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Abstract: This paper considers the underdetermined blind separation of multiple input multiple
output (MIMO) radar signals that are insufficiently sparse in both time and frequency domains under
noisy conditions, while traditional algorithms are usually applied in the ideal sparse environment.
An effective separation method based on single source point (SSP) identification and time-frequency
smoothed l0 norm (TF-SL0) is proposed. Firstly, a preprocessing step of the moving average filter and
a novel argument-based time-frequency SSPs detection are employed to improve the signal-to-noise
ratio and signal sparsity of the observed signals, respectively. Then, the mixing matrix is obtained
by using clustering algorithms. Secondly, to obtain the optimal solution of underdetermined sparse
component analysis, the smoothed l0 norm (SL0) is introduced to preliminarily achieve signal
separation in the time-frequency domain. Finally, time-frequency ridge estimation is proposed
to jointly enhance the reconstruction accuracy of the MIMO radar signals, and the time domain
waveforms are recovered by the model of the signals. Simulations illustrate the validity of the method
and show that the proposed method outperforms the traditional methods in source separation,
especially in the non-cooperative electromagnetic case where the prior information is unknown.

Keywords: blind source separation; underdetermined mixtures; MIMO radar signals; single source
points identification; sparse recovery

1. Introduction

Blind source separation (BSS) is a kind of signal processing method that aims to recover the waves
of sources from the observations without a priori knowledge on the sources and mixing procedure.
As a branch of the BSS, underdetermined blind source separation (UBSS) has recently turned into one
of the burning research problems, in which the number of sensors is less than that of the sources [1–3].
Sparse component analysis (SCA) is the main method to handle the problem of UBSS. According to
different steps of algorithms, the UBSS methods based on SCA are mainly divided into two categories:
one is a two-step approach that estimates the mixing matrix first and then reconstructs the sources
with the help of the sparsity, the other is simultaneous estimation of mixing matrix and source signals.
Due to the complexity and it being easy to converge to the local extremum point of simultaneous
estimation method, most existing SCA algorithms adopt the two-step approach. For the mixing
matrix estimation, scholars have given many feasible methods [4–9]. Assuming that the sources are
sufficiently sparse or satisfy W-disjoint orthogonality condition in the whole time-frequency (TF)
domain, the potential-function clustering and degenerate unmixing estimation technique (DUET)
algorithms developed in [4–6] firstly solve the problem of UBSS effectively. For the sources that are
insufficiently sparse, each source has at least one single source region that is composed of single source
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points (SSPs). Initially, SSPs represent those TF points where one source is dominant. These SSPs
present a good directional clustering property that corresponds to one column of the mixing matrix, so
we can detect all of the SSPs and complete the mixing matrix estimation by clustering algorithms [7–9].
However, the preceding methods have high performance only when the system is under the non-noise
condition. For the separation of the source signals, the solution is uncertain in UBSS even when
the mixing matrix has been estimated because the number of sources is larger than that of sensors.
At present, SCA can make the recovered signals as unique as possible by additional sparsity restrictions
of the sources. Assuming that the sources are sufficiently sparse and the mixing matrix has been
estimated, Mallat et al. [10] propose a sparse recovery algorithm based on matching pursuit (MP) to
seek the minimum l0 norm solution of the source signals. Then, as the estimation of the MP algorithm is
not the optimal, the orthogonal matching pursuit (OMP) algorithm is developed [11,12] by performing
Schmidt orthogonalization on the extracted mixture vectors. However, it is well known that searching
the minimum l0 norm solution is a non-convex optimization problem, and it is quite susceptible to
noise. For this reason, researchers consider some other approaches. One of the successful methods
is the basis pursuit (BP) algorithm [13–15], which actually uses the minimum l1 norm solution of
the sources instead of the minimum l0 norm. Essentially, many studies have confirmed that the
minimum l1 norm solution is consistent with the minimum l0 norm in a probabilistic sense [16]. Later,
Zayyani et al. [17] propose an iterative optimization technique that estimates the signals by Bayesian
posterior probability, and they prove that when the signals are independent and subject to Laplace
distribution, a maximum posteriori solution is equivalent to the minimum l1 norm solution. Although
the solution of UBSS algorithm based on the minimum l1 norm is easier to be obtained than the l0
norm, the sparsity of the solution is weaker than that of the l0 norm. Contrary to previous approaches,
Mohimani et al. [18] present a smoothed l0 norm (SL0) algorithm that is based on minimization of
the l0 norm directly. In this procedure, a continuous Gaussian function is defined to approximate
the l0 norm. The optimal control parameters are selected by the adaptive method, and the signals
are recovered by solving the optimization problem. This method gives adequate consideration to the
sparsity and convergence of the solution, but it is still unable to solve the separation problem when
sources are insufficiently sparse or overlapping in both time and frequency domains.

To up the discussions above, the two following major issues of the UBSS need to be solved
through more in-depth research. One is the source separation in a noisy situation. Most of the existing
separation algorithms perform well without noise, considering, however, that the influence of noise is
closer to the practical environment. The other is the source recovery or separation for weak sparse
signal. At present, most of the UBSS algorithms require that the sources are sufficiently sparse, such as
speech signals or electrocardiogram (ECG) signals, but the assumption is rather restrictive and difficult
to be tenable in the complex radio electromagnetic environments, such as Multiple Input Multiple
Output (MIMO) radar signals. In the field of radar signal processing, when the number of sources is
equal to that of the sensors, the traditional separation algorithms can efficiently achieve MIMO radar
signals separation by using the orthogonality of filter banks [19,20]. However, in the non-cooperative
environment, the number of radar signals is unknown, and it is usually more than the number of
sensors due to the dense electromagnetic environment and the limitation of receivers [21]. In this case,
Ma [21] and Fang et al. [22] introduce the minimum l1 norm and OMP algorithms, respectively, to
separate the radar signals when assuming that the sources are sparse in the time domain. In [23], the
mixing matrix is estimated by tensor decomposition and modified subspace projection is used for
recovering radar signals. Even so, if the radar signals are noisy and insufficiently sparse in both time
and frequency domains, the current algorithms show considerable deficiencies in the separability of
signals and the uniqueness of the solutions. Consequently, this paper makes the exploratory research
mainly about the two problems above. Firstly, a noise preprocessing scheme and a novel SSP detection
are respectively proposed to improve the signal-to-noise ratio (SNR) and the signal sparsity of the
observed signal. Then, an improved time-frequency SL0 (TF-SL0) algorithm is proposed to solve the
separation problem of the MIMO radar signals with weak sparse.



Symmetry 2017, 9, 104 3 of 15

The rest of this paper is organized as follows. Section 2 introduces the data model. In Section 3,
the mixing matrix estimation for the UBSS model is derived. In Section 4, we present an improved
TF-SL0 algorithm for the source separation. The experimental results are given in Section 5, and finally
conclusions are drawn in Section 6.

2. Problem Formulation

The MIMO radar system employs multiple transmitting and receiving antennas. In order to avoid
the mutual interferences between the channels, antennas emit ideally orthogonal waveforms, which
mainly include frequency division waveforms and code division waveforms. Since the orthogonal
discrete frequency coding modulation waveform (DFCW) possesses strong anti-interception ability
and can easily be implemented in engineering, it is common in the application of MIMO radar [24].
Assuming that the DFCW set consists of N different orthogonal waveforms, it can be represented as

{sn(t) =
L−1

∑
l=0

[pn
l (t− lT)]} n = 1, 2, 3, · · · , N, (1)

where

pn
l (t) =

{
ej2π f n

l t, 0 ≤ t ≤ T,
0, otherwise,

(2)

and L is the number of sub-pulses; T is the time duration of sub-pulse; f n
l = l · ∆ f is the coding

frequency of sub-pulse l of waveform n in the DFCW set; and ∆ f = 1/T. We can simply
express a coding frequency sequence { fl} = {l1∆ f , l2∆ f , · · · , lL∆ f } with the coefficient sequence
{l1, l2, · · · , lL}, which is a unique permutation of sequence {0, 1, · · · , L− 1} and represents the coding
order of frequency.

N sources from transmitting antennas go through linear mixed and then arrive to the receivers.
When the number of receiving antennas is less than that of transmitting antennas, the idea of the
UBSS can be used to separate the signals. The instantaneous linear mixed model for UBSS can be
expressed as

x(t) = As(t) + n(t), (3)

where x(t) = [x1(t), x2(t), · · · , xM(t)]T and s(t) = [s1(t), s2(t), · · · , sN(t)]T represent M observed
signals and N sources , respectively. A = [a1, a2, · · · , aN ] ∈ RM×N (M < N) is the mixing matrix with
ak(k = 1, 2, · · · , N) as its k-th column vector. n(t) = [n1(t), n2(t), · · · , nM(t)]T represents additive
white Gaussian noise in this paper.

Assumption 1. Any M ×M sub-matrix of the mixing matrix A is of full rank. This assumption ensures that
all the sources can be reconstructed [7].

3. Mixing Matrix Estimation

3.1. Noise Preprocessing

In order to make BSS achieve more ideal separation performance under the noise environment,
we first do preprocessing operations to improve the SNR of the observed signals. In this paper,
the feasibility of using time moving average filter to preprocess is discussed.

Actually, the observed random variables describe the time process of a phenomenon or system,
so they are time signals or time series, and the parameter t represents the point in time. In this case,
filtering the observed signal is very useful. Of course, the BSS is not assumed to have a time structure,
but when the observed signal can be represented as the meaningful order about the time, the filtering
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will be of significance. For time series, the linear time moving average filter is allowed because it does
not change the BSS model. A brief proof of the procedure is as follows.

Introduce matrix x = [x(1), x(2), · · · , x(T0)], similarly, s = [s(1), s(2), · · · , s(T0)] and n =

[n(1), n(2), · · · , n(T0)], where T0 represents the number of sampling points. The moving average
filter processing for the observed signals is equivalent to right-multiplication matrix F for the x,
according to F and Equation (3), we get

x∗ = x · F = [As + n] · F
= As∗ + n∗.

(4)

From Equation (4), it can be seen that the BSS model is still effective since the mixing matrix
does not change. Therefore, we can regard the filtered x∗ as the observed signals. In the time filter
theory, the physical significance of moving average filter is a transformation from point processing to
block processing for the non-stationary data x. This transform technique is a local average method in
a sliding window along the time series, which can efficiently restrain the random fluctuation caused
by noise. In this paper, a widely applied 5-points moving average algorithm is used. Assuming that
the number of sampling points T0 = 7, the moving process can be expressed by F

F =
1
5



1 1 1 1 1 0 0
0 1 1 1 1 1 0
0 0 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1

 . (5)

In order to make the system causal, current point and the previous points are utilized to obtain
the local average. By introducing the pretreatment for restraining noise on underdetermined mixed
signals, the SNR of the observed signals is improved, which is conducive to the subsequent mixing
matrix estimation.

3.2. Mixing Matrix Estimation Based on Single Source Points

Most signals have the characteristics of being insufficiently sparse in the time domain and need to
be processed in a transform domain (such as a TF domain) to utilize their inherent sparsity [4]. In this
section, aiming at the problem of unclear clustering direction caused by weak sparse radar signals in
the TF domain, an argument-based SSP detection method is proposed to improve signal sparsity.

For simplicity, the additive noise is temporarily ignored. Applying short time Fourier transform
(STFT) on both sides of Equation (3), we get

X(t, f ) =


X1(t, f )
X2(t, f )

...
XM(t, f )

 =


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
. . .

...
aM1 aM2 · · · aMN




S1(t, f )
S2(t, f )

...
SN(t, f )

 , (6)

where [X1(t, f ), · · · , XM(t, f )]T and [S1(t, f ), · · · , SN(t, f )]T represent, respectively, the STFT complex
coefficients of the mixtures and sources at the TF point (t, f ).
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At a TF point (t1, f1), where there is only one effective signal Si with relatively large value,
Equation (3) can be approximately presented as

R{X1(t1, f1)}+ jI{X1(t1, f1)}
R{X2(t1, f1)}+ jI{X2(t1, f1)}

...
R{XM(t1, f1)}+ jI{XM(t1, f1)}

=


a1iR{Si(t1, f1)}+ ja1i I{Si(t1, f1)}
a2iR{Si(t1, f1)}+ ja2i I{Si(t1, f1)}

...
aMiR{Si(t1, f1)}+ jaMi I{Si(t1, f1)}

 , (7)

where R{·} and I{·} refer to the real part and the imaginary part, respectively.
In the complex plane, the argument is defined as the angle between the positive real axis to the

line joining the point to the origin, so we define argument z as arg(z) = atan[ I(z)
R(z) ]∈ [0, 2π). Taking

the argument on both sides of Equation (7), we derive:

arg{X1(t1, f1)} = arg{X2(t1, f1)} = · · · = arg{XM(t1, f1)} = arg{Si(t1, f1)}. (8)

According to Equation (8), SSPs can be detected if the arguments for each component of the sensor
signal are consistent with the argument of Si(t1, f1). To verify this conclusion, assuming that there are
two sensors, multiple effective source signals S1 and S2 occur at the TF point (t2, f2). Equation (6) can
be written as

[
R{X1(t2, f2)}+ jI{X1(t2, f2)}
R{X2(t2, f2)}+ jI{X2(t2, f2)}

]
=


2
∑
i
{a1iR{Si(t2, f2)}+ ja1i I{Si(t2, f2)}

2
∑
i
{a2iR{Si(t2, f2)}+ ja2i I{Si(t2, f2)}

 . (9)

If Equation (8) is workable, namely, arg{X1(t2, f2)} = arg{X2(t2, f2)}, then we obtain

(a11a22 − a12a21){R{S1(t2, f2)}I{S2(t2, f2)} − R{S2(t2, f2)}I{S1(t2, f2)}} = 0. (10)

Since the mixing matrix A is a row full rank matrix, i.e., a11a22 − a12a21 6= 0. Thus, only when
R{S1(t2, f2)}I{S2(t2, f2)} − R{S2(t2, f2)}I{S1(t2, f2)} = 0, (t2, f2) is a multiple effective source point,
which cannot be filtered out by the arguments algorithm. However, in practice, the probability of such
condition is very low [7]. Similarly, If more than two sources occur simultaneously at any TF point, we
can get the same result.

Therefore, we can conclude that SSPs are the points where the arguments for each component of
the observed signals in the TF domain are the same. The identification of SSPs enhances the signal
sparsity, and the observed signals will show several clear directions in the scatter plot, which depend
on the column vectors of the mixing matrix. However, considering the errors and interference in
the real environment, the probability of getting SSPs where there is only one effective source with a
relatively large value is very low. In other words, the requirement of Equation (8) being satisfied is
difficult; thus, an error threshold angle [7] η ∈ (0, 1) can be utilized to relax the constraint as

{(t, f )
∣∣|arg{Xi(t, f )} − arg{Xj(t, f )}| ≤ η} i 6= j, 1 ≤ i, j ≤ M. (11)

The SSPs that satisfy Equation (11) can be determined. From the above analyses, we know that
these points show a clustering feature to indicate different sources. After applying the clustering
algorithm, clustering centers can be obtained, which denote different elements of the mixing matrix.
K-means clustering method is commonly applied due to its high accuracy and fast computation,
especially for large data. However, it needs the priori information of the clustering number and
initial cluster centers, which is difficult to get in non-cooperative environments. To overcome the
shortage of general clustering methods, we employ agglomerative hierarchical clustering for automatic
clustering [7]. The so-called “agglomerative” refers to the algorithm that initializes every SSP as
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a class and merges the two closest distance clusters at each step, and results in a series of classes.
At last, the final clusters are determined after removing the scattered classes caused by noises or
computation errors. For hierarchical clustering, we use 1− |cos(θ)| as the distance measure, where
cos(θ) = (XT

p Xq)/(||Xp||||Xq||) is the cosine of the angle between p-th and q-th column vectors Xp

and Xq in observed matrix X. Assume that the valid clusters (if there are N sources, there must be N
valid clusters), with the minimum number of samples containing at least 5% of the average number
of samples [7]. Furthermore, the maximum number of outliers is less than 5% of the total number of
samples in the valid clusters. The merges process is repeated until the above condition is satisfied.
Readers can also refer to [7,25] to get a detailed review of different clustering methods.

4. Sources Recovery Algorithm

After linear superposition in space, the signals from MIMO radar transmitters to the receivers.
This process can establish a linear system mathematical model, which is widely used in the field of
signal processing. For this model, linear algebra equations will appear infinitely many solutions in the
underdetermined condition. To overcome this problem, the SL0 algorithm [18] is proposed to directly
recover the signals in the time domain. However, this method requires a high demand for the sparsity
of sources, which consequently cannot work effectively for the weak spare radar signals. In this paper,
we propose a novel TF-SL0 algorithm, which is inspired by the fact that TF transform can enhance the
sparsity of the signal. At the same time, the proposed TF-SL0 algorithm introduces the median filter
to smooth the TF ridge, which constitutes a “Pre-separating de-noising + Post-separating de-noising”
model with the preprocessing based on time moving average filter, and the effect of this cascaded
de-noising algorithm outperforms that of single de-noising methods [26].

4.1. The Introduction of the Smoothed l0 Norm

Sparse model is the sparse representation of the signal, which intends to adopt less number of
nonzero coefficients to represent the main information of the signals, so as to simplify the process of
solving solution. Sparse model can be expressed as y = Φw, where y is the signal to be processed,
Φ is the basis function dictionary, w is the coefficient vector and the number of nonzero elements is
represented by the l0 norm. Compared with Equation (3), the reconstruction algorithm we get in the
sparse model can be used to solve the problem of source separation for the UBSS.

In the existing sparse reconstruction methods, the SL0 algorithm features many advantages such
as the short reconstruction time, the low computation and high reconstruction precision [18]. The basic
idea of this algorithm is to use a continuous smoothed function to approximate the minimization of the
l0 norm. Assume sparse signal of length N, w = (w0, w1, · · · , wN−1)

T . The standard Gauss function is
selected as the smooth continuous function to estimate the l0 norm

fσ(wi) = e−
w2

i
2σ2 , (12)

and note that

lim
σ→0

fσ(wi) =

{
0, wi = 1,
1, wi = 0,

(13)

where σ is the smooth parameter, and wi represents a component of w. Then, we define function

Fσ(w) =
N

∑
i=1

fσ(wi). (14)
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According to the definition of l0 norm, it was proved in [18] that the l0 norm of w can be
expressed as

‖w‖ ≈ N − lim
σ→0

Fσ(w). (15)

Therefore, the minimum l0 norm solution is equivalent to maximize the function Fσ(w) while σ

is a very small value. Then, the sparse reconstruction problem is transformed into the maximization
problem of function Fσ(w).  max Fσ(w) =

N
∑

i=1
fσ(wi),

s.t. y = Φw.
(16)

According to [18], we employ the steepest descent method and the principle of space mapping to
solve the above equations. Define the steepest descent direction:

δ = (−1/σ2)5 Fσ(w) = [w1 · exp(−w2
1/2σ2), · · · , wN · exp(−w2

N/2σ2)]T . (17)

Then, let w← w + µδ, where µ is a small positive constant and equal to 2.5 [18]. Project w by

w← w−ΦT(ΦΦT)−1(Φw− y). (18)

Finally, we can obtain the optimal solution w after iterations of the steepest descent algorithm.

4.2. Time-Frequency-Smoothed l0 Norm Algorithm

From Equations (1) and (2), we know that each coding frequency of the transmitting signals will
last for a period T in the time domain, and then jump to the next coding. In the TF domain, when the
resolution of STFT is greater than the transform speed of the TF signal, the frequency will keep constant
in a certain time scale, which we call the step characteristics of the transmitting signals. One step
represents a coding frequency and all the steps jointly constitute the TF ridge. Therefore, the TF ridge
of the DFCW signal is a set of line segments, reflecting the instantaneous frequency magnitude of
the coding signal. In this paper, SL0 algorithm and the proposed TF ridge reconstruction method
are jointly utilized to estimate the frequency of each step for all sources, and then the time domain
waveform can be recovered by inverse transform. Assuming that the the mixing matrix has been
estimated in Section 3, the specific processes of the proposed TF-SL0 algorithm are as the following:

(1) Applying STFT on both sides of Equation (3), then we get X(t, f ) = AS(t, f ) + N(t, f ).
(2) For the observed signal X(t, f ), the SL0 algorithm is utilized to preliminarily reconstruct the TF

information of sources S(t, f ) = [(S1(t, f ), S2(t, f ), · · · , SN(t, f )]T in the TF domain.
(3) For the reconstructed n-th source Sn(t, f ), the TF ridge rn(t) is obtained by extracting the

maximum frequency elements at each time point in the TF domain. In essence, rn(t) is the TF
coordinate values of the peak sequences, where time is the abscissa axis and peak frequency is
the ordinate axis.

(4) The median filter is selected to smooth processing for TF ridge and then get r̃n(t). In theory, each
step of the TF ridge is flat. However, the interference of Gaussian noise in the environment leads
to the impulse-noise while searching the optimal solution. Median filter has a good filtering
effect on the impulse-noise, especially when the noise is filtered out, and it can protect the edges
of the ridge instead of being blurred.

(5) Taking the difference of the smoothed r̃n(t), we then get r̃
′
n(t). Set the threshold ρ, when the

r̃
′
n(t) is numerically larger than ρ, and its corresponding times are regarded as the jumping-times.

The period of coding T̂ can be obtained by using statistically averaging of the differences of the
jumping-times.
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(6) From Equation (2), we can know that the frequency of each step is the product of coding
frequency and ∆ f . ∆ f = 1/T̂. Assuming that F̂n(t) is the estimated coding frequency, so F̂n(t)
= r̃n(t)/∆ f . Meanwhile, it can be seen that the coding frequency F̂n(t) is an integer sequence.
Therefore, the integer part of the r̃n(t)/∆ f is kept to make approximations.

(7) Estimate coding frequency in each coding period. In theory, F̂n(t) remains constant during a
coding period; however, due to the effect of noise and errors caused by the approximations of
process (6), F̂n(t) may appear to fluctuate. Therefore, take out the coded values with the most
time steps within each coding period as the estimated coding frequency.

(8) Reconstruct the waveforms in the time domain by taking the estimated coding frequency to
Equations (1) and (2). Similarly, other sources can be obtained.

5. Simulation Results and Analysis

5.1. Algorithm Performance Evaluation Criteria

Normalized mean square error (NMSE) is chosen as the standard for evaluating the performance
of the estimated mixing matrix [7], which is expressed as:

NMSE = −10log10

(
∑M

i=1 ∑N
j=1 a2

ij

∑M
i=1 ∑N

j=1(âij − aij)2

)
, (19)

where aij and âij are the (i, j)th elements of the original mixing matrix A and estimated mixing matrix
Â, respectively. In general, the accuracy of the estimated mixing matrix increases with the decreasing
of NMSE.

Meanwhile, in order to prove the validity of the proposed separation algorithm in a noisy case,
the average recovered signal-to-noise ratio (ASNR) is defined, which is presented as

ASNR =
1
N

N

∑
i=1

10ln{E[|xi(t)|2]/E[|xi(t)− x̂i(t)|2]}, (20)

where xi and x̂i represent i-th source and restored signal. A larger ASNR indicates higher accuracy of
restored signals.

5.2. Parameter Setting

The following experiments are performed in MATLAB 2012(a) (MathWorks, Natick, MA, USA)
using a Pentium(R) Processor G3260 + 3.3 GHz processor (Intel, Santa Clara, CA, USA) with the
Windows 7 operating system (Microsoft, Redmond, WA, USA). The other experimental conditions
are: sampling frequency 64 MHz, STFT size 256, and Hanning window as the weighting function.
In Section 3.1, moving average filter employs 5-point length. The reason is that the method is in
the preprocessing part, and the length of moving reflects the degree of smoothness, so, in order to
retain the detailed information of the original signal, the moving average length cannot be too long.
The median filter length is 15 in Section 4.2 because it is applied in the estimation of TF ridges. The
ideal TF ridge is a horizontal line in a coding period; however, the ridges tend to fluctuate for a short
time due to the existence of noise. Therefore, selecting the smaller median filtering length cannot
avoid the instability of the ridges, and then affect the accuracy of the reconstructed ridge. In this paper,
through the 100 experiments, we verified that better experimental results can be arrived when the
moving average length is 5 and the median filter order is 15. Error angle threshold η and frequency
difference threshold ρ are relevant to the different levels of noise, the parameter setting method will be
described in the following specific experiments.

In addition, we use the real part Re{X(t, f )} of the SSPs alone to estimate the number of sources
and the mixing matrix, for the absolute directions of the real and imaginary parts of X(t, f ) are the
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same, except for a small difference, which can be ignored [7,9]. Thus, it is enough to obtain an accurate
estimate of the mixing matrix on account of the computation complexity of the algorithm.

5.3. Experiment 1 and Analysis

To demonstrate the effectiveness of the proposed noise preprocessing method and SSP
identification, four DFCWs for MIMO radar in [27] are used in this paper. The pulse width is 32 µs,
the sub-pulses duration is 1 µs, the sampling rate is 64 MHz, the number of sampling points is 2048,
and the SNR is 20 dB. The four sources are mixed into three channel observed signals, and the mixing
matrix is

A =

 0.6547 0.6516 0.8830 −0.5571
0.3780 −0.5923 0.3532 0.7428
−0.6547 0.4739 0.3091 0.3714

 . (21)

The TF scatter plots before and after the SSP detection of the observed signals are shown in
Figures 1 and 2, respectively. From Figure 1, it can be seen that, after noise pretreatment, the noise
points are obviously reduced because the observed signal will show clear directions in the scatter
plot, which depend on the column vectors of mixing matrix when the sources satisfy certain sparse
conditions. Therefore, the scattered points away from these directions are considered to be noise
points, which will seriously affect the accuracy of the algorithm in the mixing matrix estimation and
subsequent source signal recovery. From Figure 2, we know that the directions and clustering of the
observed signals become clearer after argument-based SSP detection. In general, based on the research
of the former scholars [7], the value of threshold η ranges from 0.01 to 0.1. In this paper, we give out
the relationship curve between η and the remnant SSPs. The proportion of remnant SSPs in all TF
points is shown in Figure 3a, when the ratio η = 0.05 tends to decrease in a gentle but steady manner,
which means that most of the multiple-sources-points are removed. Thus, η = 0.05 is chosen in this
experiment.

Then, we utilize the hierarchical clustering technique for the estimation of the mixing matrix A.
The estimated Â after employing the noise pretreatment, SSP detection and clustering algorithm is

Â =

 0.6529 0.6432 0.8810 −0.5531
0.3722 −0.6035 0.3501 0.7535
−0.6603 0.4765 0.3102 0.3702

 . (22)
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Figure 1. The scatter plots of the observed signals before single source point (SSP) detection. (a) without
noise pretreatment; (b) after noise pretreatment.
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Figure 2. The scatter plots of the observed signals after SSP detection. (a) without noise pretreatment;
(b) after noise pretreatment.
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Figure 3. Parameter setting. (a) the proportion of remnant SSPs in all time-frequency (TF) points;
(b) the sum of the frequency differences corresponding to the jumping-times of four TF ridges.

5.4. Experiment 2 and Analysis

In this experiment, we use the sources and the estimated mixing matrix Â in Experiment 1, SNR =
20 dB. The TF and time domain diagrams of the four sources are shown in Figure 4a,b. From Figure 4b,
we know that MIMO radar signals are continuous waves in the time domain, and the sparsity is
weak, so that the traditional time domain sparse reconstruction algorithm cannot play its effectiveness.
From Figure 4a, it can be seen that, although the ideal MIMO radar signals are orthogonal, but, in
reality, it is difficult to meet, and there are certain overlaps of the frequency. Therefore, the DFCWs
are insufficiently sparse in the time and frequency domains. The TF and time domains diagrams of
the three observed signals are shown in Figure 5a,b. The TF-SL0 algorithm is used to reconstruct the
TF diagram and time domain diagram, as shown in Figure 6a,b. From the Figure 6a, it can be seen
that the effect of preliminary reconstruction in the TF domain is good except for the scale ambiguity of
the BSS. In order to recover the time domain signals more accurately, TF ridge estimation algorithm
is jointed to recover the TF information and the time domain waveforms of the sources by using the
DFCW signal model. The TF ridges of the observed signals are shown in Figure 7. Figure 8 depicts
the jumping-times of the coding sequences by smoothing and taking the frequency differences of
TF ridges. From Equations (1) and (2), it can be seen that the duration of each pulse of each source
signal is same, so, in order to get more precise jumping-times, we add the frequency differences
corresponding to the jumping-times of four TF ridges and obtain Figure 3b. From Figure 3b, we know
that when threshold ρ ≥ 5.0× 106, all the bogus jumping-times caused by noise can be removed. Then,
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the estimated coding period is obtained T̂ = 1.02 µs by statistically averaging the differences of the
jumping-times.The coding frequency is finally estimated as shown in Figure 9 according to steps (6)
and (7) in Section 4.2.
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Figure 4. The TF and time domains diagrams of the four sources. (a) in TF domain; (b) in time domain.
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Figure 5. The TF and time domains diagrams of the observed signals. (a) in TF domain; (b) in
time domain.
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Figure 6. The TF and time domains diagrams of the recovery signals. (a) in TF domain; (b) in
time domain.



Symmetry 2017, 9, 104 12 of 15

10 20 30
0

1

2

3

x 10
7

t/us

F/H
z

10 20 30
0

1

2

3

x 10
7

t/us

F/H
z

10 20 30
0

1

2

3

x 10
7

t/us

F/H
z

10 20 30
0

1

2

3

x 10
7

t/us

F/H
z

Figure 7. The estimated TF ridges of the four recovery signals.
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Figure 9. The estimated coding frequency of the four recovery signals.

5.5. Experiment 3 and Analysis

In order to evaluate the mixing matrix estimation precision of the proposed approach, the
NMSE is utilized to compare with the proposed mixing matrix estimation algorithm in Section 3, the
Reju algorithms in [7], the SSPs+ k-means clustering algorithms in [8], the SSPs+ Hough transform
algorithms in [9] and the tensor decomposition algorithms in [23] by varying SNR from 5 dB to
30 dB. According to the setting ways of parameters η and ρ in Experiment 1, the parameters values
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are shown in Table 1. The results averaged over 50 Monte Carlo trials are shown in Figure 10. It
can be seen from the figure that the proposed algorithm is robust to noise and estimates the mixing
matrix with higher accuracy compared with the other algorithms. When the SNR is above 18 dB, the
algorithm of Hough transform estimates the mixing matrix more accurately than other algorithms.
However, the performance of the proposed algorithm is much more effective than the algorithms
when the SNR is below 18 dB. The above results are mainly caused by two key reasons. First, because
of the weak sparsity of four radar sources, the algorithm of K-means clustering cannot identify the
SSPs efficiently. The hierarchical clustering algorithm can detect the SSPs, but the threshold of the
hierarchical clustering cannot be determined easily in the noise case. Second, after the processing, most
of the noise points are removed to eliminate the influence of the noise, while the noise will seriously
affect the accuracy of the algorithm in the mixing matrix estimation based on tensor decomposition
and Hough transform algorithms.

Table 1. The parameter values by the setting method in Experiment 1 under different signal-to-noise
ratios (SNRs).

SNR 5 dB 10 dB 15 dB 20 dB 25 dB 30 dB

η 0.02 0.035 0.045 0.05 0.052 0.055
ρ (×106) 6.5 6.2 5.8 5.0 5.0 5.0

The mixing matrix has been estimated, similarly, using the ASNR to evaluate the recovery
precision of the algorithm. The SL0 algorithm in [18], the OMP algorithm in [22], the subspace
projection algorithm in [23], the proposed TF-SL0 algorithm and preprocessing +TF-SL0 algorithm are
compared in the noisy case. The results averaged over 50 Monte Carlo trials are shown in Figure 11.
From the figure, we know that the SL0 and OMP algorithms are basically invalid in the process of
the signals’ recovery. The reason is that the radar signals are insufficiently sparse in both time and
frequency domains, and consequently cannot meet the SL0 and OMP algorithms’ priori condition.
The proposed TF-SL0 algorithm can make full use of the sparsity of the signals and the characteristics of
the TF ridges, which obviously improves the ASNR of the recovered signals compared with subspace
projection algorithm. Meanwhile, pretreatment +TF-SL0 algorithm reduces the effect of noise on the
signals’ recovery, and improves the robustness and accuracy of the reconstruction, which verifies the
validity of the proposed algorithm.
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Figure 10. Performances of the proposed and other algorithms to estimate mixing matrix in the noisy case.
NMSE: Normalized mean square error.
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Figure 11. Performances of the proposed and other algorithms to reconstruct signals in the noisy case.
ASNR: Average recovered signal-to-noise ratio; SL0: Smoothed l0 norm; OMP: Orthogonal matching
pursuit; TF-SL0: Time-frequency smoothed l0 norm.

6. Conclusions

In order to address the separation problem of underdetermined MIMO radar signals when
the sources are insufficiently sparse in both time and frequency domains, the noise preprocessing
algorithm and SSP detection are employed to improve SNR and signal sparsity. Then, a modified
TF-SL0 algorithm is proposed to complete the recovery of MIMO radar signals by the jointing SL0
algorithm with TF ridge estimation in the TF domain. Simulation results indicate that the proposed
method can recover sources with higher accuracy compared with other algorithms in the experiments.
In this paper, the determination of the coding period requires presetting parameters, so exploring more
efficient TF ridge estimation algorithms will be the next research direction.
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