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Abstract:



We propose a new class of aggregation operator based on utility function and apply them to group decision-making problem. First of all, based on an optimal deviation model, a new operator called the interval generalized ordered weighted utility multiple averaging (IGOWUMA) operator is proposed, it incorporates the risk attitude of decision-makers (DMs) in the aggregation process. Some desirable properties of the IGOWUMA operator are studied afterward. Subsequently, under the hyperbolic absolute risk aversion (HARA) utility function, another new operator named as interval generalized ordered weighted hyperbolic absolute risk aversion utility multiple averaging-HARA (IGOWUMA-HARA) operator is also defined. Then, we discuss its families and find that it includes a wide range of aggregation operators. To determine the weights of the IGOWUMA-HARA operator, a preemptive nonlinear objective programming model is constructed, which can determine a uniform weighting vector to guarantee the uniform standard comparison between the alternatives and measure their fair competition under the condition of valid comparison between various alternatives. Moreover, a new approach for group decision-making is developed based on the IGOWUMA-HARA operator. Finally, a comparison analysis is carried out to illustrate the superiority of the proposed method and the result implies that our operator is superior to the existing operator.
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1. Introduction


Multiple attributes decision-making (MADM) refers to considering the problem of evaluating or selecting alternatives that are associated with incommensurate and conflicting criteria. However, the increasing complexity of the socioeconomic environment makes it less possible for a single decision-maker (DM) to consider all relevant aspects of a problem as many decision-making processes take place in group settings. As a result, multiple attributes group decision-making (MAGDM) has been receiving more and more attentions from researchers and has been extensively applied to our daily life [1,2,3,4,5,6,7]. Nevertheless, due to the complexities of objects and the vagueness of human mind, it is more appropriate for DMs to use interval/uncertain information than other descriptors to express their assessments in the actual process of MAGDM.



The objective of interval MAGDM (IMAGDM) is to find the optimal solution(s) from a set of feasible alternatives by means of interval information provided by DMs. To realize this objective, the construction of aggregating operators and the determination of aggregation operators’ weights are the two key issues.



A variety of operators have been developed in the past few decades, among them, ordered weighted averaging (OWA) operators introduced by Yager [8] are the most widely used ones. Motivated by these, an extension of the OWA operator is the uncertain OWA (UOWA) operator [9], which aggregates the input arguments taking the form of intervals rather than exact numbers. Some new developments about it have mostly appeared from 2008 to 2013. For example, Xu [10] proposed dependent uncertain ordered weighted averaging (DUOWA) operators and dependent uncertain ordered weighted geometric (DUOWG) operators. Xu and Yager [11] introduced the uncertain power ordered weighted geometric (UPOWG) operator on the basis of the power average operator and the geometric mean. Merigó and Casanovas [12] proposed uncertain induced quasi-arithmetic OWA (Quasi-UIOWA) operator which uses the main characteristics of the induced OWA, the quasi-arithmetic OWA and the UOWA operator. Merigó and Casanovas [13] presented the uncertain heavy OWA (UHOWA) operator and uncertain induced heavy OWA (UIHOWA) operator. Xu and Cai [14] developed the uncertain power ordered weighted average (UPOWA) operator on the basis of the power averaging (PA) operator and the UOWA operator. To extend the generalized ordered weighted averaging operator (GOWA), Zhou et al. [15] developed the uncertain generalized ordered weighted averaging (UGOWA) operator. Zeng et al. [16] present the uncertain probabilistic ordered weighted averaging distance (UPOWAD) operator which uses distance measures in a unified framework between the probability and the OWA operator that considers the degree of importance of each concept in the aggregation. However, the above uncertain aggregation operators only focus on using the mean to eliminate the difference of variable values but fail to consider DMs’ risk attitude in the aggregation process. In actual decision making, different DMs may show different risk attitudes, and the risk attitudes of the same DM may also vary at different times. Obviously, ignoring the risk attitude of DMs will lead to a wrong decision-making.



Another important issue of applying the aggregation operator for IMAGDM is how to determine the associated weights. Many researchers have focused on this issue and developed some useful approaches for determining weights [9,10,15,17,18,19]. For instance, Xu and Da [9] established a linear objective-programming model to generate the UOWA weights by utilizing the given partial weight information, the input interval arguments, and the associated aggregated values. Ahn [18] presented several weighting functions having constant values of orness irrespective of the number of objectives aggregated. Considering the impact of optimism degree of DMs on the decision-making results and by applying the absolute deviation measure, Xu [10] derived the weights of DUOWA operator which only depend on the aggregated interval arguments. To determine UGOWA weights, Zhou et al. [15] used the relative deviation measure to construct a nonlinear model. However, we find that they did not provide a uniform weighting vector based on the weighting models in [10,15], which can affect the accuracy of the decision results and lead to unreasonable results.



Therefore, the aim of this paper is to develop some interval utility aggregation operators to deal with interval preference information, which incorporates the risk attitude of DMs in the aggregation process. Under the general framework of utility function, a new operator called the interval generalized ordered weighted utility multiple averaging (IGOWUMA) operator by applying the penalty theory is derived firstly, and then by studying its properties we find that it is commutative, idempotent, monotone increasing and bounded. Furthermore, we focus on a concrete utility function-hyperbolic absolute risk aversion (HARA), which is rather rich, e.g., by suitable adjustments of the parameters one can respectively obtain power utility, exponential utility and logarithm utility. Under the HARA utility, we propose another new operator named as the interval generalized ordered weighted hyperbolic absolute risk aversion utility multiple averaging-HARA (IGOWUMA-HARA) operator, and investigate its families which include a wide range of aggregation operators such as interval generalized ordered weighted multiple averaging (IGOWMA) operator, interval ordered weighted multiple averaging (IOWMA) operator and interval ordered weighted geometric averaging (IOWGA) operator. The merits of the IGOWUMA-HARA operator are that it not only reflects the DMs’ risk attitude towards the aggregation information, but also provides a very general formula including a wide range of aggregation operators. To determine the IGOWUMA-HARA operator’ weights, we propose a preemptive nonlinear objective programming model, which can provide a uniform weighting vector to guarantee the uniform standard comparison between the alternatives and reduce the influence of unfair arguments on the aggregated results. After that, based on the IGOWUMA-HARA operator and weight determination model, a new approach for IMAGDM is developed. This approach is also effectively applicable to different group decision-making problems such as engineering management and financial management, etc. Finally, an example of the investment selection is provided to examine our approach.



The rest of the paper is organized as follows. Section 2 reviews some basic concepts. Section 3 presents the IGOWUMA operator and analyzes its properties as well as provides an IGOWUMA-HARA operator and identifies its families. We then present a preemptive nonlinear objective programming model for determining IGOWUMA-HARA weights in Section 4. Section 5 develops an approach for IMAGDM under the IGOWUMA-HARA operator. An illustrative example is provided in Section 6 and the conclusions are drawn in Section 7.




2. Preliminaries


This section briefly reviews definitions and operations of interval values, UGOWA operator and HARA utility function.



2.1. Definitions and Operations of Interval Values


Moore [20] presented the interval number. It can be defined as follows.

Definition 1.

Let [image: there is no content], then [image: there is no content] is called a nonnegative interval number. Especially, [image: there is no content] is a nonnegative real number as [image: there is no content].







To simplify the calculation, throughout this paper, let [image: there is no content] be the set of all nonnegative interval numbers.

Definition 2.

[10,11] Let [image: there is no content], [image: there is no content], [image: there is no content], then

	(1)

	
[image: there is no content], if [image: there is no content] and [image: there is no content].




	(2)

	
[image: there is no content].




	(3)

	
[image: there is no content]




	(4)

	
[image: there is no content].




	(5)

	
[image: there is no content].




	(6)

	
If [image: there is no content], then [image: there is no content], and if [image: there is no content], then [image: there is no content].




	(7)

	
If [image: there is no content], then [image: there is no content], and if [image: there is no content], then [image: there is no content].













Xu and Da [8] presented a possibility degree formula for the comparison between interval numbers, which is shown as follows:

Definition 3.

Let [image: there is no content] and [image: there is no content] be two interval numbers, and [image: there is no content], [image: there is no content], then the degree of possibility of [image: there is no content] is defined as


[image: there is no content]



(1)











From Definition 3, it is easy to obtain the following results [10]:

	(1)

	
[image: there is no content].




	(2)

	
[image: there is no content]. Especially, [image: there is no content]




	(3)

	
[image: there is no content] if and only if [image: there is no content].




	(4)

	
[image: there is no content] if and only if [image: there is no content].









To rank the interval arguments [image: there is no content], we first compare each [image: there is no content] with all [image: there is no content] by using (1). For convenience, we let [image: there is no content], and then construct a complementary matrix [image: there is no content], such that


[image: there is no content]



(2)







Synthesizing the elements of each row of matrix [image: there is no content], we have


[image: there is no content]



(3)







Thus, we can rank arguments [image: there is no content] in descending order in line with the value of [image: there is no content]



Remark: 

For the comparison between interval numbers, except for the possibility degree formula, some other formulas are also admirable, such as the admissible order [21].






2.2. UGOWA Operator


The OWA operator introduced by Yager [8] is a useful tool for aggregating the exact inputs that lie between the max and min operators. Since its introduction, the OWA operator has been studied by different authors. Inspired by the work of Yager, Zhou et al. [15] provided a new class of operator named as the UGOWA operator, which is an extension of UOWA operator. It can be defined as follows.

Definition 4.

An UGOWA operator of dimension [image: there is no content] is a mapping UGOWA: [image: there is no content] that has a weighting vector [image: there is no content] with [image: there is no content] and [image: there is no content], such that:


[image: there is no content]



(4)




where [image: there is no content] is the ith largest of the [image: there is no content], and [image: there is no content] is a parameter such that [image: there is no content].



If [image: there is no content], then the UGOWA operator can degenerate to the UOWA operator.



If [image: there is no content], then the UGOWA operator can become the UOWGA operator.








2.3. HARA Utility Function


A utility function [image: there is no content] is a non-decreasing real valued function defined on the real numbers, which just captures the idea of aggregation operator that “an increase of any of the input values cannot decrease the output value”. We investigate the HARA utility function [22,23]:


[image: there is no content]



(5)




with [image: there is no content], [image: there is no content], [image: there is no content]. HARA utility is rather rich, since by suitable adjustments of the parameters one can obtain the power utility function [image: there is no content], [image: there is no content] and the exponential utility function [image: there is no content], [image: there is no content] (for more details on parameters, one can refer to [24,25]).





3. Interval Generalized Weighted Utility Multiple Aggregation Operators


Following [26,27,28,29], in this section, we will introduce a new aggregation operator by minimizing a new penalty function and obtain the IGOWUMA operator for the general utility function. Then, under the HARA utility function, we propose another new operator called the IGOWUMA-HARA operator.



3.1. General Framework


Let [image: there is no content] be a collection of interval arguments, and [image: there is no content] be a weighting vector such that [image: there is no content] and [image: there is no content]. We assume that the utility aggregation operator of dimension [image: there is no content] is a mapping [image: there is no content] determined by:


[image: there is no content]



(6)







In the aggregation process, we hope that the smaller the deviation between the utility values [image: there is no content] and the aggregation result [image: there is no content] is, the better effect of aggregation method shows.



Hence, to minimize the deviation between [image: there is no content] and [image: there is no content], following [26,29,30], we have:


[image: there is no content]



(7)




where [image: there is no content] is a parameter satisfying [image: there is no content]



According to the necessary condition of extreme value, we can obtain:


[image: there is no content]



(8)







Based on Equation (8), we can define an interval generalized weighted utility multiple averaging (IGWUMA) operator shown as follows.

Definition 5.

Let [image: there is no content] be a collection of nonnegative interval numbers. An IGWUMA operator of dimension [image: there is no content] is a mapping IGWUMA: [image: there is no content] such that:


[image: there is no content]



(9)




where the weight vector [image: there is no content] satisfies [image: there is no content] and [image: there is no content], and [image: there is no content] is a parameter such that [image: there is no content].







If reordering the arguments in IGWUMA operator in descending order, we can obtain the IGOWUMA operator.

Definition 6.

Let [image: there is no content] be a collection of nonnegative interval numbers. An IGOWUMA operator of dimension [image: there is no content] is a mapping IGOWUMA: [image: there is no content] such that:


[image: there is no content]



(10)




where [image: there is no content] is a parameter such that [image: there is no content], [image: there is no content] is the [image: there is no content] largest of [image: there is no content], and all of [image: there is no content] are interval numbers, which are compared with each other with the degree of possibility by Equations (1) and (3), and the weighting vector [image: there is no content] satisfies [image: there is no content] and [image: there is no content].







IGOWUMA operator is idempotent, commutative, bounded, etc. These properties are shown as follows:

Property 1 (Idempotency).

Let [image: there is no content] be the IGOWUMA operator. If [image: there is no content] for [image: there is no content] then:


[image: there is no content]



(11)









Property 2 (Commutativity).

Let [image: there is no content] be the IGOWUMA operator. If [image: there is no content] is any permutation of the arguments [image: there is no content] for [image: there is no content] then:


[image: there is no content]



(12)









Property 3 (Boundedness).

Let [image: there is no content] denote IGOWUM operator. If [image: there is no content], [image: there is no content], then:


[image: there is no content]



(13)









Proof. 

See Appendix A.





Property 4 (Monotonicity with respect to the degree of possibility).

Let [image: there is no content] be the IGOWUMA operator, and [image: there is no content] for all [image: there is no content]. If [image: there is no content] then:


[image: there is no content]



(14)









Proof. 

See Appendix A.








3.2. IGOWUMA-HARA Operator


Under IGOWUMA operator and HARA utility function, we derive another interval aggregation operator called an IGOWUMA-HARA operator.

Definition 10.

An IGOWUMA-HARA operator of dimension [image: there is no content] is a mapping IGOWUMA- HARA: [image: there is no content] that has an associated weighting vector [image: there is no content] satisfying [image: there is no content] and, such that:


[image: there is no content]



(15)




where [image: there is no content] is a parameter such that [image: there is no content], and [image: there is no content] is the [image: there is no content] largest of [image: there is no content] here, [image: there is no content] are interval numbers, which are compared with each other by Equations (1) and (3).







Therefore, the IGOWUMA-HARA operator can be considered as the generalized mean of the interval generalized ordered weighted utility averaging-HARA (IGOWUA-HARA) operator and the interval generalized ordered weighted utility harmonic averaging-HARA (IGOWUHA-HARA) operator. That is to say, the IGOWUMA-HARA operator unifies IGOWUA-HARA operator, IGOWUHA-HARA operator and the geometric mean in the same formula considering the degree of importance that each operator has in the aggregation.



Similar to Property 1 to Property 6, it is easy to find that IGOWUMA-HARA operator is idempotent, commutative, bounded, etc.



Table 1 shows that by taking different values of [image: there is no content] in the IGOWUMA-HARA operator, we can obtain different types aggregation operators such as the IGOWMA operator, the interval ordered weighted utility geometric averaging-HARA (IOWUGA-HARA) operator, IOWGA operator [10], the interval ordered weighted utility multiple averaging-HARA (IOWUMA-HARA) operator, the interval ordered weighted power utility multiple averaging (IPUMA) operator, the IOWMA operator, the interval linear ordered weighted geometric averaging (ILGA) operator, etc.



Table 1. Families of the interval generalized ordered weighted hyperbolic absolute risk aversion utility multiple averaging-HARA (IGOWUMA-HARA) operator.







	
[image: there is no content]

	
[image: there is no content]

	
Formulation






	
[image: there is no content] and [image: there is no content]

	
[image: there is no content][image: there is no content]

[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content][image: there is no content]

[image: there is no content] and [image: there is no content]

	
[image: there is no content]




	
[image: there is no content][image: there is no content] and

[image: there is no content][image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

or

[image: there is no content]

	
[image: there is no content][image: there is no content]

[image: there is no content] and [image: there is no content]

	
[image: there is no content]




	
[image: there is no content][image: there is no content] and

[image: there is no content][image: there is no content]

	
[image: there is no content]




	
[image: there is no content][image: there is no content]

[image: there is no content]

	
[image: there is no content]




	
[image: there is no content][image: there is no content]

[image: there is no content]

	
[image: there is no content]




	
[image: there is no content][image: there is no content]

[image: there is no content]

	
[image: there is no content]








IGOWMA: interval generalized ordered weighted multiple averaging; IOWUG-HARA: interval ordered weighted utility geometric averaging-HARA; IOWGA: interval ordered weighted geometric averaging; IOWUM-HARA: interval ordered weighted utility multiple averaging-HARA; IPUMA: interval ordered weighted power utility multiple averaging; IOWMA: interval ordered weighted multiple averaging; ILGA: interval linear ordered weighted geometric averaging.










4. Weights Determination


In order to determine the weights of the IGOWUMA-HARA operator, we propose the concept of similarity degree of interval numbers and analyze its properties. We further provide a new optimization model, which can obtain an optimal weight vector for the IGOWUMA-HARA operator.



In the literature [10], Xu presented a weighting model of DUOWA operator by applying the absolute deviation measure and the optimism degree. Actually, as far as measuring deviation, the relative deviation measure is more effective than the absolute deviation measure. Thus, Zhou et al. [15] developed a new model to determine the weights of UGOWA operator via the relative deviation measure. However, the weighted models do not provide a uniform weighting vector in the literature [10,15], which will affect the accuracy of the decision results. Therefore, we will present a new preemptive nonlinear objective programming model to determining the IGOWUMA-HARA operator weights, which can provide a uniform weighting vector to guarantee the uniform standard comparison between the alternatives and reduce the influence of unfair arguments on the aggregated results.



Let [image: there is no content] be a finite set of alternatives, [image: there is no content] a finite set of attributes, [image: there is no content] is the interval decision matrix, where [image: there is no content] is a preference value, which takes the form of interval argument, given by the decision maker for the alternative [image: there is no content] with regard to the attribute [image: there is no content]. Assume that the partial weight information of attributes is:


[image: there is no content]



(16)







Standardize matrix [image: there is no content] into matrix [image: there is no content], then the integrated attribute value, which is obtained by using the aggregation operator IGOWUMA-HARA to gather the attribute preference information value of each alternative, is still the interval number [image: there is no content], where:


[image: there is no content]



(17)






[image: there is no content]



(18)







In order to calculate a uniform weighting vector to guarantee the uniform standard comparison between the alternatives and measure their fair competition under the condition of valid comparison between various alternatives. Following [31], we can construct the nonlinear programming model as follows:


[image: there is no content]



(19)




where [image: there is no content] is partial weight information.



Model (19) can not only determine the uniform weight vector, making the alternative is comparable, but also can ensure that the alternatives can compete in a fair environment. As can be seen from the model (19), the expected value of the objective function [image: there is no content] is [image: there is no content] while expected value of the objective function [image: there is no content] is [image: there is no content].



In order to solve the multi-objective programming model, the model (19) can be transformed into the following model:


[image: there is no content]



(20)




where [image: there is no content] are the priority factor which indicates the relative importance of each target; [image: there is no content] are the lower and upper deviation variables of the objective function [image: there is no content] which is lower or higher than the expected value [image: there is no content], respectively; [image: there is no content] are the lower and upper deviation variables of the objective function [image: there is no content] which is lower or higher than the expected value [image: there is no content], respectively.




5. An Approach to IMAGDM Based on the IGOWUMA-HARA Operator


This section develops a new approach for MAGDM based on the IGOWUMA-HARA operator.



For a MAGDM problem, let [image: there is no content] be a finite set of alternatives, [image: there is no content] be a finite set of attributes and [image: there is no content] be the vector of attributes such that [image: there is no content] and [image: there is no content]. [image: there is no content] is a finite set of DMs and [image: there is no content] is the vector of DMs satisfying [image: there is no content] and [image: there is no content] In addition, assume that [image: there is no content] is the interval decision matrix, where [image: there is no content] is a preference value, which takes the form of interval argument, given by the decision maker [image: there is no content] for the alternative [image: there is no content] with regard to the criterion [image: there is no content].



Since different attributes have different measurement scales in MAGDM problem, it is necessary for the standardization of attributes to avoid the variance among different attributes. In this paper, we consider two attributes, i.e., profit type and cost type. Let [image: there is no content] be a set of benefit attributes and [image: there is no content] be a set of cost attribute. The decision matrix [image: there is no content] can be transformed into a corresponding decision matrix [image: there is no content] via the following formulas [31]:


[image: there is no content]



(21)






[image: there is no content]



(22)







Based on the above explanation, we develop an approach to MAGDM problem. The concrete steps are shown as follows.



Step 1. Standardize the decision matrixes.



Based on Equations (21) and (22), the matrixes [image: there is no content] can be transformed into standardization matrixes [image: there is no content].



Step 2. Calculate the weight vector of attributes.



Based on model (19), the IGOWUMA-HARA weight vector can be derived: [image: there is no content] is the vector of attributes such that [image: there is no content] and [image: there is no content].



Step 3. Aggregate the decision matrixes into a collective decision matrix.



According to IGOWUMA-HARA operator [image: there is no content] we can aggregate all the decision matrices [image: there is no content] into a collective decision matrix [image: there is no content].



Step 4. Calculate the weight vector of the DMs.



Based on model (19), the weight vector of decision makers can be calculated [image: there is no content], where [image: there is no content] and [image: there is no content].



Step 5. Aggregate the collective overall the interval preference value.



According to IGOWUMA-HARA operator [image: there is no content] we can obtain the collective overall preference value [image: there is no content] of the alternative [image: there is no content].



Step 6. Compare each interval argument [image: there is no content] with all [image: there is no content] by Equation (1) and get the complementary matrix [image: there is no content]



Step 7. Synthesize all elements of matrix [image: there is no content] by Equation (3) and get [image: there is no content]



Step 8. Rank the collective overall preference values [image: there is no content] in descending order in accordance with the values of [image: there is no content]



Step 9. Select the best alternative.



Rank all the alternatives [image: there is no content] in descending order and consequently select the best one in the light of the collective overall preference value [image: there is no content].




6. Illustrative Example


In this section, a practical group decision making problem involving the prioritization of a set of information technology improvement projects adapted from Xu [10] is used to illustrate the proposed uncertain aggregation operator.



The steering committee of information management department of Midwest American’s Manufacturing Corp must consider expanding and implementing a set of six projects preferentially. The projects, [image: there is no content] quality management information, [image: there is no content] inventory control, [image: there is no content] customer order tracking, [image: there is no content] materials purchasing management, [image: there is no content] fleet management and [image: there is no content] design change management, are proposed by different regional managers, aiming at improving information and technology. What the committee is concerned about is the projects’ prioritized potential contribution, accordingly, from the highest level to the lowest. At a strategic level, company acquires competitive advantages over its rivals in the industry. In evaluating the potential contribution of each project, three factors are taken into consideration, namely, [image: there is no content]-productivity, [image: there is no content]-differentiation, and [image: there is no content]-management.



Suppose that the decision experts of the investment company are four persons [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] they offer their own opinions with scores ranging from 0 to 100, over the projects [image: there is no content] with respect to the factors [image: there is no content], and the results are shown as in Table A1, Table A2, Table A3 and Table A4 (See Appendix B).



Table A1. Decision matrix [image: there is no content].







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[80,90]

	
[95,100]

	
[70,80]




	
[image: there is no content]

	
[75,85]

	
[85,95]

	
[40,50]




	
[image: there is no content]

	
[80,100]

	
[75,80]

	
[85,90]




	
[image: there is no content]

	
[60,80]

	
[85,90]

	
[75,80]




	
[image: there is no content]

	
[70,75]

	
[95,100]

	
[80,90]




	
[image: there is no content]

	
[90,95]

	
[60,70]

	
[90,100]










Table A2. Decision matrix [image: there is no content].







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[90,100]

	
[80,90]

	
[40,50]




	
[image: there is no content]

	
[90,95]

	
[75,80]

	
[85,95]




	
[image: there is no content]

	
[85,95]

	
[70,85]

	
[90,95]




	
[image: there is no content]

	
[90,95]

	
[75,80]

	
[90,95]




	
[image: there is no content]

	
[80,85]

	
[90,95]

	
[85,90]




	
[image: there is no content]

	
[80,95]

	
[75,80]

	
[90,95]










Table A3. Decision matrix [image: there is no content].







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[85,95]

	
[90,95]

	
[85,90]




	
[image: there is no content]

	
[80,90]

	
[85,90]

	
[70,75]




	
[image: there is no content]

	
[85,95]

	
[85,90]

	
[80,85]




	
[image: there is no content]

	
[90,100]

	
[80,95]

	
[85,90]




	
[image: there is no content]

	
[85,95]

	
[90,100]

	
[80,85]




	
[image: there is no content]

	
[90,100]

	
[55,60]

	
[85,95]










Table A4. Decision matrix [image: there is no content].







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[80,85]

	
[90,95]

	
[80,90]




	
[image: there is no content]

	
[75,90]

	
[95,100]

	
[75,85]




	
[image: there is no content]

	
[85,95]

	
[90,95]

	
[85,90]




	
[image: there is no content]

	
[85,90]

	
[80,85]

	
[90,100]




	
[image: there is no content]

	
[90,95]

	
[85,90]

	
[75,80]




	
[image: there is no content]

	
[85,90]

	
[90,95]

	
[80,90]










In addition, for simplicity, without loss of generality, we assume that the parameters of the IGOWUMA-HARA operator are respectively: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content].



6.1. Computational Results


Based on the above information and by applying the software of Lingo 11.0 developed by American Lindo systems, we can use the proposed decision-making approach to ranking the order of enterprises. The concrete steps are shown as follows.



Step 1. Suppose that [image: there is no content]. Based on model (19), the optimal weighting vector of attributes with regard to the kth DM [image: there is no content] is obtained as follows:


[image: there is no content]











Step 2. Utilize IGOWUMA-HARA operator [image: there is no content] to aggregate the uncertain variables of the decision matrix [image: there is no content] and get the individual overall preference value [image: there is no content] corresponding to the alternative the alternative [image: there is no content] given by [image: there is no content]:


[image: there is no content]











We further can derive a collective decision matrix [image: there is no content].



Step 3. Apply model (19) to calculate the optimal weighting vector of four DMs:


[image: there is no content]











Step 4. Utilize the collective decision information given by matrix [image: there is no content] and calculate the collective overall preference value [image: there is no content] of the alternative [image: there is no content]:


[image: there is no content]











Step 5. Compare each interval argument [image: there is no content] with all [image: there is no content] by Equation (1) and get the complementary matrix [image: there is no content]:


[image: there is no content]











Step 6. Synthesize all elements in each line of the matrix [image: there is no content] by Equation (3) to get [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



Step 7. Rank the collective overall preference values [image: there is no content] in descending order in the light of the values of [image: there is no content].


[image: there is no content]











Step 8. Rank all the alternatives [image: there is no content] in accordance with the collective overall preference values [image: there is no content]:


[image: there is no content]











Thus, the best investment alterative is fleet management [image: there is no content].




6.2. Sensitive Analysis


Sensitivity analysis is the investigation of some potential changes and errors of rating values and their impact on the final ranking order [32]. In this paper, some sensitivity analyses are conducted to investigate the impact of changing the values of parameters [image: there is no content], [image: there is no content], [image: there is no content] in IGOWUMA-HARA operator on the alternatives’ ranking order.



Based on the parameters given by Section 6.1, Table A5 (See Appendix B) shows the impact of changing the parameters of IGOWUMA-HARA operator on the best investment alternative, including the changing of single parameter (No. 1 to No. 15), two parameters (No. 16 to No. 30), three parameters (No. 31 to No. 35), respectively.



Table A5. The best alternative under the changing of parameters γ, η, β.







	
No.

	
γ

	
η

	
β

	
r(x)

	


[image: there is no content]









	
Ordering




	


[image: there is no content]









	


[image: there is no content]









	


[image: there is no content]









	


[image: there is no content]









	


[image: there is no content]









	


[image: there is no content]









	






	
1

	
0.8

	
1

	
3

	
0.353

	
0.17376

	
0.14469

	
0.18543

	
0.16269

	
0.18560

	
0.14784

	
[image: there is no content]




	
2

	
0.4

	
1

	
3

	
0.857

	
0.17384

	
0.14479

	
0.18579

	
0.16218

	
0.18593

	
0.14747

	
[image: there is no content]




	
3

	
−0.5

	
1

	
3

	
1.500

	
0.17347

	
0.14456

	
0.18640

	
0.16192

	
0.18636

	
0.14728

	
[image: there is no content]




	
4

	
−1.4

	
1

	
3

	
1.846

	
0.17203

	
0.14353

	
0.18726

	
0.16251

	
0.18695

	
0.14772

	
[image: there is no content]




	
5

	
−2

	
1

	
3

	
2.000

	
0.17047

	
0.14234

	
0.18801

	
0.16315

	
0.18782

	
0.14820

	
[image: there is no content]




	
6

	
0.1

	
2.7

	
3

	
0.687

	
0.17391

	
0.14485

	
0.18590

	
0.16198

	
0.18601

	
0.14735

	
[image: there is no content]




	
7

	
0.1

	
1.7

	
3

	
0.891

	
0.17382

	
0.14480

	
0.18600

	
0.16195

	
0.18613

	
0.14730

	
[image: there is no content]




	
8

	
0.1

	
1.2

	
3

	
1.047

	
0.17378

	
0.14476

	
0.18608

	
0.16193

	
0.18616

	
0.14728

	
[image: there is no content]




	
9

	
0.1

	
0.8

	
3

	
1.216

	
0.17371

	
0.14472

	
0.18623

	
0.16188

	
0.18621

	
0.14724

	
[image: there is no content]




	
10

	
0.1

	
0.4

	
3

	
1.452

	
0.17367

	
0.14470

	
0.18630

	
0.16187

	
0.18624

	
0.14722

	
[image: there is no content]




	
11

	
0.1

	
1

	
0.5

	
0.391

	
0.17406

	
0.14496

	
0.18574

	
0.16199

	
0.18584

	
0.14741

	
[image: there is no content]




	
12

	
0.1

	
1

	
1.9

	
0.924

	
0.17385

	
0.14481

	
0.18593

	
0.16197

	
0.18611

	
0.14732

	
[image: there is no content]




	
13

	
0.1

	
1

	
2.5

	
1.047

	
0.17382

	
0.14479

	
0.18597

	
0.16196

	
0.18615

	
0.14731

	
[image: there is no content]




	
14

	
0.1

	
1

	
3.6

	
1.200

	
0.17367

	
0.14470

	
0.186283

	
0.16185

	
0.186278

	
0.14721

	
[image: there is no content]




	
15

	
0.1

	
1

	
5

	
1.324

	
0.17359

	
0.14465

	
0.18645

	
0.16179

	
0.18637

	
0.14716

	
[image: there is no content]




	
16

	
0.9

	
1

	
0.2

	
0.100

	
0.17294

	
0.14420

	
0.18628

	
0.16210

	
0.18706

	
0.14741

	
[image: there is no content]




	
17

	
0.3

	
1

	
1.9

	
0.806

	
0.17356

	
0.14463

	
0.18600

	
0.16183

	
0.18676

	
0.14721

	
[image: there is no content]




	
18

	
−1.9

	
1

	
3.3

	
2.103

	
0.17098

	
0.14269

	
0.18754

	
0.16325

	
0.18726

	
0.14828

	
[image: there is no content]




	
19

	
−0.8

	
1

	
4.1

	
1.917

	
0.17329

	
0.14442

	
0.18646

	
0.16223

	
0.18610

	
0.14750

	
[image: there is no content]




	
20

	
−0.2

	
1

	
4.7

	
1.589

	
0.17381

	
0.14478

	
0.18623

	
0.16200

	
0.18585

	
0.14733

	
[image: there is no content]




	
21

	
0.8

	
3

	
3

	
0.286

	
0.17313

	
0.14432

	
0.18632

	
0.16212

	
0.18670

	
0.14741

	
[image: there is no content]




	
22

	
0.4

	
2.4

	
3

	
0.612

	
0.17362

	
0.14466

	
0.18614

	
0.16195

	
0.18634

	
0.14730

	
[image: there is no content]




	
23

	
0.2

	
1.3

	
3

	
0.945

	
0.17371

	
0.14472

	
0.18610

	
0.16191

	
0.18630

	
0.14726

	
[image: there is no content]




	
24

	
−0.8

	
0.6

	
3

	
2.093

	
0.17323

	
0.14438

	
0.18640

	
0.16218

	
0.18633

	
0.14747

	
[image: there is no content]




	
25

	
−1.7

	
0.3

	
3

	
3.507

	
0.17138

	
0.14301

	
0.18731

	
0.16303

	
0.18718

	
0.14809

	
[image: there is no content]




	
26

	
0.1

	
0.7

	
0.3

	
0.346

	
0.17378

	
0.14481

	
0.18585

	
0.16172

	
0.18663

	
0.14722

	
[image: there is no content]




	
27

	
0.1

	
2.5

	
1.3

	
0.403

	
0.17375

	
0.14478

	
0.18588

	
0.16174

	
0.18665

	
0.14721

	
[image: there is no content]




	
28

	
0.1

	
0.2

	
0.8

	
1.241

	
0.17378

	
0.14476

	
0.18615

	
0.16195

	
0.18670

	
0.14729

	
[image: there is no content]




	
29

	
0.1

	
1.1

	
2.9

	
1.069

	
0.17378

	
0.14477

	
0.18613

	
0.16193

	
0.18611

	
0.14728

	
[image: there is no content]




	
30

	
0.1

	
2.3

	
4.9

	
0.976

	
0.17379

	
0.14477

	
0.18614

	
0.16192

	
0.18605

	
0.14729

	
[image: there is no content]




	
31

	
0.65

	
3.3

	
1.4

	
0.264

	
0.17339

	
0.14451

	
0.18620

	
0.16201

	
0.18653

	
0.14736

	
[image: there is no content]




	
32

	
0.25

	
1.4

	
0.4

	
0.240

	
0.17389

	
0.14487

	
0.18596

	
0.16180

	
0.18617

	
0.14731

	
[image: there is no content]




	
33

	
−0.4

	
1.6

	
4.8

	
1.448

	
0.17368

	
0.14469

	
0.18621

	
0.16200

	
0.18607

	
0.14734

	
[image: there is no content]




	
34

	
−0.9

	
1.9

	
5

	
1.555

	
0.17312

	
0.14431

	
0.18644

	
0.16223

	
0.18638

	
0.14752

	
[image: there is no content]




	
35

	
−1.5

	
0.5

	
3.4

	
2.881

	
0.17194

	
0.14342

	
0.18710

	
0.16282

	
0.18678

	
0.14794

	
[image: there is no content]










From Table A5, we find that the selection of the best alternative will change with the single parameter [image: there is no content] (or [image: there is no content]) decreasing or with the parameter [image: there is no content] increasing to a certain point (See, No. 1 to No. 15). In other words, the changing of single parameter has an influence on the selection of the best alternative.



For example, the best alternative will change from [image: there is no content] to [image: there is no content] when the parameter [image: there is no content] (resp. [image: there is no content]) decreases from 0.9 to 0.1 (resp. from 3 to 1) (See, No. 1 to No. 10), while this change will happen as the parameter [image: there is no content] increases from 0.1 to 3 (See, No. 11 to No. 15). Moreover, the absolute risk aversion coefficient [image: there is no content] will decrease with [image: there is no content] or [image: there is no content] increases, while it will increase with the rise of [image: there is no content] (See, No. 1 to No. 15). This can be explained by the first partial derivative of the absolute risk aversion coefficient. Note that the first partial derivative of [image: there is no content] for HARA utility is [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Then, we can conclude that [image: there is no content] will decrease with the increasing of [image: there is no content] or [image: there is no content], while it will increase with the increasing of [image: there is no content].



In addition, in Table A5, we can see that the changing of two parameters (or three parameters) will also affect the selection of the best alternative. In particular, the best alternative will change with the absolute risk aversion coefficient [image: there is no content] increasing to a certain point, and this changing tendency is also suitable for the single parameter case.



For example, under the condition of single parameter [image: there is no content], the best alternative will change from [image: there is no content] to [image: there is no content] when the absolute risk aversion coefficient [image: there is no content] increases from 0.353 to 1.50 (See, No. 1 to No. 5). For the case of two parameters [image: there is no content] and [image: there is no content], the best alternative will change from [image: there is no content] to [image: there is no content] when [image: there is no content] increases from 0.286 to 2.093 (See, No. 21 to No. 25). Under the changing of three parameters, the best alternative will change from [image: there is no content] to [image: there is no content] when [image: there is no content] increases from 0.264 to 1.448 (See, No. 31 to No. 35).



This situation can be understood by the meaning of [image: there is no content]. Notice that with the absolute risk aversion coefficient increasing, the risk attitude of DM’s involved in the evaluation of decision-making information will become more prudent. In other words, the higher the risk aversion is, the more conservative the DM is. From Table A1, Table A2, Table A3 and Table A4, we find that the alternative [image: there is no content] is better than the alternative [image: there is no content] with respect to the attributes [image: there is no content] and [image: there is no content]. Recall that [image: there is no content] and [image: there is no content] respectively denote the productivity and the management. These two attributes, for the information technology improvement projects in reality, draw more attention than those of [image: there is no content] (productivity) and [image: there is no content] (management). Therefore, from the viewpoint of information technology improvement efficiency, the alternative [image: there is no content] is superior to the alternative [image: there is no content] with the increasing of [image: there is no content].



In addition, Table A5 shows that no matter what the changing of parameter (single parameter, two or three parameters) is, the best alternative is still [image: there is no content] if the value of [image: there is no content] is less than or equal to 0.945, while it will become [image: there is no content] when the value of [image: there is no content] is greater than 0.945. Here, we should note that the point of [image: there is no content] equal to 0.945 is only suitable for this example because the calculation of the best investment alternative involves other factors such as the values of attributes, weights of attributes, the relatively important weight of DMs and the relatively important degree of total deviation.




6.3. Comparative Analysis of the Obtained Results


What needs to be mentioned is that Zhou et al. [15] also adapted the same illustrative example to illustrate the developed UGOWA operator. Therefore, we mainly compare the ranking results got by the DUOWA operator, UGOWA operator and the proposed IGOWUMA-HARA operator.



The comparison results are shown in Table 2. It can be seen that the best alternative is the same, which explains the applicability of the proposed method. However, the rankings are not completely consistent in [10], [15] and this paper. This difference implies that our utility aggregation operator is superior to the DUOWA operator [10] and UGOWA operator [15], which can be explained by the following analysis.



Table 2. The comparison results of the two operators.







	
Operator

	
Score

	
Ranking






	
The DUOWA operator

	
(3.0320,1.9227,3.4656,3.4102,3.5927,2.5769)

	
[image: there is no content]




	
The UGOWA operator

	
(0.1562,0.1317,0.1802,0.1768,0.1814,0.1738)

	
[image: there is no content]




	
The proposed operator

	
(0.1738,0.1448,0.1861,0.1619,0.1862,0.1473)

	
[image: there is no content]










(a) Theoretically, both of the DUOWA operator and UGOWA operator use the mean to eliminate the difference of variable values and lead to the deviation between the variable values and the results of variable aggregation, while the presented aggregation operator in this paper just modifies this limitation.



For instance, the DUOWA operator and UGOWA operator cannot precisely depict the deviation between the interval variable values and the aggregation results of interval variable because when aggregating the interval variables, they directly use the mean to eliminate the difference of data, which leads to the deviation between the aggregation values and the result of aggregation. However, the presented aggregation operator IGOWUMA-HARA can perfectly depict the deviation between the interval variable values and the aggregation results of interval variable via penalty function theory, which can eliminate the difference of data as possible and minimize the deviation between the interval variable values and the results of interval variable aggregation. Hence, it can effectively reduce the loss and distortion of interval information in aggregating process, and correspondingly improve the precision of the decision-making results.



(b) When assessing the alternatives, the DUOWA operator and UGOWA operator just consider the objective interval arguments, and the associated weights only depend on the aggregated interval arguments, but did not provide a uniform weighting vector based on the degree of similarity to compare the alternatives. On the contrary, the proposed aggregation operator sufficiently considers the subjective risk attitude of DMs by using utility function, and based on the developed similarity measure of preference values, the weighting vector of attributes is reached by an optimization model. The weighting vector cannot only guarantee that the alternatives can be contrasted according to the unified standard, but also can insure the theoretical foundations of effectiveness of proposed method.



For example, we see that the ranking result is always [image: there is no content] by using the presented method in [10,15]. However, the ranking result is [image: there is no content] ([image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]) when utilizing the developed method in this paper. This situation can be explained by the fact that the alternative [image: there is no content] is better than the alternative [image: there is no content] with respect to the attributes [image: there is no content] and [image: there is no content] from Table A1, Table A2, Table A3 and Table A4. Recall that [image: there is no content] denote the productivity, which is provided to assess the potential benefits of a proposed project, and ultimately, to increase the effectiveness and efficiency of the firm’s manufacturing and service operations; and [image: there is no content] denote the differentiation factor, which is introduced to assess the potential of a proposed project, in this way, the firm’s products and services can be distinguished from its competitors fundamentally, making itself more desirable to its customers. These two attributes, for the information technology improvement projects in reality, draw more attention than those of [image: there is no content] (productivity) and [image: there is no content] (differentiation). Therefore, from the viewpoint of information technology improvement efficiency, the alternative [image: there is no content] is superior to the alternative [image: there is no content] with the increasing of [image: there is no content].



(c) The presented method is widely used in the real decision-making process, and the decision-making based on utility operator is more in accordance with DMs’ actual decision-making behavior. The results show that (i) the utility values obtained by the proposed method seem more similar to their original attribute values; (ii) the objective is to understand the subjective feelings of DMs by using developed method. However, the traditional method cannot have the above characteristics, e.g., literature [10,15].



Thus, the above comparison shows that DMs can make decision by choosing different values of the parameters [image: there is no content], [image: there is no content], [image: there is no content] with his/her attitude, which is superior to the traditional operators, and that the developed method in this paper is more objective than the method in literature [10,15].





7. Conclusions


In this paper, we develop a new operator called the IGOWUMA operator based on an optimal deviation model, which incorporates the risk attitude of DMs in the aggregation process. We investigate some properties of the IGOWUMA operator and prove that it is commutative, idempotent, monotonicity with respect to the degree of possibility, boundedness with respect to the degree of possibility and monotonicity with respect to the parameter [image: there is no content] for the degree of possibility. These properties are suitable for any utility function. Under the HARA utility function, we proposed an IGOWUMA-HARA operator. We discuss its families and found that it included a wide range of aggregation operators. In order to determine the IGOWUMA-HARA operator’ weights, a preemptive nonlinear objective programming model is constructed, which can determine a uniform weighting vector to guarantee the uniform standard comparison between the alternatives and measure their fair competition under the condition of valid comparison between various alternatives. Moreover, a new approach for IMAGDM is developed based on the IGOWUMA-HARA operator. This approach can also be applied effectively to different group decision-making problems such as engineering management and financial management, etc. At last, we present an application of the new approach for IMAGDM in an example of an investment selection.



The innovative contributions of the paper are three-fold: (i) two interval information aggregation operators named as the IGOWUMA operator and the IGOWUMA-HARA operator are developed based on utility function. The two operators take into account the risk attitude of DMs in the aggregation process since different DMs may have different risk attitudes. In addition, the latter can degenerate into various operators by adjusting parameters; (ii) A preemptive nonlinear objective programming model is proposed to determine the weights of operator. This model can provide a uniform weighting vector to guarantee the uniform standard comparison between the alternatives and reduce the influence of unfair argument on the aggregated results; (iii) A new approach for IMAGDM is developed based on the IGOWUMA-HARA operator and the preemptive nonlinear objective programming model. The decision process based on utility aggregation operator is more in line with the actual decision behavior of DMs. This approach is effectively applicable to different group decision-making problems such as engineering management and financial management, etc.



From the sensitive analysis and comparative analysis, some solid and practical implications can be obtained. Firstly, using the IGOWUMA -HARA operator to IMAGDM, DMs can choose different values of [image: there is no content] to express their risk attributes. The absolute risk aversion coefficient [image: there is no content] of DMs decreases with the increase of the value of [image: there is no content] or [image: there is no content], and increases with the increase of the value [image: there is no content]. In addition, the optimal alternative varies with the risk attitudes of the DMs. Secondly, there is a critical value of the absolute risk aversion coefficient on the optimal alternative. No matter how the parameters change, the optimal scheme will not change as long as the risk aversion coefficient is below or above the critical point. In other word, the magnitude relation between the absolute risk aversion coefficient and the critical value will decide which the optimal alternative is. So it is important to find the critical value through sensitivity analysis, and then the DM can express their preferences on the alternative by adjusting the parameters.



In further research, it would be very interesting to extend our analysis to the case of more sophisticated situation such as introducing the behavior theory of DMs in the IGOWUMA-HARA operator. Nevertheless, we leave that point to future research, since our methodology cannot be applied to that extended framework, which will result in more sophisticated calculation.
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Appendix A


Proof of Property 3

(Boundedness).



Since [image: there is no content] is IGOWUM operator, then:


[image: there is no content]











For simplicity, let:


[image: there is no content]











We then have:


[image: there is no content]











In the following, we will complete the proof with two steps.



Step 1. We first proof [image: there is no content].



From the above results, we derive [image: there is no content] and [image: there is no content]. Then, we can conclude that



(i) If [image: there is no content], then from formula (1), we have:


[image: there is no content]








and:


[image: there is no content]











From [image: there is no content], we find that [image: there is no content], therefore, [image: there is no content].



(ii) If [image: there is no content], then from formula (1), we have:


[image: there is no content]








and:


[image: there is no content]











Note that [image: there is no content], we then have [image: there is no content].



Step 2. Similar to the proof of Step 1, we can conclude that [image: there is no content].



The property is proved.





Proof of Property 4

(Monotonicity with respect to the degree of possibility).



Let:


[image: there is no content]








and:


[image: there is no content]











If [image: there is no content], then we have [image: there is no content] and [image: there is no content]. Since [image: there is no content] is a monotonically increasing function, we can obtain [image: there is no content]. In the following, we will complete the proof in two cases.





Case 1.

If [image: there is no content], then we have [image: there is no content]. Since [image: there is no content] is a monotonically increasing function, we get:


[image: there is no content]











Therefore,


[image: there is no content]













Case 2.

If [image: there is no content], then we have [image: there is no content] and [image: there is no content]. Thus,


[image: there is no content]











Taking the power of [image: there is no content] at both ends of the inequality, we can get:


[image: there is no content]











Since [image: there is no content] is a monotonically increasing function, we obtain:


[image: there is no content]











Therefore,


[image: there is no content]











The property is proved.





Proof of UGOWMA operator:

If [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content], we get that:


[image: there is no content]











The theorem is proved.





Proof of UHUG operator:

Let [image: there is no content] be the UHUM operator, we have:


[image: there is no content]











In the following, we will complete the proof in two cases.





Case 1.

If [image: there is no content], then:


[image: there is no content]











By the L’Hôpital’s rule, we have that:


[image: there is no content]











Similarly, we can get:


[image: there is no content]











Thus,


[image: there is no content]











That is,


[image: there is no content]













Case 2.

If [image: there is no content], then similar to the above proof.



The theorem is proved.





Proof of ULGA operator:

Let [image: there is no content] be the UHUMA operator, we have:


[image: there is no content]













In the following, we will complete the proof in two cases.

Case 1.

If [image: there is no content], then:


[image: there is no content]











By the L’Hôpital’s rule, we have that:


[image: there is no content]











Similarly, we can get:


[image: there is no content]











Thus,
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That is,


[image: there is no content]













Case 2.

If [image: there is no content], then similar to the above proof.







The theorem is proved.
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