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Abstract: In social networking analysis, there exists a fundamental problem called maximal cliques
enumeration(MCE), which has been extensively investigated in many fields, including social
networks, biological science, etc. As a matter of fact, the formation principle of maximal cliques that
can help us to speed up the detection of maximal cliques from social networks is often ignored by
most existing research works. Aiming to exploit the formation of maximal cliques in social networks,
this paper pioneers a creative research issue on the detection of bases of maximal cliques in social
networks. We propose a formal concept analysis-based approach for detecting the bases of maximal
cliques and detection theorem. It is believed that our work can provide a new research solution and
direction for future topological structure analysis in various complex networking systems.
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1. Introduction

1.1. Background

Recent years witnessed the booming development of graph data modeling and its widely used
applications. In practice, many applications can be represented with graph data modeling, such as
social networks, web networks, and protein interactive networks. Therefore, analyzing and mining the
useful knowledge from graphs is significantly meaningful. In particular, maximal cliques enumeration
(MCE) is an important research issue in graphs. In graphs, a clique refers to a complete sub-graph
where any two vertices are connected to each other. Meanwhile, a maximal clique is a clique such
that there is no clique with more vertices. At present, the detection of maximal cliques or MCE is
mainly to identify all maximal cliques because these cliques or maximal cliques contain more valued
knowledge and information. Thus, MCE is widely used in community detection, topological analysis
of web networks, and so forth.

1.2. Related Work

MCE is a fundamental problem in graph theory, and has been extensively investigated by many
researchers [1,2]. They mainly focus on devising an approximate algorithm (since MCE is an NP-hard
problem) for extracting all maximal cliques. The existence of an algorithm for addressing MCE is
categorized as: (1) sequential in-memory algorithms [3,4]; (2) sequential I/O efficient algorithms [5,6]
which concentrate on reducing the high cost of random disk I/Os for processing graphs that cannot fit
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in main memory [2]; (3) aiming to reduce the running time—the third type approach is parallel, and
distributed algorithms [7,8] are proposed. However, these existing studies usually ignore the formation
principle of maximal cliques. As a matter of fact, the formation principle of maximal cliques is a kind
of useful information for better MCE process. That is to say, if we can obtain the partial topological
structures which can further form the maximal clique, then this issue can be addressed efficiently.

Formally, problems in graph theory have also been analyzed by formal concept analysis; for
example, K-clique of dynamic social networks are mined from formal concept lattice [9,10]. From
the formal concept analysis point of view, if a graph is converted into a formal context, then notions
of formal concept analysis can be used to express problems in graph theory, if fact, social networks
graphs are converted into a special formal context K = (U, A, I) [9,10], in which U = A = V are
vertices of the graphs and I means the edges between two vertices; accordingly, the K-cliques problem
of the social networks is expressed by K-formal concepts of the special formal context K = (U, A, I).
Theoretically, many interesting notions and mining methods have been proposed in formal concept
analysis, such as frequent itemsets, closed frequent itemsets, maximal frequent itemsets, expressive
generalized itemsets, and disjunctive closed itemsets [11–14]. A priori-inspired algorithms and frequent
pattern-growth-inspired algorithms [15–22] have been provided to fast mine many kinds of itemsets.
In [23], Pei et al. proposed a method based on a topology for attributes of a formal context to generate
the formal concept lattice, and the topology for attributes was induced by a reflexive and transitive
relation on the set of attributes; by defining an equivalent relation on the topology for attributes, it has
been proved that the formal concept lattice and the quotient topology for attributes decided by the
equivalent relation is isomorphic.

1.3. Contributions

Motivated by our earlier works [9,10,23], this paper pioneers the study of the bases of maximal
cliques in social networks. We firstly present the concept of base of maximal clique, then we point out
that the maximal clique can be formed based on the detected bases. Therefore, the main contributions
of this work are twofold: (1) formalize an interesting problem about the detection of bases of maximal
cliques in social networks; (2) exploit the formation procedure of maximal cliques and then present an
efficient approach for obtaining the bases of maximal cliques.

1.4. Paper Organization

The remainder of this paper is structured as follows. Section 2 provides the problem statement.
Then, a formal concept analysis-based detection approach for the bases of maximal clique in social
networks is presented in Section 3. A case study is conducted in Section 4. Finally, Section 5 concludes
this paper.

2. Problem Statement

To study the problem of the detection of bases of maximal cliques in social networks, the graph
model and basic concept of maximal cliques are firstly presented, and the problem statement is
then formalized.

2.1. Graph Model and Maximal Clique

This work focuses on undirected graph and managing the maximal cliques on it; hence, graph
model is here defined with an undirected graph model G = (V, E), where V is the set of vertices and E
is the set of edges of G. Particularly, a set of vertices C ⊆ V is a clique if each vertex in C are connected
each other. If there is no any other set of vertices C

′ ⊃ C such that C
′

is a clique in G, then C is a
maximal clique.
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2.2. Problem Descriptions

According to our previous work [9], we know that the k-clique community can be formed with
skeleton sub-graphs. Similarly, finding the bases of maximal cliques could help us to detect maximal
cliques quickly. Note that the base of maximal clique refers to the common sub-graph (can be line, or
other sub-graph) among maximal cliques.

Problem 1. Problem Definition: Given a social network G = (V, E), this paper proposes a novel topic and the
corresponding approach for finding the bases of maximal cliques from G, denoted as B (maximal_clique(G)).

To better understand the above problem statement, an illustrative example is shown as follows.
Figure 1a shows an input of the problem (i.e., social network G, composed of seven vertices). We

can easily get the maximal cliques {2, 3, 5}, {2, 5, 6}, {4, 7}, {1} from G using the existing algorithm.
However, we found that the common edges {2, 5} between maximal cliques 2,3,5and2,5,6 as shown in
Figure 1b. Actually, the edge {2, 5} is a base of maximal cliques {2, 3, 5} and {2, 5, 6}, since they can be
formed by simply adding vertex 3 or 6.
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Figure 1. An illustrative example on bases of maximal cliques. (a) Social Network G; (b) Base of
Maximal Cliques.

3. Detecting Bases of Maximal Cliques Based on Formal Concept Analysis

To address the above problem, this section is devoted to presenting our proposed approach for
detecting the bases of maximal cliques by using formal concept analysis. In Section 3.1, we firstly
analyze the reason for bases of maximal clique for interpreting how maximal cliques can be formed
via their bases. Then, a new formal context and its concept lattice are generated by aggregating
the attributes which have common objects. Finally, we extract the extents from the maximal cliques
associated concepts and from the new formal concept lattice and then make the intersection. After
that, topological structure analysis of a social graph is formally provided in Section 3.2. Based on the
proposed detection approach and the corresponding topological structure analysis, a newly proposed
detection theorem is presented in Section 3.3.

3.1. Detection Approach

Suppose G is a social network, denoted as G = (V, E). We firstly construct the formal context
K = (V, V, I) using the approach presented in [9]. Obviously, K = (V, V, I) is a special formal context;
i.e., its objects and attributes are the same as vertices of the graph G = (V, E), and I is decided by edge
if it exists between two vertices. Due to the speciality of K = (V, V, I), we can granulate vertices when
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they are as attributes; the granulation of vertices is achieved by an equivalence relation R on V which
is induced by I; i.e., the granulation of vertices is formalized as follows: For any i ∈ V, we have

i↑ = {j ∈ V|(i, j) ∈ I}, j↓ = {i ∈ V|(i, j) ∈ I}, (1)

where (i, j) ∈ I means there exists an edge between vertices i and j. Based on Equation (1), the
equivalence relation R on V is induced by

∀j1, j2 ∈ V, j1Rj2 if and only if j↓1 = j↓2 , (2)

it is easily proved that R on V is symmetrical, reflexive and transitive; i.e., R on V decided by
Equation (2) is an equivalence relation, and R can be used to granulate vertices as for any j ∈ V,

[j]R = {j′ ∈ V|jRj′}, (3)

Let VR = {[j]R|j ∈ V}; this makes us obtain a new formal context from K = (V, V, I). That is,
K
′
= (V, VR, IR), where IR = {(i, [j]R) ∈ V × VR|∃j′ ∈ [j]R, (i, j′) ∈ I}, it is obvious that K

′
has the

same objects with but the different attributes from the original formal context K = (V, V, I). For
example, in Figure 1a, as our the input is the social network G, then the converted formal context and
its induced formal context are constructed as shown in Table 1 and Table 2.

Table 1. The formal context of G, K.

V \ V 1 2 3 4 5 6 7

1 X
2 X X X X
3 X X X
4 X X
5 X X X X
6 X X X
7 X X

Table 2. The induced formal context of G, K
′
.

V \ V 1 [2, 5] 3 [4, 7] 6

1 X
2 X X X
3 X X
4 X
5 X X X
6 X X
7 X

The corresponding concept lattices are generated by the existing concept lattice generation
algorithm. The relationship between the concept lattices of the original formal context K (i.e., C(K))
and induced formal context K

′
(i.e, C(K

′
)) is shown in Figure 2. According to the findings about the

equivalence between equiconcept and clique [9,10], it is clear that the maximal cliques in G include
{2, 3, 5}, {2, 5, 6}, {4, 7}, {1}. Interestingly, these maximal cliques are aggregated then represented as
the relevant concepts in Figure 2. For example, the common attribute of maximal cliques {2, 3, 5} and
{2, 5, 6} is {2, 5}; that is to say, {2, 5} is the formation base for maximal cliques {2, 3, 5} and {2, 5, 6}.
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Figure 2. The relationship between C(K) and C(K
′
).

3.2. Topological Structure Analysis of a Social Graph

Based on the reflexive and transitive relation R on V of a social graph G = (V, E), this section
focuses on constructing a topological space of vertices set V. Formally, a reflexive and transitive relation
on a set can be used to induce covering approximation space [24–26]. In our previous work [23], the
reflexive and transitive relation on a set has been used to construct an approximation space and a
topology for attributes of a formal context, respectively, and a base for the topology can be adopted
to generate intensions of all formal concepts of the formal context and construct the formal concept
lattice. Inspired by our previous work, a topological space of vertices set V is constructed by using
the reflexive and transitive relation R that are used to represent relationships and the hierarchical
structures of a social graph G = (V, E), and provide several interesting results to show topological
analysis of a social graph.

Property 1. In the formal context K = (V, V, I) of an undirected graph G = (V, E), for any vi ∈ V, S↑(vi)

is a |S↑(vi)|-clique in G = (V, E).

Definition 1. In the formal context K = (V, V, I) of a social graph G = (V, E), for any subgraph V1 ⊆ V,
lower vertices approximations of V1 is

R(V1) = {i ∈ V|R(i, ∗) ⊆ V1}. (4)

According to R(i, ∗) = {j ∈ V|R(i, j) = 1} = S↑(i), R(V1) can also be rewritten by

R(V1) = {i ∈ V|R(i, ∗) ⊆ V1}
= {i ∈ V|S↑(i) ⊆ V1}
=

⋃
S↑(i)⊆V1

S↑(i). (5)

Theorem 1. [23] For any formal context FC(G) = (V, V, I) of undirected graph G = (V, E),

1. TR = {R(V1)|∀V1 ⊆ V} is a topology for V, and (V, TR) is a topological space for V;
2. BR = {S↑(vi)|i ∈ V} is a base for the topology TR.



Symmetry 2017, 7, 100 6 of 9

Theorem 1 means that any social graph G = (V, E) can be represented by its topology
TR = {R(V1)|∀V1 ⊆ V}, which is induced by the binary relation R decided by Equation (2); it is
more important that the topology TR = {R(V1)|∀V1 ⊆ V} for V can be generated by the base
BR = {S↑(i)|i ∈ V}, which is obtained from every vertex of V according to Equation (1).

Corollary 1. [27] For any i, j ∈ V, if j ∈ S↑(i) and i ∈ S↑(j), then S↑(i) = S↑(j).

Because S↑(j) is a |S↑(i)|-clique in G = (V, E) by Property 1, Corollary 1 means that i and j
generate the same k-clique in G = (V, E); i.e.,

Corollary 2. [27] If i and j are in a k-clique in G = (V, E), then S↑(i) = S↑(j) and they are the k-clique in
G = (V, E).

According to Theorem 1 and Corollary 2, we have the following corollary.

Corollary 3. [27] Any social network G = (V, E) can be generated by its all k-clique in G = (V, E), where
1 ≤ k ≤ |V|.

3.3. Detection Theorem

Therefore, the following detection theorem is derived with the above detection approach.

Theorem 2. Given a social network G = (V, E), the formal context of G is K, the concept lattice of K is denoted
as C(K), the bases of maximal cliques B(maximal_clique(G)) can be obtained from maximal cliques associated
formal concepts in concept lattice C(K

′
), where K

′
is an induced formal context from K based on equivalence

relation R over attributes.

3.4. Practical Applicability

Based on the above detection theorem, our work can bring more opportunities for: (1) future
topological structure analysis in various complex networking systems; (2) finding the trust/sentiment
dominators by identifying the base of maximal cliques since the dominators are playing the skeleton
role in trust/sentiment management and propagation in social networks [28–31] as well as the large
data clustering in Internet of Things [32]; (3) providing a new solution for recommender systems
incorporating the maximal cliques. We may detect the maximal cliques by virtue of base of it, then
adopt the conventional approaches, such as collaborative filtering or matrix factorization for items
recommendation [33]; (4) in addition, our work is also beneficial to the protein complex identification
from protein–protein interaction networks [34].

4. Case Study

This section manages a case study on a real-life scientist collaboration network. Aiming to validate
the feasibility and performance of the proposed approach, the largest maximal cliques (i.e, the maximal
cliques including the largest number of vertices) will be detected based on our approach.

4.1. Dataset

The dataset of the case study is a network of collaborations between scientists working on
“Networks” [35]. The statistics of this dataset are as follows: this collaboration social network contains
1589 scientists (vertices in the graph), and 2742 collaborations (edges in the graph).

4.2. Results

To detect the largest maximal cliques from the above network, we firstly find the base of the
largest maximal cliques and exploit their formation principle. The experiments detect only one largest
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maximal clique formed by 20 scientists from the testing dataset. Importantly, the bases of these
maximal clique {Hilgetag.C, Burns.G, Oneill.M, Young.M}, {Kashtan.N, Milo.R, Alon.U, Itzkovitz.S},
{Pastorsatorras.R, Vespignani.A, Moreno.Y, Vazquez.A} are identified as well.

In other words, the largest maximal clique can be gradually formed based on the base of it. This
evolution phenomenon is quite important and promising for later complex topological structures
mining and analysis. For example, for a company who wants to promote their new product, we may
suggest this company plant their ads and provide the incentives to the base of the maximal cliques (i.e,
targeted seed customers). From the application point of view, the achievements of this research can be
applicable to various social networking services, like social marketing, social advertising, and social
recommendation.

5. Conclusions

Aiming to exploit the formation of maximal cliques in social networks, this paper formalizes a
novel problem on detection of bases of maximal cliques from social networks. In order to address this
problem, this paper proposed a formal concept analysis-based approach for detecting the bases of
maximal cliques in social networks. We mathematically present a detection theorem according to our
proposed approach. Hence, this detection theorem is ubiquitous and can be applied to various complex
networks. The proposed detection approach reveals the formation principle of maximal cliques by
investigating the relationship between original concept lattice and aggregated concept lattice. We
believe that this work can pave the way for future topological structure analysis of social networks
and other complex networking systems.

Acknowledgments: This research was supported by the National Research Foundation of Korea
(No. NRF-2017R1A2B1008421) and the MSIP(Ministry of Science, ICT and Future Planning), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2017-2014-0-00720) supervised by
the IITP (Institute for Information & communications Technology Promotion) and was also supported by the
Fundamental Research Funds for the Central Universities (GK201703059). Z. Pei’s work was partially supported
by National Nature Science Foundation of China (Grant No. 61372187).

Author Contributions: Fei Hao proposed the topic and initial idea, performed the case study and wrote the paper;
Doo-Soon Park improved the idea and presentation of the paper; Zheng Pei extended and improved the Section 1
and also wrote the Section 3.2.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Conte, A.; De Virgilio, R.; Maccioni, A.; Patrignani, M.; Torlone, R. Finding All Maximal Cliques in Very
Large Social Networks. In Proceedings of the Extending Database Technology (EDBT), Bordeaux, France,
15–18 March, 2016; pp. 173–184, doi:10.5441/002/edbt.2016.18.

2. Xu, Y.; Cheng, J.; Fu, A.W.C. Distributed Maximal Clique Computation and Management. IEEE Trans.
Serv. Comput. 2016, 9, 110–122.

3. Modani, N.; Dey, K. Large Maximal Cliques Enumeration in Large Sparse Graphs. In Proceedings of the 17th
ACM conference on Information and knowledge management, Napa Valley, CA, USA, 26–30 October 2008;
pp. 1377–1378.

4. Eppstein, D.; Loffler, M.; Strash, D. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time.
In Proceedings of the 21st International Symposium on Algorithms and Computation, Jeju Island, Korea,
15–17 December 2010; pp. 403–414.

5. Cheng, J.; Zhu, L.; Ke, Y.; Chu, S. Fast Algorithms for Maximal Clique Enumeration with Limited Memory.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Beijing, China, 12–16 August 2012; pp. 1240–1248.

6. Goodrich, M.T.; Pszona, P. External-Memory Network Analysis Algorithms for Naturally Sparse Graphs.
In Proceedings of the 19th Europe Conference on Algorithms, Saarbrücken, Germany, 5–9 September 2011;
pp. 664–676.



Symmetry 2017, 7, 100 8 of 9

7. Du, N.; Wu, B.; Xu, L.; Wang, B.; Xin, P. Parallel Algorithm for Enumerating Maximal Cliques in Complex
Network. In Mining Complex Data; Springer: Berlin/Heidelberg, Germany, 2009; pp. 207–221.

8. Schmidt, M.C.; Samatova, N.F.; Thomas, K.; Park, B.H. A scalable, parallel algorithm for maximal clique
enumeration. J. Parallel Distrib. Comput. 2009, 69, 417–428.

9. Hao, F.; Min, G.; Pei, Z.; Park, D.S.; Yang, L.T. K-clique Communities Detection in Social Networks based on
Formal Concept Analysis. IEEE Syst. J. 2017, 11, 250–259.

10. Hao, F.; Park, D.S.; Min, G.; Jeong, Y.S.; Park, J.H. K-clique Mining in Dynamic Social Networks based on
Triadic Formal Concept Analysis. Neurocomputing 2016, 209, 57–66.

11. Baralis, E.; Cagliero, L.; Cerquitelli, T.; D’Elia, V.; Garza, P. Expressive generalized itemsets. Inform. Sci. 2014,
278, 327–343.

12. Cagliero, L.; Cerquitelli, T.; Garza, P.; Grimaudo, L. Misleading generalized itemset discovery.
Expert Syst. Appl. 2014, 41, 1400–1410.

13. Calders, T.; Dexters, N.; Gillis, J.J.M.; Goethals, B. Mining frequent itemsets in a stream. Inform. Syst. 2014,
39, 233–255.

14. Hamrouni, T.; Ben Yahia, S.; Mephu Nguifo, E. Sweeping the disjunctive search space towards mining new
exact concise representations of frequent itemsets. Data Knowledge Eng. 2009, 68, 1091–1111.

15. Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases.
In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington,
DC, USA, 25–28 May 1993; pp. 207–216.

16. Han, J.; Cheng, H.; Xin, D.; Yan, X. Frequent pattern mining: Current status and future directions. Data Min.
Knowl. Discov. 2007, 15, 55–86.

17. Gharib, T.F. An efficient algorithm for mining frequent maximal and closed itemsets. Int. J. Hybrid Intell. Syst.
2009, 6, 147–153.

18. Grahne, G.; Zhu, J.F. Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEE Trans. Knowl.
Data Eng. 2005, 17, 1347–1362.

19. Zaki, M.J.; Hsiao, C.J. Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans.
Knowl. Data Eng. 2005, 17, 462–478.

20. Vo, B.; Hong, T.P.; Le, B. A lattice-based approach for mining most generalization association rules.
Knowl.-Based Syst. 2013, 45, 20–30.

21. Vo, B.; Coenen, F.; Le, B. A new method for mining Frequent Weighted Itemsets based on WIT-trees.
Expert Syst. Appl. 2013, 40, 1256–1264.

22. Tseng, V.S.; Shie, B.E.; Wu, C.W.; Yu, P.S. Efficient Algorithms for Mining High Utility Itemsets from
Transactional Databases. IEEE Trans. Knowl. Data Eng. 2013, 25, 1772–1777.

23. Pei, Z.; Ruan, D.; Meng, D.; Liu, Z. Formal concept analysis based on the topology for attributes of a formal
context. Inform. Sci. 2013, 236, 66–82.

24. Syau, Y.-R.; Lin, E.-B. Neighborhood systems and covering approximation spaces. Knowl.-Based Syst. 2014,
66, 61–67.

25. Qin, K.; Gao, Y.; Pei, Z. On covering rough sets. In Rough Sets and Knowledge Technology, Lecture Notes in
Artificial Intelligence; Yao, J.T., Lingras, P., Wu, W.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007;
Volume 4481, pp. 34–41.

26. Zhu, W. Relationship between generalized rough sets based on binary relation and covering. Inform. Sci.
2009, 179, 210–225.

27. Hao, F.; Pei, Z.; Park, D.S.; Yang, L.T.; Jeong, Y.S.; Park, J.H. Iceberg Clique Queries in Large Graphs.
Neurocomputing 2017, 256, 101–110.

28. Meo, P.D.; Musial-Gabrys, K.; Rosaci, D.; Sarne, G.M.; Aroyo, L. Using Centrality Measures to Predict
Helpfulness-Based Reputation in Trust Networks. ACM Trans. Int. Technol. 2017, 17, 8:1–8:20.

29. Golbeck, J.; Parsia, B.; Hendler, J. Trust networks on the semantic web. In Cooperative Information Agents VII;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 238–249.

30. Jamali, M.; Abolhassani, H. Different aspects of social network analysis. In Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006), Hong Kong, China, 18–22
December 2006; pp. 66–72.



Symmetry 2017, 7, 100 9 of 9

31. Ghosh, A.; Mahdian, M.; Reeves, D.M.; Pennock, D.M.; Fugger, R. Mechanism Design on Trust Networks.
In Proceedings of the 3rd International Workshop on Web and Internet Economics, San Diego, CA, USA,
12–14 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 257–268.

32. Zhang, Q.; Zhu, C.; Yang, L.T.; Chen, Zhi.; Zhao, L.; Li, P. An Incremental CFS Algorithm for Clustering
Large Data in Industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2017, 13, 1193–1201.

33. Zhou, Z.; He, Y. Collaborative Filtering Recommendation Algorithm Based on Users of Maximum Similar
Clique. In Proceedings of the 2013 International Conference on Information Science and Cloud Computing
Companion, Guangzhou, China, 7–8 December 2013; pp. 852–857.

34. He, T.; Chan, K.C.C. Evolutionary Graph Clustering for Protein Complex Identification. IEE/ACM Trans.
Comput. Biol. Bioinform. 2016, PP, 1, doi:10.1109/TCBB.2016.2642107

35. The dataset of collaborations between scientists. Available online: http://www-personal.umich.edu/~mejn/
netdata/ (accessed on 17 June 2017).

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Related Work
	Contributions
	Paper Organization

	Problem Statement
	Graph Model and Maximal Clique
	Problem Descriptions

	Detecting Bases of Maximal Cliques Based on Formal Concept Analysis
	Detection Approach
	Topological Structure Analysis of a Social Graph
	Detection Theorem
	Practical Applicability

	Case Study
	Dataset
	Results

	Conclusions

