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Abstract: China’s railway network is one of the largest railway networks in the world. By the
end of 2016, the total length of railway in operation reached 124,000 km and the annual freight
volume exceeded 3.3 billion tons. However, the structure of network does not completely match
transportation demand, i.e., there still exist a few bottlenecks in the network, which forces some freight
flows to travel along non-shortest paths. At present, due to the expansion of the high-speed railway
network, more passengers will travel by electric multiple unit (EMU) trains running on the high-speed
railway. Therefore, fewer passenger trains will move along the regular medium-speed lines, resulting
in more spare capacity for freight trains. In this context, some shipments flowing on non-shortest
paths can shift to shorter paths. And consequently, a combinatorial optimization problem concerning
which origin-destination (O-D) pairs should be adjusted to their shortest paths will arise. To solve
it, mathematical models are developed to adjust freight flows between their shortest paths and
non-shortest paths based on the 0-1 knapsack problem. We also carry out computational experiments
using the commercial software Gurobi and a greedy algorithm (GA), respectively. The results indicate
that the proposed models are feasible and effective.
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1. Introduction

China’s railway network is one of the largest railway networks in the world. By the end of 2016,
the total length of railway in operation reached 124,000 km and the annual freight volume exceeded
3.3 billion tons. Typically, all the shipments travel along their pre-specified paths. However, these
paths do not remain unchanged. In fact, they need to be adjusted in the following situations:

(1) When new high-speed railways are built and a number of passenger flows are diverted to them.
Hence, the regular medium-speed lines will have more spare capacity for freight trains.

(2) When some existing lines are rebuilt for capacity expansion so that more shipments can flow
on them.

(3) When a new line shortening the distance between two nodes on the opposite sides of a circle
is built.

(4) When natural disasters happen or track maintenance is carried out, reducing the capacity of
railway lines. For example, annual spring maintenance lasting for around 25 days is conducted
on the Datong–Qinhuangdao railway, which is known as the most famous coal-transport corridor
in China. During the period, the available service time of the line will decrease by 4 h each day,
which translates into a decline of coal transportation of about 200,000 tons per day. In other
words, there will be a decrease of 5 million tons in total for the whole maintenance period.
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For the first three situations, namely, (1), (2) and (3), shipments flowing on the non-shortest paths
should be diverted to their shortest paths; while in situation (4), a part of shipments should shift to
longer paths. The freight flow adjustment problem arising in these cases can be formulated as a typical
combinatorial optimization problem.

As for the cargo flow adjustment problem, most previous studies have been devoted to flow
assignment models. Lin et al. [1] studied the problem of finding the feasible path set for each O-D
pair in a railway network. Du and Ji [2] analyzed the marginal cost and benefit of diverting car flows
from one railway to its parallel line by taking the Beijing–Guangzhou railway and Beijing–Kowloon
railway as an example. Ye et al. [3] calculated the shortest path of a car flow and discussed the impact
of the Xinyi–Changxing railway on flow adjustment. Su and Chen [4] presented a multi-objective 0-1
programming model and converted it into a single objective formulation. He successfully achieved
the adjustment of freight flow between the Baoji–Zhongwei railway and the Baoji–Lanzhou railway.
Tian et al. [5] studied the car flow distribution problem and adopted artificial arcs to deal with infeasible
flows. Zhao et al. [6] investigated the freight empty car allocation problem with dynamic demands,
and formulated a stage-based optimization model. To address the real-time traffic management
problem and car scheduling problem, Corman et al. [7] developed a new tabu search scheme and
designed a computational experiment based on practical size instances from a dispatching area
of the Dutch railway network. Sadykov et al. [8] considered a variant of the freight railcar flow
problem. They formulated the problem as a multi-commodity flow problem in a large space-time
graph and proposed three approaches for the linear programming relaxation of the formulation.
Borndörfer et al. [9] investigated the freight train routing problem from a strategic perspective,
calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. The above
literature mainly focuses on freight flow path optimization from the perspective of the whole railway
network. In fact, changes of structure or capacity often occur in partial network, so fine-tuning is
valuable for rail operators. However, there is little work devoted to this issue. Many researchers have
studied in-depth the problem of passenger flow assignment problem. Zhou et al. [10] analyzed the
distribution characteristics of the components of travel time, and proposed an estimation method of the
path-selecting proportion. Han et al. [11] established a stochastic user equilibrium model for solving
the passenger flow assignment problem in a schedule-based rail transit network. Fu et al. [12] proposed
a train stop scheduling approach combining a passenger flow assignment procedure. Nguyen et al. [13]
presented a new graph theoretic framework for the passenger assignment problem that encompassed
simultaneously the departure time and the route choice. Cominetti and Correa [14] analyzed a
Wardrop equilibrium model for passenger assignment in general transit networks, including the effects
of congestion over the passengers’ choices.

As this paper proposes an applicable method to adjust freight flows between parallel railways
based on the 0-1 knapsack problem, some related studies should be noted for this problem. Pisinger [15]
defined the classical knapsack problem and gave an overview of exact solution approaches. He also
pointed out that the previous benchmark tests were limited to a few highly constructed instances,
which did not show the full characteristics of the knapsack problem. Poirriez et al. [16] presented a new
approach for solving the unbounded knapsack problem and proposed an efficient and robust hybrid
algorithm. Frenkel et al. [17] studied the effect of free and direct products on the time complexity of
knapsack-type problems in groups, which were the natural generalizations of the classic knapsack
and related problems to arbitrary (non-commutative) groups. He showed that free products in certain
sense preserve the time complexity of knapsack-type problems, while direct products may amplify it.
Rooderkerk and Heerde [18] developed a robust approach to optimize retail assortments and proposed
a novel, efficient and real-time heuristic for addressing this 0-1 knapsack problem. In the following
sections, the knapsack problem and flow adjustment problem (FAP) are described in detail.
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2. Knapsack Problem

2.1. The Unbounded Knapsack Problem

As a typical non-deterministic polynomial-time hard (NP-hard) problem, the unbounded
knapsack problem (UKP) is defined as follows: We are given a set of n types O = {o1, o2, ..., on}
of items without quantity restriction. Items of the same type share a common weight wi and a common
value ϕi. The problem is to choose a subset of these items aiming to maximize their overall value,
while their overall weight does not exceed a given capacity c. Without loss of generality, it should be
assumed that all values and weights are positive, all weights are smaller than the capacity c, and the
overall weight of all items exceeds c. The model of UKP problem can be formulated as follows:

Maximize
n

∑
i=1

ϕixi, (1)

Subjectto
n

∑
i=1

wixi ≤ c, (2)

∀xi ∈ Z+, 1 ≤ i ≤ n, (3)

where xi represents the number of items of type oi included in the knapsack.

2.2. The 0-1 Knapsack Problem

The 0-1 knapsack problem is one of the most extensively studied combinatorial optimization
problems. The objective of this problem is to maximize the total value of items in the knapsack,
and the constraint is to ensure the sum of the weights is less than or equal to the knapsack capacity.
There is only one item of each type and only two options for each item, i.e., included in the knapsack
or not. Each item cannot be put into the knapsack more than once or be partially included in the
knapsack. Similar problems have arisen in other fields, e.g., information encryption, decision-making
in engineering projects and cargo loading. The 0-1 knapsack problem can be formulated as follows:

Maximize
n

∑
i=1

ϕiyi, (4)

Subjectto
n

∑
i=1

wiyi ≤ c, (5)

yi ∈ {0, 1}, 1 ≤ i ≤ n, (6)

where yi denotes whether the item of type oi is included in the knapsack.

3. Flow Adjustment Models Based on the 0-1 Knapsack Problem

To describe in detail the method of adjusting freight flows between parallel railways, we construct
a simplified regional railway network consisting of 6 stations and 6 links, as shown in Figure 1. There
are two paths from station 1 to station 6, i.e., path A: 1→2→5→6 and path B: 1→2→3→4→5→6; path
A is the shorter one.
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Figure 1. A simplified railway network. 
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Let us assume that a high-speed railway was built along path A recently. In this context, some 
passenger flows will be gradually diverted from the regular medium-speed line to this new high-
speed railway. Therefore, fewer passenger trains will travel along path A, resulting in more spare 
capacity for freight trains. Consequently, some shipments can be adjusted from path B to path A. If 
we regard the spare capacity of path A as a knapsack and the shipments on path B as different types 
of items, the flow adjustment problem is equivalent to a 0-1 knapsack problem. When we simply take 

Figure 1. A simplified railway network.

Let FA be the set of all shipments traveling along path A, and FB contains all shipments flowing
on path B. We assume that FA consists of shipments while FB comprises n shipments, so the two sets
can be expressed by:

FA =
{

f 1
A, f 2

A, ..., f i
A, ..., f m

A

}
, (7)

FB =
{

f 1
B, f 2

B, ..., f j
B, ..., f n

B

}
, (8)

where f i
A is the numerical value of shipment i traveling along path A, and f j

B denotes the numerical
value of shipment j flowing on path B.

Notations used in our models are described as Table 1.

Table 1. Notations and their representations.

Parameters Representation

λ Unit transportation cost.

lA Length of path A.

lB Length of path B.

∆c Spare capacity of path A.

∆c′ Capacity reduction of path A.

µk
A

Generalized transportation cost.

θk
A

Unit time cost of shipment f k
A.

θk
B

Unit time cost of shipment f k
B.

v Average speed of freight trains.

Decision Variables Representation

xk
B→A

decision variable. xk
B→A equals 1 if shipment f k

B is
adjusted to path A; and 0 otherwise.

xk
A→B

decision variable. xk
A→B equals 1 if shipment f k

A is
adjusted to path B; and 0 otherwise.

3.1. Models for Flow Adjustment from Non-Shortest Path to the Shortest Path

Let us assume that a high-speed railway was built along path A recently. In this context, some
passenger flows will be gradually diverted from the regular medium-speed line to this new high-speed
railway. Therefore, fewer passenger trains will travel along path A, resulting in more spare capacity
for freight trains. Consequently, some shipments can be adjusted from path B to path A. If we regard
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the spare capacity of path A as a knapsack and the shipments on path B as different types of items,
the flow adjustment problem is equivalent to a 0-1 knapsack problem. When we simply take the unit
transportation cost of each freight flow into consideration, the FAP can be formulated as follows:

(FAP-1)

Maximize
n

∑
k=1

λ f k
B(lB − lA)xk

B→A, (9)

Subjectto
n

∑
k=1

f k
Bxk

B→A ≤ ∆c, (10)

xk
B→A ∈ {0, 1}, 1 ≤ k ≤ n, (11)

The objective function (9) seeks to maximize the overall cost savings. The constraint (10) ensures that
the total volume of adjusted shipments is smaller than the spare capacity ∆c.

In model FAP-1, transportation time cost is not considered. In fact, the time sensitivities of
different commodities are quite different, for example, bulk commodities (e.g., coal, ore and oil) are
not sensitive to transportation time, whereas high-value commodities (e.g., industrial equipments
and fresh foods) are very sensitive. Therefore, it is necessary for us to take into account the time
cost of different shipments. In other words, parameters representing time cost should be introduced.
The objective function can be re-formulated by:

z =
n
∑

k=1
λ f k

B(lB − lA)xk
B→A +

n
∑

k=1
f k
Bθk

B
(lB−lA)

v xk
B→A

=
n
∑

k=1
f k
B(lB − lA)

(
λ +

θk
B
v

)
xk

B→A

, (12)

The second term in formula (12) denotes the overall time cost savings. For simplicity, the
generalized unit transportation cost µk

B is defined as follows:

µk
B = λ +

θk
B
v

, (13)

In this manner, the modified flow adjustment model considering transportation time cost can be
expressed below:

(FAP-2)

Maximize
n

∑
k=1

µk
B f k

B(lB − lA)xk
B→A, (14)

Subjectto
n

∑
k=1

f k
Bxk

B→A ≤ ∆c, (15)

xk
B→A ∈ {0, 1}, 1 ≤ k ≤ n, (16)

It should be noted that, although model FAP-1 is similar to model FAP-2, and function (9) can be
converted to function (14) by simply replacing λ with µk

B, there is an essential difference between these
two models.

3.2. Models for Flow Adjustment from the Shortest Path to Non-Shortest Path

In this section, we assume that the annual track maintenance is going to be conducted on path A.
During this period, there will be a substantial reduction of freight capacity ∆c′ of path A. As a result,
some shipments should shift to the non-shortest path B. Without loss of generality, let us assume that
the spare capacity of path B is larger than ∆c′. Apparently, the essence of this problem is to divert a
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number of flows from path A to path B with the objective of minimizing the operation cost. Similarly,
this kind of problem can be regarded as a variant of the 0-1 knapsack problem.

(FAP-3)

Minimize
m

∑
k=1

λ f k
A(lB − lA)xk

A→B, (17)

Subjectto
m

∑
k=1

f k
Axk

A→B ≥ ∆c′, (18)

xk
A→B ∈ {0, 1}, 1 ≤ k ≤ m, (19)

Note that, constraint (10) is different from constraint (18) which ensures that the overall volume
of adjusted flows is no smaller than the capacity reduction ∆c′.

If we consider both time costs and transportation costs of different commodities, another modified
flow adjustment model (FAP-4) can be expressed by:

(FAP-4)

Minimize
m

∑
k=1

f k
A(lB − lA)µ

k
Axk

A→B, (20)

Subjectto
m

∑
k=1

f k
Axk

A→B ≥ ∆c′, (21)

xk
A→B ∈ {0, 1}, 1 ≤ k ≤ m, (22)

µk
A = λ +

θk
A
v

, (23)

In model FAP-1 and FAP-3, we only consider the transportation cost, while in model FAP-2 and
FAP-4, time cost is taken into account so as to produce a more practical flow adjustment plan.

4. Computational Experiments

In this section, numerical experiments are conducted to test the feasibility of models using the
optimization software Gurobi. For comparison, a greedy algorithm, which is widely used in rail
transportation practice, is implemented.

4.1. Computational Experiments Based on Flow Adjustment Models

To test the feasibility and efficiency of our models, several computational experiments are designed.

4.1.1. Computational Experiments for Model FAP-1 and FAP-2

We make the following assumptions: the spare freight capacity of path A is ∆c = 20 million tons
per year; the length of path A is lA = 726 km and that of path B is lB = 837 km; the unit transportation
cost is λ = 0.1 ¥/ton-km. There are 30 shipments (the volume is virtual) moving on path B, whose
volume and generalized transportation cost µk

B are shown in Table 2.
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Table 2. Shipments on path B.

No. Name Volume (103 Tons/Year) µk
B (¥/Ton-km)

1 f 1
B 1200 0.137

2 f 2
B 1210 0.110

3 f 3
B 460 0.146

4 f 4
B 1790 0.135

5 f 5
B 650 0.108

6 f 6
B 2310 0.115

7 f 7
B 1540 0.126

8 f 8
B 1760 0.112

9 f 9
B 230 0.140

10 f 10
B 1260 0.143

11 f 11
B 2800 0.137

12 f 12
B 190 0.132

13 f 13
B 200 0.125

14 f 14
B 610 0.129

15 f 15
B 960 0.144

16 f 16
B 1560 0.141

17 f 17
B 720 0.107

18 f 18
B 690 0.132

19 f 19
B 750 0.150

20 f 20
B 370 0.114

21 f 21
B 2250 0.129

22 f 22
B 660 0.126

23 f 23
B 1960 0.131

24 f 24
B 2320 0.144

25 f 25
B 2560 0.111

26 f 26
B 310 0.118

27 f 27
B 2580 0.133

28 f 28
B 110 0.146

29 f 29
B 1360 0.118

30 f 30
B 580 0.143

It should be noted that the largest flow volume is 2.8 million tons per year ( f 11
B ), while the smallest

is 110,000 tons per year ( f 28
B ). And the average volume of these 30 shipments is approximately 1,198,000

tons per year. Similarly, the largest µk
B is µ19

B (0.15 ¥/ton-km), the smallest µk
B is µ17

B (0.107 ¥/ton-km).
The average value of all µk

B is about 0.129 ¥/ton-km.
Firstly, the model FAP-1 is tested on Gurobi 6 with the branch and bound algorithm. The optimal

solution is as follows:

x1
B→A = x2

B→A = x3
B→A = x4

B→A = x7
B→A = x8

B→A = x10
B→A = x11

B→A

= x15
B→A = x18

B→A = x19
B→A = x20

B→A = x24
B→A = x26

B→A = x27
B→A = 1

, (24)

x5
B→A = x6

B→A = x9
B→A = x12

B→A = x13
B→A = x14

B→A = x16
B→A = x17

B→A

= x21
B→A = x22

B→A = x23
B→A = x25

B→A = x28
B→A = x29

B→A = x30
B→A = 0

, (25)
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The result shows that 15 shipments should be adjusted from path B to path A, including:{
f 1
B, f 2

B, f 3
B, f 4

B, f 7
B, f 8

B, f 10
B , f 11

B , f 15
B , f 18

B , f 19
B , f 20

B , f 24
B , f 26

B , f 27
B

}
, (26)

For this case, the total volume of adjusted shipments is exactly equal to the spare capacity of
path A and the annual transportation cost saving is (837 − 726)× 20× 0.1 = 222 million Chinese
yuan (CNY).

Secondly, we test model FAP-2 and the result shows that 16 shipments should be adjusted from
path B to path A, namely:{

f 1
B, f 3

B, f 4
B, f 9

B, f 10
B , f 11

B , f 12
B , f 15

B , f 16
B , f 18

B , f 19
B , f 22

B , f 23
B , f 24

B , f 27
B , f 30

B

}
, (27)

The total volume of these shipments is up to 19,990,000 tons and the cost savings reach
305,930,400 CNY.

Compared to the solution of model FAP-1, the adjusted flow volume of FAP-2 decreases by
10,000 tons. The major differences of these two solutions lie in that:

(1) There are five shipments, e.g.,
{

f 2
B, f 7

B, f 8
B, f 20

B , f 26
B
}

, that should shift from path B to path A
according to FAP-1, with an average volume of 1,038,000 tons per year. However, these flows
are not adjusted based on FAP-2. Further analysis demonstrates that the average µk

B of these
five shipments is merely 0.116 ¥/ton-km (far lower than the overall average µk

B, 0.129 ¥/ton-km),
which makes little contribution to cost savings.

(2) On the contrary, there are six shipments, namely,
{

f 9
B, f 12

B , f 16
B , f 22

B , f 23
B , f 30

B
}

, that are not included
in the solution of FAP-1, partly due to their relatively low average volume (about 863,000 tons
per year). However, these shipments should be adjusted according to FAP-2. The main reason is
that the average µk

B of these shipments is 0.136 ¥/ton-km (in excess of overall average µk
B), which

generates significant influence on cost savings.

Note that FAP-1 and FAP-2 share 10 common shipments that should be adjusted,{
f 1
B, f 3

B, f 4
B, f 10

B , f 11
B , f 15

B , f 18
B , f 19

B , f 24
B , f 27

B
}

. The average volume of them is 1,481,000 tons per year, and
the average µk

B is about 0.140 ¥/ton-km.

4.1.2. Computational Experiments for model FAP-3 and FAP-4

Likewise, we assume that the freight capacity reduction of path A during the maintenance period
is ∆c′ = 200, 000 tons per day, while the spare capacity of path B is approximately 300,000 tons per day;
parameters such as lA, lB and λ remain the same. There are 50 shipments on path A, whose volume
and generalized transportation cost µk

B are shown in Table 3.

Table 3. Shipments on path A.

No. Name Volume (Tons/Day) µk
B (¥/Ton-km)

1 f 1
A 6113 0.103

2 f 2
A 6677 0.158

3 f 3
A 3812 0.107

4 f 4
A 7697 0.110

5 f 5
A 7572 0.153

6 f 6
A 5607 0.126

7 f 7
A 5279 0.100

8 f 8
A 7341 0.109

9 f 9
A 5749 0.111
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Table 3. Cont.

No. Name Volume (Tons/Day) µk
B (¥/Ton-km)

10 f 10
A 6256 0.123

11 f 11
A 6245 0.145

12 f 12
A 6874 0.114

13 f 13
A 6494 0.130

14 f 14
A 4028 0.115

15 f 15
A 3782 0.109

16 f 16
A 5519 0.148

17 f 17
A 5491 0.120

18 f 18
A 7970 0.152

19 f 19
A 5874 0.104

20 f 20
A 4437 0.132

21 f 21
A 5482 0.130

22 f 22
A 4292 0.146

23 f 23
A 6771 0.125

24 f 24
A 6028 0.154

25 f 25
A 4870 0.138

26 f 26
A 3592 0.128

27 f 27
A 6471 0.143

28 f 28
A 7617 0.135

29 f 29
A 7868 0.150

30 f 30
A 5135 0.122

31 f 31
A 5047 0.121

32 f 32
A 4611 0.123

33 f 33
A 7562 0.104

34 f 34
A 4567 0.152

35 f 35
A 6223 0.116

36 f 36
A 6287 0.118

37 f 37
A 4722 0.145

38 f 38
A 4253 0.126

39 f 39
A 7688 0.130

40 f 40
A 6153 0.100

41 f 41
A 4723 0.146

42 f 42
A 4047 0.119

43 f 43
A 5801 0.119

44 f 44
A 7909 0.134

45 f 45
A 6931 0.125

46 f 46
A 7898 0.146

47 f 47
A 3817 0.159

48 f 48
A 5958 0.124

49 f 49
A 3593 0.148

50 f 50
A 5096 0.106
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In Table 3, the largest-volume shipment is f 18
A (7970 tons per day), while the smallest is f 26

A
(3592 tons per day). The average volume of these 50 shipments is approximately 5796 tons per day.
Similarly, the largest µk

A is µ47
A (0.159 ¥/ton-km), and the smallest µk

B are µ7
A and µ40

A (0.100 ¥/ton-km).
The average value of all µk

A is about 0.128 ¥/ton-km.
Firstly, model FAP-3 is tested on Gurobi 6 using the branch and bound algorithm. The optimal

solution is described as follows:

x1
A→B = x2

A→B = x3
A→B = x4

A→B = x5
A→B = x7

A→B = x8
A→B = x10

A→B = x11
A→B = x13

A→B

= x16
A→B = x18

A→B = x20
A→B = x21

A→B = x22
A→B = x24

A→B = x25
A→B = x26

A→B = x28
A→B

= x29
A→B = x32

A→B = x33
A→B = x34

A→B = x36
A→B = x38

A→B = x40
A→B = x41

A→B = x42
A→B

= x44
A→B = x46

A→B = x47
A→B = x48

A→B = x49
A→B = x50

A→B = 1

, (28)

x6
A→B = x9

A→B = x12
A→B = x14

A→B = x15
A→B = x17

A→B = x19
A→B = x23

A→B = x27
A→B = x30

A→B

= x31
A→B = x35

A→B = x37
A→B = x39

A→B = x43
A→B = x45

A→B = 0
, (29)

Clearly, there are 33 shipments that should be adjusted from path A to path B, including:{
f 1
B, f 2

B, f 4
B, f 5

B, f 6
B, f 8

B, f 10
B , f 12

B , f 13
B , f 14

B , f 16
B , f 18

B , f 19
B , f 21

B , f 24
B , f 26

B , f 27
B ,

f 28
B , f 29

B , f 30
B , f 31

B , f 33
B , f 35

B , f 36
B , f 38

B , f 39
B , f 40

B , f 41
B , f 42

B , f 45
B , f 47

B , f 48
B , f 50

B
} , (30)

For this case, the total volume of adjusted shipments is exactly equal to the capacity reduction of
path A and the operation cost increase is (837− 726)× 200, 000× 0.1 = 2, 220, 000 CNY.

Secondly, we test model FAP-4 whose result shows that 35 shipments should be adjusted from
path A to path B, namely:{

f 1
A, f 3

A, f 4
A, f 6

A, f 7
A, f 8

A, f 9
A, f 10

A , f 12
A , f 14

A , f 15
A , f 17

A , f 19
A , f 20

A , f 21
A , f 23

A , f 25
A , f 26

A ,

f 28
A , f 30

A , f 31
A , f 32

A , f 33
A , f 35

A , f 36
A , f 37

A , f 38
A , f 39

A , f 40
A , f 42

A , f 43
A , f 44

A , f 45
A , f 48

A , f 50
A
} , (31)

The total volume of these shipments is up to 200,095 tons, slightly exceeding the threshold value
of 200,000 tons, and the operation cost increase reaches 2,564,796 CNY.

Compared to the solution of model FAP-3, the adjusted flow volume of FAP-4 rises by 95 tons.
The major differences of these two solutions lie in that:

(1) There are 10 shipments, e.g.,
{

f 2
A, f 5

A, f 13
A , f 16

A , f 18
A , f 24

A , f 27
A , f 29

A , f 41
A , f 47

A
}

, that should shift from
path A to path B according to FAP-3, with an average volume of 6313.9 tons per day. However,
these flows are not required to shift based on FAP-4. Further analysis indicates that the average
µk

A of these 10 shipments is 0.149 ¥/ton-km, which will significantly increase the operation cost
if adjusted.

(2) Twelve shipments are not included in the solution of FAP-3, but covered by that of FAP-4,
namely,

{
f 3
A, f 7

A, f 9
A, f 15

A , f 17
A , f 20

A , f 23
A , f 25

A , f 32
A , f 37

A , f 43
A , f 44

A
}

. The main reason is that the average
µk

A of these shipments is merely 0.122 ¥/ton-km, which has little impact on cost growth.

It should not be ignored that the solutions of FAP-3 and FAP-4 share 23 common shipments which
are described in detail below:{

f 1
A, f 4

A, f 6
A, f 8

A, f 10
A , f 12

A , f 14
A , f 19

A , f 21
A , f 26

A , f 28
A , f 30

A ,

f 31
A , f 33

A , f 35
A , f 36

A , f 38
A , f 39

A , f 40
A , f 42

A , f 45
A , f 48

A , f 50
A
} , (32)

The average volume of them is 5950.5 tons per day, and the average µk
A is about 0.118 ¥/ton-km.
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4.2. Computational Experiments Based on the Greedy Algorithm

The greedy algorithm is a heuristic algorithm which makes the locally optimal choice at each
stage aiming at finding a global optimum. In many problems, a greedy strategy does not in general
produce an optimal solution, but may yield locally optimal solutions approximating a global optimal
solution in a reasonable time. Greedy algorithms can produce optimal solutions on some mathematical
problems which have following properties:

(1) The greedy choice property.

We can make whatever choice seems best at the moment and then solve the sub-problems that
arise later. The choice made by a greedy algorithm may depend on the choice made so far, but
not on future choices or all the solutions to the sub-problem.

(2) An optimal substructure.

A problem exhibits an optimal substructure if an optimal solution to the problem contains optimal
solutions to the sub-problem.

Some literature which is closely related to greedy algorithms should be noted. Rao et al. [19]
proposed an optimization algorithm, combining a greedy selection scheme, to produce solutions
with succinct atomic representations for signal reconstruction problems. Davis and Impagliazzo [20]
defined an abstract model that captured the intrinsic power and limitations of greedy algorithms for
various graph optimization problems. Cerrone et al. [21] applied carousel greedy, an enhanced greedy
algorithm which sought to overcome the traditional weaknesses of greedy approaches, to a variety of
well-known problems in combinatorial optimization.

4.2.1. Applying the Greedy Algorithm to Model FAP-1 and FAP-2

In rail transportation, the greedy algorithm is widely used and its flowchart is shown in Figure 2.
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According to the flowchart previously mentioned, we adopt the greedy algorithm to adjust
shipments from path B to path A. Based on the data in Table 2, the computational result (denoted as
Solution GA-1) is expressed by:{

f 11
B , f 27

B , f 25
B , f 24

B , f 6
B, f 21

B , f 23
B , f 4

B, f 29
B

}
, (33)

We find that the total volume of these shipments is 19,930 thousand tons, decreasing by 70,000 tons
compared with the optimal solution of FAP-1. Furthermore, there is a decline in cost savings of 777,000
CNY, 0.35% lower than the optimal solution.

The greedy strategy corresponding to FAP-2 is adjusting freight flows in the order of generalized
transportation cost, i.e., from the highest cost to the lowest cost.

In this case, we apply greedy algorithm to the case with the data in Table 2 and the result (Solution
GA-2) is described as follows:{

f 19
B , f 3

B, f 28
B , f 15

B , f 24
B , f 10

B , f 30
B , f 16

B , f 9
B, f 1

B, f 11
B , f 4

B, f 27
B , f 12

B , f 18
B , f 23

B , f 13
B , f 26

B

}
, (34)

The total volume of these shipments reaches 19,950,000 tons, achieving cost savings of
305,317,700 CNY. Compared with the optimal solution of model FAP-2, the total volume declines by
40,000 tons, and the cost savings decrease by 612,700 CNY, i.e., 0.2% lower than the optimal solution.
Obviously, the solution of model FAP-2 is superior to Solution GA-2.

4.2.2. Applying the Greedy Algorithm to Model FAP-3 and FAP-4

To obtain a heuristic solution of model FAP-3 the greedy algorithm is implemented to the data
in Table 3, following the procedures which are slightly different from what described in Figure 2.
The major difference in procedures lies in that once the overall volume of solution exceeds the
threshold value (200,000 tons per day), the algorithm will terminate. In this manner, the result (denoted
as Solution GA-3) is efficiently obtained and can be described by:{

f 18
A , f 44

A , f 46
A , f 29

A , f 4
A, f 39

A , f 28
A , f 5

A, f 33
A , f 8

A, f 45
A , f 12

A , f 23
A , f 2

A, f 13
A ,

f 27
A , f 36

A , f 10
A , f 11

A , f 35
A , f 40

A , f 1
A, f 24

A , f 48
A , f 19

A , f 43
A , f 9

A, f 6
A, f 16

A , f 17
A
} , (35)

The total volume of these 30 shipments is up to 200,664 tons, rising by 664 tons compared with the
optimal solution of FAP-3. Moreover, the operation cost growth after adjustment is 2,227,370.4 CNY,
0.332% larger than the optimal solution of FAP-3.

The greedy strategy corresponding to FAP-4 is adjusting freight flows in the reverse order of
generalized transportation cost, i.e., from the lowest to the highest.

The result (Solution GA-4) is described as follows:{
f 40
A , f 7

A, f 1
A, f 19

A , f 33
A , f 50

A , f 3
A, f 15

A , f 8
A, f 4

A, f 9
A, f 12

A , f 14
A , f 35

A , f 36
A , f 43

A , f 42
A , f 17

A ,

f 31
A , f 30

A , f 32
A , f 10

A , f 48
A , f 23

A , f 45
A , f 38

A , f 6
A, f 26

A , f 13
A , f 21

A , f 39
A , f 20

A , f 44
A , f 28

A , f 25
A
} , (36)

The total volume of these 35 shipments is up to 201,867 tons, rising by 1772 tons compared with
the optimal solution of FAP-4. The operation cost growth of Solution GA-4 is 2,662,503.942 CNY,
approximately 3.81% larger than that of the optimal solution of FAP-4.

To summarize, the proposed methods outperform the greedy algorithm in terms of the
solution quality.

5. Conclusions

In this paper, we study in depth the railway cargo flow adjustment problem. This problem is
involved with shipments adjustment between parallel paths when their freight capacity is changed.
Inspired by the 0-1 knapsack problem, we develop mathematical models to address the problem.
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There are two situations that should be taken into account, i.e., adjusting flows from non-shortest path
to the shortest path and the other way around. We respectively propose two models (a basic model and
a modified model) for each situation. The objective functions of two basic models (FAP-1 and FAP-3)
are to maximize cost savings and to minimize operation cost growth, respectively. With consideration
of transportation time cost, basic models are then modified to be more reasonable and practical. To test
the feasibility and effectiveness of FAP models, computational experiments are conducted by using
Gurobi. The results show that these models can efficiently address the flow adjustment problem and
produce satisfactory solutions. For comparison, the greedy algorithm widely used in rail transportation
is also applied to the instances. Computational results illustrate that FAP models outperform the
greedy algorithm in solution quality. For future research work, researchers can focus on efficient
solution approaches for the flow adjustment problem when the freight capacities of several paths
change simultaneously.
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