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Abstract: Project delivery system selection is an essential part of project management. In the process of 
choosing appropriate transaction model, many factors should be under consideration, such as the 
capability and experience of proprietors, project implementation risk, and so on. How to make their 
comprehensive evaluations and select the optimal delivery system? This paper proposes a 
decision-making approach based on an extended linguistic preference structure: simplified 
neutrosophic linguistic preference relations (SNLPRs). The basic elements in SNLPRs are simplified 
neutrosophic linguistic numbers (SNLNs). First, several distance measures of SNLNs are introduced. A 
distance-based consistency index is provided to measure the consistency degree of a simplified 
neutrosophic linguistic preference relation (SNLPR). When the SNLPR is not acceptably consistent, a 
consistency-improving automatic iterative algorithm may be used. Afterwards, a decision-making 
method with SNLPRs is developed. The example of its application in project delivery systems’ 
selection is offered, and a comparison analysis is given in the end as well. 

Keywords: project delivery system selection; preference relations; simplified neutrosophic 
linguistic number; distance-based consistency index; improving consistency 
 

1. Introduction 

Construction is not only a carrier of fixed asset investment in a country, but also a channel to 
adjust products and industrial structures [1,2]. The choice of a project delivery system may be one 
of the most crucial elements of a project. There are multiple trading models that can be chosen. 
According to the complexity of projects and the relationships of owners with contractors, the 
delivery systems can be divided into four categories [3]. The general contract mode, which is the 
fixed price contract, mainly includes the Design Build (DB), Engineer Procure Construct Tumkey, 
and Design Build Operate (DBO). The management contract mode, namely the cost plus contract, 
principally contains the Construction-Management (CM) and Project-Management Contracting. 
The traditional trading model, called Design Bid Build (DBB), carries out the unit price contract. 
Others comprise Private Participating Infrastructure, Build Operate Transfer, Private Finance 
Initiative, and so on. 

A lot of aspects, such as projects’ characteristics, construction environment, owners’ capacity, 
and market conditions, need to be decided in the system selection process [4]. Nevertheless, the 
choice of transaction modes is usually based on the subjective consciousness of the decision makers 
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(DMs) in engineering practice. Only a few scientific and rational decision-making methods related 
to the selection of project delivery systems have been established. For instance, a fuzzy approach to 
pick out appropriate transaction systems was presented by Mostafavi and Karamouz [5]. Wang et 
al. [6] constructed a project delivery system model based on fuzzy sets. After that, the analytical 
hierarchy process (AHP) for choosing the trade model was provided as well [7,8]. 

Neutrosophic sets (NSs), as a generalization of intuitionistic fuzzy sets, were originally 
proposed by Smarandache [9]. They can deal with consistent, hesitant, and inconsistent information 
at the same time. Figure 1 in Chen and Ye [10] shows the flow chart extended from fuzzy sets to 
neutrosophic sets (as well as simplified neutrosophic sets, single-valued neutrosophic sets, and 
interval neutrosophic sets). There are many extensions of NSs [11–15]. Numerous multi-criteria 
decision-making methods based on NSs and their extensions have been studied. For example, the 
ELECTRE approaches of NSs and interval neutrosophic sets (INSs) were presented by Peng et al. 
[16] and Zhang et al. [17], respectively. The extended TODIM [18] and MULTIMOORA [19] 
methods with NSs were also offered. Peng et al. [20] put forward a likelihood-based QUALIFLEX 
method of multi-valued neutrosophic numbers. Besides, the VIKOR method in line with INSs was 
developed by Bausys and Zavadskas [21]. Pouresmaeil et al. [22] proposed an extended TOPSIS and 
VIKOR approaches based on NSs. Furthermore, other approaches, such as the heronian mean 
operators [23], correlation coefficients [24,25], the WASPAS method [26–29], and the COPRAS 
[30,31] method were discussed and applied in diverse areas. 

However, no matter which of the methods mentioned above is used, DMs are asked to give 
their evaluation values directly. It may be not easy for them in some cases. Sometimes, people may 
be accustomed to make a judgment through comparing each pair of delivery systems, especially 
when they cannot make direct evaluations for each single model [32]. Hence, the decision-making 
methods based on a judgment matrix (preference relations) with NSs or other extensions may be 
valuable and necessary. 

In general, there are two main types of preference relations. One expresses quantitative data, 
such as reciprocal preference relations [33,34], interval fuzzy preference relations [35–37], 
intuitionistic fuzzy preference relations [38,39] triangular fuzzy preference relations [40,41], hesitant 
fuzzy preference relations [42,43], and some extensions [44–46]. Another contains qualitative 
information, like linguistic preference relations (LPRs) [47–51], hesitant fuzzy linguistic preference 
relations (HFLPRs) [52–54], intuitionistic linguistic preference relations (ILPRs) [55], and so on 
[56–58]. 

This paper introduces a new type of preference relations, simplified neutrosophic linguistic 
preference relations (SNLPRs). The basic element in SNLPRs is a simplified neutrosophic linguistic 
number (SNLN). The aims of the paper are as follows. On the one hand, a matrix with qualitative 
information may be more suitable for selecting project delivery systems as many qualitative factors 
are considered such as owners’ ability, the technical difficulty of the project, the uncertainty of the 
external environment, and so on. On the other hand, the aforementioned preference relations 
cannot describe DMs’ degrees of certainty, hesitation, and negation of their qualitative judgment 
simultaneously. There is a hypothesis that the membership degree of linguistic values is 1 in LPRs 
and HFLPRs. ILPRs only express the consistency and inconsistency of linguistic values. 

On the basis of linguistic term sets and simplified neutrosophic numbers [59], simplified 
neutrosophic linguistic numbers (SNLNs) may be one of the most widely used extensions [60–62]. 
The former stands for the qualitative evaluation values of project systems [63–65], and the latter are 
the truth-membership, indeterminacy-membership, and false-membership of the qualitative 
assessment. Most importantly, these degrees are independent of each other. Consequently, 
considering the fuzziness of human thought and the complexity of reality, expressing preference in 
terms of SNLNs may be more suitable. 

This paper studies a decision-making method with preference relations under simplified 
neutrosophic linguistic environment. The following are our innovations: 

(1) Propose the Hamming distance, Euclidean distance, and Hausdorff distance of two SNLNs. In 
addition, several relevant properties are discussed. 
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(2) Present a new concept, SNLPRs. Subsequently, a distance-based consistency index is 
introduced to measure the consistency degree of SNLPRs. 

(3) Develop a consistency-improving algorithm and a ranking method based on aggregation 
operators. A decision-making approach based on SNLPRs is described as well. 

(4) Apply the proposed method to the project transaction model selection process. The 
practicability and effectiveness are demonstrated in a comparison analysis. 

The remains of this paper are arranged as follows. Basic theories about SNLNs and LPRs are 
introduced in Section 2. Section 3 proposed some distance measures of SNLNs. In Section 4, the 
consistency-checking and consistency-improving issues of SNLPRs are discussed. Afterwards, there 
is an example and some analysis in Section 5. At last, some conclusions are drawn. 

2. Preliminaries 

In this section, some basic concepts and operations of linguistic term sets, SNLNs and LPRs, 
are reviewed. 

A linguistic tem set is a collection of multiple linguistic values, like  

{ }| ,..., 1,0,1,...,
i

S s i u u= = − − ,  

where is  is a possible linguistic value, and the negation operator is ( )i ineg s s−= . Furthermore, if 
and only if i j> , then i js s> [66]. 

Note that the linguistic term set above is discrete. In some cases, the aggregated results may be 
used, which are not contained in this set. Hence, Xu [66] further defined a continuous term set, like  

{ | [ , ]}iS s i g g= ∈ − ( )g u>   

to extend the old one. 
The following are some operations of two linguistic terms ,i js s S∈ . 

i Xu j i js s s +⊕ =  (1) 

i Xu j j Xu is s s s⊕ = ⊕ (2) 

i is sλλ = , 0 1λ≤ ≤  (3) 

Definition 1. In Reference [67], let { | [ , ]}iS s i g g= ∈ −  be a linguistic term set. The subscript of any 
element is  can be obtained by the function ( )iN s i= . The inverse function is 1( ) iN i s− = . 

Definition 2. In Reference [68], suppose a crisp number [0,1]iϑ ∈ . If there is a mapping from is  to iϑ , 
then the linguistic scale function *f  is denoted as * : i if s ϑ→ ( , 1, , 1, )i g g g g= − − + − , where 

1 10 g g g gϑ ϑ ϑ ϑ− − + −≤ < < < < . And * 1f −  is the inverse function of *f . 

The linguistic scale function * 1
( ) ( [ , ])

2 2i

i
f s i g g

g
= + ∈ −  is used in this paper. 

Definition 3. In References [69,70], let { | [ , ]}iS s i g g= ∈ −  be a linguistic term set. , ( , , )h T I Fη η η ηη =< >

is a SNLN, where ( )h x Sη ∈ , the truth-membership degree ( ) [0,1]T xη ∈ , indeterminacy-membership degree 

( ) [0,1]I xη ∈ , and falsity-membership degree ( ) [0,1]F xη ∈ , and 0 ( ) ( ) ( ) 3T x I x F xη η η≤ + + ≤ . 

Definition 4. In Reference [71], , ( , , )A A A AA h T I F=< >  and , ( , , )B B B BB h T I F=< >  are two arbitrary 
SNLNs, and their operations can be defined as follows: 



Symmetry 2017, 9, 151  4 of 23 

 

(1) If ( ) ( )S a S b> , then a b> ; 
(2) If ( ) ( )S a S b= and ( ) ( )A a A b> , then a b> ; 
(3) If ( ) ( )S a S b= , ( ) ( )A a A b=  and ( ) ( )C a C b> , then a b> ; 
(4) If ( ) ( )S a S b= , ( ) ( )A a A b=  and ( ) ( )C a C b= , then a b= . 

Definition 5. In Reference [71], assume ( )( , , , )
ii a i i ia s T I Fθ= < > ( 1,2,..., )i n=  are a sequence of SNLNs. 

Then the simplified neutrosophic linguistic arithmetic mean (SNLAM) operator is 

( )
( ) ( ) ( )

1 2
1

* * *
( ) ( ) ( )

* 1 * 1 1 1
( )

* * *1
( ) ( ) ( )

1 1 1

1
( , , , )

( ) ( ) ( )
1

( ) , , ,
( ) ( ) ( )

i i i

i

i i i

n

n i
i

n n n

a i a i a in
i i i

a n n n
i

a a a
i i i

SNLAM a a a a
n

f s T f s I f s F
f f s

n
f s f s f s

θ θ θ

θ

θ θ θ

=

− = = =

=

= = =

= ⊕

 
    =     
 
 

  


  



. (4) 

Definition 6. In Reference [71], suppose ( )( , , , )
ii a i i ia s T I Fθ= < > ( 1,2,..., )i n=  are a sequence of SNLNs. 

Then the simplified neutrosophic linguistic geometric mean (SNLGM) operator is 

( )
1 1 1 11

* 1 *

1 2 ( )
1

1 1 1 1

( , , , ) ( ) , ,1 (1 ) ,1 (1 )
i

n n n nn
n n n nn

n i a i i i
i

i i i i

SNLGM a a a a f f s T I Fθ
−

=
= = = =

= ⊗ = − − − −
  
  

   
∏ ∏ ∏ ∏ . (5) 

Definition 7. In Reference [71], let , ( , , )a a a aa h T I F=< >  be a SNLN. Then the score function is 

*1
( ) ( )( 1 1 )

3 a a a aSF a f h T I F= + − + − , the accuracy function is *( ) ( )( )a a aAF a f h T F= − , and the 

certainty function is *( ) ( )a aCF a f h T= . 

Definition 8. In Reference [71], for two SNLNs , ( , , )a a a aa h T I F=< >  and , ( , , )b b b bb h T I F=< > , the 
comparison method is: 

(1) If ( ) ( )S a S b> , then a b> ; 
(2) If ( ) ( )S a S b= and ( ) ( )A a A b> , then a b> ; 
(3) If ( ) ( )S a S b= , ( ) ( )A a A b=  and ( ) ( )C a C b> , then a b> ; 
(4) If ( ) ( )S a S b= , ( ) ( )A a A b=  and ( ) ( )C a C b= , then a b= . 

Definition 9. In Reference [72], let { }1 2, ,..., nX x x x=  be a collection of n  alternatives and 

( )ij n nB b X X×= ⊂ ×  be a judgment matrix. If for all , 1,2,...,i j n= , there are  

0ij jib b s⊕ =  and 0iib s= , (6) 

then ( )ij n nB b ×=  is a LPR, where ijb  is the preference degree of the alternative ix  over jx . In particular, 

if 0ijb s< , ix  is non-preferred to jx ; ix  is preferred to jx  if 0ijb s> ; if not, jx  is equivalent to ix . 

Definition 10. In References [72,73], if ( )ij n nB b X X×= ⊂ ×  is a LPR, and  

ij ik kjb b b= ⊕ , ( , , 1,2,..., )i k j n=  (7) 

then B is a perfectly consistent LPR.  
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3. Distance Measures of SNLNs 

Ye [70] defined the distance measure between two SNLNs, but this method has some 
drawbacks. Thus, some distance measures of SNLNs are redefined in this section. 

Distance measure is a universal and effective way to calculate the difference between two 
elements. There are several common distance measures, such as Hamming distance, Euclidean 
distance, and Hausdorff distance. 

Definition 11. In Reference [70], suppose ( , , )T I Fα α αα =  and ( , , )T I Fβ β ββ =  are two optional 

SNLNs, and the subscript function is ( )iN s i= . 0λ ≥ . The distance between α and β  can be defined as 
below: 

1

( , ) (| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | )Yd T N h T N h I N h I N h F N h F N hλ λ λ λ
α α β β α α β β α α β βα β = ⋅ − ⋅ + ⋅ − ⋅ + ⋅ − ⋅ . (8) 

Specially, when 1λ = , Equation (8) can be reduced to Hamming distance; when 2λ = , Equation (8) 
can be reduced to Euclidean distance. 

The limitations of this definition are noticeable. Firstly, the calculation depends on linguistic subscripts 
directly, and different semantics cannot be distinguished. Secondly, this distance does not satisfy
0 ( , ) 1Yd α β≤ ≤  and the property of triangle inequality. Thirdly, the truth-membership, 
indeterminacy-membership, and false-membership are put on an equal footing in the calculation process. This 
is intuitively irrational. 

To overcome these shortcomings, the following distance measures between two SNLNs are defined. 

Definition 12. For two arbitrary SNLNs , ( , , )a a a aa h T I F=< >  and , ( , , )b b b bb h T I F=< > , assume the 
linguistic term set is { | [ , ]}iS s i g g= ∈ −  and the subscript function is ( )iN s i= . Then the Hamming 
distance ( , )Hd a b , Euclidean distance ( , )Ed a b , and Hausdorff distance ( , )Had a b  can be defined as 
follows: 

1
( , ) [ (| |) (| (1 ) (1 ) |)

6

                                                                                            (| (1 ) (1 ) |)]

H a a b b a a b b

a a b b

d a b N T h T h N I h I h
g

N F h F h

= ⋅ − ⋅ + − ⋅ − − ⋅ +

− ⋅ − − ⋅
, (9) 

2 2
2

2

1
[ (| |) (|(1 ) (1 ) |)

12( , )

                                                                               (|(1 ) (1 ) |) ]

a a b b a a b b

E

a a b b

N T h T h N I h I h
gd a b

N F h F h

⋅ − ⋅ + − ⋅ − − ⋅ +
=

− ⋅ − − ⋅
, (10) 

1
( , ) max{ (| |),(| (1 ) (1 ) |), (| (1 ) (1 ) |)}

2Ha a a b b a a b b a a b bd a b N T h T h I h I h N F h F h
g

= ⋅ − ⋅ − ⋅ − − ⋅ − ⋅ − − ⋅ . (11) 

Property 1. Assume Ω  is the set of all SNLNs, , ( , , )a a a aa h T I F=< > , , ( , , )b b b bb h T I F=< >  and 
, ( , , )c c c cc h T I F=< > , { | [ , ]}iS s i g g= ∈ − , and then the following properties are satisfied: 

(1) 0 ( , ) 1Hd a b≤ ≤ , 0 ( , ) 1Ed a b≤ ≤ , and 0 ( , ) 1Had a b≤ ≤ , for ,a b∀ ∈Ω ; 
(2) ( , ) ( , )H Hd a b d b a= , ( , ) ( , )E Ed a b d b a= , and ( , ) ( , )Ha Had a b d b a= , for ,a b∀ ∈Ω ; 
(3) If a b= , then ( , ) 0Hd a b = , ( , ) 0Ed a b = , and ( , ) 0Had a b = , for ,a b∀ ∈Ω ;  
(4) If 0 a b cs h h h≤ ≤ ≤ , a b cT T T≤ ≤ , a b cI I I≥ ≥ and a b cF F F≥ ≥ , then ( , ) ( , )H Hd a b d a c≤ , 

( , ) ( , )H Hd b c d a c≤ , ( , ) ( , )E Ed a b d a c≤ , ( , ) ( , )E Ed b c d a c≤ , a ( , ) ( , )H Had a b d a c≤  and
( , ) ( , )Ha Had b c d a c≤ . 
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Proof 1. 

(1) Because [ , ]i g g∈ −  and 0 , 1a bT T≤ ≤ , (| |) [0,2 ]a a b bN T h T h g⋅ − ⋅ ∈ ; Similarly, 0 (1 ) 1aI≤ − ≤ ,
0 (1 ) 1bI≤ − ≤  (| (1 ) (1 ) |) [0,2 ]a a b bN I h I h g− ⋅ − − ⋅ ∈ , and 0 (1 ) 1aF≤ − ≤ , 0 (1 ) 1bF≤ − ≤ 

(| (1 ) (1 ) |) [0,2 ]a a b bN F h F h g− ⋅ − − ⋅ ∈ ; thus
0 [ (| |) (| (1 ) (1 ) |) (| (1 ) (1 ) |)] 6a a b b a a b b a a b bN T h T h N I h I h N F h F h g≤ ⋅ − ⋅ + − ⋅ − − ⋅ + − ⋅ − − ⋅ ≤  
 0 ( , ) 1Hd a b≤ ≤ . Likewise, 0 ( , ) 1Ed a b≤ ≤ and 0 ( , ) 1Had a b≤ ≤ . 

(2) (| |) (| |)a a b b b b a aN T h T h N T h T h⋅ − ⋅ = ⋅ − ⋅ , (| (1 ) (1 ) |) (| (1 ) (1 ) |)a a b b b b a aN I h I h N I h I h− ⋅ − − ⋅ = − ⋅ − − ⋅ , 
and (| (1 ) (1 ) |) (| (1 ) (1 ) |)a a b b b b a aN F h F h N F h F h− ⋅ − − ⋅ = − ⋅ − − ⋅ , therefore ( , ) ( , )H Hd a b d b a= . 
Likewise, ( , ) ( , )E Ed a b d b a= and ( , ) ( , )Ha Had a b d b a= . 

(3) a b=  (| |) 0a a b bN T h T h⋅ − ⋅ = , (| (1 ) (1 ) |) 0a a b bN I h I h− ⋅ − − ⋅ = and 

(| (1 ) (1 ) |) 0,a a b bN F h F h− ⋅ − − ⋅ =  therefore ( , ) 0.Hd a b =  Similarly, ( , ) 0Ed a b = and 
( , ) 0Had a b = . 

(4) Because 0 ij ij ijs sa sb sc≤ ≤ ≤ , a b c
ij ij ijT T T≤ ≤ , and ( )iN s i=  is a monotone increasing function,

( ) ( ) ( )a b c
ij ij ij ij ij ijT sa T sb T sc⋅ ≤ ⋅ ≤ ⋅  | ( ) ( ) | | ( ) ( ) |a b a c

ij ij ij ij ij ij ij ijT sa T sb T sa T sc⋅ − ⋅ ≤ ⋅ − ⋅ and 

(| ( ) ( ) |) (| ( ) ( ) |);a b a c
ij ij ij ij ij ij ij ijN T sa T sb N T sa T sc⋅ − ⋅ ≤ ⋅ − ⋅  Likewise, (| (1 ) ( ) (1 ) ( ) |) (| (1 ) ( ) (1 ) ( ) |)a b a c

ij ij ij ij ij ij ij ijN I sa I sb N I sa I sc− ⋅ − − ⋅ ≤ − ⋅ − − ⋅

and (| (1 ) ( ) (1 ) ( ) |) (| (1 ) ( ) (1 ) ( ) |)a b a c
ij ij ij ij ij ij ij ijN F sa F sb N F sa F sc− ⋅ − − ⋅ ≤ − ⋅ − − ⋅ , so ( , ) ( , )H Hd a b d a c≤ . Similarly, 

( , ) ( , )H Hd b c d a c≤ , ( , ) ( , )E Ed a b d a c≤ , ( , ) ( , )E Ed b c d a c≤ , ( , ) ( , )Ha Had a b d a c≤  and 
( , ) ( , )Ha Had b c d a c≤ . 

Then, the proof is completed. □ 

Example 1. 
1 , (0.2,0.3,0.6)a s=< >  and 

2 , (0.5, 0.1, 0.4)b s=< >  are two SNLNs, and 4g = . Then 
( , ) 0.1125Hd a b ≈ , ( , ) 0.1139Ed a b ≈  and ( , ) 0.1375Had a b ≈ . 

4. Decision-Making Method Based on SNLPRs 

In this section, the concept of SNLPRs is presented. A decision-making method is proposed 
after discussing the checking and improving of consistency. 

4.1. The Concept of SNLPRs 

Definition 13. Given a group of n  alternatives { }1 2, ,..., nX x x x=  and a matrix ( )ij n nK k X X×= ⊂ × . 

If all the elements are presented with SNLNs, ( , , , )ij ij ij ij ijk s T I F= < > , and satisfy these conditions in the 

following:  

0ij Xu jis s s⊕ =  (12) 

ij jiT T= , ij jiI I= , ij jiF F=  (13) 

0( , , , ) ( , 1,0,0 )ii ii ii iis T I F s< > = < > , ( , 1,2,...,i j n= ), (14) 

then the matrix K  on X  can be regarded as a SNLPR, where ijs  is the degree of ix  preferred to jx , 

and 
ijT , ijI  and ijF  represent the truth-membership degree, the indeterminacy-membership degree, and the 

falsity-membership degree of ijs , respectively. 

Specifically, when 1ijT =  and 0ij ijI F= =  for all , 1,2,...,i j n= , then the SNLPR is reduced to a 

LPR. Compared to LPRs, SNLPRs contain not only the linguistic values, but also the degrees of accuracy, 
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hesitation, and mistake. The discrete linguistic term set can be extended to be a continuous one and DMs can 
express their qualitative preference information more flexibly. 

From Definition 13, it can be seen that ( , , , )ij ij ij ij ijk s T I F= < >  is the preferred value of the scheme 

ix  to jx , and it could be the same as ( , , , , , )ij ij ij ij ij ij ijk s T s I s F= < > < > < > , where ,ij ijs T< >  shows 

ix  is ijs  to jx  with the true possibility ijT ; ,ij ijs I< >  shows ix  is ijs  to jx  with the hesitant 

possibility ijI ; ,ij ijs F< >  shows ix  is ijs  to jx  with the false possibility ijF . 

As well as LPR, the preference degree of jx to ix  can be denoted as ,ij ijs T−< > , ,ij ijs I−< >  

and ,ij ijs F−< > , individually. That is to say, ( , , , , , )ji ij ij ij ij ij ijk s T s I s F− − −= < > < > < > or 

( , , , )ji ij ij ij ijk s T I F−= < > . 

Example 2. There are three alternatives { }1 2 3, ,X x x x= , and the linguistic term set { | [ 4,4]}iS s i= ∈ −  is 
used, where 4{  ,s s tremendously poorer−= = 3 ,s much poorer− = 2 ,  s poorer− = 1   ,s a little poorer− =

0 ,s fair= 1   ,  s a little better= 2 ,  s better= 3 ,  s much better= 4  }s tremendously better= . If a 
decision maker believes the degree of 1x  preferred to 2x is 2s , but he is not sure that he is absolutely right. 
According to his professional knowledge and experience in the past, he deems that he is correct with a 
probability of 40%, but the probability of error is 50%, and the uncertainty is 10%. In that case, his preference 
can be described using a SNLN, that is, 2( , 0.4,0.1,0.5 )s < > . In this way, a SNLPR can be obtained as all the 
alternatives above are compared with each other in a proper sequence. An example is given as follows: 

0 1 2

1 1 0 3

2 3 0

( , 1,0,0 ) ( , 0.4,0.2,0.1 ) ( , 0.3,0.1,0.2 )

( , 0.4,0.2,0.1 ) ( , 1,0,0 ) ( , 0.2,0.5,0.3 )

( , 0.3,0.1,0.2 ) ( , 0.2,0.5,0.3 ) ( , 1,0,0 )

s s s

K s s s

s s s

−

−

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

.  

Definition 14. Let { }1 2, ,..., nX x x x=  be a cluster of n  alternatives and a SNLPR be 

( )ij n nK k X X×= ⊂ × , where ( , , , )ij ij ij ij ijk s T I F= < > . Then the matrix ( , )ij ij n nT s T X X×= < > ⊂ ×  is 

regarded as the true linguistic judgment matrix of K , ( , )ij ij n nI s I X X×= < > ⊂ ×  is the hesitant 

linguistic judgment matrix of K , and ( , )ij ij n nF s F X X×= < > ⊂ ×  is the false linguistic judgment 

matrix of K , respectively.From Definition 14, it can be known that for an arbitrary SNLPR, it is easy 
to derive its corresponding true linguistic judgment matrix, hesitant linguistic judgment matrix, 
and false linguistic judgment matrix. Furthermore, these linguistic judgment matrices are all 
defined based on the continuous linguistic terms. 

Example 3. Suppose a SNLPR is the same as in Example 2. Then, according to Definition 14, its 
corresponding true linguistic judgment matrix, hesitant linguistic judgment matrix, and false linguistic 

judgment matrix are 
0 1 2

1 1 0 3

2 3 0

( ,1 ) ( ,0.4 ) ( ,0.3 )

( ,0.4 ) ( ,1 ) ( ,0.2 )

( ,0.3 ) ( ,0.2 ) ( ,1 )

s s s

T s s s

s s s

−

−

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

, 

0 1 2

1 1 0 3

2 3 0

( ,0 ) ( ,0.2 ) ( ,0.1 )

( ,0.2 ) ( ,0 ) ( ,0.5 )

( ,0.1 ) ( ,0.5 ) ( ,0 )

s s s

I s s s

s s s

−

−

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

 and 
0 1 2

1 1 0 3

2 3 0

( ,0 ) ( ,0.1 ) ( ,0.2 )

( ,0.1 ) ( ,0 ) ( ,0.3 )

( ,0.2 ) ( ,0.3 ) ( ,0 )

s s s

F s s s

s s s

−

−

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

. 
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4.2. Consistency Checking of SNLPRs 

The deviation between two SNLPRs is calculated in this subsection, and then a distance-based 
consistency index is presented as well. 

Definition 15. Assume there are several alternatives { }1 2, ,..., nX x x x= . For an arbitrary SLNLPR, if for 
all , , 1,2,...,i j k n= , there is ( ) ( ) ( )ik ik kj kj ij ijT s T s T s⋅ ⊕ ⋅ = ⋅ , then it can be regarded that 

( )ij ij n nT T s X X×= ⋅ ⊂ ×  is consistent; if for all , , 1,2,...,i j k n= , 

((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijI s I s I s− ⋅ ⊕ − ⋅ = − ⋅ , ( )ij ij n nI I s X X×= ⋅ ⊂ ×  is consistent; Similarly, if for all 

, , 1,2,...,i j k n= , ((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijF s F s F s− ⋅ ⊕ − ⋅ = − ⋅ , ( )ij ij n nF F s X X×= < ⋅ > ⊂ ×  is 

consistent. 

Definition 16. Let ( ) ( , , , )ij n n ij ij ij ij n nK k s T I F X X× ×= = < > ⊂ ×  be a SNLPR. If the following equations 

are true for all , , 1,2,...,i j k n= : 

( ) ( ) ( )ik ik kj kj ij ijT s T s T s⋅ ⊕ ⋅ = ⋅  (15) 

((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijI s I s I s− ⋅ ⊕ − ⋅ = − ⋅ (16) 

((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijF s F s F s− ⋅ ⊕ − ⋅ = − ⋅ , (17) 

thenK  is regarded as a consistent SNLPR.  

Example 4. Suppose a SNLPR is the same one as Example 2. Because 
12 12 23 23 1 3 1 13 13( ) ( ) 0.4 0.2T s T s s s s T s− − −⋅ ⊕ ⋅ = ⊕ = ≠ ⋅ , based on Definition 16, 1K is not considered a 

consistent SNLPR. 

Theorem 1. Given some alternatives { }1 2, ,..., nX x x x= , and the related SNLPR is 

( ) ( , , , )ij n n ij ij ij ij n nK k s T I F X X× ×= = < > ⊂ × . If ( )ij ij n nT T s X X×= ⋅ ⊂ × , ( )ij ij n nI I s X X×= ⋅ ⊂ ×  

and ( )ij ij n nF F s X X×= ⋅ ⊂ ×  all have perfect consistency, then the SNLPR K  is consistent, too. On the 

contrary, when a SNLPR K  has complete consistency, then ( )ij ij n nT T s X X×= ⋅ ⊂ × ,

( )ij ij n nI I s X X×= ⋅ ⊂ ×  and ( )ij ij n nF F s X X×= ⋅ ⊂ ×  are all absolutely consistent. 

Proof 2. 

(1) Because ( )ij ij n nT T s X X×= ⋅ ⊂ ×  is consistent, for all , , 1,2,...,i j k n= , there is 

( ) ( ) ( )ik ik kj kj ij ijT s T s T s⋅ ⊕ ⋅ = ⋅  based on Definition 15. In the same way, 

((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijI s I s I s− ⋅ ⊕ − ⋅ = − ⋅ and ((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijF s F s F s− ⋅ ⊕ − ⋅ = − ⋅ , 

as ( )ij ij n nI I s X X×= ⋅ ⊂ ×  and ( )ij ij n nF F s X X×= ⋅ ⊂ × are consistent. That is to say, 

( ) ( ) ( )ik ik kj kj ij ijT s T s T s⋅ ⊕ ⋅ = ⋅ , ((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijI s I s I s− ⋅ ⊕ − ⋅ = − ⋅ and 

((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijF s F s F s− ⋅ ⊕ − ⋅ = − ⋅  for all , , 1,2,...,i j k n= . On the basis of Definition 

16, it can be seen that K  is consistent. 
(2) Since K  has complete consistency, then these equations hold based on Definition 16: 

( ) ( ) ( )ik ik kj kj ij ijT s T s T s⋅ ⊕ ⋅ = ⋅ , ((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijI s I s I s− ⋅ ⊕ − ⋅ = − ⋅ and 

((1 ) ) ((1 ) ) ((1 ) )ik ik kj kj ij ijF s F s F s− ⋅ ⊕ − ⋅ = − ⋅ . In the light of Definition 15, ( )ij ij n nT T s X X×= ⋅ ⊂ × ,

( )ij ij n nI I s X X×= ⋅ ⊂ ×  and ( )ij ij n nF F s X X×= ⋅ ⊂ ×  are all consistent as well. 

The proof is done now. □ 

Theorem 2. Given an arbitrary SNLPR ( ) ( , , , )ij n n ij ij ij ij n nK k s T I F X X× ×= = < > ⊂ × , , , 1,2,...i j k n= , if 
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* *
1

1
{ [( ) ( )]}n

ij ij k ik ik kj kjT s T s T s
n =⋅ = ⊕ ⋅ ⊕ ⋅  (18) 

* *
1

1
(1 ) { [((1 ) ) ((1 ) )]}n

ij ij k ik ik kj kjI s I s I s
n =− ⋅ = ⊕ − ⋅ ⊕ − ⋅  (19) 

* *
1

1
(1 ) { [((1 ) ) ((1 ) )]}n

ij ij k ik ik kj kjF s F s F s
n =− ⋅ = ⊕ − ⋅ ⊕ − ⋅ , (20) 

then a consistent SNLPR * * * * * *( ) ( , , , )ij n n ij ij ij ij n nK k s T I F× ×= = < >  is obtained. 

Proof 3. 

Since * * * *
1 1

1 1
( ) ( ) { [( ) ( )]} { [( ) ( )]} n n
ik ik kj kj e ie ie ek ek e ke ke ej ejT s T s T s T s T s T s

n n= =⋅ ⊕ ⋅ = ⊕ ⋅ ⊕ ⋅ ⊕ ⊕ ⋅ ⊕ ⋅  

1

1
{ [( ) ( ) ( ) ( )]}n

e ie ie ek ek ke ke ej ejT s T s T s T s
n == ⊕ ⋅ ⊕ ⋅ ⊕ ⋅ ⊕ ⋅  

1 0

1
{ [( ) ( ) ( )]}n

e ie ie ej ej ekT s T s T s
n == ⊕ ⋅ ⊕ ⋅ ⊕ ⋅  

* *
1

1
{ [( ) ( )]}n

e ie ie ej ej ij ijT s T s T s
n == ⊕ ⋅ ⊕ ⋅ = ⋅ ; then * * * * * *( ) ( )ik ik kj kj ij ijT s T s T s⋅ ⊕ ⋅ = ⋅ ; Similarly, 

* * * *((1 ) ) ((1 ) )ik ik kj kjI s I s− ⋅ ⊕ − ⋅ 1 1

1 1
{ [((1 ) ) ((1 ) )]} { [((1 ) ) ((1 ) )]} n n

e ie ie ek ek e ke ke ej ejI s I s I s I s
n n= == ⊕ − ⋅ ⊕ − ⋅ ⊕ ⊕ − ⋅ ⊕ − ⋅  

1

1
{ [((1 ) ) ((1 ) ) ((1 ) ) ((1 ) )]}n

e ie ie ek ek ke ke ej ejI s I s I s I s
n == ⊕ − ⋅ ⊕ − ⋅ ⊕ − ⋅ ⊕ − ⋅  

1 0

1
{ [((1 ) ) ((1 ) ) ((1 ) )]}n

e ie ie ej ej ekI s I s I s
n == ⊕ − ⋅ ⊕ − ⋅ ⊕ − ⋅  

* *
1

1
{ [((1 ) ) ((1 ) )]} (1 )n

e ie ie ej ej ij ijI s I s I s
n == ⊕ − ⋅ ⊕ − ⋅ = − ⋅  and * * * *((1 ) ) ((1 ) )ik ik kj kjF s F s− ⋅ ⊕ − ⋅  

1 1

1 1
{ [((1 ) ) ((1 ) )]} { [((1 ) ) ((1 ) )]} n n

e ie ie ek ek e ke ke ej ejF s F s F s F s
n n= == ⊕ − ⋅ ⊕ − ⋅ ⊕ ⊕ − ⋅ ⊕ − ⋅  

1

1
{ [((1 ) ) ((1 ) ) ((1 ) ) ((1 ) )]}n

e ie ie ek ek ke ke ej ejF s F s F s F s
n == ⊕ − ⋅ ⊕ − ⋅ ⊕ − ⋅ ⊕ − ⋅  

1 0

1
{ [((1 ) ) ((1 ) ) ((1 ) )]}n

e ie ie ej ej ekF s F s F s
n == ⊕ − ⋅ ⊕ − ⋅ ⊕ − ⋅  * *

1

1
{ [((1 ) ) ((1 ) )]} (1 )n

e ie ie ej ej ij ijF s F s F s
n == ⊕ − ⋅ ⊕ − ⋅ = − ⋅ . 

According to Equations (15)–(17), it can be seen that 
* * * * * *( ) ( , , , )ij n n ij ij ij ij n nK k s T I F× ×= = < >  is a 

consistent SNLPR. 
This is the end of Proof 3. □ 

Note that there are only three equations above, but four variables 
*
ijs , 

*
ijT , 

*
ijI  and 

*
ijF  are 

contained. Thus, there may be many possible answers. In order to get a unique solution, the 
following method is used: 

(1) In a general way, assume 
*
ij os s≥ , and then 

* * *
o ij ij ijs T s s≤ ⋅ ≤ ,

* * *(1 )o ij ij ijs I s s≤ − ⋅ ≤ , and 
* * *(1 )o ij ij ijs F s s≤ − ⋅ ≤ ; suppose * * * * * *max{ ( ), ((1 ) ), ((1 ) ) [ 1, ]ij ij ij ij ij ijN T s N I s N F s a a⋅ − ⋅ − ⋅ ∈ − ,

*( )ija N s≤ , 

and then a unique SNLN 
* * * * * *

* * * * ( ) ((1 ) ) ((1 ) )
( , , , ) ( , ,1 ,1 )ij ij ij ij ij ij
ij ij ij ij a

N T s N I s N F s
s T I F s

a a a

⋅ − ⋅ − ⋅
< > = − −  

can be gained.  

For instance, if 
* * 0.3ij ijT s⋅ = , 

* *(1 ) 1.2ij ijI s− ⋅ = , and 
* *(1 ) 2.7ij ijF s− ⋅ = , there is 

* * * * * *max{ ( ), ((1 ) ), ((1 ) )} max(0.3,1.2,2.7) 2.7 [2,3]ij ij ij ij ij ijN T s N I s N F s⋅ − ⋅ − ⋅ = = ∈ , so 3a=  and 
* * * *

3( , , , ) ( , 0.1,0.6,0.1 )ij ij ij ijs T I F s< > = < > . 
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(2) For 
*
ij os s≤ , 

* * *
ij ij ij os T s s≤ ⋅ ≤ ,

* * *(1 )ij ij ij os I s s≤ − ⋅ ≤  and 
* * *(1 )ij ij ij os F s s≤ − ⋅ ≤ ; if 

* * * * * *min{ ( ), ((1 ) ), ((1 ) )} [ , 1]ij ij ij ij ij ijN T s N I s N F s a a⋅ − ⋅ − ⋅ ∈ + ,
*( )ija N s≥ , then a solitary SNLN is 

* * * * * *
* * * * ( ) ((1 ) ) ((1 ) )

( , , , ) ( , ,1 ,1 )ij ij ij ij ij ij
ij ij ij ij a

N T s N I s N F s
s T I F s

a a a

⋅ − ⋅ − ⋅
< > = − − .  

For example, 
* * 0.3ij ijT s⋅ =− , 

* *(1 ) 1.2ij ijI s− ⋅ =−  and 
* *(1 ) 2.7ij ijF s− ⋅ = − . Because 

* * * * * *min{ ( ), ((1 ) ), ((1 ) )} min( 0.3, 1.2, 2.7) 2.7 [ 3, 2]ij ij ij ij ij ijN T s N I s N F s⋅ − ⋅ − ⋅ = − − − = ∈ − − , then 3a=−  and 
* * * *

3( , , , ) ( , 0.1,0.6,0.1 )ij ij ij ijs T I F s−< > = < > . 

(3) Besides, there are two other situations: one is that the value of * *( )ij ijN T s⋅ , * *((1 ) )ij ijN I s− ⋅  and 

 are a positive number and two negative numbers; the other one is that there are 

two negative numbers and a positive number among ,  and 
* *((1 ) )ij ijN F s− ⋅ . In these conditions, the final answers may not meet the requirements of 

*0 1ijT≤ ≤

,
*0 1 1ijI≤ − ≤  or 

*0 1 1ijF≤ − ≤ . In other words, the consistent matrix being obtained may not be a 

SNLPR. But it still does not affect us to measure the consistency degree of the SNLPR, for the reason 
that the values of * *

ij ijT s⋅ , * *(1 )ij ijI s− ⋅  and * *(1 )ij ijF s− ⋅  can be calculated. Thus, the consistency index 

of the SNLPR can be acquired (more details see Definition 12, Definition 17 and Definition 18).  

Example 5. Suppose the same SNLPR in Example 2 is given. A consistent SNLPR 
0 1 1

*
1 1 0 1

1 1 0

( , 1,0,0 ) ( , 0.133,0.433,0.167 ) ( , 0.067,0.567,0.934 )

( , 0.133,0.433,0.167 ) ( , 1,0,0 ) ( , 0.067,0.867,0.433 )

( , 0.067,0.567,0.934 ) ( , 0.067,0.867,0.433 ) ( , 1,0,0 )

s s s

K s s s

s s s
− −

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

 can be 

obtained in the abovementioned way. 

According to those distance measures of SNLNs in Section 3, several distance measures of 
SNLPRs are further defined. 

Definition 17. There are two facultative SNLPRs ( )ij n nA a ×=  and ( )ij n nB b ×= , the linguistic term set is 

{ | [ , ]}iS s i g g= ∈ − . Then Hamming distance ( , )HD A B , Euclidean distance ( , )ED A B  and Hausdorff 
distance ( , )HaD A B  between A  and B  are defined as:  

1
( , ) ( , )

( 1)

n

H H ij iji j
D A B d a b

n n ≠
=

−   (21) 

1
( , ) ( , )

( 1)

n

E E ij iji j
D A B d a b

n n ≠
=

−   (22) 

1
( , ) ( , )

( 1)

n

Ha Ha ij iji j
D A B d a b

n n ≠
=

−  . (23) 

Example 6. Assume 4g = , and two SNLPR 0 1 3

1 0 2

3 2 0

( , 1,0,0 ) ( , 0.2,0.3,0.6 ) ( , 0.5,0.4,0.2 )

( , 0.2,0.3,0.6 ) ( , 1,0,0 ) ( , 0.7,0.1,0.6 )

( , 0.5,0.4,0.2 ) ( , 0.7,0.1,0.6 ) ( , 1,0,0 )

s s s

A s s s

s s s
− −

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

, 

0 2 3

2 0 1

3 1 0

( , 1,0,0 ) ( , 0.5,0.1,0.4 ) ( , 0.3,0.6,0.1 )

( , 0.5,0.1,0.4 ) ( , 1,0,0 ) ( , 0.2,0.8,0.5 )

( , 0.3,0.6,0.1 ) ( , 0.2,0.8,0.5 ) ( , 1,0,0 )

s s s

B s s s

s s s
− −

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

. Then Hamming distance ( , ) 0.1014HD A B ≈ , 

Euclidean distance ( , ) 0.1083ED A B ≈ and Hausdorff distance ( , ) 0.1375HaD A B ≈ . 

* *((1 ) )ij ijN F s− ⋅
* *( )ij ijN T s⋅ * *((1 ) )ij ijN I s− ⋅
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Theorem 3. Given two SNLPRs ( )ij n nA a ×= and ( )ij n nB b ×= , if ( , )HD A B , ( , )ED A B and ( , )HaD A B  

can satisfy the following properties: 

(1) 0 ( , ) 1HD A B≤ ≤ , 0 ( , ) 1ED A B≤ ≤ , and 0 ( , ) 1HaD A B≤ ≤ ; 
(2) ( , ) ( , )H HD A B D B A= , ( , ) ( , )E ED A B D B A= , and ( , ) ( , )Ha HaD A B D B A= ; 

(3) If A B= , then ( , ) 0HD A B = , ( , ) 0ED A B = , and ( , ) 0HaD A B = ; 

(4) Let ( ) ( , , , )a a a
ij n n ij ij ij ij n nA a sa T I F× ×= = < > , ( ) ( , , , )b b b

ij n n ij ij ij ij n nB b sb T I F× ×= = < >  and 

( ) ( , , , )c c c
ij n n ij ij ij ij n nC c sc T I F× ×= = < >  be three SNLPRs, if 

0 ij ij ijs sa sb sc≤ ≤ ≤ , 
a b c
ij ij ijT T T≤ ≤ , 

a b c
ij ij ijI I I≥ ≥  and 

a b c
ij ij ijF F F≥ ≥  for all , 1,2,i j n=  , then ( , ) ( , )H HD A B D A C≤ , 

( , ) ( , )H HD B C D A C≤ , ( , ) ( , )E ED A B D A C≤ , ( , ) ( , )E ED B C D A C≤ , ( , ) ( , )Ha HaD A B D A C≤  and 
( , ) ( , )Ha HaD B C D A C≤ . 

Proof 4. 

(1) Since 0 ( , ) 1H ij ijd a b≤ ≤   1
0 ( , ) 1

( 1)

n

H ij iji j
d a b

n n ≠
≤ ≤

−  , then 0 ( , ) 1HD A B≤ ≤ .  

Likewise, 0 ( , ) 1ED A B≤ ≤  and 0 ( , ) 1HaD A B≤ ≤ . 

(2) As ( , ) ( , )H ij ij H ij ijd a b d b a=   1 1
( , ) ( , )

( 1) ( 1)

n n

H ij ij H ij iji j i j
d a b d b a

n n n n≠ ≠
=

− −  , then 

( , ) ( , )H HD A B D B A= . Similarly, ( , ) ( , )E ED A B D B A=  and ( , ) ( , )Ha HaD A B D B A= . 

(3) Because A B= , for all , 1,2,i j n=  , then 
i j i ja b=    ( , ) 0H ij ijd a b =    

1
( , ) ( , ) 0

( 1)

n

H H ij iji j
D A B d a b

n n ≠
= =

−  . In the same way, ( , ) 0ED A B =  and ( , ) 0HaD A B = . 

(4) As ( , ) ( , )H ij ij H ij ijd a b d a c≤ 

 

1 1
( , ) ( , )

( 1) ( 1)

n n

H ij ij H ij iji j i j
d a b d a c

n n n n≠ ≠
≤

− −     

( , ) ( , )H ij ij H ij ijD a b D a c≤ . Similarly, ( , ) ( , )H ij ij H ij ijD b c D a c≤ , ( , ) ( , )E ij ij E ij ijD a b D a c≤ , 

( , ) ( , )E ij ij E ij ijD b c D a c≤ , ( , ) ( , )H a ij ij H a ij ijD a b D a c≤  and ( , ) ( , )H a ij ij H a ij ijD b c D a c≤ . 

This is the end of Proof 4. □ 

Definition 18. Let ( )ij n nK k ×=  be a SNLPR, and 
* *( )ij n nK k ×=  be the corresponding consistent SNLPR, 

the deviation between K  and *K  can be expressed by a consistency index ( )C K  as follows: 

*( ) 1 ( , )CX K D K K= − , (24) 

where *( , )D K K  can be replaced by *( , )HD K K , *( , )ED K K , or *( , )HaD K K . 

Example 7. Assume a SNLPR 
0 1 2

1 1 0 3

2 3 0

( , 1,0,0 ) ( , 0.4,0.2,0.1 ) ( , 0.3,0.1,0.2 )

( , 0.4,0.2,0.1 ) ( , 1,0,0 ) ( , 0.2,0.5,0.3 )

( , 0.3,0.1,0.2 ) ( , 0.2,0.5,0.3 ) ( , 1,0,0 )

s s s

K s s s

s s s

−

−

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

 is the 

same with Example 2, and its consistent SNLPR is 

0 1 1
*
1 1 0 1

1 1 0

( , 1,0,0 ) ( , 0.133,0.433,0.167 ) ( , 0.067,0.567,0.934 )

( , 0.133,0.433,0.167 ) ( , 1,0,0 ) ( , 0.067,0.867,0.433 )

( , 0.067,0.567,0.934 ) ( , 0.067,0.867,0.433 ) ( , 1,0,0 )

s s s

K s s s

s s s
− −

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

 from 

Example 5. If *( , )HD K K  is used, then ( ) 0.8569CX K ≈ ; if *( , )ED K K  is used, then ( ) 0.9936CX K ≈
;if *( , )H aD K K  is used, then ( ) 0.8083CX K ≈ . 
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Note that since *0 ( , ) 1D K K≤ ≤ , then 0 ( ) 1CX K≤ ≤ . Moreover, the greater the value of 

( )CX K , the more consistent K  will be according to Definition 18. 

4.3. Improving the Consistency of SNLPRs 

Normally, it is difficult for DMs to provide a fully consistent SNLPR. There will be a lot of 
uncertainty in the decision-making process. For this reason, it is appropriate and necessary to allow 
the SNLPR presented by DMs satisfy the consistency in some extent. Then, the following is the 
concept of acceptable consistency. 

Definition 19. Let CX  be a consistency threshold value. For an arbitrary SNLPR K , if the 
corresponding consistency index is ( )CX K , and  

( )CX K CX> , (25) 

then K  is consistent in some extent. In other words, it has acceptable consistency. 

Zhu and Xu [74] indicated that the consistency index ( )CX K  obeys a normal distribution, 
thus providing a method to determine the consistency threshold value CX . This method is used 
here. When the significance level 0.1α =  and the standard deviation 0.2σ = , the consistency 
index threshold is shown in Table 1. 

Table 1. The consistency threshold value CX . 

CX  3n=  4n =  5n=  6n =  7n =  8n=  9n=  

2g =  0.8235 0.7576 0.7210 0.6981 0.6824 0.6710 0.6624 

3g =  0.8739 0.8269 0.8007 0.7844 0.7731 0.7650 0.7589 

4g =  0.9020 0.8653 0.8450 0.8323 0.8235 0.8172 0.8124 

Of course, the numbers in Table 1 can be used for reference. DMs can determine the value of 
thresholds based on their previous experience, preferences, or actual situations as well. 

Example 8. Suppose a SNLPR 1K  is the same as Example 2, and the consistency index 1( ) 0.8569CX K ≈  
from Example 7. If *

1 1( , )HD K K  is used, for 4g =  and 3n= , the consistency threshold value can be 
assigned with 0.9020CX =  based on Table 1. 1( )CX K CX< , and it demonstrates that 1K  does not 
have acceptable consistency. 

When the initial SNLPR presented by DMs is not acceptably consistent, a way to improve this 
SNLPR should be provided. Then, an iterative algorithm (Algorithm 1) is given to achieve 
acceptable consistency as follows: 

Algorithm 1. Consistency-improving process with automatic iteration

Input: The initial SNLPR 
( ) ( ) ( ) ( ) ( ) ( )( ) ( , , , )s s s s s s

ij n n ij ij ij ij n nK k s T I F× ×= = < > , and the value of the 

consistency threshold CX . 
Output: The modified SNLPR aK , and its consistency index ( )aCX K . 
Step 1: Let 0s=  and 0ie = . According to Theorem 2, acquire the consistent SNLPR 

*( ) *( )( )s s
ij n nK k ×=  of ( )sK , where 

*( ) *( ) *( ) *( ) *( )( , , , )s s s s s
ij ij ij ij ijk s T I F= < > .  

Step 2: Choose an applicable distance, and calculate ( )( )sC X K  on the basis of Definition 18. 
Step 3: Determine the maximum value of iterative times max 1ie ≥ . If ( )( )sCX K CX> or 
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maxie ie> , then go to Step 6; otherwise, go to the next step. 
Step 4: Confirm the adjusted parameter (0,1)δ ∈ . Let 

( 1) ( 1) ( ) ( ) *( ) *( )( ) (1 )( )s s s s s s
ij ij ij ij ij ijT s T s T sδ δ+ +⋅ = ⋅ ⊕ − ⋅ ,  

( 1) ( 1) ( ) ( ) *( ) *( )(1 ) ((1 ) ) (1 )((1 ) )s s s s s s
ij ij ij ij ij ijI s I s I sδ δ+ +− ⋅ = − ⋅ ⊕ − − ⋅  

and 
( 1) ( 1) ( ) ( ) *( ) *( )(1 ) ((1 ) ) (1 )((1 ) )s s s s s s
ij ij ij ij ij ijF s F s F sδ δ+ +− ⋅ = − ⋅ ⊕ − − ⋅ .  

Step 5: Let 1ie ie= +  and 1s s= + , then ( )sK  is the adjusted SNFLPR. Return to Step 2. 
Step 6: Let ( )s

aK K= , Output aK  and ( )aCX K . 

This algorithm above improves the consistency through the iterative process automatically, 
which is convenient and efficient. 

Theorem 4. Given a SNLPR K , if K  does not have acceptable consistency, it will be more consistent using 
Algorithm 1. That is to say, ( 1) ( )( ) ( )s sC K C K+ <  is true. Moreover, ( )lim ( ) 0s

s
C K

→∞
= . 

Proof 5. 

(1) From Equation (18), *( ) *( ) ( ) ( ) ( ) ( )
1

1
{ [( ) ( )]}s s n s s s s

ij ij k ik ik kj kjT s T s T s
n =⋅ = ⊕ ⋅ ⊕ ⋅ , and then 

( 1) ( 1) *( 1) *( 1)
ij ij|T s -T s |s s s s

ij ij
+ + + +

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1

1
| { [( ) ( )]}|s s n s s s s
ij ij k ik ik kj kjT s T s T s

n
+ + + + + +

== − ⊕ ⋅ ⊕ ⋅  ( ) ( ) *( ) *( ) ( ) ( ) *( ) *( )
1

1
| ( ) (1 )( ) { [( ( ) (1 )( ))s s s s n s s s s

ij ij ij ij k ik ik ik ikT s T s T s T s
n == ⋅ ⊕ − ⋅ − ⊕ ⋅ ⊕ − ⋅δ δ δ δ

( ) ( ) *( ) *( )( ( ) (1 )( ))]}|s s s s
kj kj kj kjT s T s⊕ ⋅ ⊕ − ⋅δ δ ( ) ( ) ( ) ( ) ( ) ( )

1

1
| ( ) { [( ( ) ( ( ))]} |s s n s s s s

ij ij k ik ik kj kjT s T s T s
n

δ δ δ=≤ ⋅ ⊕ − ⊕ ⋅ ⊕ ⋅ +

*( ) *( ) *( ) *( ) *( ) *( )

1

1
  | (1 )( ) { [(1 )( )) (1 )( ))]} |s s n s s s s

ij ij k ik ik kj kjT s T s T s
n

δ δ δ=− ⋅ − ⊕ − ⋅ ⊕ − ⋅  

( ) ( ) ( ) ( ) ( ) ( ) *( ) *( ) *( ) *( ) *( ) *( )
1 1

1 1
| ( ) { [( ) ( )]} | (1 ) | ( ) { [( ) ( )]} |  s s n s s s s s s n s s s s

ij ij k ik ik kj kj ij ij k ik ik kj kjT s T s T s T s T s T s
n n

δ δ= == ⋅ ⊕ − ⊕ ⋅ ⊕ ⋅ + − ⋅ − ⊕ ⋅ ⊕ ⋅

( ) ( ) *( ) *( ) *( ) *( )| ( ) |  |(1 ) | ( )s s s s s s
ij ij ij ij ij ijT s T s T sδ δ= ⋅ ⊕ − ⋅ + − ⋅ −

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1
 { [( { [( ) ( )]}) ( { [( ) ( )]})]} |n n s s s s n s s s s

k p ip ip pk pk p kp kp pj pjT s T s T s T s
n n n

= = =⊕ ⊕ ⋅ ⊕ ⋅ ⊕ ⊕ ⋅ ⊕ ⋅  

( ) ( ) *( ) *( ) *( ) *( ) ( ) ( ) ( ) ( )

1

1
| ( ) | (1 ) | ( ) ( { [( ) ( )]}) |s s s s s s n s s s s

ij ij ij ij ij ij p ip ip pj pjT s T s T s T s T s
n

δ δ == ⋅ ⊕ − ⋅ + − ⋅ − ⊕ ⋅ ⊕ ⋅  

( ) ( ) *( ) *( ) *( ) *( ) *( ) *( )| ( ) | (1 ) | ( ) ( ) |s s s s s s s s

ij ij ij ij ij ij ij ijT s T s T s T sδ δ= ⋅ ⊕− ⋅ + − ⋅ − ⋅ ( ) ( ) *( ) *( )| ( ) |s s s s

ij ij ij ijT s T sδ= ⋅ ⊕− ⋅ , so 
( 1) ( 1) *( 1) *( 1) ( ) ( ) *( ) *( )(| - |) (| ( ) |)s s s s s s s s

ij ij ij ij ij ij ij ijN T s T s N T s T sδ+ + + + ≤ ⋅ ⋅ ⊕− ⋅ ; 

(2) From Equation (19), * *
1

1
(1 ) { [((1 ) ) ((1 ) )]}n

ij ij k ik ik kj kjI s I s I s
n =− ⋅ = ⊕ − ⋅ ⊕ − ⋅ , and then 

( 1) ( 1) *( 1) *( 1)|(1- ) -(1- ) |s s s s
ij ij ij ijI s I s+ + + +⋅ ⋅ ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1

1
| (1 ) { [((1 ) ) ((1 ) )]}|s s n s s s s

ij ij k ik ik kj kjI s I s I s
n

+ + + + + +
== − ⋅ − ⊕ − ⋅ ⊕ − ⋅

( ) ( ) *( ) *( ) ( ) ( ) *( ) *( )
1

1
| ((1 ) ) (1 )((1 ) ) { [( ((1 ) ) (1 )((1 ) ))s s s s n s s s s

ij ij ij ij k ik ik ik ikI s I s I s I s
n

δ δ δ δ== − ⋅ ⊕ − − ⋅ − ⊕ − ⋅ ⊕ − − ⋅
( ) ( ) *( ) *( ) ( ((1 ) ) (1 )((1 ) ))]} |s s s s
ij kj kj kjI s I sδ δ⊕ − ⋅ ⊕ − − ⋅  

( ) ( ) ( ) ( ) ( ) ( )
1

1
| ((1 ) ) { [( ((1 ) ) ( ((1 ) ))]}|s s n s s s s

ij ij k ik ik kj kjI s I s I s
n

δ δ δ=≤ − ⋅ − ⊕ − ⋅ ⊕ − ⋅ +  
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*( ) *( ) *( ) *( ) *( ) *( )
1 1

1
| (1 )((1 ) ) { [(1 )((1 ) )) (1 )((1 ) ))]}|s s n s s n s s

ij ij k ik ik k kj kjI s I s I s
n

δ δ δ= =− − ⋅ − ⊕ − − ⋅ ⊕ − − ⋅

( ) ( ) ( ) ( ) ( ) ( )
1

1
| ((1 ) ) { [((1 ) ) ((1 ) ))]}|s s n s s s s

ij ij k ik ik kj kjI s I s I s
n

δ == − ⋅ − ⊕ − ⋅ ⊕ − ⋅ +

*( ) *( ) *( ) *( ) *( ) *( )
1 1

1
 (1 ) | ((1 ) ) { [((1 ) )) ((1 ) ))]}|s s n s s n s s

ij ij k ik ik k kj kjI s I s I s
n

δ = =− − ⋅ − ⊕ − ⋅ ⊕ − ⋅  

( ) ( ) *( ) *( ) *( ) *( ) ( ) ( )
1 1

1 1
| ((1 ) ) (1 ) | (1 ) | ((1 ) ) { [( { [((1 ) )s s s s s s n n s s

ij ij ij ij ij ij k p ip ipI s I s I s I s
n n

δ δ = == − ⋅ − − ⋅ + − − ⋅ − ⊕ ⊕ − ⋅ ⊕  

( ) ( ) ( ) ( ) ( ) ( )
1 1

1
 ((1 ) )]}) ( { [((1 ) ) ((1 ) )]})]}|s s n n s s s s

pk pk k p kp kp pj pjI s I s I s
n= =− ⋅ ⊕ ⊕ − ⋅ ⊕ − ⋅  

( ) ( ) *( ) *( ) *( ) *( ) ( ) ( ) ( ) ( )
1

1
| ((1 ) ) (1 ) | (1 ) | ((1 ) ) { [((1 ) ) ((1 ) )]}|s s s s s s n s s s s

ij ij ij ij ij ij p ip ip pj pjI s I s I s I s I s
n

δ δ == − ⋅ − − ⋅ + − − ⋅ − ⊕ − ⋅ ⊕ − ⋅

( ) ( ) *( ) *( ) *( ) *( ) *( ) *( )| (1 ) ) (1 ) | (1 ) | (1 ) (1 ) |s s s s s s s s

ij ij ij ij ij ij ij ijI s I s I s I sδ δ= − ⋅ − − ⋅ + − − ⋅ − − ⋅  ( ) ( ) *( ) *( )| (1 ) (1 ) |s s s s

ij ij ij ijI s I sδ= − ⋅ − − ⋅ , 

so ( 1) ( 1) *( 1) *( 1) ( ) ( ) *( ) *( )((1- ) - (1- ) |) (| (1 ) (1 ) |)s s s s s s s s

ij ij ij ij ij ij ij ijN I s I s N I s I sδ+ + + +⋅ ⋅ ≤ ⋅ − ⋅ − − ⋅ ; 

(3) From Equation (20), * *
1

1
(1 ) { [((1 ) ) ((1 ) )]}n

ij ij k ik ik kj kjF s F s F s
n =− ⋅ = ⊕ − ⋅ ⊕ − ⋅ , and then 

( 1) ( 1) *( 1) *( 1)|(1- ) - (1- ) |s s s s
ij ij ij ijF s F s+ + + +⋅ ⋅  ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1

1
| (1 ) { [((1 ) ) ((1 ) )]}|s s n s s s s

ij ij k ik ik kj kjF s F s F s
n

+ + + + + +
== − ⋅ − ⊕ − ⋅ ⊕ − ⋅  

( ) ( ) *( ) *( ) ( ) ( ) *( ) *( )
1

1
| ((1 ) ) (1 )((1 ) ) { [( ((1 ) ) (1 )((1 ) ))s s s s n s s s s

ij ij ij ij k ik ik ik ikF s F s F s F s
n

δ δ δ δ== − ⋅ ⊕ − − ⋅ − ⊕ − ⋅ ⊕ − − ⋅
( ) ( ) *( ) *( ) ( ((1 ) ) (1 )((1 ) ))]}|s s s s
ij kj kj kjF s F sδ δ⊕ − ⋅ ⊕ − − ⋅  

( ) ( ) ( ) ( ) ( ) ( )
1

1
| ((1 ) ) { [( ((1 ) ) ( ((1 ) ))]}|s s n s s s s

ij ij k ik ik kj kjF s F s F s
n

δ δ δ=≤ − ⋅ − ⊕ − ⋅ ⊕ − ⋅ +  

*( ) *( ) *( ) *( ) *( ) *( )
1 1

1
| (1 )((1 ) ) { [(1 )((1 ) )) (1 )((1 ) ))]}|s s n s s n s s

ij ij k ik ik k kj kjF s F s F s
n

δ δ δ= =− − ⋅ − ⊕ − − ⋅ ⊕ − − ⋅  

( ) ( ) ( ) ( ) ( ) ( )
1

1
| ((1 ) ) { [((1 ) ) ((1 ) ))]}|s s n s s s s

ij ij k ik ik kj kjF s F s F s
n

δ == − ⋅ − ⊕ − ⋅ ⊕ − ⋅ +

*( ) *( ) *( ) *( ) *( ) *( )
1 1

1
(1 ) | ((1 ) ) { [((1 ) )) ((1 ) ))]}|s s n s s n s s

ij ij k ik ik k kj kjF s F s F s
n

δ = =− − ⋅ − ⊕ − ⋅ ⊕ − ⋅  

( ) ( ) *( ) *( ) *( ) *( ) ( ) ( )
1 1

1 1
| ((1 ) ) (1 ) | (1 ) | ((1 ) ) { [( { [((1 ) )s s s s s s n n s s

ij ij ij ij ij ij k p ip ipF s F s F s F s
n n

δ δ = == − ⋅ − − ⋅ + − − ⋅ − ⊕ ⊕ − ⋅ ⊕  

( ) ( ) ( ) ( ) ( ) ( )
1 1

1
    ((1 ) )]}) ( { [((1 ) ) ((1 ) )]})]}|s s n n s s s s

pk pk k p kp kp pj pjF s F s F s
n= =− ⋅ ⊕ ⊕ − ⋅ ⊕ − ⋅  

( ) ( ) *( ) *( ) *( ) *( ) ( ) ( ) ( ) ( )
1

1
| ((1 ) ) (1 ) | (1 ) | ((1 ) ) { [((1 ) ) ((1 ) )]}|s s s s s s n s s s s

ij ij ij ij ij ij p ip ip pj pjF s F s F s F s F s
n

δ δ == − ⋅ − − ⋅ + − − ⋅ − ⊕ − ⋅ ⊕ − ⋅
( ) ( ) *( ) *( ) *( ) *( ) *( ) *( )| (1 ) ) (1 ) | (1 ) | (1 ) (1 ) |s s s s s s s s
ij ij ij ij ij ij ij ijF s F s F s F sδ δ= − ⋅ − − ⋅ + − − ⋅ − − ⋅  ( ) ( ) *( ) *( )| (1 ) (1 ) |s s s s

ij ij ij ijF s F sδ= − ⋅ − − ⋅ , so 
( 1) ( 1) *( 1) *( 1) ( ) ( ) *( ) *( )((1- ) -(1- ) |) (| (1 ) (1 ) |)s s s s s s s s
ij ij ij ij ij ij ij ijN F s F s N F s F sδ+ + + +⋅ ⋅ ≤ ⋅ − ⋅ − − ⋅ ; According 

to (1)–(3), there is 
( 1) ( 1) *( 1) *( 1) ( 1) ( 1) *( 1) *( 1) ( 1) ( 1) *( 1) *( 1)(| - |) ((1 - ) - (1 - ) |) ((1 - ) - (1 - ) |)s s s s s s s s s s s s
ij ij ij ij ij ij ij ij ij ij ij ijN T s T s N I s I s N F s F s+ + + + + + + + + + + ++ ⋅ ⋅ + ⋅ ⋅

( ) ( ) *( ) *( ) ( ) ( ) *( ) *( ) ( ) ( ) *( ) *( )[ (| ( ) |) (| (1 ) (1 ) |) (| (1 ) (1 ) |)]s s s s s s s s s s s s
ij ij ij ij ij ij ij ij ij ij ij ijN T s T s N I s I s N F s F sδ≤ ⋅ ⋅ ⊕ − ⋅ + − ⋅ − − ⋅ + − ⋅ − − ⋅

, then ( 1) *( 1) ( ) *( )( , ) ( , )s s s s
H ij ij H ij ijd k k d k kδ+ + ≤ , ( 1) *( 1) ( ) *( )( , ) ( , )s s s s

E ij ij E ij ijd k k d k kδ+ + ≤ , ( 1) *( 1) ( ) *( )( , ) ( , )s s s s
Ha ij ij Ha ij ijd k k d k kδ+ + ≤ , so 

( 1) ( 1) *( 1) ( 1) *( 1)1
( ) 1 ( , ) ( , )

( 1)

ns s s s s
ij iji j

CI K D K K d k k
n n

+ + + + +
≠

= − =
−  ( ) *( ) ( )1

( , ) ( )
( 1)

n s s s
ij iji j

d k k CI K
n n

δ
≠

≥ ⋅ ≥
−  . In 

addition, ( )lim ( ) 1s

s
CI K

→∞
= . 
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This is the end of Proof 5. □ 

It can be seen from Theorem 4 that an arbitrary SNLPR that does not have a satisfactory 
consistency can be adjusted by the above algorithm to an acceptable matrix. The value of the 
adjustment parameter will have an effect on the process speed and times. DMs or other experts can 
determine the value of δ based on the actual situation. In general, 0.5δ =  is advised. If the 
predetermined threshold is not satisfied, the algorithm will be repeated until the maximum number 
of iterations is reached. 

Example 9. Let a SNLPR 1K  be the same as Example 2. It can be seen that 1( ) 0.8569CX K ≈ , and 1K  
does not have acceptable consistency from Example 8. Then Algorithm 1 can be used to improve it. 

Algorithm 1. Consistency-improving process with automatic iteration 
Input: The initial SNLPR 

0 1 2
(0)

1 1 0 3

2 3 0

( , 1,0,0 ) ( , 0.4,0.2,0.1 ) ( , 0.3,0.1,0.2 )

( , 0.4,0.2,0.1 ) ( , 1,0,0 ) ( , 0.2,0.5,0.3 )

( , 0.3,0.1,0.2 ) ( , 0.2,0.5,0.3 ) ( , 1,0,0 )

s s s

K K s s s

s s s

−

−

−

< > < > < > 
 = = < > < > < > 
 < > < > < > 

, the 

consistency threshold value 0.9020CX = , and the maximum value of iterative times max 3ie = . 
Output: The modified SNLPR aK , and its consistency index ( )aCX K . 

Step 1: As ( 0 )( )CX K CX< , go to the next step. 

Step 2: Let (1) (1) (0) (0) *(0) *(0)1 1
( ) ( )

2 2ij ij ij ij ij ijT s T s T s⋅ = ⋅ ⊕ ⋅ ,  

(1) (1) (0) (0) *(0) *(0)1 1
(1 ) ((1 ) ) ((1 ) )

2 2ij ij ij ij ij ijI s I s I s− ⋅ = − ⋅ ⊕ − ⋅   

and (1) (1) (0) (0) *(0) *(0)1 1
(1 ) ((1 ) ) ((1 ) )

2 2ij ij ij ij ij ijF s F s F s− ⋅ = − ⋅ ⊕ − ⋅ .  

Step3: Let 1ie = , 
0 1 2

(1) (1)
1 0 2

2 2 0

( , 1,0,0 ) ( , 0.133,0.883,0.867 ) ( , 0.167,0.442,0.584 )

( ) ( , 0.133,0.883,0.867 ) ( , 1,0,0 ) ( , 0.167,0.592,0.334 )

( , 0.167,0.442,0.584 ) ( , 0.167,0.592,0.334 ) ( , 1,0,0 )
ij n n

s s s

K k s s s

s s s

−

× −

−

< > < > < >
= = < > < > < >

< > < > < >

 
 
 
  

 

Step 4: The consistent SNLPR 
0 1 1

*(1)
1 0 1

1 1 0

( , 1,0,0 ) ( , 0.134,0.434,0.367 ) ( , 0.067,0.609,0.934 )

( , 0.134,0.434,0.367 ) ( , 1,0,0 ) ( , 0.067,0.783,0.434 )

( , 0.067,0.609,0.934 ) ( , 0.067,0.783,0.434 ) ( , 1,0,0 )

s s s

K s s s

s s s
− −

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

.  

Step 5: (1) *(1)( , )HD K K  is used, and (1)( ) 0 .9276CX K ≈  on the basis of Definition 18. 
Step 6: As (1)( )CX K CX> , go to the next step. 
Step 7: Let (1)

aK K= , Output 

0 1 2

1 0 2

2 2 0

( , 1,0,0 ) ( , 0.133,0.883,0.867 ) ( , 0.167,0.442,0.584 )

( , 0.133,0.883,0.867 ) ( , 1,0,0 ) ( , 0.167,0.592,0.334 )

( , 0.167,0.442,0.584 ) ( , 0.167,0.592,0.334 ) ( , 1,0,0 )
a

s s s

K s s s

s s s

−

−

−

< > < > < > 
 = < > < > < > 
 < > < > < > 

, 

and ( ) 0.9276aCX K ≈ . 

4.4. A Decision-Making Approach with SNLPRs 

In this section, a decision-making method based on SNLPRs is presented. 
Take a decision-making problem under simplified neutrosophic linguistic environment into 

consideration. Suppose there are a group of alternatives 1 2{ , ,..., }nX x x x= . The DMs want to get 
the ranking or select the eligible alternative from them. Then a preference matrix is formed after the 
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linguistic term set { | [ , ]}iS s i g g= ∈ −  is given. The basic elements in this matrix are SNLNs. Then 
the method based on SNLPRs is provided as Algorithm 2: 

Algorithm 2. Decision-making approach with SNLPRs

Input: The initial SNLPR ( ) ( , , , )ij n n ij ij ij ij n nK k s T I F× ×= = < > . 

Output: The ranking result and the best alternative *x . 
Step 1: Choose a distance measure and calculate the value of ( )CX K  according to Equation (24) 
Step 2: Determine the threshold value CX . If ( )CX K CX< , then improve it by Algorithm 1 
until it is acceptably consistent. 
Step 3: Aggregate each row of preference values in K  using the SNLAM or SNLGM operator. 
Step 4: Calculate the score function ( )iS x  of overall preference degree of each ix ( 1,2,..., )i n=  
by Definition 7. 
Step 5: Rank the alternatives ix ( 1, 2,.., )i n=  on the basis of comparison method in Definition 8, 
and then output the ranking and the optimal alternative(s) *x . 

Note that it is a common and useful way to use aggregation operators to aggregate preference 
information, and then get the ranking result according to some comparison rules. However, Hou 
[75] pointed out that using arithmetic mean aggregation may get a reverse ranking. Therefore, the 
SNLGM operator to aggregate preference values is better. 

5. Application and Comparison 

The proposed decision-making method is applied to selecting project delivery models in this 
section. Some related comparison analyses are presented in the end. 

YG Construction Co., Ltd. planned to select two suitable delivery models for a road 
construction project. The first one is chosen at once, and second one is reserved and accepted if 
necessary in the future. After a preliminary selection, four satisfactory options, DB, DBB, DBO, and 
CM, denoted by 1 2 3 4{ , , , }x x x x , respectively, are considered. In order to pick out the right model, 
the project manager invites two experts to make evaluations together. 

According to the properties of this project, the actual environment and the capability of 
owners, the project manager evaluates four alternatives. He presents his preference information 
with linguistic values. The linguistic term set used is { | [ 4, 4]}iS s i= ∈ − , where 

-4{  ,  s s much poorer= = 3   ,  s a lot poorer− = 2 ,  s poorer− = 1  ,  s slightly poorer− = 0 ,  s fair=

1  ,  s slightly better= 2 ,  s better= 3  ,  s a lot better= 4 }s much better= . Simultaneously, he gives the 
corresponding hesitant degrees of each preference value. Then two experts are asked to judge the 
possibility that the evaluation is inaccurate. In this way, SNLNs may be a good indication of their 
preference. As an example, the manager holds the view that 1x  is 1s− to 2x , but he is not sure of 
his assessment. He thinks the degree of hesitation is 0.3. Afterwards, there is a probability of 0.9 that 

1s−  is right, and a 0.2 probability of error given by two specialists. Therefore, they can be expressed 
by a SNLN 12 1( , 0.9,0.3,0.2 )k s−= < > . 

In the end, all the preference information yields an SNLPR as follows:  

0 1 1 3

1 0 1 2

1 1 0 3

( , 1,0,0 ) ( , 0.9,0.3,0.2 ) ( , 0.7,0.5,0.4 ) ( , 0.8,0.3,0.1 )

( , 0.9,0.3,0.2 ) ( , 1,0,0 ) ( , 0.5,0.2,0.5 ) ( , 0.9,0.2,0.3 )

( , 0.7,0.5,0.4 ) ( , 0.5,0.2,0.5 ) ( , 1,0,0 ) ( , 0.6,0.7,

s s s s

s s s s
K

s s s s

−

−

− − −

< > < > < > < >
< > < > < > < >

=
< > < > < > <

3 2 3 0

0.1 )

( , 0.8,0.3,0.1 ) ( , 0.9,0.2,0.3 ) ( , 0.6,0.7,0.1 ) ( , 1,0,0 )s s s s−

 
 
 
 >
 < > < > < > < > 

.  

5.1. Illustration 
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The decision-making method proposed in Section 4.4 is used to rank four options and select 
two models among them. The following are the specific steps: 

Step 1: After discussion, DMs choose *( , )HD K K , and then calculate ( ) 0.8628CX K ≈  
according to Equation (24). 

Step 2: Because 4g = and 4n = , DMs suggest the threshold value 0.8653CX =  from Table 
1. And they find ( )CX K CX< , then use Algorithm 1 to improve it as follows: 

Let (0) (0) (0) (0) (0) (0)( ) ( , , , )ij n n ij ij ij ij n nK K k s T I F× ×= = = < >  and 0ie = . According to Theorem 2, the 

consistent SNLPR
*(0) *(0) *(0) *(0) *(0) *(0)( ) ( , , , )ij n n ij ij ij ij n nK k s T I F× ×= = < > =

0 1 2 1

1 0 1 1

2 1

( , 1,0,0 ) ( , 0.65,0.5,0.35 ) ( , 0.65,0.4875,0.2125 ) ( , 0.25,0.625,0.725 )

( , 0.65,0.5,0.35 ) ( , 1,0,0 ) ( , 0.65,0.475,0.075 ) ( , 0.4,0.875,0.625 )

( , 0.65,0.4875,0.2125 ) ( , 0.65,0.47

s s s s

s s s s

s s
− −

− −

< > < > < > < >
< > < > < > < >

< > < 0 2

1 1 2 0

5,0.075 ) ( , 1,0,0 ) ( , 0.525,0.675,0.35 )

( , 0.25,0.625,0.725 ) ( , 0.4,0.875,0.625 ) ( , 0.525,0.675,0.35 ) ( , 1,0,0 )

s s

s s s s
−

−

 
 
 
 > < > < >
 < > < > < > < > 

. Since 

( 0 )( ) ( ) 0 .8649CX K CX K CX= ≈ < , determine 1

2
δ =  and 

max 3ie = . Let (1) (1) (1) (1) (1) (1)( ) ( , , , )ij n n ij ij ij ij n nK K k s T I F× ×= = = < > =

0 1 2 2

1 0 1 2

2

( , 1,0,0 ) ( , 0.125,0.9,0.925 ) ( , 0.5,0.6188,0.4563 ) ( , 0.6625,0.3813,0.2563 )

( , 0.125,0.9,0.925 ) ( , 1,0,0 ) ( , 0.575,0.3375,0.2875 ) ( , 0.55,0.5688,0.5563 )

( , 0.5,0.6188,0.4563 ) (

s s s s

s s s s

s s

−

−

− −

< > < > < > < >
< > < > < > < >
< > 1 0 2

2 2 2 0

, 0.575,0.3375,0.2875 ) ( , 1,0,0 ) ( , 0.7125,0.6125,0 )

( , 0.6625,0.3813,0.2563 ) ( , 0.55,0.5688,0.5563 ) ( , 0.7125,0.6125,0 ) ( , 1,0,0 )

s s

s s s s
−

−

 
 
 
 < > < > < >
 < > < > < > < > 

, 

where (1) (1) (0) (0) *(0) *(0)1 1
( ) ( )

2 2ij ij ij ij ij ijT s T s T s⋅ = ⋅ ⊕ ⋅ , (1) (1) (0) (0) *(0) *(0)1 1
(1 ) ((1 ) ) ((1 ) )

2 2ij ij ij ij ij ijI s I s I s− ⋅ = − ⋅ ⊕ − ⋅  

and (1) (1) (0) (0) *(0) *(0)1 1
(1 ) ((1 ) ) ((1 ) )

2 2ij ij ij ij ij ijF s F s F s− ⋅ = − ⋅ ⊕ − ⋅ . As (1)( ) 0 .93 14CX K CX≈ > , output 

(1)K . 
Step 3: Aggregate each row of preference values in (1)K ( )i j≠  using SNLGM operator. Then 

the overall preferences are 1 0.7622( , 0.5966, 0.7132, 0.6882 )px s≈ < > , 

2 0.3160( , 0.5570, 0.6943, 0.7127 )px s−≈ < > , 3 1.7106( , 0.5039, 0.5392, 0.2710 )px s−≈ < >  and 

4 0.1602( , 0.5102, 0.5307, 0.3090 )px s≈ < > . 
Step 4: Calculate the score function ( )iS px ( 1,2,..., )i n=  by Definition 7: 1( ) 0.2372S px ≈ , 

2( ) 0.1765S px ≈ , 3( ) 0.1616S px ≈  and 4( ) 0.2896S px ≈ . 
Step 5: Because 4 1 2 3( ) ( ) ( ) ( )S px S px S px S px> > >  4 1 2 3x x x x> > > , and the optimal 

alternative is *
4x x= , the second alternative is 1x . 

5.2. Comparison Analysis 

Considering the concept of SNLPRs is newly proposed, several approaches related to other 
kinds of preference relations are chosen to make a comparison in this subsection.  

As the expressions of basic elements in different preference relations are diverse, the first task 
is to transform the SNLNs in SNLPRs into the corresponding expression. Then, the same problem 
will be solved. The following are the information conversion process and major steps of the related 
methods: 

(1) Single-valued trapezoidal neutrosophic preference relations (SVTNPRs) [44] 

First, SNLNs in SNLPRs can be transformed into single-valued trapezoidal neutrosophic 
numbers (SVTNNs). A suitable way is changing the linguistic values of SNLNs into trapezoidal 
fuzzy numbers in SVTNNs and keeping membership degrees. The converted values can be denoted 

by 2 2 1 2 2 2 2 1 2 2 2
( , , , ) (max{ , 0}, , , min{ ,1})

4 3 4 3 4 3 4 3i i i i i

i g i g i g i g
A a b c d

g g g g

+ − + + + + += =
+ + + +

 according to 

[76]. As an illustration, 1( , 0.7,0.5,0.4 )s < >  can be regarded as
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([0.474,0.526,0.579,0.632], 0.7,0.5,0.4 )< > . Then, the corresponding single-valued trapezoidal 

neutrosophic matrix is 
([0.368,0.421,0.474,0.526], 1,0,0 ) ([0.263,0.316,0.368,0.421], 0.9,0.3,0.2 )

([0.474,0.526,0.579,0.632], 0.9,0.3,0.2 ) ([0.368,0.421,0.474,0.526], 1,0,0 )

([0.263,0.316,0.368,0.421], 0.7,0.5,0.4 ) ([0
TNK

< > < >
< > < >

=
< >

         
.263,0.316,0.368,0.421], 0.5,0.2,0.5 )

([0.053,0.105,0.158,0.211], 0.8,0.3,0.1 ) ([0.579,0.632,0.684,0.737], 0.9,0.2,0.3 )




 < >
 < > < >

 

([0.474,0.526,0.579,0.632], 0.7,0.5,0.4 ) ([0.684,0.737,0.790,0.842], 0.8,0.3,0.1 )

([0.474,0.526,0.579,0.632], 0.5,0.2,0.5 ) ([0.158,0.211,0.263,0.316], 0.9,0.2,0.3 )

([0.368,0.421,0.474,0.526], 1,0,0 ) (

< > < >
< > < >

< > [0.053,0.105,0.158,0.211], 0.6,0.7,0.1 )

([0.684,0.737,0.790,0.842], 0.6,0.7,0.1 ) ([0.368,0.421,0.474,0.526], 1,0,0 )




< >
< > < > 

. 

Subsequently, using the method in [44] to get the consistent preference matrix, and the ranking 
is 4 1 2 3x x x x> > > . 

(2) ILPRs [55] 

In the beginning, SNLNs should be converted into intuitionistic linguistic numbers. The 

linguistic values can remain, 
1

( 1 1 )
3 ij ij ijT I F+ − + −  may be equivalent to u , and 1v u= − . As an 

example, 1( , 0.9, 0.3, 0.2 )s− < >  can be converted into 1 , (0.8, 0.2)s−< > . Then, an intuitionistic 

linguistic preference relation (ILPR)
0 1 1 3

1 0 1 2

1 1 0 3

3 2 3

, (1,0) , (0.8,0.2) , (0.6,0.4) , (0.8,0.2)

, (0.8,0.2) , (1,0) , (0.6,0.4) , (0.8,0.2)

, (0.6,0.4) , (0.6,0.4) , (1,0) , (0.6,0.4)

, (0.8,0.2) , (0.8,0.2) , (0.

I

s s s s

s s s s
K

s s s s

s s s

−

−

− − −

−

< > < > < > < >
< > < > < > < >

=
< > < > < > < >
< > < > < 06,0.4) , (1,0)s

 
 
 
 
 > < > 

 

is got. As ( ) 0 .881 9 (0 .90 16)IC I K θ≈ < , let 0.8β = , and then the consistency index of the 
adjusted ILPR is (1)( ) 0.9069 (0.9016)IC I K θ≈ > . Thus, using the method in [55], the preferred 

degree matrix 
1 / 2 1 1 6 / 7

0 1 / 2 1 0

0 0 1 / 2 0

1 / 7 1 1 1 / 2

U

 
 
 =
 
 
 

. Since the preferred degrees 

1 4 2 3

47 37 3 1
( ) ( ) ( ) ( )
14 14 2 2

r r r r> > > , then 1 4 2 3x x x x   . 

(3) HFLPRs [54] 

Firstly, SNLNs can be converted to hesitant fuzzy linguistic term sets. For example, 
0.9 0.3 0.2( , , )s s s− − − can take the place of 1( , 0.9, 0.3, 0.2 )s− < > . Hence, the corresponding HFLPR is 

0 0.9 0.3 0.2 0.4 0.5 0.7 0.3 0.9 2.4

0.9 0.3 0.2 0 0.2 0.5 0.5 1.8 0.6 0.4

0.4 0.5 0.7 0.2 0.5 0.5 0 2.1 1.8 0.3

0.3 0.9 2.4 1.8

( ) ( , , ) ( , , ) ( , , )

( , , ) ( ) ( , , ) ( , , )

( , , ) ( , , ) ( ) ( , , )

( , , ) ( ,

H

s s s s s s s s s s

s s s s s s s s s s
K

s s s s s s s s s s

s s s s s

− − −

− − −

− − − − − − − − −

− − −

=

0.6 0.4 2.1 1.8 0.3 0, ) ( , , ) ( )s s s s s

 
 
 
 
 
 

. The expected 2-tuple 

linguistic preference relation is 

0 0 1 1

0 0 0 1(1)

1 0 0 1

1 1 1 0

( ,0) ( , 7 /15) ( , 7 /15) ( ,1 / 5)

( ,7 /15) ( ,0) ( ,2 / 5) ( ,1 /15)

( ,7 /15) ( , 2 / 5) ( ,0) ( , 2 / 5)

( , 1 / 5) ( , 1 /15) ( ,2 / 5) ( ,0)

H

s s s s

s s s s
E

s s s s

s s s s

−

− −

−

− − 
 
 =
 − −
 − − 

. 

Because (1)( ) 0.0860 (0.1347)HCI E CI
−−

≈ < , the matrix is acceptably consistent. Then use the 
aggregation operators and comparison method, and the ranking is 1 4 2 3x x x x   . 

(4) LPRs [77] 

At first, the conversion function 
1

( 1 1 )
3

L
ij ij ij ij ijk T I F k= + − + −  will be used to convert SNLNs 

in SNLPR K  into linguistic variables in a LPR LK . For instance, 1( , 0.9, 0.3, 0.2 )s− < >  can be 
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replaced by 0.8s− . Then 

0 0.8 0.6 2.4

0.8 0 0.6 1.6

0.6 0.6 0 1.8

2.4 1.6 1.8 0

L

s s s s

s s s s
K

s s s s

s s s s

−

−

− − −

−

 
 
 =
 
 
 

. Since 
0( ) 0 .2667 (0.1347)LC I K δ≈ > , the 

automatic iterative Algorithm 1 in [77] is used. The consistency index of the adjusted LPR is 
(1)

0( ) 0 .1334 (0.1347)LC I K δ≈ < , and then the final ranking is 4 1 2 3x x x x> > > . 
Subsequently, comparisons with each method in terms of backgrounds, consistency-improving 

processes, ranking methods, and ranking results are made in Table 2. 

Table 2. Comparison of different methods. 

Approaches Backgrounds Improving Consistency Ranking Methods Ranking Orders
Liang et al. [44] SVTNPRs Interactive feedback Arithmetic operator 4 1 2 3x x x x> > >  

Meng et al. [55] ILPRs Automatic iteration Preferred degrees 1 4 2 3x x x x    

Wu and Xu [54] HFLPRs Interactive feedback Expected values 1 4 2 3x x x x    

Jin et al. [77] LPRs Automatic iteration Arithmetic operator 4 1 2 3x x x x> > >  

The proposed method SNLPRs Automatic iteration Geometric operator 4 1 2 3x x x x> > >  

In the ranking results of Table 2 only the order of 1x  and 4x  varies, which demonstrates the 
effectiveness of the proposed method. The in-depth comparison analyses are shown as follows: 

(1) Comparison with References [44] and [77]: the same ranking results are obtained using the 
methods in [44,77] and our approach. An interactive feedback is used to improve the 
consistency in [44]. It may be a little difficult for DMs to do this work, especially when the 
alternatives are numerous. In addition, the arithmetic operator used may cause a reversal of 
ranking in some cases. Jin et al. described information with linguistic term sets in Reference 
[77]. However, all of the membership degrees are missing in LPRs. And the arithmetic operator 
used in Reference [77] also has the limitation of sorting reversal. 

(2) Comparison with Reference [55]: both [55] and our method choose the automatic iteration to 
improve consistency. The reason for the different ranking results may be that there are only 
membership and non-membership degrees in ILPRs. The conversion function possibly led to a 
loss of the original information.  

(3) Comparison with Reference [54]: the difference between [54] and our approach is that there is 
no process of consistency improvement in HFLPRs. Moreover, the truth-membership, 
indeterminacy-membership, and false-membership of the linguistic values in SNLPRs have 
identical roles in HFLPRs. This may be another explanation of the different rankings. 

According to the analysis above, the strengths of the presented approach are obvious. First of 
all, the basic elements in SNLPRs, SNLNs, contain three independent membership degrees to 
describe the consistent, hesitant, and inconsistent information, respectively. It means that the 
problem of evaluation information being missing is avoided to a greater extent. Thus, the proposed 
method is more suitable for solving problems in a simplified neutrosophic linguistic environment. 
Secondly, the consistency-improving process is an automatic iteration algorithm. It saves time and 
increases convenience for DMs. In addition, as mentioned in Section 4.4, the geometric operator 
being used may avoid the problem of ranking reversal. It is easy for us to understand and operate. 
Finally, the flexibility is increased as the linguistic scale function can be changed in different 
semantic situations. 

6. Discussion and Conclusions 

Appropriate project delivery systems play an irreplaceable role in promoting the development 
of the construction industry. The paper provided a decision-making approach with SNLPRs to 
solve the problem of selecting an optimal system under simplified neutrosophic linguistic 
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circumstances. Several distance measures of SNLNs, which are the basic elements of SNLPRs, were 
redefined. They can overcome the drawbacks of the definition of Ye [70], so that the differences 
between two SNLNs can be well distinguished. Moreover, the paper created a distance-based 
consistency index to check the consistency of SNLPRs. A consistency-improving algorithm was also 
suggested. The effectiveness and advantages of this method were displayed by an illustration of 
selecting project delivery systems and the corresponding comparison analysis. 

Nevertheless, the proposed method still has some limitations, such as a case of SNLPRs with 
incomplete assessment information. In order to make the method based on SNLPRs more 
effectively and widely used in engineering projects, several future works can be planned as follow: 
(1) Other kinds of consistency, such as the multiplicative consistency of SNLPRs may be presented; 
(2) a situation where the linguistic term sets are unbalanced [78] may be under consideration; (3) 
decision-making methods based on incomplete SNLPRs are worth studying. 
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