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Abstract: The neutrosophic cubic set can contain much more information to express its interval
neutrosophic numbers and single-valued neutrosophic numbers simultaneously in indeterminate
environments. Hence, it is a usual tool for expressing much more information in complex
decision-making problems. Unfortunately, there has been no research on similarity measures of
neutrosophic cubic sets so far. Since the similarity measure is an important mathematical tool in
decision-making problems, this paper proposes three cosine measures between neutrosophic cubic
sets based on the included angle cosine of two vectors, distance, and cosine functions, and investigates
their properties. Then, we develop a cosine measures-based multiple attribute decision-making
method under a neutrosophic cubic environment in which, from the cosine measure between each
alternative (each evaluated neutrosophic cubic set) and the ideal alternative (the ideal neutrosophic
cubic set), the ranking order of alternatives and the best option can be obtained, corresponding to
the cosine measure values in the decision-making process. Finally, an illustrative example about the
selection problem of investment alternatives is provided to illustrate the application and feasibility of
the developed decision-making method.

Keywords: neutrosophic cubic set; decision-making; similarity measure; cosine measure; interval
neutrosophic set; single-valued neutrosophic set

1. Introduction

The classic fuzzy set, as presented by Zadeh [1], is only described by the membership degree
in the unit interval [0, 1]. In the real world, it is often difficult to express the value of a membership
function by an exact value in a fuzzy set. In such cases, it may be easier to describe vagueness and
uncertainty in the real world using both an interval value and an exact value, rather than unique
interval/exact values. Thus, the hybrid form of an interval value and an exact value may be a very
useful expression for a person to describe certainty and uncertainty due to his/her hesitant judgment
in complex decision-making problems. For this purpose, Jun et al. [2] introduced the concept of
(fuzzy) cubic sets, including internal cubic sets and external cubic sets, by the combination of both an
interval-valued fuzzy number (IVFN) and a fuzzy value, and defined some logic operations of cubic
sets, such as the P-union, P-intersection, R-union, and R-intersection of cubic sets. Also, Jun and Lee [3]
and Jun et al. [4–6] applied the concept of cubic sets to BCK/BCI-algebras and introduced the concepts
of cubic subalgebras/ideals, cubic o-subalgebras and closed cubic ideals in BCK/BCI-algebras.

However, the cubic set is described by two parts simultaneously, where one represents the
membership degree range by the interval value and the other represents the membership degree by
a fuzzy value. Hence, a cubic set is the hybrid set combined by both an IVFN and a fuzzy value.
Obviously, the advantage of the cubic set is that it can contain much more information to express the
IVFN and fuzzy value simultaneously.
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As the generalization of fuzzy sets [1], interval-valued fuzzy sets (IVFSs) [7], intuitionistic fuzzy
sets (IFSs) [8], and interval-valued intuitionistic fuzzy sets (IVIFSs) [9], Smarandache [10] initially
introduced a concept of neutrosophic sets to express incomplete, indeterminate, and inconsistent
information. As simplified forms of neutrosophic sets, Smarandache [10], Wang et al. [11,12] and
Ye [13] introduced single-valued neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs),
and simplified neutrosophic sets (SNSs) as subclasses of neutrosophic sets for easy engineering
applications. Since then, SVNSs, INSs, and SNSs have been widely applied to various areas, such as
image processing [14–16], decision-making [17–32], clustering analyses [33,34], medical diagnoses [35,36],
and fault diagnoses [37]. Recently, Ali et al. [38] and Jun et al. [39] have extended cubic sets to the
neutrosophic sets and proposed the concepts of neutrosophic cubic sets (NCSs), including internal
NCSs and external NCSs, subsequently introducing some logic operations of NCSs, such as the P-union,
P-intersection, R-union, and R-intersection of NCSs. Furthermore, Ali et al. [38] introduced a distance
measure between NCSs and applied it to pattern recognition. Subsequently, Banerjee et al. [40] further
presented a multiple attribute decision-making (MADM) method with NCSs based on grey relational
analysis, in which they introduced the Hamming distances of NCSs for weighted grey relational
coefficients and standard (ideal) grey relational coefficients, and then gave the relative closeness
coefficients in order to rank the alternatives.

From the above review, we can see that the existing literature mainly focus on the theoretical
studies of cubic sets and NCSs, rather than the studies on their similarity measures and their
applications. On the other hand, the NCS contains much more information than the general
neutrosophic set (INS/SVNS) because the NCS is expressed by the combined information of both INS
and SVNS. Hence, NCSs used for attribute evaluation in decision making may show its rationality
and affectivity since general neutrosophic decision-making methods with INSs/SVNSs may lose
some useful evaluation information (either INSs or SVNSs) of attributes, which may affect decision
results, resulting in the distortion phenomenon. Moreover, the similarity measure is an important
mathematical tool in decision-making problems. Currently, since there is no study on similarity
measures of cubic sets and NCSs under a neutrosophic cubic environment, we need to develop new
similarity measures for NCSs for MADM problems with neutrosophic cubic information, since the
cubic set is a special case of the NCS. For these reasons, this paper aims to propose three cosine
measures between NCSs based on the included angle cosine of two vectors, distance, and cosine
function, and their MADM method in a neutrosophic cubic environment.

The remainder of the article is organized as follows. Section 2 briefly describes some concepts
of cubic sets and NCSs. Section 3 presents three cosine measures of NCSs and discusses their
properties. In Section 4, we develop an MADM approach based on the cosine measures of NCSs under
a neutrosophic cubic environment. In Section 5, an illustrative example about the selection problem
of investment alternatives is provided to illustrate the application and feasibility of the developed
method. Section 6 contains conclusions and future research.

2. Some Basic Concepts of Cubic Sets and NCSs

By the combination of a fuzzy value and an IVFN, Jun et al. [2] defined a (fuzzy) cubic set.
A cubic set S in a universe of discourse X is constructed as follows [2]:

S = {x, T(x), µ(x)|x ∈ X},

where T(x) = [T−(x), T+(x)] is an IVFN for x ∈ X and µ is a fuzzy value for x ∈ X. Then, we call

(i) S = {x, T(x), µ(x)|x ∈ X} an internal cubic set if T−(x) ≤ µ(x) ≤ T+(x) for x ∈ X;
(ii) S = {x, T(x), µ(x)|x ∈ X} an external cubic set if µ(x) /∈ (T−(x), T+(x)) for x ∈ X.

Then, Ali et al. [38] and Jun et al. [39] proposed a NCS based on the combination of an interval
neutrosophic number (INN) and a single-valued neutrosophic number (SVNN) as the extension of the
(fuzzy) cubic set.
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A NCS S in X is constructed as the following form [38,39]:

P = {x,< T(x), U(x), F(x) >,< t(x), u(x), f (x) >|x ∈ X},

where <T(x), U(x), F(x)> is an INN, and T(x) = [T−(x), T+(x)] ⊆ [0, 1], U(x) = [U−(x), U+(x)] ⊆ [0, 1],
and F(x) = [F−(x), F+(x)] ⊆ [0, 1] for x ∈ X are the truth-interval, indeterminacy-interval, and
falsity-interval, respectively; then <t(x), u(x), f (x)> is a SVNN, and t(x), u(x), f (x) ∈ [0, 1] for x ∈ X are
the truth, indeterminacy, and falsity degrees, respectively.

An NCS P = {x,< T(x), U(x), F(x) >,< t(x), u(x), f (x) >|x ∈ X} is said to be [38,39]:

(i) An internal NCS P = {x,< T(x), U(x), F(x) >,< t(x), u(x), f (x) >|x ∈ X} if T−(x) ≤ t(x) ≤
T+(x), U−(x) ≤ u(x) ≤ U+(x), and F−(x) ≤ f (x) ≤ F+(x) for x ∈ X;

(ii) An external NCS P = {x,< T(x), U(x), F(x) >,< t(x), u(x), f (x) >|x ∈ X} if t(x) /∈
(T−(x), T+(x)), u(x) /∈ (U−(x), U+(x)), and f (x) /∈ (F−(x), F+(x)) for x ∈ X.

For convenience, a basic element (x,< T(x), U(x), F(x) >,< t(x), u(x), f (x) >) in an NCS P is
simply denoted by p = (<T, U, F>, <t, u, f >), which is called a neutrosophic cubic number (NCN),
where T, U, F⊆ [0, 1] and t, u, f ∈ [0, 1], satisfying 0 ≤ T+(x) +U+(x) + F+(x) ≤ 3 and 0≤ t + u + f ≤ 3.

Let p1 = (<T1, U1, F1>, <t1, u1, f 1>) and p2 = (<T2, U2, F2>, <t2, u2, f 2>) be two NCNs. Then, there
are the following relations [38,39]:

(1) pc
1 =

(〈[
F−1 , F+

1
]
,
[
1−U+

1 , 1−U−1
]
,
[
T−1 , T+

1
]〉

, 〈 f1, 1− u1, t1〉
)

(complement of p1);
(2) p1 ⊆ p2 if and only if T1 ⊆ T2, U1 ⊇ U2, F1 ⊇ F2,t1 ≤ t2, u1 ≥ u2, and f1 ≥ f2 (P-order);
(3) p1 = p2 if and only if p2 ⊆ p1 and p1 ⊆ p2, i.e., <T1, U1, F1> = <T2, U2, F2> and <t1, u1, f 1> = <t2,

u2, f 2>.

3. Cosine Measures of NCSs

In this section, we propose three cosine measures between NCSs.

Definition 1. Let X ={x1, x2, . . . , xn} be a finite set and two NCSs be P ={p1, p2, . . . , pn} and Q ={q1, q2, . . . ,
qn}, where pj = (<Tpj, Upj, Fpj>, <tpj, upj, fpj>) and qj = (<Tqj, Uqj, Fqj>, <tqj, uqj, fqj>) for j = 1, 2, . . . , n are
two collections of NCNs. Then, three cosine measures of P and Q are proposed based on the included angle cosine
of two vectors, distance, and cosine function, respectively, as follows:

(1) Cosine measure based on the included angle cosine of two vectors

S1(P, Q)

= 1
2n


n
∑

j=1

T−pj T
−
qj +T+

pj T
+
qj +U−pjU

−
qj+U+

pjU
+
qj+F−pj F−qj +F+

pj F+
qj

√
(T−pj)

2
+ (T+

pj)
2
+ (U−pj)

2
+ (U+

pj)
2
+ (F−pj)

2
+ (F+

pj)
2

×
√
(T−qj )

2
+ (T+

qj )
2
+ (U−qj )

2
+ (U+

qj )
2
+ (F−qj )

2
+ (F+

qj )
2


+

n
∑

j=1

tpjtqj+upjuqj+ fpj fqj{√
t2

pj+u2
pj+ f 2

pj×
√

t2
qj+u2

qj+ f 2
qj

}


(1)

(2) Cosine measure based on distance

S2(P, Q) =
1

2n

n

∑
j=1


cos

( ∣∣∣T−pj−T−qj

∣∣∣+∣∣∣T+
pj−T+

qj

∣∣∣+∣∣∣U−pj−U−qj

∣∣∣+∣∣∣U+
pj−U+

qj

∣∣∣+∣∣∣F−pj−F−qj

∣∣∣+∣∣∣F+
pj−F+

qj

∣∣∣
12 π

)

+ cos

( ∣∣∣tpj−tqj

∣∣∣+∣∣∣upj−uqj

∣∣∣+∣∣∣ fpj− fqj

∣∣∣
6 π

)
 (2)
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(3) Cosine measure based on cosine function

S3(P, Q)

= 1
2n


1

3(
√

2−1)

n
∑

j=1



[√
2 cos

(
T−pj+T+

pj−T−qj−T+
qj

8 π

)
− 1
]

+

[√
2 cos

(
U−pj+U+

pj−U−qj−U+
qj

8 π

)
− 1
]

+

[√
2 cos

(
F−pj+F+

pj−F−qj−F+
qj

8 π

)
− 1
]


+ 1

3(
√

2−1)

n
∑

j=1



[√
2 cos

( tpj−tqj
4 π

)
− 1
]

+
[√

2 cos
( upj−uqj

4 π
)
− 1
]

+

[√
2 cos

(
fpj− fqj

4 π

)
− 1
]



(3)

Obviously, the three cosine measures Sk(P, Q) (k = 1, 2, 3) satisfy the following properties (S1)–(S3):

(S1) 0 ≤ Sk(P, Q) ≤ 1;
(S2) Sk(P, Q) = Sk(Q, P);
(S3) Sk(P, Q) = 1 if P = Q, i.e., <Tpj, Upj, Fpj>, = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>.

Proof.
Firstly, we prove the properties (S1)–(S3) of S1(P, Q).

(S1) The inequality S1(P, Q) ≥ 0 is obvious. Then, we only prove S1(P, Q) ≤ 1.

Based on the Cauchy–Schwarz inequality:

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤

(
x2

1 + x2
2 + · · · x2

n

)
×
(

y2
1 + y2

2 + · · · y2
n

)
,

where (x1, x2, . . . , xn) ∈ Rn and (y1, y2, . . . , yn) ∈ Rn, we can give the following inequality:

(x1y1 + x2y2 + · · ·+ xnyn) ≤
√(

x2
1 + x2

2 + · · · x2
n
)
×
√(

y2
1 + y2

2 + · · · y2
n
)
.

According to the above inequality, we have the following inequality:

T−pj T
−
qj + T+

pj T
+
qj + U−pjU

−
qj + U+

pjU
+
qj + F−pj F

−
qj + F+

pj F
+
qj ≤√

(T−pj)
2
+ (T+

pj)
2
+ (U−pj)

2
+ (U+

pj)
2
+ (F−pj)

2
+ (F+

pj)
2 ×

√
(T−qj )

2
+ (T+

qj )
2
+ (U−qj )

2
+ (U+

qj )
2
+ (F−qj )

2
+ (F+

qj )
2,

tpjtqj + upjuqj + fpj fqj ≤
√

t2
pj + u2

pj + f 2
pj ×

√
t2
qj + u2

qj + f 2
qj.

Hence, there is the following result:

1
n

n

∑
j=1

T−pj T
−
qj + T+

pj T
+
qj + U−pjU

−
qj + U+

pjU
+
qj + F−pj F

−
qj + F+

pj F
+
qj

√
(T−pj)

2
+ (T+

pj)
2
+ (U−pj)

2
+ (U+

pj)
2
+ (F−pj)

2
+ (F+

pj)
2

×
√
(T−qj )

2
+ (T+

qj )
2
+ (U−qj )

2
+ (U+

qj )
2
+ (F−qj )

2
+ (F+

qj )
2


≤ 1,

1
n

n

∑
j=1

tpjtqj + upjuqj + fpj fqj{√
t2

pj + u2
pj + f 2

pj ×
√

t2
qj + u2

qj + f 2
qj

} ≤ 1.

Based on Equation (1), we have S1(P, Q) ≤ 1. Hence, 0 ≤ S1(P, Q) ≤ 1 holds.

(S2) It is straightforward.
(S3) If P = Q, there are <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. Thus Tpj = Tqj,

Upj = Uqj, Fpj = Fqj, tpj = tqj, upj = uqj, and fpj = fqj for j = 1, 2, . . . , n. Hence S1(P, Q) = 1 holds.

Secondly, we prove the properties (S1)–(S3) of S2(P, Q).

(S1) Let x1 =
(∣∣∣T−pj − T−qj

∣∣∣+ ∣∣∣T+
pj − T+

qj

∣∣∣+ ∣∣∣U−pj −U−qj

∣∣∣+ ∣∣∣U+
pj −U+

qj

∣∣∣+ ∣∣∣F−pj − F−qj

∣∣∣+ ∣∣∣F+
pj − F+

qj

∣∣∣)/6

and x2 =
(∣∣∣tpj − tqj

∣∣∣+ ∣∣∣upj − uqj

∣∣∣+ ∣∣∣ fpj − fqj

∣∣∣)/3. It is obvious that there exist 0 ≤ x1 ≤ 1
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and 0 ≤ x2 ≤ 1. Thus, there are 0 ≤ cos(x1π/2) ≤ 1 and 0 ≤ cos(x2π /2) ≤ 1. Hence, 0 ≤ S2(P, Q)
≤ 1 holds.

(S2) It is straightforward.
(S3) If P = Q, there are <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. Thus Tpj = Tqj,

Upj = Uqj, Fpj = Fqj, tpj = tqj, upj = uqj, and fpj = fqj for j = 1, 2, . . . , n. Hence, S2(P, Q) = 1 holds.

Thirdly, we prove the properties (S1)–(S3) of S3(P, Q).

(S1) Let y1 = (T−pj + T+
pj − T−qj − T+

qj )/2, y2 = (U−pj + U+
pj − U−qj − U+

qj )/2, y3 = (F−pj + F+
pj − F−qj −

F+
qj )/2, y4 = tpj − tqj, y5 = upj − uqj, and y6 = fpj − fqj. Obviously, there exists −1 ≤ yk ≤ +1 for

k = 1, 2, ...., 6. Thus,
√

2/2 ≤ cos(ykπ/4) ≤ 1, and then there exists 0 ≤ S3(P, Q) ≤ 1.
(S2) It is straightforward.
(S3) If P = Q, there are <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>. Thus Tpj = Tqj,

Upj = Uqj, Fpj = Fqj, tpj = tqj, upj = uqj, and fpj = fqj for j = 1, 2, . . . , n. Hence, S3(P, Q) = 1 holds. �

When the weight of the elements pj and qj (j = 1, 2, . . . , n) is taken into account, w = {w1, w2,
. . . , wn} is given as the weight vector of the elements pj and qj (j = 1, 2, . . . , n) with wj ∈ [0, 1]
and ∑n

j=1 wj = 1. Then, we have the following three weighted cosine measures between P and Q,
respectively:

Sw1(P, Q) =
1
2



n
∑

j=1
wj

T−pj T
−
qj +T+

pj T
+
qj +U−pjU

−
qj+U+

pjU
+
qj+F−pj F−qj +F+

pj F+
qj

√
(T−pj)

2
+ (T+

pj)
2
+ (U−pj)

2
+ (U+

pj)
2
+ (F−pj)

2
+ (F+

pj)
2

×
√
(T−qj )

2
+ (T+

qj )
2
+ (U−qj )

2
+ (U+

qj )
2
+ (F−qj )

2
+ (F+

qj )
2


+

n
∑

j=1
wj

tpjtqj+upjuqj+ fpj fqj{√
t2

pj+u2
pj+ f 2

pj×
√

t2
qj+u2

qj+ f 2
qj

}


, (4)

Sw2(P, Q) =
1
2

n

∑
j=1

wj


cos

( ∣∣∣T−pj−T−qj

∣∣∣+∣∣∣T+
pj−T+

qj

∣∣∣+∣∣∣U−pj−U−qj

∣∣∣+∣∣∣U+
pj−U+

qj

∣∣∣+∣∣∣F−pj−F−qj

∣∣∣+∣∣∣F+
pj−F+

qj

∣∣∣
12 π

)

+ cos

( ∣∣∣tpj−tqj

∣∣∣+∣∣∣upj−uqj

∣∣∣+∣∣∣ fpj− fqj

∣∣∣
6 π

)
, (5)

Sw3(P, Q) = 1
2


1

3(
√

2−1)

n
∑

j=1
wj





[√
2 cos

(
T−pj+T+

pj−T−qj−T+
qj

8 π

)
− 1
]

+

[√
2 cos

(
U−pj+U+

pj−U−qj−U+
qj

8 π

)
− 1
]

+

[√
2 cos

(
F−pj+F+

pj−F−qj−F+
qj

8 π

)
− 1
]

+


[√

2 cos
( tpj−tqj

4 π
)
− 1
]

+
[√

2 cos
( upj−uqj

4 π
)
− 1
]

+

[√
2 cos

(
fpj− fqj

4 π

)
− 1
]





. (6)

It is obvious that the three cosine measures Swk(P, Q) (k=1, 2, 3) also satisfy the following
properties (S1)–(S3):

(S1) 0 ≤ Swk(P, Q) ≤ 1;
(S2) Swk(P, Q) = Swk(Q, P);
(S3) Swk(P, Q) = 1 if P = Q, i.e., <Tpj, Upj, Fpj> = <Tqj, Uqj, Fqj> and <tpj, upj, fpj> = <tqj, uqj, fqj>.

By similar proof ways, we can prove the properties (S1)–(S3) for Swk(P, Q) (k = 1, 2, 3). Their proofs
are omitted here.

4. Decision-Making Method Using Cosine Measures

In this section, we propose an MADM method by using one of three cosine measures to solve
decision-making problems with neutrosophic cubic information.

In an MADM problem, let P = {P1, P2, . . . , Pm} be a set of m alternatives and R = {R1, R2, . . . ,
Rn} be a set of n attributes. The evaluation value of an attribute Rj (j = 1, 2, . . . , n) with respect to an
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alternative Pi (i = 1, 2, . . . , m) is expressed by a NCN pij = (<Tij, Uij, Fij>, <tij, uj, fij>) (j = 1, 2, . . . , n;
i = 1, 2, . . . , m), where Tij, Uij, Fij ⊆ [0, 1] and tij, uij, fij ∈ [0, 1]. Therefore, all the evaluation values
expressed by NCNs can be constructed as the neutrosophic cubic decision matrix P = (pij)m×n. Then,
the weight vector of the attributes Rj (j = 1, 2, . . . , n) is considered as w = (w1, w2, . . . , wn), satisfying
wj ∈ [0, 1] and ∑n

j=1 wj = 1. In this case, the proposed decision steps are described as follows:

Step 1: Establish an ideal solution (ideal alternative) P∗ =
{

p∗1 , p∗2 , . . . , p∗n
}

by the ideal NCN

p∗j =

(〈[
max

i
(T−ij ), max

i
(T+

ij )

]
,
[

min
i
(U−ij ), min

i
(U+

ij )

]
,
[

min
i
(F−ij ), min

i
(F+

ij )

]〉
,
〈

max
i

(tij), min
i
(uij), min

i
( fij)

〉)

corresponding to the benefit type of attributes and

p∗j =

(〈[
min

i
(T−ij ), min

i
(T+

ij )

]
,
[

max
i

(U−ij ), max
i

(U+
ij )

]
,
[

max
i

(F−ij ), max
i

(F+
ij )

]〉
,
〈

min
i
(tij), max

i
(uij), max

i
( fij)

〉)

corresponding to the cost type of attributes.
Step 2: Calculate the weighted cosine measure values between an alternative Pi (i = 1, 2, . . . , m) and

the ideal solution P* by using Equation (4) or Equation (5) or Equation (6) and get the values
of Sw1(Pi, P*) or Sw2(Pi, P*) or Sw3(Pi, P*) (i = 1, 2, . . . , m).

Step 3: Rank the alternatives in descending order corresponding to the weighted cosine measure
values and select the best one(s) according to the bigger value of Sw1(Pi, P*) or Sw2(Pi, P*) or
Sw3(Pi, P*).

Step 4: End.

5. Illustrative Example and Comparison Analysis

In this section, an illustrative example of the selection problem of investment alternatives is
provided in order to demonstrate the application of the proposed MADM method with neutrosophic
cubic information.

5.1. Illustrative Example

An investment company wants to invest a sum of money for one of four potential alternatives:
(a) P1 is a textile company; (b) P2 is an automobile company; (c) P3 is a computer company; (d) P4 is
a software company. The evaluation requirements of the four alternatives are on the basis of three
attributes: (a) R1 is the risk; (b) R2 is the growth; (c) R3 is the environmental impact; where the attributes
R1 and R2 are benefit types, and the attribute R3 is a cost type. The weight vector of the three attributes
is w = (0.32, 0.38, 0.3). When the expert or decision maker is requested to evaluate the four potential
alternatives on the basis of the above three attributes using the form of NCNs. Thus, we can construct
the following neutrosophic cubic decision matrix:

P =


(〈[0.5, 0.6], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.2, 0.3〉) (〈[0.5, 0.6], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.2, 0.3〉) (〈[0.6, 0.8], [0.2, 0.3], [0.1, 0.2]〉, 〈0.7, 0.2, 0.1〉)
(〈[0.6, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.1, 0.2〉) (〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.6, 0.1, 0.2〉) (〈[0.6, 0.7], [0.3, 0.4], [0.1, 0.2]〉, 〈0.7, 0.4, 0.1〉)
(〈[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉) (〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.3, 0.4〉) (〈[0.5, 0.7], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.2, 0.3〉)
(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉) (〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉) (〈[0.6, 0.7], [0.3, 0.4], [0.2, 0.3]〉, 〈0.7, 0.3, 0.2〉)

.

Hence, the proposed MADM method can be applied to this decision-making problem with NCSs
by the following steps:

Firstly, corresponding to the benefit attributes R1, R2, and the cost attribute R3, we establish an
ideal solution (ideal alternative):

P∗ = {p∗1 , p∗2 , . . . , p∗n} =


(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.8, 0.1, 0.2〉),
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.7, 0.1, 0.2〉),
(〈[0.5, 0.7], [0.3, 0.4], [0.3, 0.4]〉, 〈0.6, 0.4, 0.3〉)

.
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Then, we calculate the weighted cosine measure values between an alternative Pi (i = 1, 2, 3, 4)
and the ideal solution P* by using Equation (4) or Equation (5) or Equation (6), get the values of Sw1(Pi,
P*) or Sw2(Pi, P*) or Sw3(Pi, P*) (i = 1, 2, 3, 4), and rank the four alternatives, which are shown in Table 1.

Table 1. All the cosine measure values between Pi and P* and ranking orders of the four alternatives.

Swk(Pi, P*) Cosine Measure Value Ranking Order The Best Alternative

Sw1(Pi, P*) 0.9564, 0.9855, 0.9596, 0.9945 P4 > P2 > P3 > P1 P4
Sw2(Pi, P*) 0.9769, 0.9944, 0.9795, 0.9972 P4 > P2 > P3 > P1 P4
Sw3(Pi, P*

′
) 0.9892, 0.9959, 0.9897, 0.9989 P4 > P2 > P3 > P1 P4

From the results of Table 1, we can see that all the ranking orders of the four alternatives and
best choice return the same results corresponding to the three cosine measures in the decision-making
problem with neutrosophic cubic information. It is obvious that P4 is the best one.

5.2. Related Comparison

For relative comparison, we compare our decision-making method with the only existing
related decision-making method based on the grey relational analysis under neutrosophic cubic
environment [40]. Because the decision-making problem/method with CNS weights in [40] is different
from ours, which has exact/crisp weights, we cannot compare them under different decision-making
conditions. However, we only gave the comparison of decision-making complexity to show our
simple method.

The proposed decision-making method based on the cosine measures of NCSs directly uses the
cosine measures between an alternative Pi (i = 1, 2, . . . , m) and the ideal alternative (ideal solution)
P* to rank all the alternatives; while the existing decision-making method with NCSs introduced
in [40] firstly determines the Hamming distances of NCSs for weighted grey relational coefficients and
standard (ideal) grey relational coefficients, and then derives the relative closeness coefficients in order
to rank the alternatives. It is obvious that our decision-making method is simpler and easier than the
existing decision-making method with NCSs introduced in [40]. But, our decision-making method can
only deal with decision-making problems with exact/crisp weights, rather than NCS weights [40].

Compared with existing related decision-making methods with general neutrosophic sets (INSs
or SVNSs) [17–39], the proposed decision-making method with NCSs contains much more evaluation
information of attributes, which consists of both INSs and SVNSs; while the existing decision-making
methods [17–39] contain either INS or SVNS information, which may lose some useful evaluation
information of attributes in the decision-making process and affect the decision results, resulting in the
distortion phenomenon. Furthermore, the existing decision-making methods [17–39] cannot deal with
the decision-making problem with NCSs.

5.3. Sensitive Analysis

To show the sensitivities of these cosine measures on the decision results, we can only change the
internal NCS of the alternative P4 into the external NCS and reconstruct the following neutrosophic
cubic decision matrix:

P′ =


(〈[0.5, 0.6], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.2, 0.3〉) (〈[0.5, 0.6], [0.1, 0.3], [0.2, 0.4]〉, 〈0.6, 0.2, 0.3〉) (〈[0.6, 0.8], [0.2, 0.3], [0.1, 0.2]〉, 〈0.7, 0.2, 0.1〉)
(〈[0.6, 0.8], [0.1, 0.2], [0.2, 0.3]〉, 〈0.7, 0.1, 0.2〉) (〈[0.6, 0.7], [0.1, 0.2], [0.2, 0.3]〉, 〈0.6, 0.1, 0.2〉) (〈[0.6, 0.7], [0.3, 0.4], [0.1, 0.2]〉, 〈0.7, 0.4, 0.1〉)
(〈[0.4, 0.6], [0.2, 0.3], [0.1, 0.3]〉, 〈0.6, 0.2, 0.2〉) (〈[0.5, 0.6], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.3, 0.4〉) (〈[0.5, 0.7], [0.2, 0.3], [0.3, 0.4]〉, 〈0.6, 0.2, 0.3〉)
(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.9, 0.3, 0.3〉) (〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.8, 0.3, 0.4〉) (〈[0.6, 0.7], [0.3, 0.4], [0.2, 0.3]〉, 〈0.8, 0.5, 0.4〉)

.
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Then, the corresponding ideal solution (ideal alternative) is changed into the following form:

P∗ = {p∗1 , p∗2 , . . . , p∗n} =


(〈[0.7, 0.8], [0.1, 0.2], [0.1, 0.2]〉, 〈0.9, 0.1, 0.2〉),
(〈[0.6, 0.7], [0.1, 0.2], [0.1, 0.3]〉, 〈0.8, 0.1, 0.2〉),
(〈[0.5, 0.7], [0.3, 0.4], [0.3, 0.4]〉, 〈0.6, 0.5, 0.4〉)

.

According to the results of Table 2, both the cosine measure based on the included angle cosine
of two vectors Sw1 and the cosine measure based on cosine function Sw3 still hold the same ranking
orders; while the cosine measure based on distance Sw2 shows another ranking form. In this case, Sw2

is sensitive to the change of the evaluation values, since its ranking order changes with the change of
the evaluation values for the alternative P4.

Table 2. All the cosine measure values between Pi
′ and P*′ and ranking orders of the four alternatives.

Swk(Pi
′, P*′) Cosine Measure Value Ranking Order The Best Alternative

Sw1(Pi
′, P*′) 0.9451, 0.9794, 0.9524, 0.9846 P4 > P2 > P3 > P1 P4

Sw2(Pi
′, P*′) 0.9700, 0.9906, 0.9732, 0.9877 P2 > P4 > P3 > P1 P2

Sw3(Pi
′, P*′) 0.9867, 0.9942, 0.9877, 0.9968 P4 > P2 > P3 > P1 P4

Nevertheless, this study provides a new and effective method for decision makers, due to the
limited study on similarity measures and decision-making methods with NCSs in the existing literature.
In this study, decision makers can select one of three cosine measures of NCSs to apply to MADM
problems, according to their preferences and actual requirements.

6. Conclusions

This paper proposed three cosine measures of NCSs based on the included angle cosine of
two vectors, distance, and cosine function, and discussed their properties. Then, we developed
an MADM method with neutrosophic cubic information by using one of three cosine measures of
NCSs. An illustrative example about the selection problem of investment alternatives was provided to
demonstrate the applications of the proposed MADM method with neutrosophic cubic information.

The cosine measures-based MADM method developed in this paper is simpler and easier than
the existing decision-making method with neutrosophic cubic information based on the grey related
analysis, and shows the main advantage of its simple and easy decision-making process. However,
this study can only deal with decision-making problems with exact/crisp weights, rather than NCS
weights [40], which is its chief limitation. Therefore, the three cosine measures of NCSs that were
developed, and their decision-making method are the main contributions of this paper. The developed
MADM method provides a new and effective method for decision makers under neutrosophic cubic
environments. In future work, we will further propose some new similarity measures of NCSs and
their applications in other fields, such as image processing, medical diagnosis, and fault diagnosis.
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