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Abstract: Vertices and symmetries of regular and irregular chiral polyhedra are represented by
quaternions with the use of Coxeter graphs. A new technique is introduced to construct the chiral
Archimedean solids, the snub cube and snub dodecahedron together with their dual Catalan solids,
pentagonal icositetrahedron and pentagonal hexecontahedron. Starting with the proper subgroups of
the Coxeter groups W(A1 ⊕ A1 ⊕ A1), W(A3), W(B3) and W(H3), we derive the orbits representing
the respective solids, the regular and irregular forms of a tetrahedron, icosahedron, snub cube,
and snub dodecahedron. Since the families of tetrahedra, icosahedra and their dual solids can be
transformed to their mirror images by the proper rotational octahedral group, they are not considered
as chiral solids. Regular structures are obtained from irregular solids depending on the choice of
two parameters. We point out that the regular and irregular solids whose vertices are at the edge
mid-points of the irregular icosahedron, irregular snub cube and irregular snub dodecahedron can
be constructed.
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1. Introduction

In fundamental physics, chirality plays a very important role. A Weyl spinor describing a massless
Dirac particle is either in a left-handed state or in a right-handed state. Such states cannot be
transformed to each other by the proper Lorentz transformations. Chirality is a well-defined quantum
number for massless particles. Coxeter groups and their orbits [1] derived from the Coxeter diagrams
describe the molecular structures [2], viral symmetries [3,4], crystallographic and quasi crystallographic
materials [5–7]. Chirality is a very interesting topic in molecular chemistry. Certain molecular structures
are either left-oriented or right-oriented. In three-dimensional Euclidean space, chirality can be defined
as follows: if a solid cannot be transformed to its mirror image by proper isometries (proper rotations,
translations and their compositions), it is called a chiral object. For this reason, the chiral objects
lack the plane and/or central inversion symmetries. In two earlier publications [8,9], we studied
the symmetries of the Platonic–Archimedean solids and their dual solids, the Catalan solids, and
constructed their vertices. Two Archimedean solids, the snub cube and snub dodecahedron as well
as their duals are chiral polyhedral, whose symmetries are the proper rotational subgroups of the
octahedral group and the icosahedral group, respectively. Non-regular, non-chiral polyhedra have
been discussed earlier [10]. Chiral polytopes in general have been studied in the context of abstract
combinatorial form [11–14]. The chiral Archimedean solids, snub cube, snub dodecahedron and their
duals have been constructed by employing several other techniques [15,16], but it seems that the
method in what follows has not been studied earlier in this context.

We follow a systematic method for the construction of the chiral polyhedra. Let G be a rank-3
Coxeter graph where W(G)+ represents the proper rotation subgroup of the Coxeter group W(G).
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For the snub cube and snub dodecahedron, the Coxeter graphs are the B3 and H3, respectively.
To describe the general technique, we first begin with simpler Coxeter diagrams A1 ⊕ A1 ⊕ A1

and A3, although they describe the achiral polyhedra such as the families of regular and irregular
tetrahedron and icosahedron, respectively. We explicitly show that achiral polyhedra possess larger
proper rotational symmetries transforming them to their mirror images. We organize the paper
as follows. In Section 2 we introduce quaternions and construct the Coxeter groups in terms of
quaternions [17]. We extend the group W (A1 ⊕ A1 ⊕ A1) to the octahedral group by the symmetry
group Sym(3) of the Coxeter diagram A1 ⊕ A1 ⊕ A1. In Section 3 we obtain the proper rotation
subgroup of the Coxeter group W (A1 ⊕A1 ⊕A1) and determine the vertices of an irregular tetrahedron.
In Section 4 we discuss a similar problem for the Coxeter-Dynkin diagram A3 leading to an icosahedron
and again prove that it can be transformed by the group W(B3)+ to its mirror image, which implies
that neither the tetrahedron nor icosahedron are chiral solids. We focus on the irregular icosahedra
constructed either by the proper tetrahedral group or its extension pyritohedral group and construct
the related dual solids tetartoid and pyritohedron. We also construct the irregular polyhedra taking the
mid-points of edges of the irregular icosahedron as vertices. Section 5 deals with the construction of
irregular and regular snub cube and their dual solids from the proper rotational octahedral symmetry
W(B3)+ using the same technique employed in the preceding sections. The chiral polyhedron taking
the mid-points as vertices of the irregular snub cube is also discussed. In Section 6 we repeat a similar
technique for the constructions of irregular snub dodecahedra and their dual solids using the proper
icosahedral group W(H3)+, which is isomorphic to the group of even permutations of five letters Alt(5).
The chiral polyhedra whose vertices are the mid-points of the edges of the irregular snub dodecahedron
are constructed. Irregular polyhedra transform to regular polyhedra when the parameter describing
irregularity turns out to be the solution of certain cubic equations. Section 7 involves the discussion of
the technique for the construction of irregular chiral polyhedra.

2. Quaternionic Constructions of the Coxeter Groups

Let q = q0 + qiei, (i = 1, 2, 3) be a real unit quaternion with its conjugate defined by q = q0− qiei,
and the norm qq = qq = 1. The quaternionic imaginary units satisfy the relations:

eiej = −δij + εijkek, (i, j, k = 1, 2, 3) (1)

where δij and εijk are the Kronecker and Levi-Civita symbols, and summation over the repeated
indices is understood. The unit quaternions form a group isomorphic to the special unitary group
SU(2). Quaternions generate the four-dimensional Euclidean space with the scalar product

(p, q) :=
1
2
(pq + qp) =

1
2
(pq + qp) (2)

The Coxeter diagram A1 ⊕ A1 ⊕ A1 can be represented by its quaternionic roots as shown in
Figure 1 where

√
2 is just the norm.
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Figure 1. The Coxeter diagram A1 ⊕ A1 ⊕ A1 with quaternionic simple roots.

The Cartan matrix and its inverse are given as follows:

C =

 2 0 0
0 2 0
0 0 2

, C−1 =
1
2

 1 0 0
0 1 0
0 0 1

 (3)



Symmetry 2017, 9, 148 3 of 22

The simple roots αi and the weight vectors ωi for a simply laced root system satisfy the scalar
product [18,19]

(αi, αj
)
= Cij,

(
ωi, ωj

)
=
(

C−1
)

ij
, (αi, ωj) = δij, (i, j = 1, 2, 3). (4)

Note that one can express the roots in terms of the weights or vice versa:

αi = Cijωj, ωi =
(

C−1
)

ij
αj (5)

If αi is an arbitrary quaternionic simple root and ri is the reflection generator with respect to the
plane orthogonal to the simple root αi, then the reflection of an arbitrary quaternion Λ, an element in
the weight space ω1, ω2, ω3 can be represented as [20]:

riΛ = − αi√
2

Λ
αi√

2
:=
[

αi√
2

,− αi√
2

]∗
Λ. (6)

It is then straight forward to show that riωj = ωj − δijαj. We will use the notations [p, q]∗Λ :=
pΛq and [p, q]Λ := pΛq for the rotoreflection (rotation and reflection combined) and the proper
rotation, respectively, where p and q are arbitrary unit quaternions. If Λ is pure imaginary quaternion,
then [p, q]∗Λ := pΛq = [p,−q]Λ.

The Coxeter group W(A1 ⊕ A1 ⊕ A1) = < r1, r2, r3 > can be generated by three commutative
group elements:

r1 = [e1,−e1]
∗, r2 = [e2,−e2]

∗, r3 = [e3,−e3]
∗. (7)

They generate the elementary abelian group W (A1 ⊕ A1 ⊕ A1) ≈ C2 × C2 × C2 := 23 of
order 8. The scaled root system (±e1,±e2,±e3) represents the vertices of an octahedron and has more
symmetries than the Coxeter group W (A1 ⊕ A1 ⊕ A1). The automorphism group of the root system
can be obtained by extending the Coxeter group of order 8 by the Dynkin diagram symmetry Sym(3)
of the Coxeter diagram in Figure 1. This is obvious from the diagram where the generators of the
symmetric group Sym(3) of order 6 can be chosen as:

s =
[

1
2
(1 + e1 + e2 + e3),

1
2
(1− e1 − e2 − e3)

]
, d = [

1√
2
(e1 − e2), −

1√
2
(e1 − e2)]

∗
,

s3 = d2 = 1, dsd = s−1. (8)

It is clear that the generators permute the quaternionic imaginary units as:

s : e1 → e2 → e3 → e1, d : e1 ↔ e2, e3 → e3 ,

and satisfy the relations sris−1 = ri+1, dr1d = r2, dr3d = r3 where the indices are considered modulo 3.
It is clear that the Coxeter group < r1, r2, r3 > is invariant under the permutation group Sym(3)

by conjugation so that the automorphism group of the root system (±e1,±e2,±e3) is an extension of
the group < r1, r2, r3 > by the group Sym(3) which is the octahedral group 23 : Sym(3) of order 48
(here: stands for the semi-direct product). It is clear from this notation that the Coxeter group 23 is
an invariant subgroup of the octahedral group. We use a compact notation for the octahedral group in
terms of quaternions as the union of subsets:

Oh = [T, ±T] ∪ [T′,±T′] (9)
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where the sets of quaternions T and T′ are given by:

T = {±1,±e1,±e2,±e3, 1
2 (±1± e1 ± e2 ± e3)},

T′ = { 1√
2
(±1± e1), 1√

2

(
±e2 ± e3), 1√

2
(±1± e2), 1√

2
(±e3 ± e1), 1√

2
(±1± e3), 1√

2
(±e1 ± e2)}.

(10)

Here T and T ∪ T′ represent the binary tetrahedral group and the binary octahedral group,
respectively. We have used a short-hand notation for the designation of the groups, e.g., [T,±T] means
the set of all [t,±t] ∈ [T,±T] with t ∈ T. The maximal subgroups of the octahedral group can be
written as [21]:

Chiral octahedral group : O = [T, T] ∪ [T′, T′] ≈W(B3)
+,

Tetrahedral group : Td = [T, T] ∪ [T′,−T′],

Pyritohedral group : Th = [T,± T].

(11)

The octahedral group, as we will see in what follows, can also be obtained as the Aut(A3) ≈W(B3).
The proper rotation subgroup of the Coxeter group W(A1 ⊕ A1 ⊕ A1) is the Klein four-group

C2 × C2 represented by the elements:

I = [1, 1], r1r2 = [e3,−e3], r2r3 = [e1,−e1], r3r1 = [e2,−e2] (12)

We also note in passing that the Klein four-group in (12) is invariant by conjugation under the
group generated by s, with s3 = 1. The Klein four-group together with the group element s generate
the tetrahedral rotation group, which is represented by [T, T] in our notation.

Next, we use the tetrahedral group Td ≈ W(A3). Its Coxeter-Dynkin diagram A3 with its
quaternionic roots is shown in Figure 2.
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Figure 2. The Coxeter diagram A3 with quaternionic simple roots.

The Cartan matrix of the Coxeter diagram A3 and its inverse matrix are given by the
respective matrices:

C =

 2 −1 0
−1 2 −1
0 −1 2

, C−1 =
1
4

 3 2 1
2 4 2
1 2 3

 (13)

The generators of the Coxeter group W(A3) are given by:

r1 = [
1√
2
(e1 + e2),−

1√
2
(e1 + e2)]

∗

r2 = [
1√
2
(e3 − e2),−

1√
2
(e3 − e2)]

∗
(14)

r3 = [
1√
2
(e2 − e1),−

1√
2
(e2 − e1)]

∗

ω1 =
1
2
(e1 + e2 + e3), ω2 = e3, ω3 =

1
2
(−e1 + e2 + e3).

The generators in (14) generate the Coxeter group [22–24] which is isomorphic to the tetrahedral
group Td of order 24. The automorphism group Aut(A3) ≈W(A3) : C2 ≈ Oh where C2 is generated
by the Dynkin diagram symmetry γ = [e1,−e1]

∗, which exchanges the first and the third simple roots
and leaves the second root intact in Figure 2.
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The Coxeter diagram B3 leading to the octahedral group W(B3) ≈ Sym(4) × C2 ≈ Oh is shown
in Figure 3.
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The Cartan matrix of the Coxeter diagram B3 and its inverse matrix are given by:

C =

 2 −1 0
−1 2 −2
0 −1 2

, C−1 =
1
2

 2 2 2
2 4 4
1 2 3

 (15)

The generators below generate the octahedral group given in (9) and the weight vectors are given by:

r1 = [ 1√
2
(e1 − e2),− 1√

2
(e1 − e2)]

∗

r2 = [ 1√
2
(e2 − e3),− 1√

2
(e2 − e3)]

∗

r3 = [e3,−e3]
∗

(16)

ω1 = e1, ω2 = e1 + e2, ω3 =
1
2
(e1 + e2 + e3)

The group generated by the rotations r1r2 and r2r3 is isomorphic to the rotational octahedral
group < r1r2, r2r3 > ≈

{[
T, T

]
∪
[

T′, T′]}.
The Coxeter diagram H3 leading to the icosahedral group is shown in Figure 4 with the

quaternionic simple roots:
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Here τ = 1+
√

5
2 is the golden ratio and = 1−

√
5

2 . The Cartan matrix of the diagram H3, its inverse
and the weight vectors are given as follows:

C =

 2 −τ 0
−τ 2 −1
0 −1 2

, C−1 =
1
2

 3τ2 2τ3 τ3

2τ3 4τ2 2τ2

τ3 2τ2 τ + 2

 (17)

ω1 =
τ√
2
(σe1 − τe3), ω2 = −

√
2τe3, ω3 =

τ√
2
(σe2 − e3)

The quaternionic generators of the icosahedral group Ih ≈ Alt(5)× C2 ≈W(H3) are given by:

r1 = [e1,−e1]
∗,

r2 =
[

1
2 (τe1 + e2 + σe3),− 1

2 (τe1 + e2 + σe3)
]∗

,

r3 = [e2,−e2]
∗,

(18)
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or shortly, W(H3) =
[
I,±I

]
where I is the set of 120 quaternionic elements of the binary icosahedral

group generated by the quaternions e1 and 1
2 (τe1 + e2 + σe3) [20]. The icosahedral rotation group is

represented by the proper rotation subgroup W(H3)
+ =

[
I, I
]
≈ Alt(5). All finite subgroups of the

groups O(3) and O(4) in terms of quaternions can be found in the references [17,25].
A general vector in the dual space is represented by the vector Λ = a1ω1 + a2ω2 + a3ω3. We will

use the notation Λ = a1ω1 + a2ω2 + a3ω3 : (a1a2a3), which are called the Dynkin indices in the Lie
algebraic representation theory [26]. We use the notation W(G)Λ := (a1a2a3)G for the orbit of the
Coxeter group W(G) generated from the vector Λ where the letter G represents the Coxeter diagram.
A few examples could be useful to illuminate the situation by recalling the identifications [8]:

(100)A3
(tetrahedron), (111)A3

(truncated octahedron), (100)B3
(octahedron),

(001)B3
(cube), (100)H3

(dodecahedron), (001)H3
(icosahedron), and(010)H3

,

(icosidodecahedron).

3. The Orbit C2 × C2(a1a2a3) as an Irregular Tetrahedron

The proper rotation subgroup C2 × C2 of the Coxeter group W(A1 ⊕ A1 ⊕ A1) transforms
a generic vector Λ as follows:

Λ = 1
2 (a1e1 + a2e2 + a3e3)

r1r2Λ = 1
2 (−a1e1 − a2e2 + a3e3),

r2r3Λ = 1
2 (a1e1 − a2e2 − a3e3),

r3r1Λ = 1
2 (−a1e1 + a2e2 − a3e3).

(19)

These four vectors define the vertices of an irregular tetrahedron with four identical scalene
triangles with edge lengths

√
a1

2 + a22,
√

a22 + a32, and
√

a32 + a1
2. An irregular tetrahedron with

a1 = 1, a2 = 2, a3 = 3 is depicted in Figure 5.
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Figure 5. An irregular tetrahedron with scalene triangular faces.

Mid-points of the edges of an irregular tetrahedron are given by the vectors ±a1e1,±a2e2,±a3e3

forming an irregular octahedron with eight identical scalene triangles of sides
√

a1
2 + a22,

√
a22 + a32,√

a32 + a1
2 and the corresponding interior angles, say, α, β, γ. Four triangles with identical face-angles

α surround the vertex a1e1. The remaining 4 triangles similarly meet at the opposite vertex −a1e1.
This is true for every face-angle around every vertex.

The mirror image of an irregular tetrahedron is obtained by applying any one of the reflection
generators on these vectors, which lead to the vectors:
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r1Λ = 1
2 (− a1e1 + a2e2 + a3e3),

r2Λ = 1
2 (a1e1 − a2e2 + a3e3),

r3Λ = 1
2 (a1e1 + a2e2 − a3e3),

r1r2r3Λ = − 1
2 (a1e1 + a2e2 + a3e3).

(20)

The vectors in (20) can also be obtained from those in (19) by quaternion conjugation.
The eight vectors in (19) and (20) form a rectangular prism with edge lengths a1, a2 and a3

possessing the symmetry (C2 × C2) : C2 ≈ D2h of order 8. Assume now that we apply the one of the
Dynkin diagram-symmetry operators d on vector Λ and assume that:

Λ = dΛ =
1
2
(ae1 + ae2 + a3e3). (21)

If we apply the rotation generators as in (19), we obtain an irregular tetrahedron with identical
four isosceles triangles. The mirror copy of these vectors can be obtained similar to the procedure in
(20) and when all are combined, we obtain a square prism with edge lengths a and a3.

A more symmetric case is obtained by assuming:

Λ = sΛ =
1
2

a(e1 + e2 + e3). (22)

In this case, the symmetry is the chiral tetrahedral group, and the vertices in (19) will represent
a regular tetrahedron of edge length

√
2a which is also invariant under the larger tetrahedral symmetry

Td = [T, T]⊕ [T′,−T′], as expected. A mirror image of the regular tetrahedron is obtained either by
reflections as described by (20) or by a rotation of 180◦ around the e1 − e2 axis, which can be obtained
by the group element: [

1√
2
(e1 − e2),−

1√
2
(e1 − e2)

]
∈ [T′, T′]. (23)

A tetrahedron is not a chiral solid since it can be converted to its mirror image by a rotation such
as the one in (23). A regular tetrahedron with its mirror image constitutes a cube which has the full
octahedral symmetry of order 48.

4. The Regular and Irregular Icosahedron Derived from the Orbit W(A3)
+(a1a2a3)

The tetrahedral rotational subgroup W(A3)
+ of the Coxeter group W(A3) is the tetrahedral

group of order 12 isomorphic to even permutations of four letters, Alt(4), which can be generated
by the generators a = r1r2 and b = r2r3 satisfying the generation relations a3 = b3 = (ab)2 = 1.
Let Λ = (a1a2a3) be a general vector in the weight space of A3. The following sets of vertices form two
equilateral triangles.

(Λ,r1r2Λ, r2r1Λ) and (Λ,r2r3Λ, r3r2Λ) (24)

with respective edge lengths
√

2
(
a2

1 + a1a2 + a2
2
)

and
√

2
(
a2

2 + a2a3 + a2
3
)
. Three more triangles can be

obtained by joining the vertex r1r3Λ = r3r1Λ to the vertices Λ, r1r2Λ and r3r2Λ and r2r1Λ to r2r3Λ.
The new edges are of the following lengths.

|r1r2Λ− r1r3Λ| =
√

2
(
a2

2 + a2a3 + a2
3
)
,

|r3r2Λ− r1r3Λ| =
√

2
(
a2

1 + a1a2 + a2
2
)
,

|Λ− r1r3Λ| = |r2r1Λ− r2r3Λ| =
√

2
(
a2

1 + a2
3
) (25)

The vertices joined to vector Λ are illustrated in Figure 6.
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Factoring by an overall factor a2
2 6= 0 and defining the parameters x = a1

a2
and y = a3

a2
we obtain

three classes of triangles. After dropping the overall factor a2 we obtain,

equilateral triangle with edge length : A =
√

2(1 + x + x2),

equilateral triangle with edge length : B =
√

2(1 + y + y2),

3 scalene triangles with edge lengths : A, B, C =
√

2(x2 + y2)

as shown in Figure 6. The sum of the face-angles at the vertex Λ (at every vertex indeed) is 2π
3 +(

θ + ϑ + ϕ
)
= 5π

3 where θ, ϑ, and ϕ are the interior angles of the scalene triangles. The angular

deficiency δ = 2π − 5π
3 = π

3 is the same as in the regular icosahedron. Using Descartes’ formula, the
number of vertices can also be obtained as in [27].

N0 =
4π

δ
= 12. (26)

The vector Λ can be written in terms of quaternions as Λ = αe1 + βe2 + γe3 where the new
parameters are defined by

α =
x− y

2
, β =

x + y
2

, γ = β + 1. (27)

The orbit of the chiral tetrahedral group W(A3)/C2 ≈
[
T, T

]
generated from the vector Λ can be

written as: [
T, T

]
Λ = {± αe1 ± βe2 ± γe3, ± βe1 ± γe2 ± αe3, ± γe1 ± αe2 ± βe3}

(even number of (−) signs).
(28)

The quaternions in (28) with an odd number of (−) signs constitute the mirror image. A rotation
element, e.g., the one in (23), transforms the quaternions in (28) to their mirror images. This proves
that the set in (28) does not represent a chiral polyhedron. Before we discuss the irregular icosahedral
structures, we point out that for x > 0, y = 0 or y > 0, x = 0, the set of 12 vectors describes a truncated
tetrahedron. For x = y = 0, it describes an octahedron. More interesting cases arise as we will
discuss below.

(1) A = B = C, 1 + x + x2 = 1 + y + y2 = x2 + y2

Here, all the edges are equal leading to the solution x = y = x2 − 1 ⇒ x2 − x − 1 = 0, ⇒
x = τ, or x = σ. Substituting the first solution for = τ which results in α = 0, β = τ, γ = τ2, the set
of vectors in (28) can be written as:[

T, T
]
Λ = τ{± e1 ± τe2, ±e2 ± τe3,±e3 ± τe1}. (29)
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These vertices, which are also invariant under the pyritohedral symmetry, represent a regular
icosahedron. Note that the vector Λ = τ(e2 + τe3) is invariant under the 5-fold rotation by
s = [ 1

2 (σ + e2 + τe3), 1
2 (σ− e2 − τe3)] while the other vectors in (29) are transformed to each other.

This proves that the pyritohedral group
[
T,±T

]
can be extended to the icosahedral group

[
I,±I

]
by the generators so that the set of vertices in (29) is invariant under the icosahedral group of order
120. We emphasize that although (29) has a larger symmetry of the icosahedral group, it is obtained
from its chiral tetrahedral subgroup. Its mirror image can be obtained by a rotation of 180◦ around the
vector e1 − e2 implying that icosahedron is not a chiral solid.

There is another trivial solution for A = B = C where x = −1, y = 0. The number of vertices in
(28) reduces to 4 representing a regular tetrahedron.

(2) A = B 6= C, y = 1
2

(
−1±

√
1 + 4(x2 + x)

)
For various values of x and the corresponding y, one obtains an irregular icosahedron

with (4 + 4) equilateral triangles and 12 isosceles triangles. An interesting case would be x = y = −τ

with 12 vertices of {±τ e1 ± σe2,±τe2 ± σe3,±τe3 ± σe1} which represent an irregular icosahedron
with (4 + 4) equilateral triangles with edges of length 2 and 12 isosceles triangles of sides 2, 2τ, 2τ

(Robinson triangles). Any irregular icosahedron with x = y 6= 0 has a pyritohedral symmetry of
order 24 as pointed out in (11). Another solution of the quadratic equation x = −τ, y = −σ leads to
an irregular icosahedron of (4 + 4) equilateral triangles with edge lengths 2 and 12 isosceles triangles
of edge lengths 2, 2,

√
6.

(3) A = C 6= B

This is another case with 12 isosceles triangles but here the 4 sets of equilateral triangles are not
equal to the other set of 4 equilateral triangles. We have x = y2 − 1, x 6= τ or σ and x 6= 0, y 6= 0.
For the values y = −τ, x = τ, the irregular icosahedron consists of 4 equilateral triangles with edge
length 2, 4 equilateral triangles with edge length 2τ and 12 Robinson triangles with edge lengths
2, 2τ, 2τ as discussed in (2).

(4) A 6= C = B

Here, y = x2 − 1, x 6= τ or σ. For x = −τ, y = τ, the faces of the irregular icosahedron are
identical to the one in case (3).

(5) A 6= C 6= B

Now we have x 6= y2 − 1 and y 6= x2 − 1. Taking x = 1, y = 2 the irregular icosahedron will
consist of 4 equilateral triangles with edge of length

√
6, 4 equilateral triangles of edge length

√
14,

and 12 scalene triangles with edges
√

6,
√

10 and
√

14.

4.1. Dual of an Irregular Icosahedron

Now we discuss the construction of a dual of an irregular icosahedron. A dual of an irregular
polyhedron can be obtained by determining the vectors orthogonal to its faces. Referring to Figure 6,
vectors orthogonal to the equilateral faces #1 and #3 can be taken as b1 := ω1 and b3 := ω3 as they are
invariant under the rotations r2r3 and r1r2, respectively. The vectors orthogonal to the faces #2, #4 and
#5 can be determined as:

b2 = n1e1 + n2e2 + n3e3,

b4 = r1r2b2 = −n3e1 − n1e2 + n2,

b5 = r3r2b2 = n3e1 + n1e2 + n2e3,

(30)

where n1 = y− x, n2 = x + y + 2xy, n3 = x + y.
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These vectors should be rescaled in order to determine the plane orthogonal to the vector Λ.
Let us redefine the vectors d1 := λω1, d2 = b2, d3 = $ b3, d4 = b4, d5 = b5. The scale factors can be
determined as:

λ =
2(x + y + 2)(x + y + 2xy)

3x + y + 2

$ =
2(x + y + 2)(x + y + 2xy)

(x + 3y + 2)
.

(31)

The dual solid is an irregular dodecahedron with the sets of vertices:[
T, T

]
d1 = λ

2 (±e1 ± e2 ± e3), (even number of (−) signs)[
T, T

]
d3 =

$

2 (±e1 ± e2 ± e3), (odd number of (−) signs)[
T, T

]
d2 = {±n1e1 ± n2e2 ± n3e3,±n2e1 ± n3e2 ± n1e3, ±n3e1 ± n1e2 ± n2e3}

(even number of (−) signs).

(32)

We will not discuss in detail how an irregular dodecahedron varies with five different cases
discussed above. A few examples would be sufficient in the order of increasing symmetry toward
regularity. The case (5) above corresponds to the invariance under the chiral tetrahedral group.
Substituting x = 1, y = 2 in (32), we obtain an irregular dodecahedron called a tetartoid corresponding
to the mineral cobaltite. The vertices d1, d2, d3, d4 and d5 form an irregular pentagon with three different
edge lengths. The tetartoid with its dual irregular icosahedron are depicted in Figure 7.
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Since under the pyritohedral symmetry x = y, the vertices in (32) take a simpler form where:

λ = $ =
4x(x + 1)2

(2x + 1)
, n1 = 0, n2 = 2x(x + 1), n3 = 2x. , (33)

The edge lengths of the irregular pentagon take the values:

|d1 − d2| = |d2 − d3| = |d3 − d4| = |d1 − d5|

=

∣∣∣∣ 2x
(2x + 1)

∣∣∣∣√(3x4 + 6x3 + 7x2 + 4x + 1)

|d4 − d5| = 4|x|.

(34)

The irregular dodecahedron with the vertices of (32) with λ and $ from (33) is called the
pyritohedron. They can also be rearranged and the set can be given in its standard form:
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(±e1 ± e2 ± e3),{
±
(
1− h2)e1 ± (1 + h)e2

}
,{

±
(
1− h2)e2 ± (1 + h)e3

}
,{

±
(
1− h2)e3 ± (1 + h)e1

}
,

(35)

where h =
x

x + 1
.

A special case x = y = 5 discussed in (2) corresponding to h =
5
6

in (35) is plotted in Figure 8.
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In the limit of either x = τ or x = σ, the dodecahedron is regular and the pentagon turns out
to be regular with all edges equal either 4τ or −4σ. After rescaling by 4τ2, the set of vertices of the
dodecahedron with x = τ are:

1
2
(±e1 ± e2 ± e3),

1
2
{±τe1 ± σe2,±τe2 ± σe3,±τe3 ± σe1}. (36)

Each set above is invariant under the pyritohedral group [T,±T]. The 20 vertices of (36) form
a dodecahedron with regular faces. As such, they possess a larger icosahedral symmetry [I,±I ].

The first 8 vertices of (36) represent a cube and the second set of 12 vertices, as we recall
from previous discussions, represents an irregular icosahedron with (4 + 4) equilateral triangles
and 12 Robinson triangles. The dual of the irregular icosahedron in second set of 12 vertices in (36)
is another irregular dodecahedron whose vertices are the union of a cube and a regular icosahedron
albeit with different magnitudes of vectors.

4.2. Regular and Irregular Icosidodecahedron

It is well known that mid-points of the edges of a regular icosahedron or dodecahedron form
the Archimedean solid icosidodecahedron with 30 vertices 32 faces (12 pentagons + 20 triangles) and
60 edges which can be obtained from the Coxeter graph of H3 as an orbit (010)H3

[28]. An irregular
icosidodecahedron consists of irregular pentagonal faces and scalene triangles in the most general case
and will be derived from the chiral tetrahedral group and will be extended by pyritohedral group
representing a larger symmetry. One can define five vectors as follows representing the vertices of the
irregular pentagon which is orthogonal to the vertex Λ:

c1 =
Λ + r1r2Λ

2
, c2 =

Λ + r2r1Λ
2

, c3 = η(Λ+r2r3Λ)
2 , c4 = η(Λ+r3r2Λ)

2 ,

c4 =
η(Λ + r3r2Λ)

2
, c5 =

κ(Λ + r1r3Λ)

2
,

η =
x2 + 3y2 + 2xy + 2x + 4y + 2
y2 + 3x2 + 2xy + 4x + 2y + 2

,

κ =
x2 + 3y2 + 2xy + 2x + 4y + 2

(x + y + 2)2 .

(37)
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In terms of x and y the vertices read:

c1 =
1
2
[−(y + 1)e1 + ye2 + (x + y + 1)e3],

c2 =
1
2
[−ye1 + (x + y + 1)e2 + (y + 1)e3],

c3 =
η

2
[xe1 + (x + y + 1)e2 + (x + 1)e3],

c4 =
η

2
[(x + 1)e1 + xe2 + (x + y + 1)e3],

c5 = κ(β + 1)e3.

(38)

Here, c1 with c2, c3 with c4 and c5 define three orbits under the chiral tetrahedral symmetry of
sizes 12, 12 and 6, respectively. Imposing the pyritohedral group invariance (x = y) and moreover,
letting x = τ and dividing each vector by a scale factor 2τ2, one obtains the usual quaternionic vertices
of the icosidodecahedron [28]{

1
2 (±e1 ± σe2 ± τe3), 1

2 (±σe1 ± τe2 ± e3), 1
2 (±τe1 ± e2 ± σe3)

}
,

±e1,±e2,±e3

(39)

They constitute a subset of the quaternionic binary icosahedral group I. An icosidodecahedron
consists of regular pentagons and equilateral triangles as shown in Figure 9a. A general irregular
icosidodecahedron consists of 12 pentagons of edges a, b, c as shown in Figure 9b. In addition, it has
4 equilateral triangles with edges a, 4 equilateral triangles with edges b, 12 scalene triangles with edges
a, b, c where a, b, c can be expressed in terms of x and y.
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5. The Regular and Irregular Snub Cubes Derived from W(B3)
+(a1a2a3)

The snub cube is a chiral Archimedean solid with 24 vertices, 60 edges and 38 faces (8 squares,
6+ 24 equilateral triangles). Its vertices and its dual can be determined by employing the same method
described in Sections 3 and 4. The proper rotational subgroup of the Coxeter group W(B3) is the
rotational octahedral group Sym(4) ≈

{[
T, T

]
∪ [T′, T′]

}
, of order 24, which permutes the diagonals

of a cube [21]. The group is generated by two rotation generators a = r3r2 and b = r2r1 satisfying the
generation relations a4 = b3 = (ab)2 = 1. When Λ is taken as a general vector, the following sets of
vertices form an equilateral triangle and a square, respectively,

(Λ, r2r1Λ, (r2r1)
2Λ), (Λ, r3r2Λ, (r3r2)

2Λ, r2r3Λ), (40)

with respective edge lengths
√

2
(
a2

1 + a1a2 + a2
2
)

and
√

2
(

a2
2 + a2a3 +

1
2 a2

3

)
. With the vertex r1r3Λ = r3r1Λ,

we obtain a figure consisting of 7 vertices as shown in Figure 10.
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Figure 10. The vertices connected to the vertex Λ.

There are 3 different edge lengths among 11 edges which are given as:

|r1r2Λ− r1r3Λ| =
√

2(a2
2 + a2a3 +

1
2 a2

3),

|r3r2Λ− r1r3Λ| =
√

2(a2
1 + a1a2 + a2

2),

|Λ− r1r3Λ| = |r2r1Λ− r2r3Λ| =
√

2(a2
1 +

1
2 a2

3)

(41)

Factoring by a2 6= 0 redefining x = a1
a2

, y = a3
a2

and α = x + y
2 + 1, β = y

2 + 1, γ = y
2 and

dropping a2, one obtains the following classes of faces of the irregular snub cube:

6 equilateral triangles with edge length: A =
√

2(1 + x + x2),
8 squares with edge length: B =

√
2(1 + y + y2),

24 scalene triangles with edge lengths: A, B, C =

√
2
(

x2 + 1
2 y2
)

.

Since the angular deficiency is δ = π
6 , the number of vertices of an irregular snub cube is 24.

The vertex Λ = a1ω1 + a2ω2 + a3ω3 can be written in terms of quaternions as Λ = αe1 + βe2 +γe3.
The orbit generated by the chiral octahedral group reads:

W(B3)
+Λ = {±αe1 ± βe2 ± γe3, ±βe1 ± γe2 ± αe3, ±γe1 ± αe2 ± βe3},

W(B3)
+Λ′ = {±βe1 ± αe2 ± γe3, ±αe1 ± γe2 ± βe3, ±γe1 ± βe2 ± αe3},

(42)

where Λ′ = r1Λ is the mirror image of Λ. The vertices of (42) represent (1) an octahedron for
a1 = 1, a2 = a3 = 0; (2) truncated octahedron for x = 1, y = 0; (3) cube for a1 = a2 = 0, a3 = 1 and (4)
cuboctahedron for a1 = a3 = 0, a2 = 1.

The irregular chiral convex solid will have 24 vertices 38 faces (8 square, 6 equilateral triangles
and 24 scalene triangles) and 60 edges (24 of length A, 24 of length B, 12 of length C). In what follows
we classify them according to their edge lengths of triangles and squares.

(1) The snub cube: A = B = C, 1 + x + x2 = 1 + y + y2 = x2 + 1
2 y2

When all edges are equal, one eliminates the variable satisfying y = x2 − 1 and obtains the
cubic equation x3 − x2 − x − 1 = 0 which can also be written as x + x−3 = 2 The solution is
the tribonacci constant x = lim

n→∞
Fn+1

Fn
≈ 1.8393 where Fn is the n-th term in the Tribonacci series

0, 0, 1, 1, 2, 4, 7, 13, 24, 44, . . ..
After dropping an overall factor 1

2(x
2+1), vertices of the snub cube and its mirror image are given by:

W(B3)
+Λ =

{
±xe1 ± e2 ± x−1e3,±e1 ± x−1e2 ± xe3,±x−1e1 ± xe2 ± e3

}
W(B3)

+Λ′ =
{
±e1 ± xe2 ± x−1e3, ±xe1 ± x−1e2 ± e3, ±x−1e1 ± e2 ± xe3

}
.

(43)
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For x = 1.8393, the snub cube is shown in Figure 11.
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Figure 11. The snub cube.

(2) A = B 6= C, y = −1±
√
(1 + 2(x2 + x)

For x = 1, y = −2τ, the irregular snub cube consists of 6 equilateral triangles and 8 squares of
edges

√
6 respectively and 24 isosceles triangles of edges

√
6,
√

6,
√

2(2τ + 3) as shown in Figure 12.
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Figure 12. The irregular snub cube with squares, equilateral triangles, isosceles triangles and squares
(for x = 1, y = −2τ ).

(3) A = C 6= B, x = 1
2 y2 − 1 and x3 − x2 − x − 1 6= 0

For y = 4 and x = 7 corresponding to α = 10, β = 3, γ = 2, the irregular snub cube consists of
squares of edges

√
13, equilateral triangles of edges

√
57 and isosceles triangles with edges

√
57,
√

57
and
√

13; all edges scaled by
√

2.

(4) A 6= B = C, y = x2 − 1 and x3 − x2 − x − 1 6= 00

For x = 3, y = 8 the irregular snub cube after rescaling by
√

2 has equilateral triangles of sides√
13, squares of sides

√
41, and isosceles triangles of edges

√
41,
√

41,
√

13 as faces.

(5) A 6= C 6= B

The variables should satisfy the inequalities y 6= x2 − 1 and y2 6= 2(x + 1).
For x = 2 and y = 4, the irregular snub cube consists of scaled equilateral triangles of sides

√
7,

squares of sides
√

13 and the scalene triangles of sides
√

7,
√

13 and
√

10 as shown in Figure 13.
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5.1. Dual of the Irregular Snub Cube

The vectors orthogonal to the faces in Figure 10 can be determined as:

d1 = µe1,

d2 = ν(n1e1 + n2e2 + n3e3),

d3 = 1
2 (e1 + e2 + e3),

d4 = ν(n3e1 + n1e2 + n2e3),

d5 = ν(n1e1 + n3e2 − n2e3).

(44)

Here the parameters are given by:

n1 = (x + 1) y + x, n2 = x, n3 = x(y + 1),

µ = 2x+3y+4
4x+2y+4 , ν = 1

2
2x+3y+4

(xy+x+y)(2x+y+2)+x(y+2)+yx(y+1)

(45)

Vertices of the dual of the irregular snub cube can be written as three sets of orbits under the
chiral octahedral group

{[
T, T

]
⊕ [T′, T′]

}
,

µ(±e1,±e2,±e3),

1
2 (±e1 ± e2 ± e3)

ν{(±n1e1 ± n2e2 ± n3e3), (±n2e1 ± n3e2 ± n1e3), (±n3e1 ± n1e2 ± n2e3)}.

(46)

The mirror image can be obtained from (46) by exchanging e1 ↔ e2 .
The dual of the irregular snub cube consists of 24 irregular pentagons with three different edge

lengths in general. However, for the special case y = x2− 1 and x3− x2− x− 1 = 0 which corresponds
to the regular snub cube, the parameters are given by µ = x

2 , ν = x−3

2 , n1 = x(2x + 1), n2 = x, n3 = x3.
The lengths of the edges of the pentagon satisfy the relations

|d1 − d2| = |d1 − d5| =
√

x2−1
4x ,

|d2 − d3| = |d3 − d4| = |d4 − d5| =
√

2− x,
(47)

where x ≈ 1.8393. The dual of the snub cube is shown in Figure 14.Symmetry 2017, 9, 148  16 of 22 
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argument is valid for the orbit of . The orbit of	  comprises of 12 quaternions obtained as the cyclic 
permutations of the pair of quaternions with all sign changes. Actually, the orbit of 	  by itself 

Figure 14. Dual of the snub cube (pentagonal icositetrahedron) with its pentagonal face. If we substitute
x = 1, y = 0 in (46) we obtain the Catalan solid tetrakis hexahedron (dual of the truncated octahedron).

We shall not discuss all duals of the irregular snub cubes. They can be obtained by substituting x
and y in (45) and (46) corresponding to each case above. We will illustrate only the case for x = 2 and
y = 4 where the pentagon has three different edge lengths. This is the dual of the irregular snub cube
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corresponding to the case of (5). It is depicted in Figure 15 with its pentagonal faces consisting of three
different edge lengths satisfying the relations |d1 − d2| = |d1 − d5|, |d2 − d3| = |d3 − d4|, |d4 − d5|.
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5.2. Chiral Polyhedra with Vertices at the Edge Mid-Points of the Irregular Snub Cube

With a similar discussion to the case of irregular icosidodecahedron in Section 4, we may construct
a chiral polyhedron assuming the mid-points of edges of an irregular snub cube as vertices. The vectors
whose tips constitute the plane orthogonal to the vector Λ in Figure 10 which are constructed similar
to (37) and (38) and are given by:

c1 = [(x + y + 1)e1 + (x + y + 2)e2 + (y + 1)e3],

c2 = [(x + y + 2)e1 + (y + 1)e2 + (x + y + 1)e3]

c3 = µ′[(2x + y + 2)e1 + e2 + (y + 1)e3],

c4 = µ′[(2x + y + 2)e1 + (y + 1)e2 − e3],

c5 = v′(x + y + 2)(e1 + e2),

µ′ = (α + β)α + (β + γ)β + (γ + α)γ

2α2 + β2 + γ2 , v′ = (α + β)α + (β + γ)β + (γ + α)γ

(α + β)2 .

(48)

The vertices c1 and c2 are in the same orbit of size 24 under the chiral octahedral group {
[
T, T

]
∪

[T′, T′]}, and the orbit involving c3 and c4 is of size 24. The orbit of c1 consists of cyclic permutations
of the coefficients of the unit quaternions with all possible sign changes. The same argument is valid
for the orbit of c3. The orbit of c5 comprises of 12 quaternions obtained as the cyclic permutations of
the pair of quaternions with all sign changes. Actually, the orbit of c5 by itself represents the vertices
of a cuboctahedron. For all allowed x and y, the chiral polyhedra with 60 vertices can be displayed.
However, we will only display the polyhedron corresponding to the special case where the 60 vertices
obtained from (48) represent the mid-points of edges of the regular case, namely the snub cube. This is
obtained, as we discussed before, substituting y = x2 − 1 and using the real solution of the cubic
equation x3 − x2 − x − 1 = 0. Then one obtains µ′ = v′ = 1 and the square lengths of sides of the
irregular pentagon obtained from (48) are given by:

|c1 − c2| = |c2 − c3| = |c4 − c5| = |c5 − c1| =
|c3 − c4|√

2
=
√

2x3 ≈ 3.528 (49)

The vector orthogonal to this pentagon is represented by the vector Λ and around this pentagon
there are 4 equilateral triangles of sides

√
2x3 and 1 square of sides 2

√
x3. With this pentagonal face,

the chiral polyhedron is shown in Figure 16. It has 60 vertices, 62 faces (6 squares, (8 + 24) equilateral
triangles and 24 irregular pentagons) and 120 edges (96 of sides 3.528 and 24 of length 4.989).
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6. The Regular and Irregular Snub Dodecahedron Derived from W(H3)
+(a1a2a3)

The snub dodecahedron is a chiral Archimedean solid with 60 vertices, 92 faces (20 pentagons
+80 triangles) and 150 edges. We will discuss how to obtain the snub dodecahedron from an irregular
snub dodecahedron. The vertices of an irregular snub dodecahedron, its dual and the chiral polyhedron
obtained from the mid-points of edges will be constructed by employing the same technique described
in Section 5. The proper rotational subgroup of the icosahedral Coxeter group is also called chiral
icosahedral group W(H3)

+ =
[
I, I
]
≈ Alt(5) which is a simple group of order 60. They can be generated

by the generators a = r1r2, b = r2r3 which satisfy the generation relations a5 = b3 = (ab)2 = 1.
Let Λ = a1ω1 + a2ω2 + a3ω3 be a general vector where ωi, (i = 1, 2, 3) can be obtained from (17).
The following sets of vertices form a regular pentagon and an equilateral triangle, respectively:

(Λ, r1r2Λ, (r1r2)
2Λ, (r1r2)

3Λ, (r1r2)
4Λ), (Λ, r2r3Λ, (r2r3)

2Λ) (50)

with respective edge lengths
√

2
(
a2

1 + τa1a2 + a2
2
)

and
√

2
(
a2

2 + a2a3 + a2
3
)
. With the addition of the

vertex r1r3Λ = r3r1Λ as shown in Figure 17, there are three edge lengths including
√

2
(
a2

1 + a2
3
)
.

The discussions of Sections 4 and 5 will be repeated to obtain the regular and irregular snub
dodecahedra. The dual and the chiral polyhedron based on the mid-points of edges follow the
same technique.Symmetry 2017, 9, 148  18 of 22 
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Numbering of the faces has been done according to the H3 diagram of Figure 4. Factoring by
a2 6= 0, redefining x = a3

a2
, y = a1

a2
and dropping a2√

2
one obtains an irregular snub dodecahedron

with 12 equilateral triangles with edge length: A =
√

2(1 + x + x2), 20 pentagons with edge length:
B =

√
2(1 + τy + y2), 60 scalene triangles with edge lengths: A, B, C =

√
2(x2 + y2). The triangles

numbered as 2, 4 and 5 are identical scalene triangles, but number 1 is an equilateral triangle.
The angular deficiency is δ = 2π −

(
π
3 + 3π

5 +
(

θ + ϑ + ϕ
) )

= π
15 where θ, ϑ and ϕ are the

interior angles of the scalene triangles. Descartes’ formula verifies the number of vertices N0 = 60.
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The orbit
[
I, I
]
Λ generated from the vector Λ = − ye1 − xe2 − τ(τy + x + 2)e3 involves

60 vectors representing the vertices of an irregular snub dodecahedron. The mirror image
[
I, I
]
Λ′ can

be obtained from the vector Λ′ = r1Λ = ye1 − xe2 − τ(τy + x + 2)e3. A few remarks are in order
before we discuss the usual classification. For some special values of the parameters x and y, we obtain
some of the Archimedean solids. For example,

(i) x = 1 and y = 0 : Truncated icosahedron,
(ii) x = 0 and y = 1 : Truncated dodecahedron,
(iii) x = y = 0 : Icosidodecahedron.

Let us follow the sequence of Section 5 to discuss the regular and irregular snub dodecahedra.

(1) The snub dodecahedron: A = B = C, 1 + x + x2 = 1 + τy + y2 = x2 + y2

Since all edges are equal, it leads to the relations y = σ
(
1− x2) and y2 = x + 1 resulting in

the cubic equation x3 − x2 − x − τ = 0. The real solution is approximately x = 1.943. The snub
dodecahedron is shown in Figure 18.
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(2) A = B 6= C, y = 1
2

(
−τ ±

√
(τ2 + 4(x2 + x)

)
For x = −1, y = −τ, the irregular snub dodecahedron consists of 12 equilateral triangles and

20 pentagons of sides
√

2 and 60 isosceles triangles of sides
√

2,
√

2,
√

2(τ + 2)

(3) A = C 6= B, y2 = x + 1 and x3 − x2 − x− τ 6= 0

For y = 2 and x = 3, the corresponding irregular snub dodecahedron consists of pentagons of
edge length

√
2(2τ + 5), equilateral triangles of edge length

√
26 and isosceles triangles with edge

lengths
√

26,
√

26 and
√

2(2τ + 5)

(4) A 6= B = C, x2 = τy + 1 and x3 − x2 − x− τ 6= 0

For y = 1, x = τ, the irregular snub dodecahedron has pentagons of sides
√

2(τ + 2), equilateral
triangles of sides

√
2τ, and isosceles triangle of sides

√
2(τ + 2),

√
2(τ + 2) and

√
2τ.

(5) A 6= C 6= B

For x = 2 and y = 3, the irregular snub dodecahedron consists of equilateral triangles of sides√
14, pentagons of sides

√
2(3τ + 10) and the scalene triangles of sides

√
14,
√

2(3τ + 10) and
√

26 as
shown in Figure 19.
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Figure 19. Irregular snub dodecahedron with x = 2, y = 3.

6.1. Dual of the Irregular Snub Dodecahedron

We obtain 5 vectors as follows to determine the plane orthogonal to the vertex Λ :

d1 =
√

2ω1 = τ(σe1 − τe3),

d2 = ν[(y− σ)xe1 − σy(x + 1)e2 + (τxy + τx + y)e3]

d3 =
√

2µω3 = µ(−e2 − τe3),

d4 = ν[σxe1 − σye2 + (2xy + τx + y)e3]

d5 = ν[−σxe1 + σye2 + (2xy + τx + y)e3],

µ =
(3y + τx + 2τ)

τy + (σ + 2)x + 2
, ν =

(3y + τx + 2τ)

(σx− y + 2σ)(2xy + τx + y)
. (51)

The orbits generated from these five vectors represent the vertices of the dual solid of the irregular
snub dodecahedron. Faces of the dual consist of irregular pentagons, one of which is represented by
the vertices of (51). Note that the orbits

[
I, I
]
d1 and

[
I, I
]
d3 represent the orbits of sizes 20 and 12,

respectively. The other three vertices are in the same orbit; therefore, one single notation
[
I, I
]
d2 for

this orbit of size 60 suffices. Therefore, the dual consists of 92 vertices, 60 irregular pentagons and 150
edges. The regular case is obtained by substituting y = σ(1− x2) and x = 1.943 in (51). The dual of
the snub dodecahedron, the pentagonal hexecontahedron, is shown Figure 20.
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dodecahedron, the vertices in (52) are simplified, and the edge lengths of the pentagon satisfy the 
relations: | − | = | − | = | − | = | − | = | − | = + + 1 (53) 

Figure 20. The pentagonal hexecontahedron (dual of snub dodecahedron).

We also illustrate the dual of the irregular snub dodecahedron obtained from 5) by substituting
the values x = 2 and y = 3 in (51). The 92 vertices with this substitution describe the chiral solid
depicted in Figure 21.
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6.2. Chiral Polyhedra with Vertices at the Edge Mid-Points of the Irregular Snub Dodecahedron

Similar to the previous discussions, we can construct a chiral polyhedron possessing the
mid-points of the edges of the irregular snub cube as vertices. The vectors whose tips constitute
the plane orthogonal to the vector Λ in Figure 17 are given by:

c1 = 1
2 [−(2y + τ)e1 + e2 − τ(2τy + 2x + τ + 2)e3],

c2 = 1
2 [−(2y + τx + τ)e1 − (x + 1)e1 − τ(2τy + 2x + τ + 2)e3],

c3 = α
2
[
−τ(τy + 1)e1 − (τy + 2x + 1)e2 − τ

(
τ2y + 2x + τ + 2

)
e3
]
,

c4 = α
2 [τe1 − (2x + 1)e2 − τ(2τy + 2x + τ + 2)e3],

c5 = −βτ(τy + x + 2)e3,

α =
3y2 + 2τxy + x2 + 4τy + x(τ + 2) + τ + 2

τ2y2 + 2τxy + x2(σ + 2) + (3τ + 1)y + 4x + τ + 2
,

β =
3y2 + 2τxy + x2 + 4τy + x(τ + 2) + τ + 2

(τy + x + 2)2

(52)

In the limit y = σ
(
1− x2), x3 − x2 − x − τ = 0 and α = β = 1 (x = 1.943); for a snub

dodecahedron, the vertices in (52) are simplified, and the edge lengths of the pentagon satisfy the
relations:

|c1 − c2| = |c2 − c3| = |c4 − c5| = |c5 − c1| =
|c3 − c4|

τ
=
√

x2 + x + 1 (53)

This chiral polyhedron has 150 vertices and 152 faces (12 regular pentagons + 60 irregular
pentagons and (20 + 60) equilateral triangles all surrounding 60 irregular pentagons), a typical one
of which is represented with the relations of vertices in (53). The chiral polyhedron with 300 edges is
illustrated in Figure 22.
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7. Concluding Remarks

In this paper we presented a systematic construction of regular and irregular chiral polyhedra, the
snub cube, the snub dodecahedron and their duals using proper rotational subgroups of the octahedral
group and the icosahedral group. Chiral polyhedra whose vertices are the mid-points of the chiral
polyhedra were also constructed. We used the Coxeter diagrams B3 and H3 to obtain the quaternionic
description of the relevant chiral groups. Employing the same technique for the diagrams A1 ⊕ A1

⊕ A1 and A3 , the irregular tetrahedra and icosahedra have been included although they are not
chiral as they can be transformed to their mirror images by the proper rotational subgroup of the
octahedral group.

The dual solids of the irregular icosahedron, the tetartoid and the pyritohedron are also
constructed representing the chiral symmetries of chiral tetrahedral group and the pyritohedral
group, respectively.

This method can be extended to higher dimensional Coxeter groups to determine the
irregular-regular chiral polytopes. For example, the snub 24-cell, a chiral polytope in the 4D Euclidean
space can be determined using the D4 Coxeter diagram [29], and its irregular form can be obtained
using the same technique used for the irregular icosahedron.
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