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Abstract: Since surface electromyograghic (sEMG) signals are non-invasive and capable of reflecting 
humans’ motion intention, they have been widely used for the motion recognition of upper limbs. 
However, limited research has been conducted for lower limbs, because the sEMGs of lower limbs 
are easily affected by body gravity and muscle jitter. In this paper, sEMG signals and accelerometer 
signals are acquired and fused to recognize the motion patterns of lower limbs. A curve fitting 
method based on median filtering is proposed to remove accelerometer noise. As for movement 
onset detection, an sEMG power spectral correlation coefficient method is used to detect the start 
and end points of active signals. Then, the time-domain features and wavelet coefficients of sEMG 
signals are extracted, and a dynamic time warping (DTW) distance is used for feature extraction of 
acceleration signals. At last, five lower limbs’ motions are classified and recognized by using 
Gaussian kernel-based linear discriminant analysis (LDA) and support vector machine (SVM) 
respectively. The results prove that the fused feature-based classification outperforms the 
classification with only sEMG signals or accelerometer signals, and the fused feature can achieve 
95% or higher recognition accuracy, demonstrating the validity of the proposed method. 

Keywords: surface electromyograghic (sEMG); accelerometer signals; feature fusion; motion 
recognition 

 

1. Introduction 

According to data released by the China Disabled Persons’ Federation, there were about 85.2 
million disabled people in China in 2010, among which the physically disabled make up the largest 
proportion, up to about 29.07% [1]. However, the data released on webpages for the disabled show 
that the actual prosthetic fitting rate is not high enough, and the demand for prosthetic and other 
auxiliary equipment is great [2]. Nowadays, research on lower limbs auxiliary equipment is more 
focused on how to realize autonomous control for patients and make auxiliary motion more natural 
and convenient. An electromyograghic (EMG) signal is the result of neuromuscular excitement and 
the release of bioelectricity during the human body’s autonomic movement; therefore, it can be used 
to identify the state of muscles and perceive movement intention. As it is noninvasive and portable, 
surface EMG (sEMG) signals have become the ideal signal source for rehabilitation equipment and 
prosthetics to achieve autonomous control [3,4]. 

In the past 10 years, research of sEMG-based human movement pattern recognition, especially 
movement identification of upper limbs, was widely conducted. The studies employed plentiful 
classification models and achieved good recognition effects [5,6], and the results were used to control 
humanoid machinery and artificial prosthesis [7]. However, research methods for the lower limbs are 
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still immature, because the lower limb gait generation mechanism and adjustment methods are more 
complex [8]. However, similarly to the study of upper limbs, in order to realize the accurate 
identification of the lower limbs’ movements, the whole system is divided into several parts: 
preprocessing, feature extraction, pattern recognition, and post-processing. The research of feature 
extraction and pattern recognition is especially important. 

Al-Ani et al. [9] extracted time-domain (TD) features (root mean square (RMS), mean absolute 
value, integrated absolute value, zero crossing, slope sign change (SSC), and waveform length) and 
a time-domain power spectrum descriptors (TDPSD) feature of sEMG, combined with five different 
classifiers (support vector machine (SVM), linear discriminant analysis (LDA), quadratic 
discriminant analysis, Bayes classifier, and extreme learning machine) to distinguish six movements 
including different grip and finger movements. Arjunan et al. [10] successfully identified and 
analyzed the force of muscle contraction and muscle fatigue by computing six different features of 
sEMG signals, including the normalized spectral index (NSM5), median frequency (MF), RMS, 
waveform length (WL), normalized root mean square (NRMS), and increase in synchronization (IIS). 
Besides, the independence in channel index (ICI) between multi-channel sEMG signals was used to 
measure the loss of motor units [11]. Some blind source separation (BSS) methods, such as 
independent component analysis (ICA) [12] and non-negative matrix factorization (NMF) were also 
used for sEMG signals to classify different motion modes. Recently, Xi et al. [13] analyzed and 
evaluated 15 feature extraction methods of sEMG signals (including time, frequency, time/frequency 
domain, and entropy) and five classification methods for the identification of seven activities of daily 
living, providing a sufficient experimental analysis for existing methods. 

In addition to sEMG signals, some kinematics signals are usually applied to identify different 
motions of the lower limbs. The accelerometer signals are usually analyzed by using multiple 
principal component analysis (MSPCA) [14] or wavelet PCA [15] to classify different ways of walking. 
Also, the blind source separation method ICA could be used for accelerometer signals to distinguish 
the toe walking gait from normal gait in Idiopathic Toe Walkers (ITW) children [16]. In addition, the 
accelerometer signals were always used for physical activity monitoring [17] and fall detection 
[18,19]. 

In practical applications, the sEMG signals of the lower limbs are affected by the ground 
environment and gravity center shift, therefore the recognition effect is not ideal by using sEMG alone. 
On the other hand, using kinematics signals (such as accelerometer signals) alone can obtain a better 
recognition effect for different motions of the lower limbs. However, action segment detection and 
onset prediction are difficult to achieve, but it is much easier to achieve them with sEMG signals 
[20,21]. Besides, for the motions with a similar trend, the recognition effect is also not satisfactory by 
using accelerometer signals alone. Researches have indicated that better recognition results can be 
achieved when sEMG is combined with some kinds of kinematics signal sources [20,22,23]. 

Miller et al. [24] used LDA and SVM classifiers respectively to identify seven kinds of gait, and 
these two classifiers have equivalent performance during experiments. Huang et al. [25,26] divided 
a gait into four step phases according to plantar pressure changes, and proposed a method based on 
different phases, which realized the recognition of seven kinds of gait. The features of sEMG and 
plantar mechanic signals were analyzed and compared, and the results showed that if the two signal 
sources were fused, the recognition effect was obviously better than using sEMG or using mechanical 
signals alone, with a recognition rate of about 95%. Wu et al. [27] extracted the approximate entropy 
and basic-scale entropy of sEMG, and then combined pressure signals based on an analysis of the 
change rule of plantar pressure. Finally, fall detection was implemented successfully by SVM 
decision with a fusion of the two signal sources. Juan et al. [28] realized the identification and 
detection of lower limb movements by an integration of acceleration and sEMG signals, and achieved 
good results. Liu et al. [29] fused the sEMG and the hip angle and acceleration signals of the lower 
limbs, achieving the identification of lower limb motor patterns. Besides, Tikkanen et al. [30] 
combined EMG, heart rate, and accelerometer signals to estimate energy expenditure in four different 
motion modes on the treadmill. Even some devices were developed to acquire sEMG signals and 
kinematics signals synchronously [31]. 
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Given that the requirement of an acceleration signal device is simple and portable, and the 
accelerometer signals contain rich gait information, two sources of signals—sEMG and acceleration—
will be used in this paper for lower limb motion recognition. In current related research, the 
preprocessing of accelerometer signals and movement onset detection from continuous motion 
signals are always overlooked. Besides, the feature extraction methods for extracting features of 
signals with a higher separation degree, as well as more efficient classification methods, are still 
remaining to be further developed for lower limb motion recognition systems. All the above factors 
will affect the accuracy and stability of the final classification results, and only those recognition 
systems with high accuracy and good stability can be more effectively used for the actual control of 
intelligent devices. In this paper, sEMG signals and accelerometer signals are acquired and fused to 
recognize motion patterns of lower limbs. Firstly, a curve fitting method based on median filtering is 
proposed to remove accelerometer noise. As for movement onset detection, a sEMG power spectral 
correlation coefficient method is used to detect the start and end points of active signals. Next, time-
domain features and wavelet coefficients of sEMG signals are extracted, and a dynamic time warping 
(DTW) distance is used for feature extraction of acceleration signals. Finally, five lower limbs’ 
motions are classified and recognized by using Gaussian kernel-based LDA and SVM, respectively. 
The results show that the fused feature-based classification outperforms the classification with only 
sEMG signals or accelerometer signals, and the fused feature can achieve 95% or higher recognition 
accuracy, demonstrating the validity of the proposed method. 

2. Materials and Methods 

2.1. Signal Acquisition 

In the experiment, the surface EMG sensor and the analysis system produced by Biometrics (UK) 
are used to acquire sEMG signals (4 channels, 1000 Hz), and the Mini Attitude and Heading Reference 
System (AHRS) gesture board is used to acquire acceleration signals (3 axes, 100 Hz). 

Five daily activities of lower limbs were studied in this paper, including squatting, standing, 
walking forward, walking upstairs, and walking downstairs. These actions are all daily activities, so 
it is easy to complete them in a laboratory environment without other additional devices. Acquiring 
sEMG signals from multiple channels will improve the recognition effect of different motions, and 
four to eight channels are selected in many studies. Many more channels may reduce the recognition 
effect because of the crosstalk between different channels of sEMG signals. Combining human 
anatomy and lots of experimental results, the biceps femoris, semitendinosus, rectus femoris, and 
vastus lateralis muscles were selected as the sticking points of electrodes in order to obtain effective 
sEMG signals. After the electrodes are pasted, the subject will do some simple actions of the lower 
limbs to test whether the signals of each channel are clear or whether there is obvious noise, so as to 
ensure that the paste positions of electrodes are correct and effective. In the experiment, each mode 
of motions requires multiple sets of data used for the analysis of the training process and the testing 
process. When acquiring data samples, each mode of motions should last for 15 s. In order to avoid 
the effects of muscle fatigue, a 2 min test is needed after finishing a motion. 

The participants include four healthy subjects aged between 23 and 35 years old, and one 
amputated volunteer with a below-knee amputation. The amputated subjects completed the five 
lower limb motions by wearing artificial limbs in the experiment. All subjects gave their informed 
consent for inclusion before they participated in the study. The study was conducted with the 
approval of the Wuhan University of Technology. 

2.2. Signal Preprocessing 

One of the most important aspects of EMG preprocessing is the selection of the size of the 
analysis window. Signals need to be processed with the window, and a current real-time signals 
segment is continuously obtained as the window moves. Huang et al. [27] noted in a gait study that 
the recognition rate would be higher, but the delay was too large when taking the signals of an entire 
gait circle as the input. It was advisable to split the signals with a smaller analysis window. There are 
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two kinds of commonly used windows: non-overlapping analysis window and overlapping analysis 
window. In addition, the overlapping window can make the delay smaller and ensure the full 
utilization of the signals’ information. Phinyomark et al. [32] have studied different combinations of 
analysis window length and overlapping distance. The accuracy was the best when the window 
length was 500 ms and the sliding distance was 125 ms. When the analysis window gradually 
increased from 125 ms to 250 ms, the recognition rate was significantly improved. When the analysis 
window increased from 250 ms to 500 ms, the increase in recognition rate became flat. So, when the 
analysis window is too large, it is necessary to consider whether the delay is too long. 

As shown in Figure 1, a sliding window analysis is used for signal preprocessing in this study. 
‘Window’ refers to the length of the analysis window, and once the previous analysis is complete, the 
window slides forward at a distance of “Increase”. Studies have shown that increasing the length of 
the analysis window will increase the accuracy of the classification results, but will also increase the 
processing delay of the system [32,33]. In this study, different combinations of analysis window 
length and sliding distance were studied and analyzed by experiments, so as to ensure a better 
recognition effect and a smaller processing delay. The analysis window was increased from 200 ms 
to 250 ms, and the sliding distance was increased from 50 ms to 100 ms [34]. Finally, we set an analysis 
window length of 250 ms, and a sliding distance of 80 ms. 

Overlap

Window

Increase

 
Figure 1. Settings of analysis window and sliding window. 

2.2.1. Movement Onset Detection of sEMG 

When lower limbs are active, EMG signals are changed from the resting state to the active state. 
Movement onset detection is important for motion recognition [35]. EMG signal fluctuations increase 
as the muscles begin to be active, compared to the resting state [36]. 

The amplitude is low when the muscles are inactive. It is found by experiments that the 
correlation coefficient of the power spectrum corresponding to two neighboring sliding windows is 
small, in which situation the occasional fluctuations in sEMG signals can be almost completely 
filtered out. The amplitude increases when the muscles are active, and the correlation coefficient of 
the power spectrum corresponding to two neighboring sliding windows becomes big. Thus, the 
following method is used for movement onset detection. 

• Use a sliding window to segment the whole data of each channel into n epochs and calculate the 
power spectrum ݂ܲ(݊). 

• Calculate the correlation coefficient ௖ܲ௢௥(݊) between ݂ܲ(݊) and ݂ܲ(݊ + 1). 
• Calculate the sum of the maximum number of correlation coefficients corresponding to each 

channel, ܲܥ௦௨௠(݊). 
• Compare ܲܥ௦௨௠(݊) with a predefined threshold ܶܪ . If ܲܥ௦௨௠(݊) is greater than ܶܪ , EMG 

signals are recognized as in an active state. 
• For the selection method of the threshold, Cheng et al. [28] found by experiment that the method 

for selecting the threshold is relatively stable and has a good repeatability according to the 
percentage of maximal voluntary contraction. The method is a reference in this study. Through 
experiments, 1% of the maximal voluntary contraction is set as the threshold of the moving 
average method and Teager–Kaiser operator, and 0.1% of the maximal voluntary contraction is 
set as the threshold of the power spectral correlation coefficient method. 
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2.2.2. De-Nosing of Accelerometer Signals 

Due to the situation that error bits occur along with the signal transmission process in Mini 
AHRS, there will be a lot of glitches or continuous segments of noise existing in the collected 
accelerometer signals. As for the de-noising of such noise, the method based on a median filter is 
often used, the main process of which is to select a length of point neighborhood and replace the 
original points with the median of the neighborhood. The key factor of the median filter is the 
window size of the neighborhood. The more obvious fluctuations will be eliminated with a too-large 
window, while a too-small window will not achieve good results for the continuous noise segment. 
In practical application, the window size is selected by experiments and comparison while gradually 
increasing the window size. The method can eliminate the isolated noise points and the calculation 
is relatively simple and quick. Nevertheless, a lot of details are also filtered out when removing the 
signal noise, resulting in a too-smooth signal curve. On this basis, a median curve fitting-based 
accelerometer signal de-noising method is proposed in this study. For the signal in a point 
neighborhood window, the sample points are sorted by size. Only a few intermediate points are 
selected, and the points of the largest and the smallest value on both sides are removed, since such 
points are more likely to be noise. By doing a curve fitting calculation for these intermediate points, 
glitch noise can be removed, and the signal can be smooth as well. 

Curve fitting is to use a function curve to approximate the known measurement data points, and 
then use the curve to calculate the value of other unknown points. When the form of the curve 
function is uncertain, the polynomial curve is generally used to fit. Assume that there are ܰ sample 
points (ݔ௜, ௜), which are expressed by an m-th-order polynomial. y௜ݕ = ܾ଴ + ܾଵݔ௜ + ⋯+ ܾ௠ݔ௜௠ +  ௜ (1)ߝ

where ܾ௠	is the fitting coefficient, and its matrix form can be written as: 

ቌݕଵݕଶ⋮ݕேቍ = ൮1 ଵݔ … ⋮ଵ௠1ݔ ଶݔ …⋮ … ଶ௠⋮1ݔ ேݔ … ே௠൲൮ݔ
ܾ଴ܾଵ⋮ܾ௠൲ + ቌߝଵߝଶ⋮ߝேቍ (2)

As a result, ܻ = ܤ ,ܤܺ = (ܺᇱܺ)ିଵܺᇱܻ, and we can see that: ෠ܻ = ܤܺ = ܺ(ܺᇱܺ)ିଵܺᇱܻ. (3)

2.3. Feature Extraction 

Feature extraction is a very important part of pattern recognition, and a good feature has higher 
resolution, which has a great influence on the recognition results [37]. 

2.3.1. Feature Extraction of EMG Signals 

Nowadays, many methods of feature extraction have been proposed, among which time-domain 
features and the wavelet coefficient are most commonly used [38–40]. 

1. Time-Domain Features 

The most commonly used time-domain features are Root Mean Square (RMS), Zero Crossing 
(ZC), Willison Amplitude (WAMP), SSC and Wave Length (WL). 

• RMS can reflect the amplitude of signals: 

RMS = ඨ∑ ௞ଶ௡௞ୀଵ݊ݔ  (4)

where ݊ is the number of samples in an analysis window. 
• ZC is the number of times the waveform passes through the zero point, which reflects the 

frequency characteristics of the signals. If the zero point is set to be a range rather than a value, 
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the noise introduced by the zero point can be reduced. When we select a threshold thr, the 
calculation formula of ZC is shown in Formula (5): 

ZC = ෍݂(−ݔ௞ ∗ ௞ାଵ)௡ିଵݔ
௞ୀଵ  (5)

where ݂(x) = ൜(ݔ)݊݃ݏ; |ݔ|݂݅ > 	;0	ݎℎݐ 	݁ݏ݅ݓݎℎ݁ݐ݋  

• WAMP can reflect the relative fluctuation amplitude of a sample point and the next one. 

WAMP = ෍݂ேିଵ
௞ୀଵ ௞ݔ) − ௞ାଵ) (6)ݔ

where ݂(ݔ) = ൜1;	|ݔ| > ;0	ݎℎݐ ݎℎݐ Through many experiments and contrasts, we set .݁ݏ݅ݓݎℎ݁ݐ݋ = 0.015 in 

this paper. 
• SSC can be used as the supplementary information of the signal frequency. 

SSC = ෍(ݔ௞ − ௞ݔ)(௞ାଵݔ − ௞ିଵ)ேିଵݔ
௞ୀଶ > ߱ (7)

where ߱ = 0.001 in this paper. 
• WL not only reflects the amplitude information of the signals, but also contains the fluctuation 

frequency information of the signals. 

WL = ෍|ݔ௞ − ௞ାଵ|ேିଵݔ
௞ୀଵ  (8)

The information contained in a single time-domain parameter is not abundant enough, therefore, 
in much research, multiple time-domain parameters are combined to obtain a more efficient 
feature vector [41]. 

2. Wavelet Transform 

Wavelet transform (WT) is a time-frequency domain transformation with the ability to 
simultaneously locate the time and frequency. It mainly replaces the original trigonometric function 
basis ݁ି௝ఠ  in the Fourier transform, and selects the wavelet basis ߖ௔,௕(ݐ)  which satisfies the 
corresponding allowable conditions. The basis of the Fourier transform is infinite, but the wavelet 
basis is damped and the length is finite. There is only one frequency variable ߱  in the Fourier 
transform, while the wavelet transform has two variables: scale ܽ and translation ܾ, where the scale 
corresponds to different frequency variables, and the translation corresponds to the positioning on 
time. 

For the signal ݂(ݐ), a continuous wavelet transform can be expressed as: WTట݂(ܽ, ܾ) = න ஶݐ௔,௕(t)തതതതതതതതത݀ߖ(ݐ)݂
ିஶ  (9)

where function system ߖ௔,௕(t) can be expressed as: ߖ௔,௕(t) = |ܽ|ିଵଶݐ)ߖ − ܾܽ ) (10)

The scale ܽ controls the scaling of the wavelet function, and the large value corresponds to the 
low frequency, with the corresponding ߖ௔,௕(t)  becoming wider. The translation ܾ  controls the 
translation of the wavelet function, which corresponds to different time scale. Besides, |ܽ|ିଵ/ଶ is the 
normalizing factor. In essence, the wavelet transform of the signal ݂(ݐ) is actually the inner product 
of ݂(ݐ) and ߖ௔,௕(t), and the continuous wavelet transform quantitatively expresses the degree of 
correlation between the signal and each wavelet in the wavelet function system. 
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When a wavelet transform is used to decompose the EMG signal, what needs to be considered 
firstly is the mother wavelet and the decomposition scale. The mother wavelets mainly used in EMG 
processing are: Daubechies, Coiflets, Symlets, et al. Decomposition scales should also be chosen 
according to the actual situation. In this paper, multiple experiments with different mother wavelets 
and decomposition scales were carried out. Fisher’s Index (FI) was used to measure the separation 
degree of feature vectors. The larger the FI is, the higher the separation degree of the feature sets is, 
which is more conducive to a subsequent pattern classification. Experiments showed that the “sym4” 
mother wavelet with four wavelet decomposition had a higher FI, so it was chosen for the wavelet 
transform of this study. 

The dimension of wavelet coefficients is very large, and a dimension reduction process is needed 
before it can be used as a feature [42–44]. Therefore, we extract the principal components of each layer 
wavelet coefficient as the feature. 

2.3.2. Feature Extraction of Accelerometer Signals 

Figure 2 shows the change of x-axis and z-axis accelerometer signals when walking downstairs. 
It can be seen that in the same gait period, the accelerometer signals are sequential and periodic. 
Therefore, it is feasible to match the accelerometer signals of unknown motion patterns with a 
template built based on training samples, and the matching distance can be used to measure the 
acceleration change of unknown motions and find a more similar motion with the training samples. 

 
Figure 2. Change of accelerometer signals when walking down stairs. 

Euclidean distance is a commonly used calculating distance, but sometimes it may not be 
suitable. It is assumed that there are two time sequences ܯ: ሾ1,1,12,5,8,9ሿ and ܰ: ሾ1,12,5,5,8,9ሿ, then 
we can get ܦ = 170 by using the computational formula of Euclidean distance: ܦ = ሾ݅ሿܯ)∑ − ܰሾ݅ሿଶ). 
In fact, the two matrix sequences are very similar. The DTW algorithm can be a good solution to this 
problem [45]. 

The DTW algorithm is most commonly used in speech signal processing. Due to the high 
randomness of speech signals, even if the same speaker is speaking the same word, the time length 
is different, namely the amplitude is different, and there will be uneven bending distortion along the 
time axis. It is similar to accelerometer signals. The time and distance can be combined by the DTW 
algorithm, and then the distance between the vectors of sequences with different length is compared. 

Assume that the length of the test template is ܯ frames and the length of reference template is ܰ frames. Then, make the test template’s each frame number ݉ =  and set the horizontal axis ܯ–1
of the two-dimensional grid to one-to-one correspondence, and mark the reference template’s frame 
number ݊ = 1–ܰ on the vertical axis. The corresponding vertical and horizontal lines can be drawn 
with the integer frame numbers, in which case each intersection in the grid represents the matching 
point between a frame in the test template and a frame in the training template. The DTW algorithm 
has two main steps, one is to calculate the distance between each frame of the two templates, that is 
to find the matching distance matrix; and the next step is to find the shortest path in the matching 
distance matrix. 
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In this paper, we restrict the research path, and the constraint conditions are shown in Formula (11). 

,݉)ܦ ݊) = ݉݅݊ ቐ ݉)ܦ − 1, ݊) + ݀௠ିଵ,௡ܦ(݉ − 1, ݊ − 1) + ݀௠ିଵ,௡ିଵܦ(݉, ݊ − 1) + ݀௠,௡ିଵ  (11)

where ܦ(݉, ݊) is the cumulative distance from the starting point to the intersection (݉, ݊), and ݀௠,௡ 
is the distance between the test template ௠ܶ and the reference template point ܴ௡. For each of the five 
motions, we select a signal with a certain length to create a reference template. 

Since the length of accelerometer signals in a 250 ms analysis window is approximately 25, in 
order to further reduce the computations, an averaged value for each three points is added to the test 
template, and the length of each test template is limited to eight dimensions. When making the 
reference template, the median is also taken from every three points. 

To determine the start frame and the end frame, the test template ܶ is sliding and matching on 
the reference template ܴ. When the distance between the first frame ܶ(1) and the k-th frame ܶ(݇) 
is smaller than the set threshold value ܶܪ, the k-th frame on ܴ is determined to be the start of the 
matching distance calculation. Then, the frame is found which meets the condition of ݀(ܶ(8), ܴ(݇ + ݊)) < ܪܶ  within the range of ܴ(݇ + 5) to ܴ(݇ + 10), and determine it as the end 
frame. If not found, the test template continues sliding backwards until the end of the reference 
template. The length of the reference template is about two gait cycles. 

2.4. Recognition and Classification Methods 

As for motion recognition based on sEMG, another key point is selection of classifiers, and the 
recognition effect will be very different when combining different feature vectors and classifiers [25, 
46]. Due to the development of pattern recognition, a lot of classifiers can be chosen, among which 
the most commonly used classifiers are LDA [47], ANN [48], and SVM [49]. In this paper, we will 
mainly use the LDA classifier and the SVM classifier to classify and validate the features, and make 
a comparative analysis. 

2.4.1. LDA Classifier Based on Kernel Function 

The basic idea of LDA is to project the samples of high-dimensional space into low-dimensional 
space. For example, if the sample space is H-dimensional, we can project the samples to a straight 
line along a certain direction, which is a one-dimensional space. For the H-dimensional vectors which 
are inseparable and overlapping with each other, the principle is to find a suitable direction “w” in 
projection, so that the different classes are separated as far as possible while the same class is gathered 
as much as possible. In this process, the Fisher criterion is usually used to find the direction. 

For multi-class problems, the one-many portioning strategy on the basis of two-class problems 
is used. That is to successively regard the patterns belonging to the ω class and the patterns not 
belonging to the ω class as two classes, and then make discrimination. Because there may be points 
not considered to belong to the ω class every time, in order to avoid the phenomenon of unclassified, 
we regard the class from its closest point as the output. 

LDA is simple, robust, and not prone to over-fitting. It is widely used and especially effective 
for linear problems. However, it is limited in nonlinear data processing. For this reason, the data can 
be projected nonlinearly into a feature space F, and then the Fisher discriminant criterion is calculated 
in F, which is called the kernel function-based LDA method. ∅ is used to represent the nonlinear 
function mapping X to F, that is ∅：X → F. ߱௜ refers to the ݅ − th class to be classified. Then, the 
input sample ݔଵ, ⋯,ଶݔ , ேݔ  can be represented as ∅(ݔଵ), ⋯,(ଶݔ)∅ ,  in the feature space. The (ேݔ)∅
mean value of the samples is: ݉௜∅ = 1ܰ௜෍ ௫∈ఠ೔(ݔ)∅  (12)

The within-class scatter matrix ௜ܵ∅, the total within-class scatter matrix ܵ௪∅, and the inter-class 
scatter matrix ܵ௕∅ can be expressed in the feature space as: 
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௜ܵ∅ = ෍ ൫∅(ݔ) − ݉௜∅൯൫∅(ݔ) − ݉௜∅൯்௫∈ఠ೔  ܵ௪∅ = ଵܵ∅ + ܵଶ∅ ܵ௕∅ = ൫݉ଵ∅ − ݉ଶ∅൯൫݉ଵ∅ −݉ଶ∅൯். 

(13)

The Fisher discriminant function in F is: ܬி(ݓ) = ௪೅ௌ್∅௪௪೅ௌೢ∅௪. (14)

Finally, the projection of the final feature space ∅ on w can be transformed into the projection 
of ݇(∙,  .ߙ on the direction (ݔ

ݕ = ்ݓ ∙ ∅൫ ௝ܺ൯ =෍ߙ௜݇( ௜ܺ, ௝ܺ)ே
௜ୀଵ  (15)

By combining Equations (13) and (14), the discriminant function can be written as: ܬி(ߙ) = ߙ்ܰߙߙܯ்ߙ  (16)

where 	ܯ = ଵܯ) ଵܯ)(ଶܯ− ்(ଶܯ− , ܰ ∶	= ∑ ܫ)௝ܭ − 1ேೕ)ܭ௝்௝ୀଵ,ଶ , ௠௡(௝ܭ)	 ≔ ,௠ݔ)݇ ,(௡ݔ ௡ݔ) ∈ ௝߱) , and 1ே௝ is a matrix whose all items are 1/ ௝ܰ. 
In the choice of kernel function, the Gauss kernel function is used in this paper as the kernel 

function because of its good function approximation performance. 

2.4.2. SVM Classifier Based on Grid Search Optimization 

The SVM is proposed for small sample problems, and it has great advantages for nonlinear and 
high-dimensional pattern recognition. Besides, it has good ability to solve global optimization 
problems and will not fall into the local minimum [50]. SVM is a binary classification model, and the 
learning strategy is to find the optimal hyper-plane as the classification boundary to maximize the 
interval. 

For the selection of SVM kernel functions, the commonly used functions are linear kernel, 
polynomial kernel, radial basis kernel, and sigmoid kernel. Many studies have shown that the Radial 
Basis Function (RBF) has better performance, and the linear kernel function is essentially a special 
case of the RBF. Compared with the polynomial kernel, RBF requires fewer parameters, and the 
number of the kernel function’s parameters directly affects the complexity of the function. As for the 
sigmoid kernel, it has similar performance to the RBF for some parameters. In the case that the feature 
dimension is not large, the RBF is selected in this paper. Meanwhile, since SVM is a binary 
classification model and multiple SVMs need to be set for multi-classification problems, we use the 
“one to other” approach in this paper. 

The learning strategy of SVM is to find the optimal hyper-plane as the classification boundary 
to maximize the interval. The classification hyper-plane of samples is expressed as ݂(ݔ) = ݔ்ݓ + ܾ =0, and the interval of the hyper-plane is defined as ߜ = ݓ)௜ݕ ∙ ݔ + ܾ) − 1 ≥ 0.	 The maximum interval 
is an important concept of SVM. It is difficult to achieve complete data separation because of the 
influence of noise in reality. Over-fitting occurs easily when mapping the data to a very high 
dimension by a strong kernel function. Therefore, the system is expected to have a certain fault 
tolerance for noise and outliers, ensuring the robustness of the system. If the slack variable is added 
at this time, the original constraint equation can be changed to: ݕ௜(ݓ ∙ ௜ݔ + ܾ) ≥ 1 − ,௜ߞ ௜ߞ) ≥ 0). (17)

The constraint allows some points to appear at intervals smaller than 1, that is, outliers. The 
accurate classification will lead to some losses when discarding these outliers, but a bigger 
classification interval will be acquired, that is, more robust classification performance. Adding the 
loss to the target function, that is, penalty factor C, then the optimization problem can be written as: 
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൞ min 12 ଶ‖ݓ‖ + ௜௡ߞ෍ܥ
௜ݏ. ݐ ݓ)௜ݕ ∙ ௜ݔ + ܾ) ≥ 1 − ௜ (18)ߞ

The penalty factor C of the support vector machine (SVM) and the parameter g of the kernel 
function, that is, the variance in the radial basis, need to be selected appropriately. The basic method 
of selecting C and g is to search for the parameters through a grid, that is, to find the optimal solution 
in a certain sense by searching and comparing one by one, which is easy to implement. Grid search 
is to let C and g select discrete values in a certain range. Test results will be acquired taking the 
training set as input one by one. Final parameters will be determined according to the best result. In 
the search process, if multiple sets of results correspond to the highest recognition rate, the minimum 
C and the first set of g are selected because over-fitting occurs easily when C is too large. 

In this paper, the method of two-level grid search is chosen. The step of each grid is gradually 
reduced. The first-level grid step is (3, 3). The best combination of C and g (Cbest1, gbest1) will be 
determined after the first level-grid search. Then, exact parameters will be selected with a smaller 
step. Experiments show that it is most appropriate that the step of C and g is set as (0.3, 0.3). At this 
point, the recognition rate will not be significantly improved with a smaller grid step, but the search 
time will increase. When the step increases, the time reduces, but the recognition rate decreases 
significantly. Therefore, the second-level grid is set at the size of 3 × 3 based on the first best grid point 
(Cbest1, gbest1) as the center, and the search step is set at (0.3, 0.3) for an accurate search. 

When testing the training set, we adopt k-fold cross-validation in this paper to make the result 
more convincing. In addition, it is inevitable that there will be signal errors due to muscle jitter or 
errors of the system’s discrimination in the recognition results. In order to improve the accuracy and 
stability of the system, the Majority Vote (MV) algorithm is used to make decisions on the recognition 
results [51]. 

3. Results and Discussion 

3.1. Analysis of EMG Signal Onset Detection 

In order to verify the effectiveness of the proposed movement onset detection method, the 
moving average method and the Teager–Kaiser energy method were used to compare the detection 
results. The start and end points of the original signal were confirmed by observation as shown in 
Figure 3. 

 
Figure 3. Marks of start and end points of original signals. 

The three methods were employed for movement onset detection, respectively, and the results 
are shown in Table 1. The misjudged points are marked in bold with a short underline. 

It can be seen that the moving average method has some mistakes in movement segment 
detection, but the two error points happen to be between the previous action start point and the next 
end point, thus the final segmentation will not be affected. The Teager–Kaiser operator can also get 
the start and end of the signal, but the resulting active segment will be shortened compared to the 
two other methods. The proposed power spectral correlation coefficient method can accurately 
determine the starting and ending points of the movement segment, and the signal length will not be 
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lost. Besides, there is no misjudgment point for the signal, which indicates a good fault tolerance. In 
addition, the other signal segments are also processed as above, and the results also show that the 
proposed method can achieve good movement segment detection. 

Table 1. Results of three methods for signal onset detection. 

Methods Start Point (ms) End Point (ms) 
Moving average Method 3800; 4800; 6100; 1000; 13,600; 13,900; 17,700 5100; 7200; 11,000; 14,900; 
Teager–Kaiser operator 3890; 5991; 9863; 13,735; 17,530 4451; 6475; 10,512; 14,274; 18,212 

Power spectral 
correlation coefficient 

3700; 5900; 9900; 13,600; 17,600 5000; 7200; 10,900; 15,000 

3.2. Analysis of Signal De-Noising Results 

Error bits often occur along with the signal transmission. As shown in Figure 4, there are a lot of 
glitches or continuous segments of noise existed in the original accelerometer signals. 

 
Figure 4. Original accelerometer signals when walking upstairs. 

The commonly used median filtering method was used to deal with the noise, and the 
neighborhood window was set as ݊݅ݓ = 9 . Then, the glitch noise could almost be filtered out 
completely, and the results are shown in Figure 5. However, many details of the accelerometer signals 
were also filtered out, resulting in a lack of information. 

 
Figure 5. De-noising results of median filtering when ݊݅ݓ = 9. 

Then, we adopted the curve fitting method based on median filtering proposed in this paper to 
deal with the noise, and set the neighborhood window as ݊݅ݓ = 5 through experiment contrasts, 
resulting in better performance. The results are shown in Figure 6. 

 
Figure 6. De-noising results of curve fitting method based on median filtering. 
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From Figures 5 and 6, we can see that, compared with the traditional median filtering method, 
adding the curve fitting process can remove the glitch noise while preserving more details of the 
original signal. 

3.3. Spatial Distribution of Features 

In this paper, four-channel EMG signals were collected, so the time-domain feature dimension 
is 4, the number of wavelet coefficients is 4 ൈ 5 =  and the DTW distance feature dimension of ,ܦ20
the accelerometer signals is equal to the number of lower limb motion classes, 5. In order to visually 
observe the spatial distribution of these features in two-dimensional space, the PCA method was 
used to reduce the dimension of these features to two dimensions. 

After analyzing the features of accelerometer signal and sEMG, the two signal sources were 
merged, and the feature can be represented as F = ሾFୱ୉୑ୋ;	Fୟୡୡሿ . Fୱ୉୑ୋ  and Fୟୡୡ  represent the 
features of sEMG and accelerometer signals respectively, and the two features are synchronous. 

Figures 7–9 show the spatial distribution of features from healthy subjects. Figure 10 shows the 
spatial distribution of an amputated volunteer. (ds, ups, walk, up, sit represent walking downstairs, 
walking upstairs, walking forward, standing and squatting, respectively.) 

From the spatial distribution in Figures 7–10, we can see that these features all have some degree 
of separation. The separating degree of the accelerometer signal features of the five subjects is obvious, 
which proves the effectiveness of the proposed feature extraction method based on DTW distance. 
For the healthy subjects, the separating degree of the time-domain union feature is greater than that 
of a single time-domain feature, and the separating degree of the principal components of the wavelet 
coefficients is also significant. For the amputated subject, there is a certain degree of separation 
between the various features, in which the separating degree of the accelerometer signal features is 
most obvious. For this judgment, the method proposed in this paper has the prospect of applying to 
people with limb disabilities. 

 
Figure 7. Spatial distribution of accelerometer signal features (ds, ups, walk, up, sit represent walking 
downstairs, walking upstairs, walking forward, standing and squatting, respectively). 

 
Figure 8. Spatial distribution of surface electromyograghic (sEMG) time-domain features. 
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Figure 9. Spatial distribution of sEMG wavelet principal component analysis (WT_PCA) features. 

 
Figure 10. Spatial distribution of features from Subject 5 (amputated volunteer). 

In addition, from Figures 7–10, we can find that there is a lot of overlapping between the various 
features, so it is difficult to obtain a satisfactory recognition effect by classifying features in linear 
space. 

3.4. Analysis of Classification and Recognition Results 

Firstly, the original LDA classifier and the Gaussian kernel-based LDA classifier are respectively 
used to classify different features in this study. For the time-domain features, multiple features are 
selected to be combined in much of the literature, and it can be seen from Figure 8 that the separating 
degree of the time-domain union feature is greater than that of a single time-domain feature. 
Therefore, only the results of the time-domain union feature are counted in the table. In this paper, 
the k-fold verification method is used to verify the classification effect of the used classifier. Here, k = 
3, and the mean value of the recognition accuracy is calculated as the final recognition result for each 
subject. The classification results of the two kinds of LDA classifiers are shown in Tables 2 and 3, 
where Subjects 1–4 are healthy subjects, and Subject 5 is the amputated subject. 

Table 2. Classification results of original linear discriminant analysis (LDA) (%). SD: standard 
deviation; ACC: accelerometer; TD: time-domain; WT: wavelet transform. 

Subjects ACC TD WT 
1 81.4 67.2 70.9 
2 77.8 57.6 68.2 
3 73.1 54.1 60.2 
4 75.3 59.3 63.3 
5 64.9 75.1 61.2 

Mean ± SD 74.5 ± 6.2 62.6 ± 8.4 64.8 ± 4.6 
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Table 3. Classification results of Gaussian kernel-based LDA (%). 

Subjects ACC TD WT 
1 91.2 79.7 81.3 
2 82.6 84.8 75.6 
3 87.6 65.6 67.7 
4 85.5 70.2 78.5 
5 86.4 89.2 79.3 

Mean ± SD 86.6 ± 3.1 77.9 ± 9.9 76.5 ± 5.3 

It can be seen from Tables 2 and 3 that the matching distance feature of the accelerometer signals 
based on the DTW algorithm proposed in this paper has the best performance compared to the time-
domain union feature and wavelet feature of the sEMG signals. Meanwhile, because of the variation 
of the amplitude of sEMG signals in the movements of lower limbs, the recognition accuracy is low 
when using original LDA to classify the commonly used sEMG features, as little as 50–60% for 
healthy subjects, which further confirms that it is difficult to obtain good classification results from 
these features in the linear space, and it is necessary to classify the features in nonlinear space. 
Comparing Table 2 and Table 3, we can see that the classification accuracy of the Gaussian kernel-
based LDA is improved by the nonlinear mapping of feature space, and the effect is obviously better 
than that of the original LDA. 

The SVM is proposed for small sample problems, and it has great advantages for nonlinear and 
high-dimensional pattern recognition. As a result, the SVM classifier is also adopted to classify the 
different motion modes, where the kernel function is selected as the RBF kernel function, and the 
parameters C and g are selected by using the grid search optimization method discussed in Section 
2.4.2. The classification results of the five subjects with SVM are shown in Table 4. 

Table 4. Classification results using the support vector machine (SVM) classifier (%). 

Subjects ACC TD WT 
1 93.7 87.3 86.2 
2 90.5 86.5 80.9 
3 87.6 67.3 71.7 
4 90.5 72.3 74.2 
5 92.4 91.9 82.3 

Mean ± SD 90.9 ± 2.3 81.1 ± 10.6 79.1 ± 6.0 

It can be seen from Tables 3 and 4 that, for both the Gaussian kernel-based LDA classifier and 
the SVM classifier, the matching distance feature of accelerometer signals based on the DTW 
algorithm proposed in this paper has the best performance among these single features. Meanwhile, 
SVM has a higher accuracy and better stability of recognition results than the Gaussian kernel-based 
LDA for these single features. 

However, the above motion recognition result is only up to 90% (by the accelerometer feature), 
which cannot meet the needs of the application. Additionally, the features of accelerometer signals 
and sEMG signals can be combined to achieve more satisfactory classification results (above 95%), as 
shown in Table 5. For the single features and the fused features, the classification results of the 
Gaussian kernel-based LDA and SVM are shown in Figures 11 and 12, respectively. 

Table 5. Classification results of fused features of sEMG and accelerometer signals (%). 

Subjects 
Gaussian Kernel-Based LDA SVM 

TD + ACC WT + ACC TD + ACC WT + ACC 
1 96.2 97.7 98.4 99.8 
2 94.5 92.4 96.0 95.5 
3 89.4 94.9 94.9 98.1 
4 93.2 97.7 95.1 99.0 
5 97.4 95.3 93.6 97.9 

Mean ± SD 94.1 ± 3.1 95.6 ± 2.2 95.6 ± 1.8 98.1 ± 1.6 
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Figure 11. Classification results of the Gaussian kernel-based LDA with five different features. 

 
Figure 12. Classification results of SVM with five different features. 

It can be seen from the above tables and figures that for the lower limb motion recognition of the 
five subjects, the recognition effect with fused features of sEMG and accelerometer signals is better 
than the recognition effect with sEMG signals or accelerometer signals alone. In addition, for the 
healthy subjects, the wavelet feature of sEMG signals combined with an accelerometer feature will 
achieve a better recognition effect. For the amputated subject, a better recognition effect can be 
obtained by a Gaussian kernel-based LDA with the fused features of an sEMG time-domain union 
feature and an accelerometer feature, by SVM classifier; however, the results with the fused features 
of an sEMG wavelet feature and an accelerometer feature seem to be better. In general, the recognition 
effect of the SVM classifier is better than that of Gaussian kernel-based classifier, and the recognition 
effect with fused features is much better than that with an sEMG feature or an accelerometer feature 
alone. 

4. Conclusions 

In this paper, sEMG signals and accelerometer signals are fused to recognize different motion 
patterns of lower limbs. A median filtering-based curve fitting method is proposed to remove 
accelerometer noises, and an sEMG power spectral correlation coefficient method is proposed for 
movement onset detection, which are both more effective than current methods. Then, we mainly 
analyze the feature extraction methods for the sEMG and accelerometer signals, and introduce the 
extraction methods of time-domain features and wavelet transform coefficients commonly used for 
sEMG signals. Besides, the matching distance feature based on the DTW algorithm is proposed 
according to the periodic variational regularity of accelerometer signals. 

At last, a Gaussian kernel-based LDA classifier and an SVM classifier are used for classification. 
The results show that the features of the accelerometer signals based on DTW matching distance have 
the biggest degree of separation, and the recognition effect with fused features of sEMG and 
accelerometer signals is much better than the recognition effect with the features of a single signal 

Sub1 Sub2 Sub3 Sub4 Sub5
50

55

60

65

70

75

80

85

90

95

100

C
la

ss
if

ic
at

io
n 

A
cc

ur
ac

y 
of

 L
D

A
 (

%
)

 

 
ACC
TD
WT
TD+ACC
WT+ACC

Sub1 Sub2 Sub3 Sub4 Sub5
50

55

60

65

70

75

80

85

90

95

100

C
la

ss
if

ic
at

io
n 

A
cc

ur
ac

y 
of

 S
V

M
 (

%
)

 

 
ACC
TD
WT
TD+ACC
WT+ACC



Symmetry 2017, 9, 147  16 of 18 

 

source. In addition, compared with Gaussian kernel-based LDA, SVM has the higher recognition rate 
and more stable performance in experiment. Among them, the recognition rate of SVM with the fused 
features of a wavelet coefficients feature and an accelerometer signal feature is the highest, between 
the range of 95.5% to 99.8% for different subjects. The average level of the recognition rate is as high 
as 98.1 ± 1.6(%), which is more excellent and more stable compared to the current state-of-art (about 
95%). In addition, a good recognition effect and real-time performance can be obtained together by 
using a sliding window analysis in signal processing, making our approach more advantageous in 
the real-time control of intelligent devices. 

However, the signal acquisition of this study is mainly from healthy subjects, and the study has 
not been applied to the real-time control of intelligent prosthesis yet. In a follow-up study, we will 
carry out experiments on more subjects with limb disabilities by cooperating with a rehabilitation 
hospital, so that our research has better application prospects in the intelligent control of prosthesis. 
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