (x̄, ȳ, λ̄) are an optimal solution of the problem (MONLP2). Let Vk
0 = ak, and pk

0 =

p
′k
0 = ak − ak, W l

0 = b
l
, ql

0 = q
′l
0 = b

l − bl . Then the problem (MONLP2) model changes into the following
problem (MONLP4).
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Proof. Since (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP2), then we can get:

(MONLP2) max λ

subject to Ak
i y + (λ− 1)pk

0 ≤ Vk
0 , (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)ql
0 ≤W l

0, (l = 1, 2, · · · , s; j = 1, 2, · · · n),
xT Aky + (1− λ)p

′k
0 ≥ Vk

0 , (k = 1, 2, · · · , r),
xT Bly + (1− λ)q

′l
0 ≥W l

0, (l = 1, 2, · · · , s),
0 ≤ λ ≤ 1,
x ∈ Sm, y ∈ Sn.

(32)

Now, let Vk
0 = ak, pk

0 = p
′k
0 = ak − ak, W l

0 = b
l
, and ql

0 = q
′l
0 = b

l − bl . Hence, we obtain that the
problem (MONLP2) model changes into:

(MONLP4) max λ

subject to Ak
i y + (λ− 1)(ak − ak) ≤ ak, (k = 1, 2, · · · , r; i = 1, 2, · · ·m) ,

BlT

j x + (λ− 1)(b
l − bl) ≤ b

l
, (l = 1, 2, · · · , s; j = 1, 2, · · · n),

xT Aky + (1− λ)(ak − ak) ≥ ak, (k = 1, 2, · · · , r),

xT Bly + (1− λ)(b
l − bl) ≥ b

l
, (l = 1, 2, · · · , s),

x ∈ Sm, y ∈ Sn.

(33)

Then, we have that (x̄, ȳ, λ̄) is an optimal solution of the problem (MONLP4).

5. Example

Now, we consider the following multi-objective fuzzy bi-matrix game (MOBGFG) model.

Example 1. A the multi-objective bi-matrix game is considered. The multiple pay-off matrices of the Player I
and Player II are taken as:

A1 =

 6 3 4
3 6 8
7 3 4

 , A2 =

 9 2 7
4 5 8
2 7 3

 , A3 =

 5 1 2
3 4 8
1 8 1

 ,

and

B1 =

 9 1 4
0 6 3
5 2 8

 , B2 =

 1 6 7
8 2 3
4 9 3

 , B3 =

 8 2 3
−5 6 0
−3 1 6


respectively.

We now solve this problem with the above model. Thus, by Theorem 2, we have:

a1 = min
x∈S3

min
y∈S3

a1
ij = 3, V1

0 = a1 = max
x∈S3

max
y∈S3

a1
ij = 8, p1

0 = p
′1
0 = a1 − a1 = 5; (34)

a2 = min
x∈S3

min
y∈S3

a2
ij = 2, V2

0 = a2 = max
x∈S3

max
y∈S3

a2
ij = 9, p2

0 = p
′2
0 = a2 − a2 = 7; (35)

a3 = min
x∈S3

min
y∈S3

a3
ij = 1, V3

0 = a3 = max
x∈S3

max
y∈S3

a3
ij = 8, p3

0 = p
′3
0 = a3 − a3 = 7; (36)

b1 = min
x∈S3

min
y∈S3

b1
ij = 0, W1

0 = b
1
= max

x∈S3
max
y∈S3

b1
ij = 9, q1

0 = q
′1
0 = b

1 − b1 = 9; (37)
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b2 = min
x∈S3

min
y∈S3

b2
ij = 1, W2

0 = b
2
= max

x∈S3
max
y∈S3

b2
ij = 9, q2

0 = q
′2
0 = b

2 − b2 = 8; (38)

b3 = min
x∈S3

min
y∈S3

b3
ij = −5, W3

0 = b
3
= max

x∈S3
max
y∈S3

b3
ij = 8, q3

0 = q
′3
0 = b

3 − b3 = 13. (39)

By the above numerical values, we can get that the equilibrium solutions of the above model and
the following multiple objective fuzzy optimization problem (MOFOP2) are of equal value.

(MOFOP2) Find (x, y) ∈ S3× ∈ S3

subject to 6y1 + 3y2 + 4y3 .5 8, 9x1 + 0x2 + 5x3 .9 9,
3y1 + 6y2 + 8y3 .5 8, 1x1 + 6x2 + 2x3 .9 9,
7y1 + 3y2 + 4y3 .5 8, 4x1 + 3x2 + 8x3 .9 9,
9y1 + 2y2 + 7y3 .7 9, 1x1 + 8x2 + 4x3 .8 9,
4y1 + 5y2 + 8y3 .7 9, 6x1 + 2x2 + 9x3 .8 9,
2y1 + 7y2 + 3y3 .7 9, 7x1 + 3x2 + 3x3 .8 9,
5y1 + 1y2 + 2y3 .7 8, 8x1 − 5x2 − 3x3 .13 8,
3y1 + 4y2 + 8y3 .7 8, 2x1 + 6x2 + 1x3 .13 8,
1y1 + 8y2 + 1y3 .7 8, 3x1 + 0x2 + 6x3 .13 8,

6x1y1 + 3x2y1 + 7x3y1 + 3x1y2 + 6x2y2 + 3x3y2 + 4x1y3 + 8x2y3 + 4x3y3 &5 8,
9x1y1 + 4x2y1 + 2x3y1 + 2x1y2 + 5x2y2 + 7x3y2 + 7x1y3 + 8x2y3 + 3x3y3 &7 9,
5x1y1 + 3x2y1 + 1x3y1 + 1x1y2 + 4x2y2 + 8x3y2 + 2x1y3 + 8x2y3 + 1x3y3 &7 8,
9x1y1 + 0x2y1 + 5x3y1 + 1x1y2 + 6x2y2 + 2x3y2 + 4x1y3 + 3x2y3 + 8x3y3 &9 9,
1x1y1 + 8x2y1 + 4x3y1 + 6x1y2 + 2x2y2 + 9x3y2 + 7x1y3 + 3x2y3 + 3x3y3 &8 9,
8x1y1 − 5x2y1 − 3x3y1 + 2x1y2 + 6x2y2 + 1x3y2 + 3x1y3 + 0x2y3 + 6x3y3 &13 8.

(40)

Now we get the following membership functions based on the above fuzzy inequalities.

u1
1(6y1 + 3y2 + 4y3) =


1, 6y1 + 3y2 + 4y3 ≤ 8,
1− 6y1+3y2+4y3−8

5 , 8 ≤ 6y1 + 3y2 + 4y3 ≤ 13,
0, 6y1 + 3y2 + 4y3 ≥ 13,

(41)

u1
2(3y1 + 6y2 + 8y3) =


1, 3y1 + 6y2 + 8y3 ≤ 8,
1− 3y1+6y2+8y3−8

5 , 8 ≤ 3y1 + 6y2 + 8y3 ≤ 13,
0, 3y1 + 6y2 + 8y3 ≥ 13,

(42)

u1
3(7y1 + 3y2 + 4y3) =


1, 7y1 + 3y2 + 4y3 ≤ 8,
1− 7y1+3y2+4y3−8

5 , 8 ≤ 7y1 + 3y2 + 4y3 ≤ 13,
0, 7y1 + 3y2 + 4y3 ≥ 13,

(43)

u2
1(9y1 + 2y2 + 7y3) =


1, 9y1 + 2y2 + 7y3 ≤ 9,
1− 9y1+2y2+7y3−9

7 , 9 ≤ 9y1 + 2y2 + 7y3 ≤ 16,
0, 9y1 + 2y2 + 7y3 ≥ 16,

(44)

u2
2(4y1 + 5y2 + 8y3) =


1, 4y1 + 5y2 + 8y3 ≤ 9,
1− 4y1+5y2+8y3−9

7 , 9 ≤ 4y1 + 5y2 + 8y3 ≤ 16,
0, 4y1 + 5y2 + 8y3 ≥ 16,

(45)

u2
3(2y1 + 7y2 + 3y3) =


1, 2y1 + 7y2 + 3y3 ≤ 9,
1− 2y1+7y2+3y3−9

7 , 9 ≤ 2y1 + 7y2 + 3y3 ≤ 16,
0, 2y1 + 7y2 + 3y3 ≥ 16,

(46)
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u3
1(5y1 + 1y2 + 2y3) =


1, 5y1 + 1y2 + 2y3 ≤ 8,
1− 5y1+1y2+2y3−8

7 , 8 ≤ 5y1 + 1y2 + 2y3 ≤ 15,
0, 5y1 + 1y2 + 2y3 ≥ 15,

(47)

u3
2(3y1 + 4y2 + 8y3) =


1, 3y1 + 4y2 + 8y3 ≤ 8,
1− 3y1+4y2+8y3−8

7 , 8 ≤ 3y1 + 4y2 + 8y3 ≤ 15,
0, 3y1 + 4y2 + 8y3 ≥ 15,

(48)

u3
3(1y1 + 8y2 + 1y3) =


1, 1y1 + 8y2 + 1y3 ≤ 8,
1− 1y1+8y2+1y3−8

7 , 8 ≤ 1y1 + 8y2 + 1y3 ≤ 15,
0, 1y1 + 8y2 + 1y3 ≥ 15,

(49)

v1
1(9x1 + 0x2 + 5x3) =


1, 9x1 + 0x2 + 5x3 ≤ 9,
1− 9x1+0x2+5x3−9

9 , 9 ≤ 9x1 + 0x2 + 5x3 ≤ 18,
0, 9x1 + 0x2 + 5x3 ≥ 18.

(50)

v1
2(1x1 + 6x2 + 2x3) =


1, 1x1 + 6x2 + 2x3 ≤ 9,
1− 1x1+6x2+2x3−9

9 , 9 ≤ 1x1 + 6x2 + 2x3 ≤ 18,
0, 1x1 + 6x2 + 2x3 ≥ 18.

(51)

v1
3(4x1 + 3x2 + 8x3) =


1, 4x1 + 3x2 + 8x3 ≤ 9,
1− 4x1+3x2+8x3−9

9 , 9 ≤ 4x1 + 3x2 + 8x3 ≤ 18,
0, 4x1 + 3x2 + 8x3 ≥ 18.

(52)

v2
1(1x1 + 8x2 + 4x3) =


1, 1x1 + 8x2 + 4x3 ≤ 9,
1− 1x1+8x2+4x3−9

8 , 9 ≤ 1x1 + 8x2 + 4x3 ≤ 17,
0, 1x1 + 8x2 + 4x3 ≥ 17.

(53)

v2
2(6x1 + 2x2 + 9x3) =


1, 6x1 + 2x2 + 9x3 ≤ 9,
1− 6x1+2x2+9x3−9

8 , 9 ≤ 6x1 + 2x2 + 9x3 ≤ 17,
0, 6x1 + 2x2 + 9x3 ≥ 17.

(54)

v2
3(7x1 + 3x2 + 3x3) =


1, 7x1 + 3x2 + 3x3 ≤ 9,
1− 7x1+3x2+3x3−9

8 , 9 ≤ 7x1 + 3x2 + 3x3 ≤ 17,
0, 7x1 + 3x2 + 3x3 ≥ 17.

(55)

v3
1(8x1 − 5x2 − 3x3) =


1, 8x1 − 5x2 − 3x3 ≤ 8,
1− 8x1−5x2−3x3−8

13 , 8 ≤ 8x1 − 5x2 − 3x3 ≤ 21,
0, 8x1 − 5x2 − 3x3 ≥ 21.

(56)

v3
2(2x1 + 6x2 + 1x3) =


1, 2x1 + 6x2 + 1x3 ≤ 8,
1− 2x1+6x2+1x3−8

13 , 8 ≤ 2x1 + 6x2 + 1x3 ≤ 21,
0, 2x1 + 6x2 + 1x3 ≥ 21.

(57)

v3
3(3x1 + 0x2 + 6x3) =


1, 3x1 + 0x2 + 6x3 ≤ 8,
1− 3x1+0x2+6x3−8

13 , 8 ≤ 3x1 + 0x2 + 6x3 ≤ 21,
0, 3x1 + 0x2 + 6x3 ≥ 21.

(58)

ug̃1
I
(xT A1y) =


1, xT A1y ≥ 8,

1− 8−xT A1y
5 , 8 ≥ xT A1y ≥ 3,

0, xT A1y ≤ 3,
(59)



Symmetry 2017, xx, 159 12 of 15

ug̃2
I
(xT A2y) =


1, xT A2y ≥ 9,

1− 9−xT A2y
7 , 9 ≥ xT A2y ≥ 2,

0, xT A2y ≤ 2,
(60)

ug̃3
I
(xT A3y) =


1, xT A3y ≥ 8,

1− 8−xT A3y
7 , 8 ≥ xT A3y ≥ 1,

0, xT A3y ≤ 1,
(61)

vg̃1
I I
(xT B1y) =


1, xT B1y ≥ 9,

1− 9−xT B1y
9 , 9 ≥ xT B1y ≥ 0,

0, xT B1y ≤ 0,
(62)

vg̃2
I I
(xT B2y) =


1, xT B2y ≥ 9,

1− 9−xT B2y
8 , 9 ≥ xT B2y ≥ 1,

0, xT B2y ≤ 1,
(63)

and

vg̃3
I I
(xT B3y) =


1, xT B3y ≥ 8,

1− 8−xT B3y
13 , 8 ≥ xT B3y ≥ −5,

0, xT B3y ≤ −5,
(64)

where

xT A1y = 6x1y1 + 3x2y1 + 7x3y1 + 3x1y2 + 6x2y2 + 3x3y2 + 4x1y3 + 8x2y3 + 4x3y3,

xT A2y = 9x1y1 + 4x2y1 + 2x3y1 + 2x1y2 + 5x2y2 + 7x3y2 + 7x1y3 + 8x2y3 + 3x3y3,

xT A3y = 5x1y1 + 3x2y1 + 1x3y1 + 1x1y2 + 4x2y2 + 8x3y2 + 2x1y3 + 8x2y3 + 1x3y3, (65)

xT B1y = 9x1y1 + 0x2y1 + 5x3y1 + 1x1y2 + 6x2y2 + 2x3y2 + 4x1y3 + 3x2y3 + 8x3y3,

xT B2y = 1x1y1 + 8x2y1 + 4x3y1 + 6x1y2 + 2x2y2 + 9x3y2 + 7x1y3 + 3x2y3 + 3x3y3,

xT B3y = 8x1y1 − 5x2y1 − 3x3y1 + 2x1y2 + 6x2y2 + 1x3y2 + 3x1y3 + 0x2y3 + 6x3y3.

Now using (21) and (22), we have the following multiple objective non-liner programming
problem (MONLP6).
(MONLP6) max λ

subject to 6y1 + 3y2 + 4y3 + (λ− 1)5 ≤ 8, 9x1 + 0x2 + 5x3 + (λ− 1)9 ≤ 9,
3y1 + 6y2 + 8y3 + (λ− 1)5 ≤ 8, 1x1 + 6x2 + 2x3 + (λ− 1)9 ≤ 9,
7y1 + 3y2 + 4y3 + (λ− 1)5 ≤ 8, 4x1 + 3x2 + 8x3 + (λ− 1)9 ≤ 9,
9y1 + 2y2 + 7y3 + (λ− 1)7 ≤ 9, 1x1 + 8x2 + 4x3 + (λ− 1)8 ≤ 9,
4y1 + 5y2 + 8y3 + (λ− 1)7 ≤ 9, 6x1 + 2x2 + 9x3 + (λ− 1)8 ≤ 9,
2y1 + 7y2 + 3y3 + (λ− 1)7 ≤ 9, 7x1 + 3x2 + 3x3 + (λ− 1)8 ≤ 9,
5y1 + 1y2 + 2y3 + (λ− 1)7 ≤ 8, 8x1 − 5x2 − 3x3 + (λ− 1)13 ≤ 8,
3y1 + 4y2 + 8y3 + (λ− 1)7 ≤ 8, 2x1 + 6x2 + 1x3 + (λ− 1)13 ≤ 8,
1y1 + 8y2 + 1y3 + (λ− 1)7 ≤ 8, 3x1 + 0x2 + 6x3 + (λ− 1)13 ≤ 8,

6x1y1 + 3x2y1 + 7x3y1 + 3x1y2 + 6x2y2 + 3x3y2 + 4x1y3 + 8x2y3 + 4x3y3 + (1− λ)5 ≥ 8,
9x1y1 + 4x2y1 + 2x3y1 + 2x1y2 + 5x2y2 + 7x3y2 + 7x1y3 + 8x2y3 + 3x3y3 + (1− λ)7 ≥ 9,
5x1y1 + 3x2y1 + 1x3y1 + 1x1y2 + 4x2y2 + 8x3y2 + 2x1y3 + 8x2y3 + 1x3y3 + (1− λ)7 ≥ 8,
9x1y1 + 0x2y1 + 5x3y1 + 1x1y2 + 6x2y2 + 2x3y2 + 4x1y3 + 3x2y3 + 8x3y3 + (1− λ)9 ≥ 9,
1x1y1 + 8x2y1 + 4x3y1 + 6x1y2 + 2x2y2 + 9x3y2 + 7x1y3 + 3x2y3 + 3x3y3 + (1− λ)8 ≥ 9,
8x1y1 − 5x2y1 − 3x3y1 + 2x1y2 + 6x2y2 + 1x3y2 + 3x1y3 + 0x2y3 + 6x3y3 + (1− λ)13 ≥ 8,

0 ≤ λ ≤ 1, x ∈ S3, y ∈ S3.

(66)
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For some sample values of λ, we obtain the optimal solutions of the problem (MONLP6) for
Player I and Player II in Table 1. Similarly, for other values of λ ∈ [0, 1], we can obtain the optimal
solutions of the problem (MONLP6) model through the same approach.

In particular, let λ̄ = 0.2885, then we can have that (x̄1 = 0.1, x̄2 = 0.1, x̄3 = 0.8) and
(ȳ1 = 0.6, ȳ2 = 0.3, ȳ3 = 0.1) are the mixed strategies of Player I and Player II, respectively.

Table 1. Strategies of Example 1.

Strategies λ̄ x̄1 x̄2 x̄3 ȳ1 ȳ2 ȳ3

1 0.2285 0.1 0.2 0.7 0.4 0.2 0.4
2 0.2685 0.2 0.3 0.5 0.7 0.1 0.2
3 0.2720 0.6 0.2 0.2 0.2 0.5 0.3
4 0.2885 0.1 0.1 0.8 0.6 0.3 0.1
5 0.2971 0.5 0.1 0.4 0.5 0.2 0.3
6 0.3000 0.4 0.1 0.5 0.3 0.4 0.3

6. Conclusions

In this paper, we have presented a multi-objective bi-matrix game with a fuzzy goals (MOBGFG)
model. The inspiration of the model is from [2,29,30,36] and we have solved the game (MOBGFG)
model via a multi-objective non-linear programming method. We will discuss a situation where the
elements of matrices Ak(l = 1, 2, · · · , r) and Bl(l = 1, 2, · · · , s) of the game (MOBGFG) model become
fuzzy numbers in our future research. We have also concluded that the game model with entropy is
becoming more and more significant and it is related to practical problems of our real life [13,14,37].
Inspired by [37], we will extend the some results of this paper to the game (MOBGFG) model in an
entropy or fuzzy entropy environment.
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