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Abstract: As a significant business activity, merger and acquisition (M&A) generally means
transactions in which the ownership of companies, other business organizations or their operating
units are transferred or combined. In a typical M&A procedure, M&A target selection is an important
issue that tends to exert an increasingly significant impact on different business areas. Although some
research works based on fuzzy methods have been explored on this issue, they can only deal
with incomplete and uncertain information, but not inconsistent and indeterminate information
that exists universally in the decision making process. Additionally, it is advantageous to solve
M&A problems under the group decision making context. In order to handle these difficulties in
M&A target selection background, we introduce a novel rough set model by combining interval
neutrosophic sets (INSs) with multigranulation rough sets over two universes, called an interval
neutrosophic (IN) multigranulation rough set over two universes. Then, we discuss the definition
and some fundamental properties of the proposed model. Finally, we establish decision making rules
and computing approaches for the proposed model in M&A target selection background, and the
effectiveness of the decision making approach is demonstrated by an illustrative case analysis.

Keywords: merger and acquisition (M&A) target selection; group decision making; interval
neutrosophic sets; multigranulation rough sets over two universes

1. Introduction

In the era of business intelligence, the development of computational intelligence approaches
has far-reaching effects on business organizations’ daily activities, including project management,
human resource allocation optimization, merger and acquisition (M&A), and so on. As a key business
activity in many organizations, M&A requires business administrators to make effective decisions
by analyzing massive business data. Additionally, in M&A, one of the most important elements that
determines the success ratio of business organizations is M&A target selection [1]. To deal with this
issue, some efforts have been made through combining fuzzy approaches with the classical M&A
research [2–5]. On the basis of the fuzzy set (FS) theory [6], fuzzy approaches have been widely used
in realistic decision making problems. However, there is much uncertain information induced from
various vague sources, and this often leads to some limitations when analyzing information systems
through using FSs. Consequently, many new concepts of high-order FSs were established over the
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past decades. Among them, as a typical representative of generalized FSs, intuitionistic fuzzy sets
(IFSs) [7] are characterized by a membership degree and a non-membership degree that describe
whether one element belongs to a certain set or not, which provide a flexible framework to handle
imprecise data, both complete and incomplete in nature. However, IFSs cannot cope with all kinds of
uncertainties perfectly, such as problems including inconsistent and indeterminate information. Hence,
it is necessary to develop some new theories.

Smarandache [8,9] presented the concept of neutrosophic logic and neutrosophic sets (NSs) from
philosophical standpoints. Additionally, an NS is characterized by each element of the universe
owning a degree of truth, indeterminacy and falsity, respectively. However, NSs can only be applied
in philosophical problems. In order to utilize NSs easily in real-world situations, Wang et al. [10]
constructed the definition and some operational laws of interval neutrosophic sets (INSs). Ever since
the establishment of INSs, many scholars have studied INSs from different viewpoints and obtained an
increasing number of academic achievements [11–21]. In light of the above, M&A target selection using
IN information could handle uncertain situations and indeterminate information well and provide
corporate acquirers with more exemplary and flexible access to convey their understandings about the
M&A knowledge base.

As a typical model in the granular computing paradigm [22], the multigranulation rough set
model [23,24] aims to analyze complicated problems from multiple views and levels, and it is seen as an
efficient way to integrate and analyze information in group decision making procedures. Specifically,
the advantages of utilizing multigranulation rough sets to solve group decision making problems can
be summed up as follows:

1. In group decision making procedures, according to actual requirements of realistic problems,
multigranulation rough set model-based computations consider multiple binary relations at the
same time, which could increase the efficiency of the whole knowledge discovery process for
multi-source information systems.

2. In light of different risk attitudes, the multigranulation rough set model can be divided into two
parts, i.e., optimistic multigranulation rough sets [23] based on the “seeking common ground
while reserving differences” strategy and pessimistic multigranulation rough sets [24] based on
the “seeking common ground while eliminating differences” strategy. Thus, the multigranulation
rough set model is suitable for solving risk-based group decision making problems.

Additionally, the classical rough set [25] is usually expressed and computed based on a single
universe; this may lead to a limitation when describing group decision making information that is
made up of multiple aspects. Through extending a single universe to two universes, it is beneficial to
express a complicated group decision making knowledge base. Hence, Pei and Xu [26] studied the
concept of rough sets over two universes systematically. Since then, several scholars have researched
rough sets over two universes widely according to numerous practical requirements [27–33]. Recently,
in order to expand the application scopes of rough sets over two universes from the ideas of granular
computing, Sun and Ma [34] introduced multigranulation rough sets over two universes, which could
not only describe real-life decision making information effectively and reasonably through different
universes of discourse, but also integrate each expert’s opinion to form an ultimate conclusion by
aggregating multiple binary relations. Therefore, multigranulation rough sets over two universes
constitute another approach to aid group decision making [35–40].

In this article, in order to handle the problems of IN data analysis and group decision making,
it is necessary to introduce IN multigranulation rough sets over two universes through fusing
multigranulation rough sets over two universes with INSs; both the general definition and some main
properties of the proposed model are discussed. Then, we construct a new decision making method
for M&A target selection problems by utilizing the proposed rough set model. Moreover, we give an
illustrative case to interpret fundamental steps and a practical application to M&A target selection.

The rest of the article is structured as follows. In Section 2, we briefly introduce some concepts
such as NSs, INSs and IN rough sets over two universes. Section 3 introduces IN multigranulation
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rough sets over two universes and some related properties. In Section 4, we establish decision making
rules and an algorithm for M&A target selection problems. In Section 5, we give the steps of the
proposed decision making approach by a case study, and conclusions and future research directions
are illustrated in Section 6.

2. Preliminaries

In this section, we first review some fundamental concepts such as NSs, INSs and their properties.
Next, we develop the definition of IN rough sets over two universes.

2.1. Neutrosophic Sets

NSs were defined by Smarandache [8] from philosophical standpoints. According to [8],
NSs derive their origin from neutrosophy. In what follows, we review the concept of NSs.

Definition 1. Let U be the universe of discourse, then an NS A can be expressed as the form A =

{〈x, µA (x) , νA (x) , ωA (x)〉 |x ∈ U }, where the functions µA (x), νA (x) and ωA (x) denote the degree
of membership, the degree of indeterminacy and the degree of non-membership of the element x ∈ U to the set A.
Additionally, the functions µA (x), νA (x) and ωA (x) are real standard or nonstandard subsets of ]0−, 1+[,
that is µA (x) : U → ]0−, 1+[, νA (x) : U → ]0−, 1+[ and ωA (x) : U → ]0−, 1+[. There is no restriction on
the sum of µA (x), νA (x) and ωA (x). Thus, 0− ≤ sup µA (x) + sup νA (x) + sup ωA (x) ≤ 3+ [8].

2.2. Interval Neutrosophic Sets

Since it is hard to utilize NSs in various practical situations, Wang et al. [10] developed the concept
of INSs, which can be regarded as a subclass of NSs and a powerful structure in reflecting an expert’s
inconsistent and indeterminate preferences in real-life decision making procedures. In what follows,
we present the concept of INSs.

Definition 2. [10] Let U be the universe of discourse; an INS A is characterized by a truth-membership
function µA (x), an indeterminacy-membership function νA (x) and a falsity-membership function ωA (x).
Then, an INS A can be denoted as the following mathematical symbol:

A =
{〈

x,
[
µL

A (x) , µU
A (x)

]
,
[
νL

A (x) , νU
A (x)

]
,
[
ωL

A (x) , ωU
A (x)

]〉
|x ∈ U

}
,

where
[
µL

A (x) , µU
A (x)

]
,
[
νL

A (x) , νU
A (x)

]
,
[
ωL

A (x) , ωU
A (x)

]
⊆ [0, 1] for all x ∈ U to the set A. Thus,

the sum of µU
A (x), νU

A (x) and ωU
A (x) satisfies the condition: 0 ≤ µU

A (x) + νU
A (x) + ωU

A (x) ≤ 3.

Suppose that U is the universe of discourse, then the set of all INSs on U is represented by IN (U).
Moreover, ∀A ∈ IN (U). Based on the above definition, Wang et al. [10] defined the following
operational laws on INSs.

Definition 3. Let U be the universe of discourse, ∀A, B ∈ IN (U), then [10]:

1. the complement of A is denoted by Ac such that ∀x ∈ U,
Ac =

{〈
x,
[
ωL

A (x) , ωU
A (x)

]
,
[
1− νU

A (x) , 1− νL
A (x)

]
,
[
µL

A (x) , µU
A (x)

]〉
|x ∈ U

}
;

2. the intersection of A and B is denoted by A ∩ B such that ∀x ∈ U,
A ∩ B =

{〈
x,
[
min

(
µL

A (x) , µL
B (x)

)
, min

(
µU

A (x) , µU
B (x)

)]
,
[
max

(
νL

A (x) , νL
B (x)

)
, max

(
νU

A (x) , νU
B (x)

)]
,[

max
(
ωL

A (x) , ωL
B (x)

)
, max

(
ωU

A (x) , ωU
B (x)

)]〉
| x ∈ U} ;

3. the union of A and B is denoted by A ∪ B such that ∀x ∈ U,
A ∪ B =

{〈
x,
[
max

(
µL

A (x) , µL
B (x)

)
, max

(
µU

A (x) , µU
B (x)

)]
,
[
min

(
νL

A (x) , νL
B (x)

)
, min

(
νU

A (x) , νU
B (x)

)]
,[

min
(
ωL

A (x) , ωL
B (x)

)
, min

(
ωU

A (x) , ωU
B (x)

)]〉
| x ∈ U} ;

4. inclusion: A ⊆ B if and only if µL
A (x) ≤ µL

B (x), µU
A (x) ≤ µU

B (x), νL
A (x) ≥ νL

B (x), νU
A (x) ≥ νU

B (x),
ωL

A (x) ≥ ωL
B (x) and ωU

A (x) ≥ ωU
B (x) for any x in U;
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5. equality: A = B if and only if A ⊆ B and B ⊆ A.

Next, we introduce some fundamental properties of the above operations, which state some
important algebraic properties of the operations defined on INSs.

Theorem 1. Let U be the universe of discourse; suppose that A, B and C are three INSs. Then, the followings
are true [10]:

1. Double negation law: (Ac)c = A;
2. De Morgan’s laws: (A ∪ B)c = Ac ∩ Bc, (A ∩ B)c = Ac ∪ Bc;
3. Commutativity: A ∪ B = B ∪ A, A ∩ B = B ∩ A;
4. Associativity: A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C;
5. Distributivity: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

To compare the magnitude of different interval neutrosophic numbers (INNs),
Zhang et al. [15] introduced the following comparison laws.

Definition 4. Let x =
〈[

µL
A (x) , µU

A (x)
]

,
[
νL

A (x) , νU
A (x)

]
,
[
ωL

A (x) , ωU
A (x)

]〉
be an INN; the score

function of x is defined as follows [15]:

s (x) =
[
µL

A (x) + 1− νU
A (x) + 1−ωU

A (x) , µU
A (x) + 1− νL

A (x) + 1−ωL
A (x)

]
.

It is noted that the score value is a significant index in ranking INNs. For an INN x,
the bigger truth-membership µA (x) is, the less indeterminacy-membership νA (x) is, and the less
falsity-membership ωA (x) is, the greater INN x is.

2.3. Interval Neutrosophic Rough Sets over Two Universes

In this subsection, we introduce IN relations over two universes firstly.

Definition 5. Let U, V be two non-empty and finite universes of discourse; an IN relation R from U to V can
be denoted as the following form:

R =
{〈

(x, y) ,
[
µL

R (x, y) , µU
R (x, y)

]
,
[
νL

R (x, y) , νU
R (x, y)

]
,
[
ωL

R (x, y) , ωU
R (x, y)

]〉
|(x, y) ∈ U ×V

}
,

where
[
µL

A (x) , µU
A (x)

]
,
[
νL

A (x) , νU
A (x)

]
,
[
ωL

A (x) , ωU
A (x)

]
⊆ [0, 1], denoting the truth-membership, the

indeterminacy-membership and the falsity-membership for all (x, y) ∈ U ×V, respectively. Furthermore, the
family of all IN relations on U ×V is represented by INR (U ×V).

According to IN relations over two universes, we present the definition of IN rough sets over two
universes below.

Definition 6. Let U, V be two non-empty and finite universes of discourse, and R ∈ INR (U ×V), the pair
(U, V, R) is called an IN approximation space over two universes. For any A ∈ IN (V), the IN rough lower
and upper approximations of A with respect to (U, V, R), denoted by R (A) and R (A), are defined as follows:

R (A) =
{〈

x,
[
µL

R(A) (x) , µU
R(A) (x)

]
,
[
νL

R(A) (x) , νU
R(A) (x)

]
,
[
ωL

R(A) (x) , ωU
R(A) (x)

]〉
|x ∈ U

}
,

R (A) =
{〈

x,
[
µL

R(A)
(x) , µU

R(A)
(x)
]

,
[
νL

R(A)
(x) , νU

R(A)
(x)
]

,
[
ωL

R(A)
(x) , ωU

R(A)
(x)
]〉
|x ∈ U

}
,
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where

µL
R(A) (x) = ∧y∈V

{
ωL

R (x, y) ∨ µL
A (y)

}
, µU

R(A) (x) = ∧y∈V
{

ωU
R (x, y) ∨ µU

A (y)
}

,

νL
R(A) (x) = ∨y∈V

{(
1− νU

R (x, y)
)
∧ νL

A (y)
}

, νU
R(A) (x) = ∨y∈V

{(
1− νL

R (x, y)
)
∧ νU

A (y)
}

,

ωL
R(A) (x) = ∨y∈V

{
µL

R (x, y) ∧ωL
A (y)

}
, ωU

R(A) (x) = ∨y∈V
{

µU
R (x, y) ∧ωU

A (y)
}

,

µL
R(A)

(x) = ∨y∈V
{

µL
R (x, y) ∧ µL

A (y)
}

, µU
R(A)

(x) = ∨y∈V
{

µU
R (x, y) ∧ µU

A (y)
}

,

νL
R(A)

(x) = ∧y∈V
{

νL
R (x, y) ∨ νL

A (y)
}

, νU
R(A)

(x) = ∧y∈V
{

νU
R (x, y) ∨ νU

A (y)
}

,

ωL
R(A)

(x) = ∧y∈V
{

ωL
R (x, y) ∨ωL

A (y)
}

, ωU
R(A)

(x) = ∧y∈V
{

ωU
R (x, y) ∨ωU

A (y)
}

.

The pair
(

R (A) , R (A)
)

is called an IN rough set over two universes of A.

3. Interval Neutrosophic Multigranulation Rough Sets over Two Universes

In this section, we present IN relations over two universes from a single granulation to multiple
granulations, both the definition and properties of IN multigranulation rough sets over two universes
will be elaborated on.

3.1. Optimistic in Multigranulation Rough Sets over Two Universes

Definition 7. Let U, V be two non-empty and finite universes of discourse and Ri ∈
INR (U ×V) (i = 1, 2, . . . , m) be m IN relations over U × V; the pair (U, V, Ri) is called an IN
multigranulation approximation space over two universes. For any A ∈ IN (V), the optimistic IN

multigranulation rough lower and upper approximations of A with respect to (U, V, Ri), denoted by
m
∑

i=1
Ri

O
(A)

and
m
∑

i=1
Ri

O

(A), are defined as follows:

m

∑
i=1

Ri

O

(A) =


〈

x,

µL
m
∑

i=1
Ri

O
(A)

(x) , µU
m
∑

i=1
Ri

O
(A)

(x)

 ,

νL
m
∑

i=1
Ri

O
(A)

(x) , νU
m
∑

i=1
Ri

O
(A)

(x)

 ,

ωL
m
∑

i=1
Ri

O
(A)

(x) , ωU
m
∑

i=1
Ri

O
(A)

(x)

〉 |x ∈ U

 ,

m

∑
i=1

Ri

O

(A) =


〈

x,

µL
m
∑

i=1
Ri

O

(A)

(x) , µU
m
∑

i=1
Ri

O

(A)

(x)

 ,

νL
m
∑

i=1
Ri

O

(A)

(x) , νU
m
∑

i=1
Ri

O

(A)

(x)

 ,

ωL
m
∑

i=1
Ri

O

(A)

(x) , ωU
m
∑

i=1
Ri

O

(A)

(x)

〉 |x ∈ U

 ,
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where:

µL
m
∑

i=1
Ri

O
(A)

(x) =
m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A (y)
}

, µU
m
∑

i=1
Ri

O
(A)

(x) =
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A (y)
}

,

νL
m
∑

i=1
Ri

O
(A)

(x) =
m
∧

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A (y)
}

,

νU
m
∑

i=1
Ri

O
(A)

(x) =
m
∧

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A (y)
}

,

ωL
m
∑

i=1
Ri

O
(A)

(x) =
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A (y)
}

, ωU
m
∑

i=1
Ri

O
(A)

(x) =
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A (y)
}

,

µL
m
∑

i=1
Ri

O

(A)

(x) =
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ µL

A (y)
}

, µU
m
∑

i=1
Ri

O

(A)

(x) =
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ µU

A (y)
}

,

νL
m
∑

i=1
Ri

O

(A)

(x) =
m
∨

i=1
∧y∈V

{
νL

Ri
(x, y) ∨ νL

A (y)
}

, νU
m
∑

i=1
Ri

O

(A)

(x) =
m
∨

i=1
∧y∈V

{
νU

Ri
(x, y) ∨ νU

A (y)
}

,

ωL
m
∑

i=1
Ri

O

(A)

(x) =
m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ωL

A (y)
}

, ωU
m
∑

i=1
Ri

O

(A)

(x) =
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ωU

A (y)
}

.

The pair

(
m
∑

i=1
Ri

O
(A) ,

m
∑

i=1
Ri

O

(A)

)
is called an optimistic IN multigranulation rough set over two

universes of A.

Theorem 2. Let U, V be two non-empty and finite universes of discourse and Ri ∈
INR (U ×V) (i = 1, 2, . . . , m) be m IN relations over U ×V. Then, for any A, A′ ∈ IN (V), the following
properties hold:

1.
m
∑

i=1
Ri

O
(Ac) =

(
m
∑

i=1
Ri

O

(A)

)c

,

m
∑

i=1
Ri

O

(Ac) =

(
m
∑

i=1
Ri

O
(A)

)c

;

2. A ⊆ A′ ⇒
m
∑

i=1
Ri

O
(A) ⊆

m
∑

i=1
Ri

O
(A′),

A ⊆ A′ ⇒
m
∑

i=1
Ri

O

(A) ⊆
m
∑

i=1
Ri

O

(A′);

3.
m
∑

i=1
Ri

O
(A ∩ A′) =

m
∑

i=1
Ri

O
(A) ∩

m
∑

i=1
Ri

O
(A′),

m
∑

i=1
Ri

O

(A ∪ A′) =
m
∑

i=1
Ri

O

(A) ∪
m
∑

i=1
Ri

O

(A′);

4.
m
∑

i=1
Ri

O
(A ∪ A′) ⊇

m
∑

i=1
Ri

O
(A) ∪

m
∑

i=1
Ri

O
(A′),

m
∑

i=1
Ri

O

(A ∩ A′) ⊆
m
∑

i=1
Ri

O

(A) ∩
m
∑

i=1
Ri

O

(A′).

Proof.

1. For all x ∈ U, we have:
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m
∑

i=1
Ri

O
(Ac) ={〈

x,
[

m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

Ac (y)
}

,
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

Ac (y)
}]

,[
m
∧

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

Ac (y)
}

,
m
∧

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

Ac (y)
}]

,[
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

Ac (y)
}

,
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

Ac (y)
}]〉

| x ∈ U}

=

{〈
x,
[

m
∨

i=1
∧y∈V

(
∼
{

µL
Ri
(x, y) ∧ µL

A (y)
})

,
m
∨

i=1
∧y∈V

(
∼
{

µU
Ri
(x, y) ∧ µU

A (y)
})]

,[
m
∧

i=1
∨y∈V

(
∼
{

νL
Ri
(x, y) ∨ νL

A (y)
})

,
m
∧

i=1
∨y∈V

(
∼
{

νU
Ri
(x, y) ∨ νU

A (y)
})]

,[
m
∧

i=1
∨y∈V

(
∼
{

ωL
Ri
(x, y) ∨ωL

A (y)
})

,
m
∧

i=1
∨y∈V

(
∼
{

ωU
Ri
(x, y) ∨ωU

A (y)
})]〉

| x ∈ U}

=

{〈
x,
[
∼
(

m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ µL

A (y)
})

,∼
(

m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ µU

A (y)
})]

,[
∼
(

m
∨

i=1
∧y∈V

{
νL

Ri
(x, y) ∨ νL

A (y)
})

,∼
(

m
∨

i=1
∧y∈V

{
νU

Ri
(x, y) ∨ νU

A (y)
})]

,[
∼
(

m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ωL

A (y)
})

,∼
(

m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ωU

A (y)
})]〉

|x ∈ U }

=

(
m
∑

i=1
Ri

O

(A)

)c

.

Thus, we obtain
m
∑

i=1
Ri

O
(Ac) =

(
m
∑

i=1
Ri

O

(A)

)c

. Then,
m
∑

i=1
Ri

O

(Ac) =

(
m
∑

i=1
Ri

O
(A)

)c

is obtained

in an identical fashion.

2. Since A ⊆ A′, we have µL
A (y) ≤ µL

A′ (y), µU
A (y) ≤ µU

A′ (y), νL
A (y) ≥ νL

A′ (y), νU
A (y) ≥ νU

A′ (y),
ωL

A (y) ≥ ωL
A′ (y) and ωU

A (y) ≥ ωU
A′ (y).

So it follows that:

{〈
x,
[

m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A (y)
}

,
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A (y)
}

,
m
∧

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A (y)
}

,
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A (y)
}]〉

| x ∈ U} ≤{〈
x,
[

m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A′ (y)
}

,
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A′ (y)
}]

,[
m
∧

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A′ (y)
}

,
m
∧

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A′ (y)
}]

,[
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A′ (y)
}

,
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A′ (y)
}]〉

| x ∈ U} .

Therefore, we have A ⊆ A′ ⇒
m
∑

i=1
Ri

O
(A) ⊆

m
∑

i=1
Ri

O
(A′). Then, A ⊆ A′ ⇒

m
∑

i=1
Ri

O

(A) ⊆

m
∑

i=1
Ri

O

(A′) is obtained in a similar manner.
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3. In light of the previous results, it is easy to obtain:
m
∑

i=1
Ri

O
(A ∩ A′) =

m
∑

i=1
Ri

O
(A) ∩

m
∑

i=1
Ri

O
(A′),

m
∑

i=1
Ri

O

(A ∪ A′) =
m
∑

i=1
Ri

O

(A) ∪
m
∑

i=1
Ri

O

(A′).

4. In light of the previous results, it is easy to obtain:
m
∑

i=1
Ri

O
(A ∪ A′) ⊇

m
∑

i=1
Ri

O
(A) ∪

m
∑

i=1
Ri

O
(A′),

m
∑

i=1
Ri

O

(A ∩ A′) ⊆
m
∑

i=1
Ri

O

(A) ∩
m
∑

i=1
Ri

O

(A′).

Theorem 3. Let U, V be two non-empty and finite universes of discourse and Ri, R′i ∈
INR (U ×V) (i = 1, 2, . . . , m) be two IN relations over U × V. If Ri ⊆ R′i, for any A ∈ IN (V), the
following properties hold:

1.
m
∑

i=1
R′i

O
(A) ⊆

m
∑

i=1
Ri

O
(A), for all A ∈ IN (V);

2.
m
∑

i=1
R′i

O

(A) ⊇
m
∑

i=1
Ri

O

(A), for all A ∈ IN (V).

Proof. Since Ri ⊆ R′i, we have µL
Ri
(x, y) ≤ µL

R′i
(x, y), µU

Ri
(x, y) ≤ µU

R′i
(x, y), νL

Ri
(x, y) ≥ νL

R′i
(x, y),

νU
Ri
(x, y) ≥ νU

R′i
(x, y), ωL

Ri
(x, y) ≥ ωL

R′i
(x, y) and ωU

Ri
(x, y) ≥ ωU

R′i
(x, y).

Therefore, it follows that:{〈
x,
[

m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A (y)
}

,
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A (y)
}

,
m
∧

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A (y)
}

,
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A (y)
}]〉

| x ∈ U} ≥{〈
x,
[

m
∨

i=1
∧y∈V

{
ωL

R′i
(x, y) ∨ µL

A (y)
}

,
m
∨

i=1
∧y∈V

{
ωU

R′i
(x, y) ∨ µU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{(
1− νU

R′i
(x, y)

)
∧ νL

A (y)
}

,
m
∧

i=1
∨y∈V

{(
1− νL

R′i
(x, y)

)
∧ νU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{
µL

R′i
(x, y) ∧ωL

A (y)
}

,
m
∧

i=1
∨y∈V

{
µU

R′i
(x, y) ∧ωU

A (y)
}]〉

| x ∈ U} .

Thus, we obtain
m
∑

i=1
R′i

O
(A) ⊆

m
∑

i=1
Ri

O
(A). Then,

m
∑

i=1
R′i

O

(A) ⊇
m
∑

i=1
Ri

O

(A) is obtained in an

identical fashion.

3.2. Pessimistic in Multigranulation Rough Sets over Two Universes

Definition 8. Let U, V be two non-empty and finite universes of discourse and Ri ∈
INR (U ×V) (i = 1, 2, . . . , m) be m IN relations over U × V; the pair (U, V, Ri) is called an IN
multigranulation approximation space over two universes. For any A ∈ IN (V), the pessimistic IN



Symmetry 2017, 9, 126 9 of 20

multigranulation rough lower and upper approximations of A with respect to (U, V, Ri), denoted by
m
∑

i=1
Ri

P
(A)

and
m
∑

i=1
Ri

P

(A), are defined as follows:

m

∑
i=1

Ri

P

(A) =


〈

x,

µL
m
∑

i=1
Ri

P
(A)

(x) , µU
m
∑

i=1
Ri

P
(A)

(x)

 ,

νL
m
∑

i=1
Ri

P
(A)

(x) , νU
m
∑

i=1
Ri

P
(A)

(x)

 ,

ωL
m
∑

i=1
Ri

P
(A)

(x) , ωU
m
∑

i=1
Ri

P
(A)

(x)

〉 |x ∈ U

 ,

m

∑
i=1

Ri

P

(A) =


〈

x,

µL
m
∑

i=1
Ri

P

(A)

(x) , µU
m
∑

i=1
Ri

P

(A)

(x)

 ,

νL
m
∑

i=1
Ri

P

(A)

(x) , νU
m
∑

i=1
Ri

P

(A)

(x)

 ,

ωL
m
∑

i=1
Ri

P

(A)

(x) , ωU
m
∑

i=1
Ri

P

(A)

(x)

〉 |x ∈ U

 ,

where:

µL
m
∑

i=1
Ri

P
(A)

(x) =
m
∧

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A (y)
}

, µU
m
∑

i=1
Ri

P
(A)

(x) =
m
∧

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A (y)
}

,

νL
m
∑

i=1
Ri

P
(A)

(x) =
m
∨

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A (y)
}

,

νU
m
∑

i=1
Ri

P
(A)

(x) =
m
∨

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A (y)
}

,

ωL
m
∑

i=1
Ri

P
(A)

(x) =
m
∨

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A (y)
}

, ωU
m
∑

i=1
Ri

P
(A)

(x) =
m
∨

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A (y)
}

,

µL
m
∑

i=1
Ri

P

(A)

(x) =
m
∨

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ µL

A (y)
}

, µU
m
∑

i=1
Ri

P

(A)

(x) =
m
∨

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ µU

A (y)
}

,

νL
m
∑

i=1
Ri

P

(A)

(x) =
m
∧

i=1
∧y∈V

{
νL

Ri
(x, y) ∨ νL

A (y)
}

, νU
m
∑

i=1
Ri

P

(A)

(x) =
m
∧

i=1
∧y∈V

{
νU

Ri
(x, y) ∨ νU

A (y)
}

,

ωL
m
∑

i=1
Ri

P

(A)

(x) =
m
∧

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ωL

A (y)
}

, ωU
m
∑

i=1
Ri

P

(A)

(x) =
m
∧

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ωU

A (y)
}

.

The pair

(
m
∑

i=1
Ri

P
(A) ,

m
∑

i=1
Ri

P

(A)

)
is called a pessimistic IN multigranulation rough set over two

universes of A.

Theorem 4. Let U, V be two non-empty and finite universes of discourse and Ri ∈
INR (U ×V) (i = 1, 2, . . . , m) be m IN relations over U ×V. Then, for any A, A′ ∈ IN (V), the following
properties hold:
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1.
m
∑

i=1
Ri

P
(Ac) =

(
m
∑

i=1
Ri

P

(A)

)c

,

m
∑

i=1
Ri

P

(Ac) =

(
m
∑

i=1
Ri

P
(A)

)c

;

2. A ⊆ A′ ⇒
m
∑

i=1
Ri

P
(A) ⊆

m
∑

i=1
Ri

P
(A′),

A ⊆ A′ ⇒
m
∑

i=1
Ri

P

(A) ⊆
m
∑

i=1
Ri

P

(A′);

3.
m
∑

i=1
Ri

P
(A ∩ A′) =

m
∑

i=1
Ri

P
(A) ∩

m
∑

i=1
Ri

P
(A′),

m
∑

i=1
Ri

P

(A ∪ A′) =
m
∑

i=1
Ri

P

(A) ∪
m
∑

i=1
Ri

P

(A′);

4.
m
∑

i=1
Ri

P
(A ∪ A′) ⊇

m
∑

i=1
Ri

P
(A) ∪

m
∑

i=1
Ri

P
(A′),

m
∑

i=1
Ri

P

(A ∩ A′) ⊆
m
∑

i=1
Ri

P

(A) ∩
m
∑

i=1
Ri

P

(A′).

Theorem 5. Let U, V be two non-empty and finite universes of discourse and Ri, R′i ∈
INR (U ×V) (i = 1, 2, . . . , m) be two IN relations over U × V. If Ri ⊆ R′i, for any A ∈ IN (V), the
following properties hold:

1.
m
∑

i=1
R′i

P
(A) ⊆

m
∑

i=1
Ri

P
(A), for all A ∈ IN (V);

2.
m
∑

i=1
R′i

P

(A) ⊇
m
∑

i=1
Ri

P

(A), for all A ∈ IN (V).

3.3. Relationships between Optimistic and Pessimistic in Multigranulation Rough Sets over Two Universes

Theorem 6. Let U, V be two non-empty and finite universes of discourse and Ri ∈
INR (U ×V) (i = 1, 2, . . . , m) be m IN relations over U × V. Then, for any A ∈ IN (V), the following
properties hold:

1.
m
∑

i=1
Ri

P
(A) ⊆

m
∑

i=1
Ri

O
(A);

2.
m
∑

i=1
Ri

P

(A) ⊇
m
∑

i=1
Ri

O

(A).

Proof. For any x ∈ U, we have:

m
∑

i=1
Ri

O
(A) =

{〈
x,
[

m
∨

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A (y)
}

,
m
∨

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A (y)
}

,
m
∧

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A (y)
}]

,[
m
∧

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A (y)
}

,
m
∧

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A (y)
}]〉

| x ∈ U}

≥
{〈

x,
[

m
∧

i=1
∧y∈V

{
ωL

Ri
(x, y) ∨ µL

A (y)
}

,
m
∧

i=1
∧y∈V

{
ωU

Ri
(x, y) ∨ µU

A (y)
}]

,[
m
∨

i=1
∨y∈V

{(
1− νU

Ri
(x, y)

)
∧ νL

A (y)
}

,
m
∨

i=1
∨y∈V

{(
1− νL

Ri
(x, y)

)
∧ νU

A (y)
}]

,[
m
∨

i=1
∨y∈V

{
µL

Ri
(x, y) ∧ωL

A (y)
}

,
m
∨

i=1
∨y∈V

{
µU

Ri
(x, y) ∧ωU

A (y)
}]〉

| x ∈ U} =
m
∑

i=1
Ri

P
(A) .
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Therefore, we have
m
∑

i=1
Ri

P
(A) ⊆

m
∑

i=1
Ri

O
(A). Then,

m
∑

i=1
Ri

P

(A) ⊇
m
∑

i=1
Ri

O

(A) is obtained in an

identical fashion.

4. The Model and Approach of Merger and Acquisition Target Selection

In this section, in order to explore M&A target selection, we develop a new method by utilizing
IN multigranulation rough sets over two universes. Specifically, some main points of the established
decision making method can be summarized in the following subsections.

4.1. The Application Model

Suppose that U =
{

x1, x2, . . . , xj
}

is a set of optional M&A targets and V = {y1, y2, . . . , yk} is a set
of evaluation factors. Let Ri ∈ INR (U ×V) (i = 1, 2, . . . , m) be m IN relations, which reflect the related
degree between some optional M&A targets and evaluation factors provided by m decision makers.
In what follows, suppose that A ∈ IN (V) is a standard set, representing some requirements of
corporate acquirers. Thus, we construct an IN information system that is denoted as (U, V, Ri, A). On
the basis of the above descriptions, we calculate the optimistic and pessimistic IN multigranulation
rough lower and upper approximations of A according to Definitions 7 and Definition 8, respectively.
Then, with reference to operational laws developed in [15]: ∀A, B ∈ IN (U), we have A ⊕ B ={〈

x,
[
µL

A (x) + µL
B (x)− µL

A (x) µL
B (x) , µU

A (x) + µU
B (x)− µU

A (x) µU
B (x)

]
,
[
νL

A (x) νL
B (x) , νU

A (x) νU
B (x)

]
,[

ωL
A (x)ωL

B (x) , ωU
A (x)ωU

B (x)
]〉
|x ∈ U

}
, λA =

{〈
x,
[
1−

(
1− µL

A (x)
)λ, 1−

(
1− µU

A (x)
)λ
]

,[(
νL

A (x)
)λ,
(
νU

A (x)
)λ
]

,
[(

ωL
A (x)

)λ,
(
ωU

A (x)
)λ
]〉
|x ∈ U

}
.

By virtue of the above operational laws, we further calculate the sets
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

and
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A). Since optimistic multigranulation rough sets are based on the “seeking

common ground while reserving differences” strategy, which implies that one reserves both common

decisions and inconsistent decisions at the same time, thus, the set
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A) can be

seen as a risk-seeking decision strategy. Similarly, pessimistic multigranulation rough sets are based on
the “seeking common ground while eliminating differences” strategy, which implies that one reserves

common decisions while deleting inconsistent decisions. Hence, the set
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A) can

be seen as a risk-averse decision strategy.
In realistic M&A target selection procedures, the enterprise’s person in charge can choose the

optimal M&A target through referring to the above mentioned risk-seeking and risk-averse decision
strategies. In what follows, in order to make better use of those decision strategies, we present
a compromise decision strategy with a risk coefficient of decision makers, and the risk coefficient
is denoted as λ (λ ∈ [0, 1]). Based on this, the compromise decision strategy can be described as

λ

(
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

)
⊕ (1− λ)

(
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A)

)
. Additionally, it is noted that the

compromise decision strategy reduces to the risk-seeking decision strategy and the risk-averse decision
strategy when λ = 1 and λ = 0, respectively. Moreover, the larger λ is, business administrators are
more prone to seek the maximum of risk, while the smaller λ is, business administrators are more prone
to seek the minimum of risk. Finally, by virtue of the risk coefficient, the optimal decision result can be

obtained by selecting the M&A target with the largest score value in λ

(
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

)
⊕

(1− λ)

(
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A)

)
.
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4.2. Algorithm for Merger and Acquisition Target Selection Used IN Multigranulation Rough Sets over
Two Universes

In what follows, we present an algorithm for M&A target selection based on IN multigranulation
rough sets over two universes.

Algorithm 1 M&A target selection based on IN multigranulation rough sets over two universes

Require: The relations between the universes U and V provided by multiple experts (U, V, Ri) and a
standard set A.

Ensure: The determined M&A target.

Step 1. Calculate the following sets:
m
∑

i=1
Ri

O
(A),

m
∑

i=1
Ri

O

(A),
m
∑

i=1
Ri

P
(A) and

m
∑

i=1
Ri

P

(A),

respectively;

Step 2. Calculate the following sets:
m
∑

i=1
Ri

O
(A) ⊕

m
∑

i=1
Ri

O

(A),
m
∑

i=1
Ri

P
(A) ⊕

m
∑

i=1
Ri

P

(A) and

λ

(
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

)
⊕ (1− λ)

(
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A)

)
, respectively;

Step 3. Determine the score values for optional M&A targets in compromise decision strategy

λ

(
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

)
⊕ (1− λ)

(
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A)

)
;

Step 4. The optimal solution is the M&A target with the largest score value in

λ

(
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

)
⊕ (1− λ)

(
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A)

)
.

5. Numerical Example

In this section, by utilizing an illustrative case analysis that was previously modeled
in [2], we show fundamental steps of the proposed decision making method in M&A target
selection background.

5.1. Case Description

Suppose there is a steel corporate acquirer who aims to evaluate which target organization
is suitable for the acquiring firm. In order to reflect the fairness of the procedure, the acquiring
firm invites three specialists to establish M&A target selection information systems, denoted as
(U, V, Ri, A). Suppose that U = {x1, x2, x3, x4, x5} is a set of optional M&A targets and another
universe V = {y1, y2, y3, y4, y5} is a set of evaluation factors, where the evaluation factor represents
mineral output, mining difficulty, proved reserves, reserve-production ratio, science and technology
contribution rate, respectively. Based on the above, the M&A knowledge base can be composed of two
kinds of objections related to M&A target selection, i.e., the optional M&A targets set and the evaluation
factors set. In order to solve this group decision making problem, each decision maker provides his or
her own thought about the M&A knowledge base that is shown as the following Tables 1–3.

Moreover, assume that decision makers provide a standard set that is represented by the
following INS:

A = {〈y1, 〈[0.7, 0.8] , [0.4, 0.6] , [0.2, 0.3]〉〉 , 〈y2, 〈[0.5, 0.6] , [0.3, 0.4] , [0.6, 0.7]〉〉 ,
〈y3, 〈[0.7, 0.8] , [0.2, 0.3] , [0.4, 0.5]〉〉 , 〈y4, 〈[0.2, 0.3] , [0.5, 0.7] , [0.6, 0.7]〉〉 ,
〈y5, 〈[0.4, 0.5] , [0.2, 0.3] , [0.8, 0.9]〉〉}.
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5.2. Decision Making Process

According to Algorithm 1, we aim to seek the determined M&A target by utilizing the proposed
model. At first, by virtue of Definitions 7 and 8, we calculate the optimistic and pessimistic IN
multigranulation rough lower and upper approximations of A:

3
∑

i=1
Ri

O

(A) = {〈x1, 〈[0.4, 0.5] , [0.5, 0.6] , [0.6, 0.7]〉〉 , 〈x2, 〈[0.4, 0.5] , [0.5, 0.7] , [0.7, 0.8]〉〉 ,

〈x3, 〈[0.5, 0.6] , [0.4, 0.6] , [0.6, 0.7]〉〉 , 〈x4, 〈[0.4, 0.5] , [0.5, 0.6] , [0.6, 0.7]〉〉 ,
〈x5, 〈[0.2, 0.3] , [0.5, 0.6] , [0.7, 0.8]〉〉};

3
∑

i=1
Ri

O

(A) = {〈x1, 〈[0.7, 0.8] , [0.3, 0.4] , [0.4, 0.5]〉〉 , 〈x2, 〈[0.5, 0.6] , [0.3, 0.5] , [0.6, 0.7]〉〉 ,

〈x3, 〈[0.7, 0.8] , [0.2, 0.3] , [0.5, 0.6]〉〉 , 〈x4, 〈[0.7, 0.8] , [0.2, 0.3] , [0.5, 0.6]〉〉 ,
〈x5, 〈[0.7, 0.8] , [0.3, 0.4] , [0.2, 0.3]〉〉};

3
∑

i=1
Ri

P

(A) = {〈x1, 〈[0.4, 0.5] , [0.5, 0.7] , [0.6, 0.7]〉〉 , 〈x2, 〈[0.4, 0.5] , [0.5, 0.7] , [0.8, 0.9]〉〉 ,

〈x3, 〈[0.5, 0.6] , [0.4, 0.6] , [0.6, 0.7]〉〉 , 〈x4, 〈[0.3, 0.4] , [0.5, 0.7] , [0.7, 0.8]〉〉 ,
〈x5, 〈[0.2, 0.3] , [0.5, 0.7] , [0.8, 0.9]〉〉};

3
∑

i=1
Ri

P

(A) = {〈x1, 〈[0.7, 0.8] , [0.2, 0.3] , [0.4, 0.5]〉〉 , 〈x2, 〈[0.5, 0.7] , [0.3, 0.4] , [0.5, 0.6]〉〉 ,

〈x3, 〈[0.7, 0.8] , [0.2, 0.3] , [0.4, 0.5]〉〉 , 〈x4, 〈[0.7, 0.8] , [0.2, 0.3] , [0.4, 0.5]〉〉 ,
〈x5, 〈[0.7, 0.8] , [0.3, 0.4] , [0.2, 0.3]〉〉}.

By virtue of the above results, we further calculated the sets
m
∑

i=1
Ri

O
(A) ⊕

m
∑

i=1
Ri

O

(A) and

m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A).

3
∑

i=1
Ri

O

(A)⊕
3
∑

i=1
Ri

O

(A) = {〈x1, 〈[0.82, 0.90] , [0.15, 0.24] , [0.24, 0.35]〉〉 ,

〈x2, 〈[0.70, 0.80] , [0.15, 0.35] , [0.42, 0.56]〉〉 , 〈x3, 〈[0.85, 0.92] , [0.08, 0.18] , [0.30, 0.42]〉〉 ,
〈x4, 〈[0.82, 0.90] , [0.10, 0.18] , [0.30, 0.42]〉〉 , 〈x5, 〈[0.76, 0.86] , [0.15, 0.24] , [0.14, 0.24]〉〉},

3
∑

i=1
Ri

P

(A)⊕
3
∑

i=1
Ri

P

(A) = {〈x1, 〈[0.82, 0.90] , [0.10, 0.21] , [0.24, 0.35]〉〉 ,

〈x2, 〈[0.70, 0.85] , [0.15, 0.28] , [0.40, 0.54]〉〉 , 〈x3, 〈[0.85, 0.92] , [0.08, 0.18] , [0.24, 0.35]〉〉 ,
〈x4, 〈[0.79, 0.88] , [0.10, 0.21] , [0.28, 0.40]〉〉 , 〈x5, 〈[0.76, 0.86] , [0.15, 0.28] , [0.16, 0.27]〉〉}.

Next, suppose business managers take λ = 0.6, then λ

(
m
∑

i=1
Ri

O
(A)⊕

m
∑

i=1
Ri

O

(A)

)
⊕

(1− λ)

(
m
∑

i=1
Ri

P
(A)⊕

m
∑

i=1
Ri

P

(A)

)
can be obtained as follows:

0.6

 3
∑

i=1
Ri

O

(A)⊕
3
∑

i=1
Ri

O

(A)

⊕ (1− 0.6)

 3
∑

i=1
Ri

P

(A)⊕
3
∑

i=1
Ri

P

(A)

 =

{〈x1, 〈[0.82, 0.90] , [0.13, 0.23] , [0.24, 0.35]〉〉 , 〈x2, 〈[0.70, 0.82] , [0.15, 0.32] , [0.41, 0.55]〉〉 ,
〈x3, 〈[0.85, 0.92] , [0.08, 0.18] , [0.28, 0.39]〉〉 , 〈x4, 〈[0.81, 0.89] , [0.10, 0.19] , [0.29, 0.41]〉〉 ,
〈x5, 〈[0.76, 0.86] , [0.15, 0.25] , [0.15, 0.25]〉〉}.



Symmetry 2017, 9, 126 14 of 20

Table 1. The knowledge of merger and acquisition (M&A) target selection given by Expert 1.

R1 y1 y2 y3 y4 y5

x1 〈[0.8, 0.9] , [0.2, 0.3] , [0.4, 0.5]〉 〈[0.3, 0.4] , [0.3, 0.4] , [0.8, 0.9]〉 〈[0.6, 0.7] , [0.5, 0.6] , [0.3, 0.4]〉 〈[0.6, 0.7] , [0.4, 0.5] , [0.4, 0.5]〉 〈[0.2, 0.3] , [0.2, 0.3] , [0.8, 0.9]〉
x2 〈[0.4, 0.5] , [0.3, 0.4] , [0.7, 0.8]〉 〈[0.3, 0.4] , [0.4, 0.5] , [0.7, 0.8]〉 〈[0.5, 0.6] , [0.4, 0.5] , [0.6, 0.7]〉 〈[0.6, 0.7] , [0.3, 0.4] , [0.5, 0.6]〉 〈[0.7, 0.8] , [0.3, 0.5] , [0.3, 0.4]〉
x3 〈[0.7, 0.8] , [0.4, 0.5] , [0.5, 0.6]〉 〈[0.7, 0.9] , [0.3, 0.4] , [0.4, 0.5]〉 〈[0.3, 0.4] , [0.5, 0.6] , [0.6, 0.7]〉 〈[0.2, 0.3] , [0.6, 0.7] , [0.6, 0.7]〉 〈[0.5, 0.6] , [0.2, 0.3] , [0.7, 0.8]〉
x4 〈[0.8, 0.9] , [0.2, 0.4] , [0.4, 0.6]〉 〈[0.5, 0.6] , [0.3, 0.4] , [0.6, 0.7]〉 〈[0.4, 0.5] , [0.2, 0.3] , [0.7, 0.8]〉 〈[0.6, 0.7] , [0.4, 0.5] , [0.3, 0.5]〉 〈[0.6, 0.7] , [0.2, 0.3] , [0.7, 0.8]〉
x5 〈[0.8, 0.9] , [0.2, 0.3] , [0.1, 0.2]〉 〈[0.4, 0.5] , [0.1, 0.2] , [0.8, 0.9]〉 〈[0.6, 0.7] , [0.5, 0.6] , [0.2, 0.3]〉 〈[0.7, 0.8] , [0.4, 0.5] , [0.1, 0.2]〉 〈[0.7, 0.9] , [0.5, 0.6] , [0.1, 0.2]〉

Table 2. The knowledge of M&A target selection given by Expert 2.

R2 y1 y2 y3 y4 y5

x1 〈[0.7, 0.8] , [0.2, 0.3] , [0.4, 0.6]〉 〈[0.3, 0.4] , [0.2, 0.3] , [0.7, 0.8]〉 〈[0.6, 0.8] , [0.4, 0.6] , [0.3, 0.4]〉 〈[0.6, 0.7] , [0.3, 0.4] , [0.4, 0.5]〉 〈[0.2, 0.4] , [0.3, 0.4] , [0.7, 0.9]〉
x2 〈[0.4, 0.6] , [0.2, 0.3] , [0.7, 0.8]〉 〈[0.3, 0.5] , [0.4, 0.5] , [0.6, 0.7]〉 〈[0.5, 0.6] , [0.3, 0.4] , [0.5, 0.6]〉 〈[0.5, 0.6] , [0.2, 0.3] , [0.5, 0.6]〉 〈[0.8, 0.9] , [0.4, 0.5] , [0.3, 0.4]〉
x3 〈[0.7, 0.8] , [0.3, 0.4] , [0.4, 0.5]〉 〈[0.8, 0.9] , [0.3, 0.4] , [0.3, 0.4]〉 〈[0.3, 0.5] , [0.4, 0.5] , [0.5, 0.6]〉 〈[0.2, 0.4] , [0.5, 0.6] , [0.5, 0.7]〉 〈[0.4, 0.6] , [0.2, 0.3] , [0.7, 0.8]〉
x4 〈[0.7, 0.9] , [0.2, 0.3] , [0.5, 0.6]〉 〈[0.5, 0.7] , [0.2, 0.3] , [0.5, 0.6]〉 〈[0.4, 0.5] , [0.3, 0.4] , [0.7, 0.8]〉 〈[0.5, 0.7] , [0.2, 0.4] , [0.4, 0.5]〉 〈[0.7, 0.8] , [0.2, 0.3] , [0.6, 0.7]〉
x5 〈[0.7, 0.9] , [0.3, 0.4] , [0.2, 0.3]〉 〈[0.4, 0.6] , [0.1, 0.2] , [0.7, 0.8]〉 〈[0.6, 0.7] , [0.4, 0.6] , [0.3, 0.4]〉 〈[0.7, 0.8] , [0.3, 0.4] , [0.1, 0.2]〉 〈[0.7, 0.8] , [0.3, 0.6] , [0.1, 0.2]〉

Table 3. The knowledge of M&A target selection given by Expert 3.

R3 y1 y2 y3 y4 y5

x1 〈[0.7, 0.8] , [0.3, 0.4] , [0.5, 0.6]〉 〈[0.3, 0.5] , [0.2, 0.4] , [0.7, 0.8]〉 〈[0.7, 0.8] , [0.4, 0.5] , [0.4, 0.5]〉 〈[0.7, 0.8] , [0.3, 0.5] , [0.4, 0.5]〉 〈[0.3, 0.4] , [0.2, 0.4] , [0.7, 0.8]〉
x2 〈[0.5, 0.6] , [0.2, 0.3] , [0.8, 0.9]〉 〈[0.4, 0.5] , [0.4, 0.6] , [0.6, 0.7]〉 〈[0.5, 0.7] , [0.3, 0.5] , [0.5, 0.7]〉 〈[0.5, 0.7] , [0.2, 0.4] , [0.5, 0.6]〉 〈[0.7, 0.8] , [0.3, 0.4] , [0.3, 0.4]〉
x3 〈[0.7, 0.8] , [0.3, 0.5] , [0.4, 0.5]〉 〈[0.8, 0.9] , [0.4, 0.5] , [0.3, 0.5]〉 〈[0.4, 0.5] , [0.4, 0.5] , [0.5, 0.7]〉 〈[0.3, 0.4] , [0.5, 0.7] , [0.5, 0.6]〉 〈[0.4, 0.5] , [0.2, 0.3] , [0.8, 0.9]〉
x4 〈[0.7, 0.8] , [0.2, 0.3] , [0.4, 0.5]〉 〈[0.6, 0.7] , [0.2, 0.4] , [0.5, 0.6]〉 〈[0.4, 0.5] , [0.2, 0.4] , [0.7, 0.9]〉 〈[0.5, 0.6] , [0.3, 0.4] , [0.3, 0.4]〉 〈[0.6, 0.7] , [0.2, 0.3] , [0.6, 0.8]〉
x5 〈[0.7, 0.8] , [0.1, 0.2] , [0.1, 0.3]〉 〈[0.5, 0.6] , [0.2, 0.3] , [0.7, 0.8]〉 〈[0.6, 0.7] , [0.4, 0.5] , [0.3, 0.4]〉 〈[0.7, 0.8] , [0.3, 0.5] , [0.1, 0.2]〉 〈[0.8, 0.9] , [0.3, 0.5] , [0.1, 0.2]〉
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At last, we determine the score values for five optional target organizations in

0.6

 3
∑

i=1
Ri

O

(A)⊕
3
∑

i=1
Ri

O

(A)

 ⊕ (1− 0.6)

 3
∑

i=1
Ri

P

(A)⊕
3
∑

i=1
Ri

P

(A)

; it is not difficult to obtain

the ordering result for M&A targets in the compromise decision strategy: x3 � x5 � x1 � x4 � x2.
Thus, we can see that the optimal selection is the third target enterprise.

5.3. Comparative Analysis

The above subsection shows basic steps and procedures of the proposed algorithm based
on IN multigranulation rough sets over two universes in the M&A target selection background.
In order to illustrate the effectiveness of the proposed decision making approach, we compare the
newly-proposed decision making rules with the decision making method based on IN aggregation
operators in this subsection. In the literature [15], Zhang et al. developed several common
IN aggregation operators and applied them to a multiple criteria decision making problem.
In what follows, a comparison analysis is conducted by utilizing the proposed M&A target
selection approach with the interval neutrosophic number weighted averaging (INNWA) operator
and the interval neutrosophic number weighted geometric (INNWG) operator presented in [15].
Prior to the specific comparison analysis, we review the above-mentioned IN aggregation operators.
Let Aj =

〈[
TL

Aj
, TU

Aj

]
,
[

IL
Aj

, IU
Aj

]
,
[

FL
Aj

, FU
Aj

]〉
(j = 1, 2, . . . , n) be a collection of INNs and w =

(1/n, 1/n, . . . , 1/n)T be the weight of Aj with equal weight, then the INNWA operator and the
INNWG operator are presented below.

1. The interval neutrosophic number weighted averaging (INNWA) operator:

INNWAw (A1, A2, . . . , An) =
n

∑
j=1

(
1
n

Aj

)
=

〈 [
1−

n
∏
j=1

(
1− TL

Aj

)1/n
, 1−

n
∏
j=1

(
1− TU

Aj

)1/n
]

,[
n
∏
j=1

(
IL
Aj

)1/n
,

n
∏
j=1

(
IU
Aj

)1/n
]

,

[
n
∏
j=1

(
FL

Aj

)1/n
,

n
∏
j=1

(
FU

Aj

)1/n
] 〉 ,

2. The interval neutrosophic number weighted geometric (INNWG) operator:

INNWGw (A1, A2, . . . , An) =
n

∏
j=1

(
Aj
)1/n

=

〈 [
n
∏
j=1

(
TL

Aj

)1/n
,

n
∏
j=1

(
TU

Aj

)1/n
]

,

[
1−

n
∏
j=1

(
1− IL

Aj

)1/n
, 1−

n
∏
j=1

(
1− IU

Aj

)1/n
]

,[
1−

n
∏
j=1

(
1− FL

Aj

)1/n
, 1−

n
∏
j=1

(
1− FU

Aj

)1/n
] 〉

.

On the basis of the INNWA and INNWG operators introduced above, the knowledge of M&A
target selection given by Expert 1, Expert 2 and Expert 3 could be aggregated by using INNWA and
INNWG operators, i.e., we aggregate IN relations over two universes R1, R2 and R3 to a single IN
relation over two universes, represented by RINNWA and RINNWG, which is shown as the following
Tables 4 and 5.
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Next, by virtue of IN rough sets over two universes presented in Definition 6, we calculate
the IN rough lower and upper approximations of A with respect to (U, V, RINNWA) and
(U, V, RINNWG), respectively.

RINNWA (A) = {〈x1, 〈[0.40, 0.50] , [0.50, 0.67] , [0.60, 0.70]〉〉 , 〈x2, 〈[0.40, 0.50] , [0.50, 0.70] , [0.74, 0.85]〉〉 ,
〈x3, 〈[0.50, 0.60] , [0.40, 0.60] , [0.60, 0.70]〉〉 , 〈x4, 〈[0.33, 0.46] , [0.50, 0.70] , [0.63, 0.74]〉〉 ,
〈x5, 〈[0.20, 0.30] , [0.50, 0.67] , [0.74, 0.88]〉〉};

RINNWA (A) = {〈x1, 〈[0.70, 0.80] , [0.23, 0.37] , [0.33, 0.46]〉〉 , 〈x2, 〈[0.52, 0.65] , [0.33, 0.47] , [0.60, 0.70]〉〉 ,
〈x3, 〈[0.70, 0.80] , [0.20, 0.30] , [0.43, 0.52]〉〉 , 〈x4, 〈[0.70, 0.80] , [0.20, 0.30] , [0.43, 0.56]〉〉 ,
〈x5, 〈[0.70, 0.80] , [0.30, 0.40] , [0.20, 0.30]〉〉};

RINNWG (A) = {〈x1, 〈[0.40, 0.50] , [0.50, 0.67] , [0.60, 0.70]〉〉 , 〈x2, 〈[0.40, 0.50] , [0.50, 0.70] , [0.72, 0.84]〉〉 ,
〈x3, 〈[0.50, 0.60] , [0.40, 0.60] , [0.60, 0.70]〉〉 , 〈x4, 〈[0.33, 0.48] , [0.50, 0.70] , [0.62, 0.72]〉〉 ,
〈x5, 〈[0.20, 0.30] , [0.50, 0.67] , [0.72, 0.88]〉〉};

RINNWG (A) = {〈x1, 〈[0.70, 0.80] , [0.23, 0.37] , [0.40, 0.50]〉〉 , 〈x2, 〈[0.50, 0.62] , [0.33, 0.48] , [0.54, 0.67]〉〉 ,
〈x3, 〈[0.70, 0.80] , [0.20, 0.30] , [0.44, 0.54]〉〉 , 〈x4, 〈[0.70, 0.80] , [0.20, 0.30] , [0.44, 0.57]〉〉 ,
〈x5, 〈[0.70, 0.80] , [0.30, 0.40] , [0.20, 0.30]〉〉}.

Then, in a single granulation context, we further calculate the sets λ
(

RINNWA (A)
)
⊕

(1− λ)
(

RINNWA (A)
)

and λ
(

RINNWG (A)
)
⊕ (1− λ)

(
RINNWG (A)

)
when λ = 0.6:

0.6
(

RINNWA (A)
)
⊕ (1− 0.6)

(
RINNWA (A)

)
= {〈x1, 〈[0.54, 0.65] , [0.37, 0.53] , [0.51, 0.62]〉〉 ,

〈x2, 〈[0.44, 0.56] , [0.42, 0.59] , [0.64, 0.76]〉〉 , 〈x3, 〈[0.59, 0.69] , [0.31, 0.46] , [0.53, 0.62]〉〉 ,
〈x4, 〈[0.51, 0.63] , [0.35, 0.50] , [0.54, 0.66]〉〉 , 〈x5, 〈[0.46, 0.57] , [0.41, 0.55] , [0.44, 0.58]〉〉},

0.6
(

RINNWG (A)
)
⊕ (1− 0.6)

(
RINNWG (A)

)
= {〈x1, 〈[0.54, 0.65] , [0.37, 0.53] , [0.51, 0.62]〉〉 ,

〈x2, 〈[0.44, 0.55] , [0.42, 0.61] , [0.64, 0.77]〉〉 , 〈x3, 〈[0.59, 0.69] , [0.31, 0.46] , [0.53, 0.63]〉〉 ,
〈x4, 〈[0.51, 0.64] , [0.35, 0.50] , [0.54, 0.66]〉〉 , 〈x5, 〈[0.46, 0.57] , [0.41, 0.55] , [0.43, 0.58]〉〉}.
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Table 4. The aggregated knowledge of M&A target selection by using the interval neutrosophic number weighted averaging (INNWA) operator.

RINNWA y1 y2 y3 y4 y5

x1 〈[0.74, 0.85] , [0.23, 0.33] , [0.43, 0.56]〉 〈[0.30, 0.44] , [0.23, 0.37] , [0.72, 0.84]〉 〈[0.63, 0.77] , [0.43, 0.56] , [0.33, 0.43]〉 〈[0.63, 0.74] , [0.33, 0.46] , [0.40, 0.50]〉 〈[0.23, 0.37] , [0.23, 0.37] , [0.72, 0.88]〉
x2 〈[0.44, 0.57] , [0.23, 0.33] , [0.72, 0.84]〉 〈[0.33, 0.48] , [0.40, 0.52] , [0.62, 0.72]〉 〈[0.50, 0.63] , [0.33, 0.46] , [0.52, 0.65]〉 〈[0.54, 0.67] , [0.23, 0.37] , [0.50, 0.60]〉 〈[0.74, 0.85] , [0.33, 0.46] , [0.30, 0.40]〉
x3 〈[0.70, 0.80] , [0.33, 0.46] , [0.43, 0.52]〉 〈[0.77, 0.90] , [0.33, 0.43] , [0.33, 0.46]〉 〈[0.33, 0.48] , [0.43, 0.52] , [0.52, 0.65]〉 〈[0.23, 0.37] , [0.52, 0.65] , [0.52, 0.65]〉 〈[0.44, 0.57] , [0.20, 0.30] , [0.72, 0.84]〉
x4 〈[0.74, 0.88] , [0.20, 0.33] , [0.43, 0.56]〉 〈[0.54, 0.67] , [0.23, 0.37] , [0.52, 0.62]〉 〈[0.40, 0.50] , [0.23, 0.37] , [0.70, 0.84]〉 〈[0.53, 0.67] , [0.29, 0.43] , [0.33, 0.46]〉 〈[0.63, 0.74] , [0.20, 0.30] , [0.62, 0.76]〉
x5 〈[0.74, 0.88] , [0.18, 0.29] , [0.12, 0.26]〉 〈[0.44, 0.57] , [0.12, 0.23] , [0.72, 0.84]〉 〈[0.60, 0.70] , [0.43, 0.56] , [0.26, 0.37]〉 〈[0.70, 0.80] , [0.33, 0.46] , [0.10, 0.20]〉 〈[0.74, 0.88] , [0.35, 0.56] , [0.10, 0.20]〉

Table 5. The aggregated knowledge of M&A target selection by using the interval neutrosophic number weighted geometric (INNWG) operator.

RINNWG y1 y2 y3 y4 y5

x1 〈[0.72, 0.84] , [0.23, 0.33] , [0.44, 0.57]〉 〈[0.30, 0.43] , [0.23, 0.37] , [0.74, 0.85]〉 〈[0.62, 0.76] , [0.44, 0.57] , [0.33, 0.44]〉 〈[0.62, 0.72] , [0.33, 0.48] , [0.40, 0.50]〉 〈[0.23, 0.37] , [0.23, 0.37] , [0.74, 0.88]〉
x2 〈[0.43, 0.56] , [0.23, 0.33] , [0.74, 0.85]〉 〈[0.33, 0.46] , [0.40, 0.54] , [0.63, 0.74]〉 〈[0.50, 0.62] , [0.33, 0.48] , [0.54, 0.67]〉 〈[0.52, 0.65] , [0.23, 0.37] , [0.50, 0.60]〉 〈[0.72, 0.84] , [0.33, 0.48] , [0.30, 0.40]〉
x3 〈[0.70, 0.80] , [0.33, 0.48] , [0.44, 0.54]〉 〈[0.76, 0.90] , [0.33, 0.44] , [0.33, 0.48]〉 〈[0.33, 0.46] , [0.44, 0.54] , [0.54, 0.67]〉 〈[0.23, 0.37] , [0.54, 0.67] , [0.54, 0.67]〉 〈[0.43, 0.56] , [0.20, 0.30] , [0.74, 0.85]〉
x4 〈[0.72, 0.88] , [0.20, 0.33] , [0.44, 0.57]〉 〈[0.52, 0.65] , [0.23, 0.37] , [0.54, 0.63]〉 〈[0.40, 0.50] , [0.23, 0.37] , [0.70, 0.85]〉 〈[0.53, 0.65] , [0.30, 0.44] , [0.33, 0.48]〉 〈[0.62, 0.72] , [0.20, 0.30] , [0.63, 0.77]〉
x5 〈[0.72, 0.88] , [0.20, 0.30] , [0.12, 0.26]〉 〈[0.43, 0.56] , [0.12, 0.23] , [0.74, 0.85]〉 〈[0.60, 0.70] , [0.44, 0.57] , [0.26, 0.37]〉 〈[0.70, 0.80] , [0.33, 0.48] , [0.10, 0.20]〉 〈[0.72, 0.88] , [0.37, 0.57] , [0.10, 0.20]〉
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Finally, we compute the score values for five optional target organizations in 0.6
(

RINNWA (A)
)
⊕

(1− 0.6)
(

RINNWA (A)
)

and 0.6
(

RINNWG (A)
)
⊕ (1− 0.6)

(
RINNWG (A)

)
and further determine the

M&A target with the largest score value. Then, the ranking results by utilizing INNWA and INNWG
operators show that the best alternative is x3, namely the third target enterprise, which is consistent
with the decision result determined by Algorithm 1.

5.4. Result Analysis and Discussion

From the above ranking results, we can see that the proposed model takes full advantage of INSs
and multigranulation rough sets over two universes in M&A target selection procedures, and the
superiorities of utilizing INSs and multigranulation rough sets over two universes to deal with group
decision making problems can be summarized as follows:

1. In the process of describing decision making information, INSs provide experts with more
exemplary and flexible access to convey their understandings about the M&A knowledge base.
Specifically, it is worth noting that a variety of decision making information systems based on INSs
outperform some common extended forms of classical FSs, such as IFSs, interval-valued fuzzy
sets (IVFSs), interval-valued intuitionistic fuzzy sets (IVIFSs) and single-valued neutrosophic
sets (SVNSs). In the concept of INSs, by introducing the degree of indeterminacy and the degree
of non-membership of an element to a set, decision makers could express their incomplete,
indeterminate and inconsistent preferences more precisely, as well as avoid the loss of decision
making information through considering the truth, indeterminacy and falsity membership
functions in various decision making processes. Additionally, the expression of the degree
of membership, the degree of indeterminacy and the degree of non-membership using an
interval number enables decision makers to better model insufficiency in available information.
Thus, INSs could effectively deal with the more uncertain information in M&A target selection.

2. In group decision making procedures, multigranulation rough sets over two universes can be
seen as an efficient information fusion approach that could integrate each expert’s preference to
form an ultimate conclusion by considering optimistic and pessimistic decision making strategies.
Moreover, compared with classical IN group decision making approaches based on INNWA and
INNWG operators, it is noted that INNWA and INNWG operators could only offer a one-fold
information fusion strategy, i.e., the information fusion strategy based on averaging operators
or geometric operators without considering the risk appetite of experts, which may cause the
loss of risk-based information and further preclude the solution of risk-based group decision
making problems. However, the proposed decision making approach based on multigranulation
rough sets over two universes could not only provide risk-seeking and risk-averse decision
strategies simultaneously, but also provide a compromise decision strategy that considers the
risk preference of decision makers. Hence, multigranulation rough sets over two universes can
be regarded as a multiple information fusion strategy that is suitable for solving risk-based group
decision making problems.

As discussed previously, the advantages of the proposed model could provide a reasonable way
to express some complicated decision making information, utilize risk-seeking and risk-averse decision
strategies through considering the risk preference of decision makers and also increase the efficiency
of M&A target selection.

6. Conclusions

In this article, in order to conduct group decision making from the granular computing paradigm,
by combining multigranulation rough sets over two universes with INSs, a novel rough set model
named IN multigranulation rough sets over two universes is developed. The definition and some
properties of optimistic and pessimistic IN multigranulation rough sets over two universes are studied
systematically. Then, by virtue of IN multigranulation rough sets over two universes, we further
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construct decision making rules and computing approaches for M&A target selection problems. At last,
we illustrate the newly-proposed decision making approach on the basis of a practical M&A case
study. It is desirable to study attribute reduction algorithms and uncertainty measures based on IN
multigranulation rough sets over two universes in the future. Another future research direction is to
apply the proposed decision making approach to other business intelligence issues.
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