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Abstract: We propose a new class of aggregation operator based on utility function and apply them
to group decision-making problem. First of all, based on an optimal deviation model, a new operator
called the interval generalized ordered weighted utility multiple averaging (IGOWUMA) operator
is proposed, it incorporates the risk attitude of decision-makers (DMs) in the aggregation process.
Some desirable properties of the IGOWUMA operator are studied afterward. Subsequently, under the
hyperbolic absolute risk aversion (HARA) utility function, another new operator named as interval
generalized ordered weighted hyperbolic absolute risk aversion utility multiple averaging-HARA
(IGOWUMA-HARA) operator is also defined. Then, we discuss its families and find that it includes a
wide range of aggregation operators. To determine the weights of the IGOWUMA-HARA operator,
a preemptive nonlinear objective programming model is constructed, which can determine a uniform
weighting vector to guarantee the uniform standard comparison between the alternatives and
measure their fair competition under the condition of valid comparison between various alternatives.
Moreover, a new approach for group decision-making is developed based on the IGOWUMA-HARA
operator. Finally, a comparison analysis is carried out to illustrate the superiority of the proposed
method and the result implies that our operator is superior to the existing operator.

Keywords: group decision-making; aggregation operator; weight; utility function

1. Introduction

Multiple attributes decision-making (MADM) refers to considering the problem of evaluating or
selecting alternatives that are associated with incommensurate and conflicting criteria. However,
the increasing complexity of the socioeconomic environment makes it less possible for a single
decision-maker (DM) to consider all relevant aspects of a problem as many decision-making processes
take place in group settings. As a result, multiple attributes group decision-making (MAGDM) has
been receiving more and more attentions from researchers and has been extensively applied to our
daily life [1–7]. Nevertheless, due to the complexities of objects and the vagueness of human mind,
it is more appropriate for DMs to use interval/uncertain information than other descriptors to express
their assessments in the actual process of MAGDM.

The objective of interval MAGDM (IMAGDM) is to find the optimal solution(s) from a set of
feasible alternatives by means of interval information provided by DMs. To realize this objective, the
construction of aggregating operators and the determination of aggregation operators’ weights are the
two key issues.

Symmetry 2017, 9, 103; doi:10.3390/sym9070103 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym9070103
http://www.mdpi.com/journal/symmetry


Symmetry 2017, 9, 103 2 of 21

A variety of operators have been developed in the past few decades, among them, ordered
weighted averaging (OWA) operators introduced by Yager [8] are the most widely used ones.
Motivated by these, an extension of the OWA operator is the uncertain OWA (UOWA) operator [9],
which aggregates the input arguments taking the form of intervals rather than exact numbers.
Some new developments about it have mostly appeared from 2008 to 2013. For example, Xu [10]
proposed dependent uncertain ordered weighted averaging (DUOWA) operators and dependent
uncertain ordered weighted geometric (DUOWG) operators. Xu and Yager [11] introduced the
uncertain power ordered weighted geometric (UPOWG) operator on the basis of the power average
operator and the geometric mean. Merigó and Casanovas [12] proposed uncertain induced
quasi-arithmetic OWA (Quasi-UIOWA) operator which uses the main characteristics of the induced
OWA, the quasi-arithmetic OWA and the UOWA operator. Merigó and Casanovas [13] presented the
uncertain heavy OWA (UHOWA) operator and uncertain induced heavy OWA (UIHOWA) operator.
Xu and Cai [14] developed the uncertain power ordered weighted average (UPOWA) operator on
the basis of the power averaging (PA) operator and the UOWA operator. To extend the generalized
ordered weighted averaging operator (GOWA), Zhou et al. [15] developed the uncertain generalized
ordered weighted averaging (UGOWA) operator. Zeng et al. [16] present the uncertain probabilistic
ordered weighted averaging distance (UPOWAD) operator which uses distance measures in a unified
framework between the probability and the OWA operator that considers the degree of importance of
each concept in the aggregation. However, the above uncertain aggregation operators only focus on
using the mean to eliminate the difference of variable values but fail to consider DMs’ risk attitude in
the aggregation process. In actual decision making, different DMs may show different risk attitudes,
and the risk attitudes of the same DM may also vary at different times. Obviously, ignoring the risk
attitude of DMs will lead to a wrong decision-making.

Another important issue of applying the aggregation operator for IMAGDM is how to determine
the associated weights. Many researchers have focused on this issue and developed some useful
approaches for determining weights [9,10,15,17–19]. For instance, Xu and Da [9] established a linear
objective-programming model to generate the UOWA weights by utilizing the given partial weight
information, the input interval arguments, and the associated aggregated values. Ahn [18] presented
several weighting functions having constant values of orness irrespective of the number of objectives
aggregated. Considering the impact of optimism degree of DMs on the decision-making results and
by applying the absolute deviation measure, Xu [10] derived the weights of DUOWA operator which
only depend on the aggregated interval arguments. To determine UGOWA weights, Zhou et al. [15]
used the relative deviation measure to construct a nonlinear model. However, we find that they did
not provide a uniform weighting vector based on the weighting models in [10,15], which can affect the
accuracy of the decision results and lead to unreasonable results.

Therefore, the aim of this paper is to develop some interval utility aggregation operators to deal
with interval preference information, which incorporates the risk attitude of DMs in the aggregation
process. Under the general framework of utility function, a new operator called the interval generalized
ordered weighted utility multiple averaging (IGOWUMA) operator by applying the penalty theory
is derived firstly, and then by studying its properties we find that it is commutative, idempotent,
monotone increasing and bounded. Furthermore, we focus on a concrete utility function-hyperbolic
absolute risk aversion (HARA), which is rather rich, e.g., by suitable adjustments of the parameters one
can respectively obtain power utility, exponential utility and logarithm utility. Under the HARA utility,
we propose another new operator named as the interval generalized ordered weighted hyperbolic
absolute risk aversion utility multiple averaging-HARA (IGOWUMA-HARA) operator, and investigate
its families which include a wide range of aggregation operators such as interval generalized ordered
weighted multiple averaging (IGOWMA) operator, interval ordered weighted multiple averaging
(IOWMA) operator and interval ordered weighted geometric averaging (IOWGA) operator. The merits
of the IGOWUMA-HARA operator are that it not only reflects the DMs’ risk attitude towards
the aggregation information, but also provides a very general formula including a wide range
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of aggregation operators. To determine the IGOWUMA-HARA operator’ weights, we propose a
preemptive nonlinear objective programming model, which can provide a uniform weighting vector
to guarantee the uniform standard comparison between the alternatives and reduce the influence of
unfair arguments on the aggregated results. After that, based on the IGOWUMA-HARA operator
and weight determination model, a new approach for IMAGDM is developed. This approach is also
effectively applicable to different group decision-making problems such as engineering management
and financial management, etc. Finally, an example of the investment selection is provided to examine
our approach.

The rest of the paper is organized as follows. Section 2 reviews some basic concepts. Section 3
presents the IGOWUMA operator and analyzes its properties as well as provides an IGOWUMA-HARA
operator and identifies its families. We then present a preemptive nonlinear objective programming
model for determining IGOWUMA-HARA weights in Section 4. Section 5 develops an approach for
IMAGDM under the IGOWUMA-HARA operator. An illustrative example is provided in Section 6
and the conclusions are drawn in Section 7.

2. Preliminaries

This section briefly reviews definitions and operations of interval values, UGOWA operator and
HARA utility function.

2.1. Definitions and Operations of Interval Values

Moore [20] presented the interval number. It can be defined as follows.

Definition 1. Let x̃ = [xL, xU ] = {x
∣∣0 ≤ xL ≤ xU} , then x̃ is called a nonnegative interval number.

Especially, x̃ is a nonnegative real number as x̃L = x̃U .

To simplify the calculation, throughout this paper, let Ω = {x̃
∣∣x̃ = [xL, xU ], 0 ≤ xL ≤ xU} be the

set of all nonnegative interval numbers.

Definition 2. [10,11] Let x̃, z̃ ∈ Ω, x̃ = [xL, xU ], z̃ = [zL, zU ], then

(1) x̃ = z̃, if xL = zL and xU = zU .
(2) x̃ + z̃ = [xL + zL, xU + zU ].
(3) x̃ · z̃ = [xL · zL, xU · zU ].
(4) x̃/z̃ = [xL/zU , xU/zL].
(5) kx̃ = [kxL, kxU ].

(6) If k ≥ 0, then x̃k =
[
(xL)

k, (xU)
k
]
, and if k ≤ 0, then x̃k =

[
(xU)

k, (xL)
k
]
.

(7) If k ≥ 1, then logk x̃ = [logk xL, logk xU ], and if 0 < k < 1, then logk x̃ = [logk xU , logk xL].

Xu and Da [8] presented a possibility degree formula for the comparison between interval
numbers, which is shown as follows:

Definition 3. Let x̃ = [xL, xU ] ∈ Ω and z̃ = [zL, zU ] ∈ Ω be two interval numbers, and lx̃ = xU − xL,
lz̃ = zU − zL, then the degree of possibility of x̃ ≥ z̃ is defined as

p(x̃ ≥ z̃) = max
{

1−max
(
[z̃U − x̃L]/[lx̃ + lz̃], 0

)
, 0
}

. (1)

From Definition 3, it is easy to obtain the following results [10]:
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(1) 0 ≤ p(x̃ ≥ z̃) ≤ 1.
(2) p(x̃ ≥ z̃) + p(z̃ ≥ x̃) = 1. Especially, p(x̃ ≥ x̃) = p(z̃ ≥ z̃) = 1/2.
(3) p(x̃ ≥ z̃) = 1 if and only if xL ≥ zU .
(4) p(x̃ ≥ z̃) = 1/2 if and only if xL + xU ≥ zL + zU .

To rank the interval arguments x̃i = [xL
i , xU

i ](i = 1, 2, · · · , n), we first compare each x̃i with
all x̃j(j = 1, 2, · · · , n) by using (1). For convenience, we let pij = p(x̃i ≥ x̃j), and then construct a
complementary matrix P = (pij)n×n, such that

pij ≥ 0, pij + pji = 1, pii = 1/2(i, j = 1, 2, · · · , n). (2)

Synthesizing the elements of each row of matrix P, we have

pi =

(
n

∑
j=1

pij +
n
2
− 1

)/
(n(n− 1)) (i = 1, 2, , · · · , n). (3)

Thus, we can rank arguments x̃i(i = 1, 2, · · · , n) in descending order in line with the value of
pi(i = 1, 2, · · · , n).

Remark: For the comparison between interval numbers, except for the possibility degree formula,
some other formulas are also admirable, such as the admissible order [21].

2.2. UGOWA Operator

The OWA operator introduced by Yager [8] is a useful tool for aggregating the exact inputs that
lie between the max and min operators. Since its introduction, the OWA operator has been studied
by different authors. Inspired by the work of Yager, Zhou et al. [15] provided a new class of operator
named as the UGOWA operator, which is an extension of UOWA operator. It can be defined as follows.

Definition 4. An UGOWA operator of dimension n is a mapping UGOWA: Ωn → Ω that has a

weighting vector W = (w1, w2, · · · , wn)
T with wi ∈ [0, 1] and

n
∑

i=1
wi = 1, such that:

UGOWA(x̃1, x̃2, · · · x̃n) =

(
n

∑
i=1

wi ỹλ
i

)1/λ

(4)

where ỹi is the ith largest of the x̃j, and λ is a parameter such that λ ∈ (−∞, 0) ∪ (0,+∞).
If λ = 1, then the UGOWA operator can degenerate to the UOWA operator.
If λ→ 0 , then the UGOWA operator can become the UOWGA operator.

2.3. HARA Utility Function

A utility function u(x) is a non-decreasing real valued function defined on the real numbers,
which just captures the idea of aggregation operator that “an increase of any of the input values cannot
decrease the output value”. We investigate the HARA utility function [22,23]:

µ(x) =
1− γ

βγ
(

β

1− γ
x + η)

γ

. (5)

with β > 0, η > 0, γ ∈ (−∞, 0) ∪ (0, 1). HARA utility is rather rich, since by suitable adjustments of
the parameters one can obtain the power utility function u(x) = xγ/γ, (β = 1− γ, η → 0) and the
exponential utility function u(x) = −e−βx/β, (η = 1, γ→ −∞) (for more details on parameters, one
can refer to [24,25]).
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3. Interval Generalized Weighted Utility Multiple Aggregation Operators

Following [26–29], in this section, we will introduce a new aggregation operator by minimizing a
new penalty function and obtain the IGOWUMA operator for the general utility function. Then, under
the HARA utility function, we propose another new operator called the IGOWUMA-HARA operator.

3.1. General Framework

Let x̃i = [x̃L
i , x̃U

i ](i = 1, 2, · · · , n) be a collection of interval arguments, and

W = (w1, w2, · · · , wn)
T be a weighting vector such that wi ∈ [0, 1] and

n
∑

i=1
wi = 1. We assume that the

utility aggregation operator of dimension n is a mapping f determined by:

z̃ = f (u(x̃1), u(x̃2), · · · , u(x̃n)). (6)

In the aggregation process, we hope that the smaller the deviation between the utility values
u(x̃i)(i = 1, 2, · · · , n) and the aggregation result z̃ is, the better effect of aggregation method shows.

Hence, to minimize the deviation between z̃ and u(x̃i)(i = 1, 2, · · · , n), following [26,29,30],
we have:

min P̃ =
n

∑
i=1

wi(uλ(x̃i)/uλ(z̃) + uλ(z̃)/uλ(x̃i)− 2), (7)

where λ is a parameter satisfying λ ∈ (−∞, 0) ∪ (0,+∞).
According to the necessary condition of extreme value, we can obtain:

z̃ = u−1

( n

∑
i=1

wiuλ(x̃i)

/
n

∑
i=1

(
wi/uλ(x̃i)

))1/2λ
. (8)

Based on Equation (8), we can define an interval generalized weighted utility multiple averaging
(IGWUMA) operator shown as follows.

Definition 5. Let x̃i =
[
x̃L

i , x̃U
i
]
(i = 1, 2, · · · , n) be a collection of nonnegative interval numbers.

An IGWUMA operator of dimension n is a mapping IGWUMA: Ωn → Ω such that:

IGWUMA(x̃1, x̃2, · · · , x̃n) = u−1

( n

∑
i=1

wiuλ(x̃i)

/
n

∑
i=1

(
wi/uλ(x̃i)

))1/2λ
, (9)

where the weight vector W = (w1, w2, · · · , wn)
T satisfies wi ∈ [0, 1] and

n
∑

i=1
wi = 1, and λ is a parameter

such that λ ∈ (−∞, 0) ∪ (0,+∞).

If reordering the arguments in IGWUMA operator in descending order, we can obtain the
IGOWUMA operator.

Definition 6. Let x̃i =
[
x̃L

i , x̃U
i
]
(i = 1, 2, · · · , n) be a collection of nonnegative interval numbers.

An IGOWUMA operator of dimension n is a mapping IGOWUMA: Ωn → Ω such that:

IGOWUMA(x̃1, x̃2, · · · , x̃n) = u−1

( n

∑
i=1

wiuλ(ỹi)

/
n

∑
i=1

(
wi/uλ(ỹi)

))1/2λ
, (10)

where λ is a parameter such that λ ∈ (−∞, 0) ∪ (0,+∞), ỹi is the ith largest of x̃j, and all of
x̃j(j = 1, 2, · · · , n) are interval numbers, which are compared with each other with the degree of
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possibility by Equations (1) and (3), and the weighting vector W = (w1, w2, · · · , wn)
T satisfies

wi ∈ [0, 1] and
n
∑

i=1
wi = 1.

IGOWUMA operator is idempotent, commutative, bounded, etc. These properties are shown
as follows:

Property 1 (Idempotency). Let F be the IGOWUMA operator. If x̃i = x̃ for i = 1, 2, · · · , n, then:

F(x̃1, x̃2, · · · , x̃n) = x̃. (11)

Property 2 (Commutativity). Let F be the IGOWUMA operator. If ṽi is any permutation of the arguments
x̃i for i = 1, 2, · · · , n, then:

F(x̃1, x̃2, · · · , x̃n) = F(ṽ1, ṽ2, · · · , ṽn). (12)

Property 3 (Boundedness). Let F denote IGOWUM operator. If t̃1 = [t1
L, t1

U ] = [ min
1≤i≤n

αi
L, min

1≤i≤n
αi

U ],

t̃2 = [t2
L, t2

U ] = [ max
1≤i≤n

αi
L, max

1≤i≤n
αi

U ], then:

t̃1 ≤ F(α̃1, α̃2, · · · α̃n) ≤ t̃2. (13)

Proof. See Appendix A.

Property 4 (Monotonicity with respect to the degree of possibility). Let F be the IGOWUMA operator, and
x̃i, z̃i ∈ Ω for all i. If p(x̃i ≥ z̃i) = 1, then:

p(F(x̃1, x̃2, · · · , x̃n) ≥ F(z̃1, z̃2, · · · , z̃n)) = 1. (14)

Proof. See Appendix A.

3.2. IGOWUMA-HARA Operator

Under IGOWUMA operator and HARA utility function, we derive another interval aggregation
operator called an IGOWUMA-HARA operator.

Definition 10. An IGOWUMA-HARA operator of dimension Ωn → Ω is a mapping IGOWUMA-
HARA: Ωn → Ω that has an associated weighting vector W = (w1, w2, · · ·wn)

T satisfying wi ∈ [0, 1]
and, such that:

IGOWUMA− HARA(x̃1, x̃2, · · · , x̃n) =
1−γ

β

[(
n
∑

i=1
wi(

β
1−γ ỹi + η)

λγ
/(

n
∑

i=1
wi/(

β
1−γ ỹi + η)

λγ
))1/2λγ

− η

]
(15)

where λ is a parameter such that λ ∈ (−∞, 0) ∪ (0,+∞), and ỹi is the ith largest of x̃j, here,
x̃j(j = 1, 2, · · · , n) are interval numbers, which are compared with each other by Equations (1) and (3).

Therefore, the IGOWUMA-HARA operator can be considered as the generalized mean of the
interval generalized ordered weighted utility averaging-HARA (IGOWUA-HARA) operator and
the interval generalized ordered weighted utility harmonic averaging-HARA (IGOWUHA-HARA)
operator. That is to say, the IGOWUMA-HARA operator unifies IGOWUA-HARA operator,
IGOWUHA-HARA operator and the geometric mean in the same formula considering the degree of
importance that each operator has in the aggregation.
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Similar to Property 1 to Property 6, it is easy to find that IGOWUMA-HARA operator is
idempotent, commutative, bounded, etc.

Table 1 shows that by taking different values of λ, β, η, γ in the IGOWUMA-HARA operator, we
can obtain different types aggregation operators such as the IGOWMA operator, the interval ordered
weighted utility geometric averaging-HARA (IOWUGA-HARA) operator, IOWGA operator [10], the
interval ordered weighted utility multiple averaging-HARA (IOWUMA-HARA) operator, the interval
ordered weighted power utility multiple averaging (IPUMA) operator, the IOWMA operator, the
interval linear ordered weighted geometric averaging (ILGA) operator, etc.

Table 1. Families of the interval generalized ordered weighted hyperbolic absolute risk aversion utility
multiple averaging-HARA (IGOWUMA-HARA) operator.

λ β, γ, η Formulation

λ ∈ R and
λ 6= 0

β = 1− γ, η → 0
γ→ 1 IGOWMA(x̃1, x̃2, · · · , x̃n) =

(
n
∑

i=1
wi ỹλ

i

/(
n
∑

i=1
wi/ỹλ

i

))1/2λ

λ→ 0

β > 0, η > 0
γ ∈ R− and γ ∈ (0, 1)

IOWUGA− HARA(x̃1, x̃2, · · · , x̃n) =
1−γ

β

(
n
∏
i=1

(
β

1−γ ỹi + η
)wi

− η

)
β > 0, γ ∈ R− and
γ ∈ (0, 1), η → 0

IOWGA(x̃1, x̃2, · · · , x̃n) =
n
∏
i=1

ỹwi
i

λ = 1
or

λ = −1

β > 0, η > 0,
γ ∈ R− and γ ∈ (0, 1) IOWUMA− HARA(x̃1, x̃2, · · · , x̃n) =

1−γ
β


 n

∑
i=1

wi(
β

1−γ ỹi+η)
γ

n
∑

i=1
wi

/
( β

1−γ ỹi+η)
γ

1/2γ

− η


β > 0, γ ∈ R− and
γ ∈ (0, 1), η → 0 IPUMA(x̃1, x̃2, · · · , x̃n) =

(
n
∑

i=1
wi ỹ

γ
i

/
n
∑

i=1
wi/ỹγ

i

)1/2γ

β > 0, η → 0,
γ→ 1 IOWMA(x̃1, x̃2, · · · , x̃n) =

(
n
∑

i=1
wi ỹi

/
n
∑

i=1
wi/ỹi

)1/2

β > 0, η > 0,
γ→ 0

ILGA(x̃1, x̃2, · · · , x̃n) =
1
β

(
n
∏
i=1

(βỹi + η)wi − η

)
β > 0, γ→ 0,

η → 0
IOWGA(x̃1, x̃2, · · · , x̃n) =

n
∏
i=1

ỹwi
i

IGOWMA: interval generalized ordered weighted multiple averaging; IOWUG-HARA: interval ordered weighted
utility geometric averaging-HARA; IOWGA: interval ordered weighted geometric averaging; IOWUM-HARA:
interval ordered weighted utility multiple averaging-HARA; IPUMA: interval ordered weighted power utility
multiple averaging; IOWMA: interval ordered weighted multiple averaging; ILGA: interval linear ordered weighted
geometric averaging.

4. Weights Determination

In order to determine the weights of the IGOWUMA-HARA operator, we propose the concept of
similarity degree of interval numbers and analyze its properties. We further provide a new optimization
model, which can obtain an optimal weight vector for the IGOWUMA-HARA operator.

In the literature [10], Xu presented a weighting model of DUOWA operator by applying the absolute
deviation measure and the optimism degree. Actually, as far as measuring deviation, the relative deviation
measure is more effective than the absolute deviation measure. Thus, Zhou et al. [15] developed a new
model to determine the weights of UGOWA operator via the relative deviation measure. However, the
weighted models do not provide a uniform weighting vector in the literature [10,15], which will affect
the accuracy of the decision results. Therefore, we will present a new preemptive nonlinear objective
programming model to determining the IGOWUMA-HARA operator weights, which can provide a
uniform weighting vector to guarantee the uniform standard comparison between the alternatives and
reduce the influence of unfair arguments on the aggregated results.

Let X = {x1, x2, · · · , xm} be a finite set of alternatives, C = {c1, c2, · · · , cn} a finite set of attributes,
B̃ = (b̃ij)m×n is the interval decision matrix, where b̃ij =

[
bL

ij, bU
ij

]
∈ Ω is a preference value, which
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takes the form of interval argument, given by the decision maker for the alternative xi ∈ X with regard
to the attribute cj ∈ C. Assume that the partial weight information of attributes is:

H =

{
(w1, w2, · · · , wn)

T |ρL
j ≤ wj ≤ ρU

j , j = 1, 2, · · · , n,
n

∑
j=1

ρL
j ≤ 1,

n

∑
j=1

ρU
j ≥ 1

}
. (16)

Standardize matrix B̃ = (b̃ij)m×n into matrix R̃ = (r̃ij)m×n =
([

rL
ij, rU

ij

])
m×n

, then the

integrated attribute value, which is obtained by using the aggregation operator IGOWUMA-HARA
to gather the attribute preference information value of each alternative, is still the interval number
z̃i(W) = [zi

L(W), zi
U(W)] (i = 1, 2, · · · , m), where:

zL
i (W) = 1−γ

β

( n
∑

j=1
wj(

β
1−γ yL

ij + η)
λγ
/(

n
∑

j=1
wj/(

β
1−γ yL

ij + η)
λγ
))1/2λγ

− η

(i =, 1, 2, · · · , m), (17)

zU
i (W) = 1−γ

β

( n
∑

j=1
wj(

β
1−γ yU

ij + η)
λγ
/(

n
∑

j=1
wj/(

β
1−γ yU

ij + η)
λγ
))1/2λγ

− η

(i =, 1, 2, · · · , m). (18)

In order to calculate a uniform weighting vector to guarantee the uniform standard comparison
between the alternatives and measure their fair competition under the condition of valid comparison
between various alternatives. Following [31], we can construct the nonlinear programming model
as follows:

min
n
∑

j=1
wj

((
yij

zL
i

)λ

+

(
zL

i
yij

)λ

− 2

)
+

n−1
∑

j=1

(( wj
wj+1

)λ
+
(wj+1

wj

)λ
− 2
)
(i = 1, 2, · · · , m)

min
n
∑

j=1
wj

((
yij

zU
i

)λ

+

(
zU

i
yij

)λ

− 2

)
+

n−1
∑

j=1

(( wj
wj+1

)λ
+
(wj+1

wj

)λ
− 2
)
(i = 1, 2, · · · , m)

s.t. wj ∈ H j = 1, 2, · · · , n
n
∑

j=1
wj = 1

(19)

where H is partial weight information.
Model (19) can not only determine the uniform weight vector, making the alternative

is comparable, but also can ensure that the alternatives can compete in a fair environment.
As can be seen from the model (19), the expected value of the objective function z1(W) is
m
∑

i=1

 1−γ
β

( n
∑

j=1
ρL

j (
β

1−γ yL
ij + η)

λγ
/(

n
∑

j=1
ρL

j /( β
1−γ yL

ij + η)
λγ
))1/2λγ

− η

 while expected value of

the objective function z2(W) is
m
∑

i=1

 1−γ
β

( n
∑

j=1
ρU

j (
β

1−γ yU
ij + η)

λγ
/(

n
∑

j=1
ρU

j /( β
1−γ yU

ij + η)
λγ
))1/2λγ

− η

.

In order to solve the multi-objective programming model, the model (19) can be transformed into
the following model:

min P1(d− + e+) + P2(d+ + e−)

s.t.



m
∑

i=1
zL

i (W) + d− − d+ =
m
∑

i=1

 1−γ
β

( n
∑

j=1
ρL

j (
β

1−γ yL
ij + η)

λγ
/

(
n
∑

j=1
ρL

j /( β
1−γ yL

ij + η)
λγ
))1/2λγ

− η


m
∑

i=1
zU

i (W) + e− − e+ =
m
∑

i=1

 1−γ
β

( n
∑

j=1
ρU

j (
β

1−γ yU
ij + η)

λγ
/

(
n
∑

j=1
ρU

j /( β
1−γ yU

ij + η)
λγ
))1/2λγ

− η


ρL

j ≤ wj ≤ ρU
j j = 1, 2, · · · , n

n
∑

j=1
wj = 1, d−, d+, e−, e+ ≥ 0

(20)
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where P1, P2 are the priority factor which indicates the relative importance of each target; d−, d+ are the

lower and upper deviation variables of the objective function
m
∑

i=1
zL

i (W) which is lower or higher than

the expected value
m
∑

i=1

 1−γ
β

( n
∑

j=1
ρL

j (
β

1−γ yL
ij + η)

λγ
/(

n
∑

j=1
ρL

j /( β
1−γ yL

ij + η)
λγ
))1/2λγ

− η

, respectively; e−, e+

are the lower and upper deviation variables of the objective function
m
∑

i=1
zU

i (W) which is lower or higher

than the expected value
m
∑

i=1

 1−γ
β

( n
∑

j=1
ρU

j (
β

1−γ yU
ij + η)

λγ
/(

n
∑

j=1
ρU

j /( β
1−γ yU

ij + η)
λγ
))1/2λγ

− η

, respectively.

5. An Approach to IMAGDM Based on the IGOWUMA-HARA Operator

This section develops a new approach for MAGDM based on the IGOWUMA-HARA operator.
For a MAGDM problem, let X = {x1, x2, · · · , xm} be a finite set of alternatives,

C = {c1, c2, · · · , cn} be a finite set of attributes and V(k) =
(

v(k)1 , v(k)2 , · · · , v(k)n

)T
be the vector of

attributes such that v(k)j ≥ 0 and
n
∑

j=1
v(k)j = 1. D = {d1, d2, · · · , dl} is a finite set of DMs and

W = (w1, w2, · · · , wl)
T is the vector of DMs satisfying wk ≥ 0 and

l
∑

k=1
wk = 1. In addition, assume that

B̃(k) =
(

b̃(k)ij

)
m×n

is the interval decision matrix, where b̃(k)ij =
[
b(k)L

ij , b(k)Uij

]
∈ Ω is a preference value,

which takes the form of interval argument, given by the decision maker dk ∈ D for the alternative
xi ∈ X with regard to the criterion cj ∈ C.

Since different attributes have different measurement scales in MAGDM problem, it is necessary
for the standardization of attributes to avoid the variance among different attributes. In this paper, we
consider two attributes, i.e., profit type and cost type. Let I1 be a set of benefit attributes and I2 be a set
of cost attribute. The decision matrix B̃(k) can be transformed into a corresponding decision matrix
R̃(k) via the following formulas [31]:

r(k)L
ij = b(k)L

ij

/√
m
∑

i=1

(
b(k)Uij

)2
,

r(k)Uij = b(k)Uij

/√
m
∑

i=1

(
b(k)L

ij

)2
,

j ∈ I1, i = 1, 2, · · · , m. (21)


r(k)L

ij = 1/b(k)Uij

/√
m
∑

i=1
1/
(

b(k)L
ij

)2
,

r(k)Uij = 1/b(k)L
ij

/√
m
∑

i=1
1/
(

b(k)Uij

)2
,

j ∈ I2, i = 1, 2, · · · , m. (22)

Based on the above explanation, we develop an approach to MAGDM problem. The concrete
steps are shown as follows.

Step 1. Standardize the decision matrixes.
Based on Equations (21) and (22), the matrixes B̃(k) =

(
b̃(k)ij

)
m×n

(k = 1, 2, · · · , l) can be

transformed into standardization matrixes R̃(k) =
(

r̃(k)ij

)
m×n

(k = 1, 2, · · · , l).

Step 2. Calculate the weight vector of attributes.
Based on model (19), the IGOWUMA-HARA weight vector can be

derived: V(k) =
(

v(k)1 , v(k)2 , · · · , v(k)n

)T
is the vector of attributes such that v(k)j ≥ 0 and

n
∑

j=1
v(k)j = 1.

Step 3. Aggregate the decision matrixes into a collective decision matrix.
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According to IGOWUMA-HARA operator ˜̃r(k)i = IGOWUMA − HARA(r̃(k)i1 , r̃(k)i2 , · · · , r̃(k)in ),
i = 1, 2, · · · , m, k = 1, 2, · · · , l, we can aggregate all the decision matrices R̃(k)(k = 1, 2, · · · , l) into a

collective decision matrix ˜̃R = (˜̃rij)m×l .
Step 4. Calculate the weight vector of the DMs.
Based on model (19), the weight vector of decision makers can be

calculated W = (w1, w2, · · · , wl)
T , where wk ≥ 0(k = 1, 2, · · · , l) and

l
∑

k=1
wk = 1.

Step 5. Aggregate the collective overall the interval preference value.
According to IGOWUMA-HARA operator t̃i = IGOWUMA − HARA(˜̃ri1, ˜̃ri2, · · · , ˜̃ril),

i = 1, 2, · · · , m, we can obtain the collective overall preference value t̃i of the alternative xi.
Step 6. Compare each interval argument t̃i with all t̃i by Equation (1) and get the complementary

matrix P = (pij)m×m.
Step 7. Synthesize all elements of matrix P = (pij)m×m by Equation (3) and get pi(i = 1, 2, · · · , m).
Step 8. Rank the collective overall preference values t̃j in descending order in accordance with

the values of pi(i = 1, 2, · · · , m).
Step 9. Select the best alternative.
Rank all the alternatives xi(i = 1, 2, · · · , m) in descending order and consequently select the best

one in the light of the collective overall preference value t̃i(i = 1, 2, · · · , m).

6. Illustrative Example

In this section, a practical group decision making problem involving the prioritization of a set of
information technology improvement projects adapted from Xu [10] is used to illustrate the proposed
uncertain aggregation operator.

The steering committee of information management department of Midwest American’s
Manufacturing Corp must consider expanding and implementing a set of six projects preferentially.
The projects, x1 quality management information, x2 inventory control, x3 customer order tracking,
x4 materials purchasing management, x5 fleet management and x6 design change management, are
proposed by different regional managers, aiming at improving information and technology. What the
committee is concerned about is the projects’ prioritized potential contribution, accordingly, from the
highest level to the lowest. At a strategic level, company acquires competitive advantages over its
rivals in the industry. In evaluating the potential contribution of each project, three factors are taken
into consideration, namely, c1-productivity, c2-differentiation, and c3-management.

Suppose that the decision experts of the investment company are four persons d1, d2, d3 and d4,
they offer their own opinions with scores ranging from 0 to 100, over the projects xi(i = 1, 2, · · · , 6)
with respect to the factors cj(j = 1, 2, 3), and the results are shown as in Tables A1–A4 (See Appendix B).

In addition, for simplicity, without loss of generality, we assume that the parameters of the
IGOWUMA-HARA operator are respectively: λ = 1, β = 3, η = 1 and γ = 0.1.

6.1. Computational Results

Based on the above information and by applying the software of Lingo 11.0 developed by
American Lindo systems, we can use the proposed decision-making approach to ranking the order of
enterprises. The concrete steps are shown as follows.

Step 1. Suppose that R̃(k) =
(

r̃(k)ij

)
6×3

= B̃(k) (k = 1, 2, 3, 4). Based on model (19), the optimal

weighting vector of attributes with regard to the kth DM dk(k = 1, 2, 3, 4) is obtained as follows:

V1 = (0.3333, 0.5000, 0.1667)T ,V2 = (0.4852, 0.3000, 0.2148)T ,

V3 = (0.4270, 0.3000, 0.2730)T ,V4 = (0.3556, 0.4262, 0.2182)T .
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Step 2. Utilize IGOWUMA-HARA operator ˜̃b(k)i = IGOWUMA − HARA(r̃(k)i1 , r̃(k)i2 , r̃(k)i3 ),
(i = 1, 2, . . . , 6; k = 1, 2, 3, 4) to aggregate the uncertain variables of the decision matrix
R̃(k) =

(
r̃(k)ij

)
m×n

(k = 1, 2, 3, 4) and get the individual overall preference value b̃(k)i corresponding to

the alternative the alternative xi given by dk:

b̃(1)1 = [85.2612, 93.0251], b̃(1)2 = [70.2762, 82.2614], b̃(1)3 = [78.2466, 87.8873],

b̃(1)4 = [74.1237, 84.8533], b̃(1)5 = [83.3855, 89.2769], b̃(1)6 = [73.4909, 82.2516],

b̃(2)1 = [73.0026, 83.4971], b̃(2)2 = [84.1709, 90.2273], b̃(2)3 = [81.1823, 91.8827],

b̃(2)4 = [85.2105, 90.2273], b̃(2)5 = [83.9638, 88.9699], b̃(2)6 = [80.4767, 90.2273],

b̃(3)1 = [86.4702, 93.6081], b̃(3)2 = [78.5526, 85.6307], b̃(3)3 = [83.6048, 90.6761],

b̃(3)4 = [85.5306, 95.6810], b̃(3)5 = [85.0510, 92.3882], b̃(3)6 = [76.4430, 84.6055],

b̃(4)1 = [84.1194, 90.2458], b̃(4)2 = [82.9530, 92.9680], b̃(4)3 = [87.0965, 93.8859],

b̃(4)4 = [83.8715, 89.8769], b̃(4)5 = [84.4089, 89.4197], b̃(4)6 = [85.9521, 92.0983].

We further can derive a collective decision matrix B̃ = (b̃ik)6×4.
Step 3. Apply model (19) to calculate the optimal weighting vector of four DMs:

W = (0.2924, 0.2076, 0.1000, 0.4000)T

Step 4. Utilize the collective decision information given by matrix B̃ = (b̃ik)6×4 and calculate
the collective overall preference value t̃i = IGOWUMA− HARA(b̃i1, b̃i2, b̃i3, b̃i4) of the alternative
xi (i = 1, 2, . . . , 6) :

t̃1 = [82.2296, 89.9208], t̃2 = [78.8360, 88.4159], t̃3 = [82.8474, 91.3612],
t̃4 = [81.3218, 89.0049], t̃5 = [84.0798, 89.5765], t̃6 = [80.0468, 87.9750].

Step 5. Compare each interval argument t̃i with all t̃z (z = 1, 2, . . . , 6) by Equation (1) and get the
complementary matrix P = (piz)6×6:

P =



0.5000 0.6418 0.4365 0.5593 0.4429 0.6322
0.3582 0.5000 0.3078 0.4109 0.2876 0.4780
0.5635 0.6922 0.5000 0.6198 0.5197 0.6881
0.4407 0.5891 0.3802 0.5000 0.3737 0.5738
0.5571 0.7124 0.4803 0.6263 0.5000 0.7099
0.3678 0.5220 0.3119 0.4262 0.2901 0.5000


Step 6. Synthesize all elements in each line of the matrix P = (piz)6×6 by Equation (3) to get

p1 = 0.1738, p2 = 0.1448, p3 = 0.1861, p4 = 0.1619, p5 = 0.1862, p6 = 0.1473.
Step 7. Rank the collective overall preference values t̃i(i = 1, 2, . . . , m) in descending order in the

light of the values of pi(i = 1, 2, · · · , m).

p5 > p3 > p1 > p4 > p6 > p2

Step 8. Rank all the alternatives xi(i = 1, 2, · · · , 6) in accordance with the collective overall
preference values t̃i(i = 1, 2, · · · , 6):

x5 � x3 � x1 � x4 � x6 � x2

Thus, the best investment alterative is fleet management x5.
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6.2. Sensitive Analysis

Sensitivity analysis is the investigation of some potential changes and errors of rating values and
their impact on the final ranking order [32]. In this paper, some sensitivity analyses are conducted to
investigate the impact of changing the values of parameters β, γ, η in IGOWUMA-HARA operator on
the alternatives’ ranking order.

Based on the parameters given by Section 6.1, Table A5 (See Appendix B) shows the impact of
changing the parameters of IGOWUMA-HARA operator on the best investment alternative, including
the changing of single parameter (No. 1 to No. 15), two parameters (No. 16 to No. 30), three parameters
(No. 31 to No. 35), respectively.

From Table A5, we find that the selection of the best alternative will change with the
single parameter γ (or η) decreasing or with the parameter β increasing to a certain point
(See, No. 1 to No. 15). In other words, the changing of single parameter has an influence on the
selection of the best alternative.

For example, the best alternative will change from x5 to x3 when the parameter γ (resp. η)
decreases from 0.9 to 0.1 (resp. from 3 to 1) (See, No. 1 to No. 10), while this change will happen
as the parameter β increases from 0.1 to 3 (See, No. 11 to No. 15). Moreover, the absolute risk
aversion coefficient r(x, γ, β, η) will decrease with γ or η increases, while it will increase with the
rise of β (See, No. 1 to No. 15). This can be explained by the first partial derivative of the absolute
risk aversion coefficient. Note that the first partial derivative of r(x, γ, β, η) for HARA utility is
r′γ(x, γ, β, η) = −β2x/(βx + η(1− γ))2 ≤ 0, r′η(x, γ, β, η) = −β(1− γ)2/(βx + η(1− γ))2 < 0 and

r′β(x, γ, β, η) = η(1− γ)2/(βx + η(1− γ))2 > 0, respectively. Then, we can conclude that r(x, γ, β, η)

will decrease with the increasing of γ or η, while it will increase with the increasing of β.
In addition, in Table A5, we can see that the changing of two parameters (or three parameters) will

also affect the selection of the best alternative. In particular, the best alternative will change with the
absolute risk aversion coefficient r(x, γ, β, η) increasing to a certain point, and this changing tendency
is also suitable for the single parameter case.

For example, under the condition of single parameter γ, the best alternative will change
from x5 to x3 when the absolute risk aversion coefficient r(x, γ, β, η) increases from 0.353 to 1.50
(See, No. 1 to No. 5). For the case of two parameters γ and η, the best alternative will change from x5

to x3 when r(x, γ, β, η) increases from 0.286 to 2.093 (See, No. 21 to No. 25). Under the changing of
three parameters, the best alternative will change from x5 to x3 when r(x, γ, β, η) increases from 0.264
to 1.448 (See, No. 31 to No. 35).

This situation can be understood by the meaning of r(x, γ, β, η). Notice that with the absolute risk
aversion coefficient increasing, the risk attitude of DM’s involved in the evaluation of decision-making
information will become more prudent. In other words, the higher the risk aversion is, the more
conservative the DM is. From Tables A1–A4, we find that the alternative x3 is better than the alternative
x5 with respect to the attributes c1 and c3. Recall that c1 and c3 respectively denote the productivity
and the management. These two attributes, for the information technology improvement projects in
reality, draw more attention than those of c1 (productivity) and c3 (management). Therefore, from
the viewpoint of information technology improvement efficiency, the alternative x3 is superior to the
alternative x5 with the increasing of r(x, γ, β, η).

In addition, Table A5 shows that no matter what the changing of parameter (single parameter,
two or three parameters) is, the best alternative is still x5 if the value of r(x, γ, β, η) is less than or
equal to 0.945, while it will become x3 when the value of r(x, γ, β, η) is greater than 0.945. Here, we
should note that the point of r(x, γ, β, η) equal to 0.945 is only suitable for this example because the
calculation of the best investment alternative involves other factors such as the values of attributes,
weights of attributes, the relatively important weight of DMs and the relatively important degree of
total deviation.
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6.3. Comparative Analysis of the Obtained Results

What needs to be mentioned is that Zhou et al. [15] also adapted the same illustrative example to
illustrate the developed UGOWA operator. Therefore, we mainly compare the ranking results got by
the DUOWA operator, UGOWA operator and the proposed IGOWUMA-HARA operator.

The comparison results are shown in Table 2. It can be seen that the best alternative is the same,
which explains the applicability of the proposed method. However, the rankings are not completely
consistent in [10], [15] and this paper. This difference implies that our utility aggregation operator
is superior to the DUOWA operator [10] and UGOWA operator [15], which can be explained by the
following analysis.

Table 2. The comparison results of the two operators.

Operator Score Ranking

The DUOWA operator (3.0320,1.9227,3.4656,3.4102,3.5927,2.5769) x5 � x3 � x4 � x1 � x6 � x2
The UGOWA operator (0.1562,0.1317,0.1802,0.1768,0.1814,0.1738) x5 � x3 � x4 � x6 � x1 � x2
The proposed operator (0.1738,0.1448,0.1861,0.1619,0.1862,0.1473) x5 � x3 � x1 � x4 � x6 � x2

(a) Theoretically, both of the DUOWA operator and UGOWA operator use the mean to eliminate
the difference of variable values and lead to the deviation between the variable values and the
results of variable aggregation, while the presented aggregation operator in this paper just modifies
this limitation.

For instance, the DUOWA operator and UGOWA operator cannot precisely depict the deviation
between the interval variable values and the aggregation results of interval variable because when
aggregating the interval variables, they directly use the mean to eliminate the difference of data, which
leads to the deviation between the aggregation values and the result of aggregation. However, the
presented aggregation operator IGOWUMA-HARA can perfectly depict the deviation between the
interval variable values and the aggregation results of interval variable via penalty function theory,
which can eliminate the difference of data as possible and minimize the deviation between the interval
variable values and the results of interval variable aggregation. Hence, it can effectively reduce the
loss and distortion of interval information in aggregating process, and correspondingly improve the
precision of the decision-making results.

(b) When assessing the alternatives, the DUOWA operator and UGOWA operator just consider
the objective interval arguments, and the associated weights only depend on the aggregated interval
arguments, but did not provide a uniform weighting vector based on the degree of similarity to
compare the alternatives. On the contrary, the proposed aggregation operator sufficiently considers
the subjective risk attitude of DMs by using utility function, and based on the developed similarity
measure of preference values, the weighting vector of attributes is reached by an optimization model.
The weighting vector cannot only guarantee that the alternatives can be contrasted according to the
unified standard, but also can insure the theoretical foundations of effectiveness of proposed method.

For example, we see that the ranking result is always x4 � x1 by using the presented method
in [10,15]. However, the ranking result is x1 � x4 (λ = 1, β = 3, η = 1 and γ = 0.1) when utilizing the
developed method in this paper. This situation can be explained by the fact that the alternative x1 is
better than the alternative x4 with respect to the attributes c1 and c2 from Tables A1–A4. Recall that
c1 denote the productivity, which is provided to assess the potential benefits of a proposed project,
and ultimately, to increase the effectiveness and efficiency of the firm’s manufacturing and service
operations; and c2 denote the differentiation factor, which is introduced to assess the potential of a
proposed project, in this way, the firm’s products and services can be distinguished from its competitors
fundamentally, making itself more desirable to its customers. These two attributes, for the information
technology improvement projects in reality, draw more attention than those of c1 (productivity) and c2
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(differentiation). Therefore, from the viewpoint of information technology improvement efficiency, the
alternative x1 is superior to the alternative x4 with the increasing of r(x, γ, β, η).

(c) The presented method is widely used in the real decision-making process, and the
decision-making based on utility operator is more in accordance with DMs’ actual decision-making
behavior. The results show that (i) the utility values obtained by the proposed method seem more
similar to their original attribute values; (ii) the objective is to understand the subjective feelings of DMs
by using developed method. However, the traditional method cannot have the above characteristics,
e.g., literature [10,15].

Thus, the above comparison shows that DMs can make decision by choosing different values of
the parameters β, γ, η with his/her attitude, which is superior to the traditional operators, and that
the developed method in this paper is more objective than the method in literature [10,15].

7. Conclusions

In this paper, we develop a new operator called the IGOWUMA operator based on an optimal
deviation model, which incorporates the risk attitude of DMs in the aggregation process. We investigate
some properties of the IGOWUMA operator and prove that it is commutative, idempotent,
monotonicity with respect to the degree of possibility, boundedness with respect to the degree
of possibility and monotonicity with respect to the parameter λ for the degree of possibility.
These properties are suitable for any utility function. Under the HARA utility function, we proposed
an IGOWUMA-HARA operator. We discuss its families and found that it included a wide range of
aggregation operators. In order to determine the IGOWUMA-HARA operator’ weights, a preemptive
nonlinear objective programming model is constructed, which can determine a uniform weighting
vector to guarantee the uniform standard comparison between the alternatives and measure their
fair competition under the condition of valid comparison between various alternatives. Moreover,
a new approach for IMAGDM is developed based on the IGOWUMA-HARA operator. This approach
can also be applied effectively to different group decision-making problems such as engineering
management and financial management, etc. At last, we present an application of the new approach
for IMAGDM in an example of an investment selection.

The innovative contributions of the paper are three-fold: (i) two interval information aggregation
operators named as the IGOWUMA operator and the IGOWUMA-HARA operator are developed
based on utility function. The two operators take into account the risk attitude of DMs in the
aggregation process since different DMs may have different risk attitudes. In addition, the latter
can degenerate into various operators by adjusting parameters; (ii) A preemptive nonlinear objective
programming model is proposed to determine the weights of operator. This model can provide a
uniform weighting vector to guarantee the uniform standard comparison between the alternatives
and reduce the influence of unfair argument on the aggregated results; (iii) A new approach for
IMAGDM is developed based on the IGOWUMA-HARA operator and the preemptive nonlinear
objective programming model. The decision process based on utility aggregation operator is more
in line with the actual decision behavior of DMs. This approach is effectively applicable to different
group decision-making problems such as engineering management and financial management, etc.

From the sensitive analysis and comparative analysis, some solid and practical implications can
be obtained. Firstly, using the IGOWUMA -HARA operator to IMAGDM, DMs can choose different
values of γ, β, η to express their risk attributes. The absolute risk aversion coefficient r(x, γ, β, η) of
DMs decreases with the increase of the value of γ or η, and increases with the increase of the value
β. In addition, the optimal alternative varies with the risk attitudes of the DMs. Secondly, there is a
critical value of the absolute risk aversion coefficient on the optimal alternative. No matter how the
parameters change, the optimal scheme will not change as long as the risk aversion coefficient is below
or above the critical point. In other word, the magnitude relation between the absolute risk aversion
coefficient and the critical value will decide which the optimal alternative is. So it is important to find
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the critical value through sensitivity analysis, and then the DM can express their preferences on the
alternative by adjusting the parameters.

In further research, it would be very interesting to extend our analysis to the case of more
sophisticated situation such as introducing the behavior theory of DMs in the IGOWUMA-HARA
operator. Nevertheless, we leave that point to future research, since our methodology cannot be
applied to that extended framework, which will result in more sophisticated calculation.
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Appendix A

Proof of Property 3 (Boundedness).
Since F is IGOWUM operator, then:

F(x̃1, x̃2, · · · , x̃n) = u−1

[(
n
∑

i=1
wiuλ(ỹi)

/
n
∑

i=1

(
wi/uλ(ỹi)

))1/2λ
]

=

[
u−1

{(
n
∑

i=1
wiuλ(yL

i )

/
n
∑

i=1

(
wi/uλ(yL

i )
))1/2λ

}
, u−1

{(
n
∑

i=1
wiuλ(yU

i )

/
n
∑

i=1

(
wi/uλ(yU

i )
))1/2λ

}]
,

F(t̃1, t̃1, · · · , t̃1) = u−1

[(
n
∑

i=1
wiuλ(t̃1)

)1/λ
]
= t̃1 = [tL

1 , tU
1 ], F(t̃2, t̃2, · · · , t̃2) = u−1

[(
n
∑

i=1
wiuλ(t̃2)

)1/λ
]
= t̃2 = [tL

2 , tU
2 ].

For simplicity, let:

αL = u−1

{(
n
∑

i=1
wiuλ(yL

i )

/
n
∑

i=1

(
wi/uλ(yL

i )
))1/2λ

}
and αU = u−1

{(
n
∑

i=1
wiuλ(yU

i )

/
n
∑

i=1

(
wi/uλ(yU

i )
))1/2λ

}
,

We then have:
F(x̃1, x̃2, · · · , x̃n) =

[
αL, αU

]
= α̃.

In the following, we will complete the proof with two steps.
Step 1. We first proof t̃1 ≤ F(x̃1, x̃2, · · · x̃n).
From the above results, we derive αL ≥ tL

1 and αU ≥ tU
1 . Then, we can conclude that

(i) If tL
1 ≤ αL ≤ tU

1 ≤ αU , then from formula (1), we have:

p(α̃ ≥ t̃1) = max
{

1−max
(
[tU

1 − αL]/[(αU − αL) + (tU
1 + tL

1 )], 0
)
, 0
}

= 1−
(
tU
1 − αL)/[(αU − αL) + (tU

1 − tL
1 )
]
=
(
αU − tL

1
)
/
[
(αU − αL) + (tU

1 − tL
1 )
]

and:
p(t̃1 ≥ α̃) = 1− p(α̃ ≥ t̃1) = (tU

1 − αL)/
[
(αU − αL) + (tU

1 − tL
1 )
]

.

From
(
αU − tL

1
)
≥
(
tU
1 − αL), we find that p

(
α̃ ≥ t̃1

)
≥ p

(
t̃1 ≥ α̃

)
, therefore, t̃1 ≤ F(α̃1, α̃2, · · · α̃n).

(ii) If tL
1 ≤ tU

1 < αL ≤ αU , then from formula (1), we have:

p(α̃ ≥ t̃1) = max
{

1−max
(
[tU

1 − αL]/[(αU − αL) + (tU
1 − tL

1 )], 0
)

, 0
}
= 1

and:
p(t̃1 ≥ α̃) = 1− p(α̃ ≥ t̃1) = 0.



Symmetry 2017, 9, 103 16 of 21

Note that p
(
α̃ ≥ t̃1

)
≥ p

(
t̃1 ≥ α̃

)
, we then have t̃1 ≤ F(α̃1, α̃2, · · · , α̃n).

Step 2. Similar to the proof of Step 1, we can conclude that t̃2 ≥ F(α̃1, α̃2, · · · , α̃n).
The property is proved.

Proof of Property 4 (Monotonicity with respect to the degree of possibility).
Let:

F(x̃1, x̃2, · · · , x̃n) = u−1

( n

∑
i=1

wi(u(ỹi))
λ

/
n

∑
i=1

wi/(u(ỹi))
λ

)1/2λ
,

and:

F(z̃1, z̃2, · · · , z̃n) = u−1

( n

∑
i=1

wi
(
u(t̃i)

)λ

/
n

∑
i=1

wi/
(
u(t̃i)

)λ

)1/2λ
.

If p(x̃i ≥ z̃i) = 1, then we have p(ỹi ≥ t̃i) = 1 and ỹL
i ≥ t̃U

i . Since u(x) is a monotonically
increasing function, we can obtain u(ỹL

i ) ≥ u(t̃U
i ). In the following, we will complete the proof in

two cases.

Case 1. If λ > 0, then we have
(

n
∑

i=1
wiuλ(ỹL

i )

/
n
∑

i=1
wi/uλ(ỹL

i )

)1/2λ

≥
(

n
∑

i=1
wiuλ(t̃U

i )

/
n
∑

i=1
wi/uλ(t̃U

i )

)1/2λ

.

Since u−1(x) is a monotonically increasing function, we get:

u−1

( n

∑
i=1

wiuλ(ỹL
i )

/
n

∑
i=1

wi/uλ(ỹL
i )

)1/2λ
 ≥ u−1

( n

∑
i=1

wiuλ(t̃U
i )

/
n

∑
i=1

wi/uλ(t̃U
i )

)1/2λ
.

Therefore,
p(F(x̃1, x̃2, · · · , x̃n) ≥ F(z̃1, z̃2, · · · , z̃n)) = 1.

Case 2. If λ < 0, then we have
n
∑

i=1
wiuλ(ỹL

i ) ≤
n
∑

i=1
wiuλ(z̃U

i ) and
n
∑

i=1
wi/uλ (ỹL

i ) ≥
n
∑

i=1
wi/uλ (z̃U

i ). Thus,

n

∑
i=1

wiuλ(ỹL
i )

/
n

∑
i=1

wi/uλ(ỹL
i ) ≤

n

∑
i=1

wiuλ(z̃U
i )

/
n

∑
i=1

wi/uλ(z̃U
i ) .

Taking the power of 1/2λ at both ends of the inequality, we can get:(
n

∑
i=1

wiuλ(ỹL
i )

/
n

∑
i=1

wi/uλ(ỹL
i )

)1/2λ

≥
(

n

∑
i=1

wiuλ(z̃U
i )

/
n

∑
i=1

wi/uλ(z̃U
i )

)1/2λ

.

Since u−1(x) is a monotonically increasing function, we obtain:

u−1

( n

∑
i=1

wiuλ(ỹL
i )

/
n

∑
i=1

wi/uλ(ỹL
i )

)1/2λ
 ≥ u−1

( n

∑
i=1

wiuλ(z̃U
i )

/
n

∑
i=1

wi/uλ(z̃U
i )

)1/2λ
.

Therefore,
p(F(x̃1, x̃2, · · · , x̃n) ≥ F(z̃1, z̃2, · · · , z̃n)) = 1.

The property is proved.
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Proof of UGOWMA operator: If β = 1− γ, η → 0 , γ→ 1 and λ ∈ (−∞, 0) ∪ (0,+∞), we get that:

lim
γ→1

(
lim
η→0

F(x̃1, x̃2, · · · , x̃n)

)
= lim

γ→1

[
lim
η→0

((
n
∑

i=1
wi(ỹi + η)λγ

)
/
(

n
∑

i=1
wi/(ỹi + η)λγ

))1/2λγ

− η

]

= lim
γ→1

(
n
∑

i=1
wi(ỹi)

λγ/
(

n
∑

i=1
wi/(ỹi)

λγ
))1/2λγ

=

(
n
∑

i=1
wi ỹλ

i /
(

n
∑

i=1
wi/ỹλ

i

))1/2λ

.

The theorem is proved.

Proof of UHUG operator: Let F be the UHUM operator, we have:

F(λ) = 1−γ
β

[(
n
∑

i=1
wi

(
β

1−γ x̃i + η
)λγ

/
n
∑

i=1

(
wi/

(
β

1−γ x̃i + η
)λγ

))1/2λγ

− η

]

=

[
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)λγ
))1/2λγ

− η

)
, 1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)λγ
))1/2λγ

− η

)]
.

In the following, we will complete the proof in two cases.

Case 1. If λ→ 0+ , then:

lim
λ→0+

F(λ) =

[
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)λγ
))1/2λγ

− η

)
, 1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)λγ
))1/2λγ

− η

)]

=

[
lim

λ→0+
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)λγ
))1/2λγ

− η

)
, lim

λ→0+
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)λγ
))1/2λγ

− η

)]
.

By the L’Hôpital’s rule, we have that:

lim
λ→0+

(
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)λγ
))1/2λγ

= lim
λ→0+

exp
(

1
2λγ log

n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)λγ
))

= exp
(

n
∑

i=1
wi log

(
β

1−γ ỹL
i + η

))
=

n
∏
i=1

(
β

1−γ ỹL
i + η

)wi
.

Similarly, we can get:

lim
λ→0+

(
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)λγ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)λγ
))1/2λγ

=
n
∏
i=1

(
β

1−γ ỹU
i + η

)wi
.

Thus,

lim
λ→0+

F(λ) =
[

1−γ
β

(
n
∏
i=1

(
β

1−γ ỹL
i + η

)wi − η

)
, 1−γ

β

(
n
∏
i=1

(
β

1−γ ỹU
i + η

)wi − η

)]
.

That is,

lim
λ→0+

F(x̃1, x̃2, · · · , x̃n) =
1− γ

β

(
n

∏
i=1

(
β

1− γ
ỹi + η

)wi

− η

)
.

Case 2. If λ→ 0−1 , then similar to the above proof.
The theorem is proved.

Proof of ULGA operator: Let f be the UHUMA operator, we have:

f (γ) = 1−γ
β

[(
n
∑

i=1
wi

(
β

1−γ ỹi + η
)γ

/
n
∑

i=1

(
wi/

(
β

1−γ ỹi + η
)γ))1/2γ

− n

]

=

[
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)γ))1/2γ

− n

)
, 1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)γ))1/2γ

− n

)]
.
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In the following, we will complete the proof in two cases.

Case 1. If γ→ 0+ , then:

lim
γ→0+

f (λ) = lim
γ→0+

[
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)γ))1/2γ

− n

)
, 1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)γ))1/2γ

− n

)]

=

[
lim

γ→0+
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)γ))1/2γ

− n

)
, lim

γ→0+
1−γ

β

((
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)γ))1/2γ

− n

)]
.

By the L’Hôpital’s rule, we have that:

lim
γ→0+

(
n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)γ))1/2γ

= lim
γ→0+

exp
(

1
2γ log

n
∑

i=1
wi

(
β

1−γ ỹL
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹL
i + η

)γ))
= exp

(
n
∑

i=1
wi log

(
βỹL

i + η
))

=
n
∏
i=1

(
βỹL

i + η
)wi .

Similarly, we can get:

lim
γ→0+

(
n
∑

i=1
wi

(
β

1−γ ỹU
i + η

)γ
/

n
∑

i=1

(
wi/

(
β

1−γ ỹU
i + η

)γ))1/2γ

=
n
∏
i=1

(
βỹU

i + η
)wi .

Thus,

lim
γ→0+

f (λ) =
[

1
β

(
n
∏
i=1

(
βỹL

i + η
)wi − η

)
, 1

β

(
n
∏
i=1

(
βỹU

i + η
)wi − η

)]
.

That is,

lim
γ→0+

f (x̃1, x̃2, · · · , x̃n) =
1
β

(
n
∏
i=1

(βỹi + η)wi − η

)
.

Case 2. If λ→ 0−1 , then similar to the above proof.

The theorem is proved.

Appendix B

Table A1. Decision matrix B̃(1) − d1.

xi c1 c2 c3

x1 [80,90] [95,100] [70,80]
x2 [75,85] [85,95] [40,50]
x3 [80,100] [75,80] [85,90]
x4 [60,80] [85,90] [75,80]
x5 [70,75] [95,100] [80,90]
x6 [90,95] [60,70] [90,100]

Table A2. Decision matrix B̃(2) − d2.

xi c1 c2 c3

x1 [90,100] [80,90] [40,50]
x2 [90,95] [75,80] [85,95]
x3 [85,95] [70,85] [90,95]
x4 [90,95] [75,80] [90,95]
x5 [80,85] [90,95] [85,90]
x6 [80,95] [75,80] [90,95]
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Table A3. Decision matrix B̃(3) − d3.

xi c1 c2 c3

x1 [85,95] [90,95] [85,90]
x2 [80,90] [85,90] [70,75]
x3 [85,95] [85,90] [80,85]
x4 [90,100] [80,95] [85,90]
x5 [85,95] [90,100] [80,85]
x6 [90,100] [55,60] [85,95]

Table A4. Decision matrix B̃(4) − d4.

xi c1 c2 c3

x1 [80,85] [90,95] [80,90]
x2 [75,90] [95,100] [75,85]
x3 [85,95] [90,95] [85,90]
x4 [85,90] [80,85] [90,100]
x5 [90,95] [85,90] [75,80]
x6 [85,90] [90,95] [80,90]

Table A5. The best alternative under the changing of parameters γ, η, β.

No. γ η β r(x)
pi(i = 1, 2, · · · 6) Ordering

p1 p2 p3 p4 p5 p6

1 0.8 1 3 0.353 0.17376 0.14469 0.18543 0.16269 0.18560 0.14784 x5 � x3 � x1 � x4 � x6 � x2
2 0.4 1 3 0.857 0.17384 0.14479 0.18579 0.16218 0.18593 0.14747 x5 � x3 � x1 � x4 � x6 � x2
3 −0.5 1 3 1.500 0.17347 0.14456 0.18640 0.16192 0.18636 0.14728 x3 � x5 � x1 � x4 � x6 � x2
4 −1.4 1 3 1.846 0.17203 0.14353 0.18726 0.16251 0.18695 0.14772 x3 � x5 � x1 � x4 � x6 � x2
5 −2 1 3 2.000 0.17047 0.14234 0.18801 0.16315 0.18782 0.14820 x3 � x5 � x1 � x4 � x6 � x2
6 0.1 2.7 3 0.687 0.17391 0.14485 0.18590 0.16198 0.18601 0.14735 x5 � x3 � x1 � x4 � x6 � x2
7 0.1 1.7 3 0.891 0.17382 0.14480 0.18600 0.16195 0.18613 0.14730 x5 � x3 � x1 � x4 � x6 � x2
8 0.1 1.2 3 1.047 0.17378 0.14476 0.18608 0.16193 0.18616 0.14728 x5 � x3 � x1 � x4 � x6 � x2
9 0.1 0.8 3 1.216 0.17371 0.14472 0.18623 0.16188 0.18621 0.14724 x3 � x5 � x1 � x4 � x6 � x2

10 0.1 0.4 3 1.452 0.17367 0.14470 0.18630 0.16187 0.18624 0.14722 x3 � x5 � x1 � x4 � x6 � x2
11 0.1 1 0.5 0.391 0.17406 0.14496 0.18574 0.16199 0.18584 0.14741 x5 � x3 � x1 � x4 � x6 � x2
12 0.1 1 1.9 0.924 0.17385 0.14481 0.18593 0.16197 0.18611 0.14732 x5 � x3 � x1 � x4 � x6 � x2
13 0.1 1 2.5 1.047 0.17382 0.14479 0.18597 0.16196 0.18615 0.14731 x5 � x3 � x1 � x4 � x6 � x2
14 0.1 1 3.6 1.200 0.17367 0.14470 0.186283 0.16185 0.186278 0.14721 x3 � x5 � x1 � x4 � x6 � x2
15 0.1 1 5 1.324 0.17359 0.14465 0.18645 0.16179 0.18637 0.14716 x3 � x5 � x1 � x4 � x6 � x2
16 0.9 1 0.2 0.100 0.17294 0.14420 0.18628 0.16210 0.18706 0.14741 x5 � x3 � x1 � x4 � x6 � x2
17 0.3 1 1.9 0.806 0.17356 0.14463 0.18600 0.16183 0.18676 0.14721 x5 � x3 � x1 � x4 � x6 � x2
18 −1.9 1 3.3 2.103 0.17098 0.14269 0.18754 0.16325 0.18726 0.14828 x3 � x5 � x1 � x4 � x6 � x2
19 −0.8 1 4.1 1.917 0.17329 0.14442 0.18646 0.16223 0.18610 0.14750 x3 � x5 � x1 � x4 � x6 � x2
20 −0.2 1 4.7 1.589 0.17381 0.14478 0.18623 0.16200 0.18585 0.14733 x3 � x5 � x1 � x4 � x6 � x2
21 0.8 3 3 0.286 0.17313 0.14432 0.18632 0.16212 0.18670 0.14741 x5 � x3 � x1 � x4 � x6 � x2
22 0.4 2.4 3 0.612 0.17362 0.14466 0.18614 0.16195 0.18634 0.14730 x5 � x3 � x1 � x4 � x6 � x2
23 0.2 1.3 3 0.945 0.17371 0.14472 0.18610 0.16191 0.18630 0.14726 x5 � x3 � x1 � x4 � x6 � x2
24 −0.8 0.6 3 2.093 0.17323 0.14438 0.18640 0.16218 0.18633 0.14747 x3 � x5 � x1 � x4 � x6 � x2
25 −1.7 0.3 3 3.507 0.17138 0.14301 0.18731 0.16303 0.18718 0.14809 x3 � x5 � x1 � x4 � x6 � x2
26 0.1 0.7 0.3 0.346 0.17378 0.14481 0.18585 0.16172 0.18663 0.14722 x5 � x3 � x1 � x4 � x6 � x2
27 0.1 2.5 1.3 0.403 0.17375 0.14478 0.18588 0.16174 0.18665 0.14721 x5 � x3 � x1 � x4 � x6 � x2
28 0.1 0.2 0.8 1.241 0.17378 0.14476 0.18615 0.16195 0.18670 0.14729 x5 � x3 � x1 � x4 � x6 � x2
29 0.1 1.1 2.9 1.069 0.17378 0.14477 0.18613 0.16193 0.18611 0.14728 x3 � x5 � x1 � x4 � x6 � x2
30 0.1 2.3 4.9 0.976 0.17379 0.14477 0.18614 0.16192 0.18605 0.14729 x3 � x5 � x1 � x4 � x6 � x2
31 0.65 3.3 1.4 0.264 0.17339 0.14451 0.18620 0.16201 0.18653 0.14736 x5 � x3 � x1 � x4 � x6 � x2
32 0.25 1.4 0.4 0.240 0.17389 0.14487 0.18596 0.16180 0.18617 0.14731 x5 � x3 � x1 � x4 � x6 � x2
33 −0.4 1.6 4.8 1.448 0.17368 0.14469 0.18621 0.16200 0.18607 0.14734 x3 � x5 � x1 � x4 � x6 � x2
34 −0.9 1.9 5 1.555 0.17312 0.14431 0.18644 0.16223 0.18638 0.14752 x3 � x5 � x1 � x4 � x6 � x2
35 −1.5 0.5 3.4 2.881 0.17194 0.14342 0.18710 0.16282 0.18678 0.14794 x3 � x5 � x1 � x4 � x6 � x2
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