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Abstract: The Dombi operations of T-norm and T-conorm introduced by Dombi can have the 
advantage of good flexibility with the operational parameter. In existing studies, however, the 
Dombi operations have so far not yet been used for neutrosophic sets. To propose new aggregation 
operators for neutrosophic sets by the extension of the Dombi operations, this paper firstly 
presents the Dombi operations of single-valued neutrosophic numbers (SVNNs) based on the 
operations of the Dombi T-norm and T-conorm, and then proposes the single-valued neutrosophic 
Dombi weighted arithmetic average (SVNDWAA) operator and the single-valued neutrosophic 
Dombi weighted geometric average (SVNDWGA) operator to deal with the aggregation of SVNNs 
and investigates their properties. Because the SVNDWAA and SVNDWGA operators have the 
advantage of good flexibility with the operational parameter, we develop a multiple attribute 
decision-making (MADM) method based on the SVNWAA or SVNWGA operator under a SVNN 
environment. Finally, an illustrative example about the selection problem of investment 
alternatives is given to demonstrate the application and feasibility of the developed approach. 

Keywords: single-valued neutrosophic number; Dombi operation; single-valued neutrosophic 
Dombi weighted arithmetic average (SVNDWAA) operator; single-valued neutrosophic Dombi 
weighted geometric average (SVNDWGA) operator; multiple attribute decision-making 

 

1. Introduction 

In 1965, Zadeh [1] introduced a membership function between 0 and 1 instead of traditional 
crisp value of 0 and 1 and defined the fuzzy set (FS). Fuzzy theory is an important and interesting 
research topic in decision-making theory and science. However, FS is characterized only by its 
membership function between 0 and 1, but not a non-membership function. To overcome the 
insufficient of FS, Atanassov [2] introduced the concept of an intuitionistic fuzzy set (IFS), which is 
characterized by its membership function and non-membership function between 0 and 1. As a 
further generalization of an IFS, Atanassov and Gargov [3] further introduced the concept of an 
interval-valued intuitionistic fuzzy set (IVIFS), which is characterized by its interval membership 
function and interval non-membership function in the unit interval [0, 1]. Because IFSs and IVIFSs 
cannot represent indeterminate and inconsistent information, Smarandache [4] introduced a 
neutrosophic set (NS) from a philosophical point of view to express indeterminate and inconsistent 
information. In a NS A, its truth, falsity, and indeterminacy membership functions TA(x), IA(x) and 
FA(x) are represented independently, which lie in real standard or nonstandard subsets of ]−0, 1+[, i.e., 
TA(x): X → ]−0, 1+[, IA(x): X → ]−0, 1+[, and FA(x): X → ]−0, 1+[. Thus, the nonstandard interval ]−0, 1+[ 
may result in the difficulty of actual applications. Based on the real standard interval [0, 1], therefore, 



Symmetry 2017, 9, 82  2 of 12 

 

the concepts of a single-valued neutrosophic set (SVNS) [5] and an interval neutrosophic set (INS) [6] 
was presented as subclasses of NS to be easily used for actual applications, and then Ye [7] 
introduced a simplified neutrosophic set (SNS), including the concepts of SVNS and INS, which are 
the extension of IFS and IVIFS. Obviously, SNS is a subclass of NS, while SVNS and INS are 
subclasses of SNS. As mentioned in the literature [4–7], NS is the generalization of FS, IFS, and IVIFS. 
Thereby, Figure 1 shows the flow chart extended from FS to NS (SNS, SVNS, INS).  

 
Figure 1. Flow chart extended from fuzzy set (FS) to neutrosophic set (NS) (simplified neutrosophic 
set (SNS), single-valued neutrosophic set (SVNS), interval neutrosophic set (INS)). IFS: intuitionistic 
fuzzy set; IVIFS: interval-valued intuitionistic fuzzy set. 

On the other hand, some researchers also introduced other fuzzy extensions, such as fuzzy soft 
sets, hesitant FSs, and hesitant fuzzy soft sets (see [8,9] for detail). 

However, SNS (SVNS and INS) is very suitable for the expression of incomplete, indeterminate, 
and inconsistent information in actual applications. Recently, SNSs (INSs, and SVNSs) have been 
widely applied in many areas [10–28], such as decision-making, image processing, medical 
diagnosis, fault diagnosis, and clustering analysis. Especially, many researchers [7,29–36] have 
developed various aggregation operators, like simplified neutrosophic weighted aggregation 
operators, simplified neutrosophic prioritized aggregation operators, single-valued neutrosophic 
normalized weighted Bonferroni mean operators, generalized neutrosophic Hamacher aggregation 
operators, generalized weighted aggregation operators, interval neutrosophic prioritized ordered 
weighted average operators, interval neutrosophic Choquet integral operators, interval 
neutrosophic exponential weighted aggregation operators, and so on, and applied them to 
decision-making problems with SNS/SVNS/INS information. Obviously, the aggregation operators 
give us powerful tools to deal with the aggregation of simplified (single-valued and interval) 
neutrosophic information in the decision making process. 

In 1982, Dombi [37] developed the operations of the Dombi T-norm and T-conorm, which show 
the advantage of good flexibility with the operational parameter. Hence, Liu et al. [38] extended the 
Dombi operations to IFSs and proposed some intuitionistic fuzzy Dombi Bonferroni mean 
operators and applied them to multiple attribute group decision-making (MAGDM) problems with 
intuitionistic fuzzy information. From the existing studies, we can see that the Dombi operations are 
not extended to neutrosophic sets so far. To develop new aggregation operators for NSs based on 
the extension of the Dombi operations, the main purposes of this study are (1) to present some 
Dombi operations of single-valued neutrosophic numbers (SVNNs) (basic elements in SVNS), (2) to 
propose a single-valued neutrosophic Dombi weighted arithmetic average (SVNDWAA) operator 
and a single-valued neutrosophic Dombi weighted geometric average (SVNDWGA) operator for the 
aggregation of SVNN information and to investigate their properties, and (3) to develop a 
decision-making approach based on the SVNDWAA and SVNDWGA operators for solving 
multiple attribute decision-making (MADM) problems with SVNN information.  

The rest of the paper is organized as follows. Section 2 briefly describes some concepts of SVNSs 
to be used for the study. Section 3 presents some new Dombi operations of SVNNs. In Section 4, we 
propose the SVNDWAA and SVNDWGA operators and investigate their properties. Section 5 
develops a MADM approach based on the SVNDWAA and SVNDWGA operators. An illustrative 
example is presented in Section 6. Section 7 gives conclusions and future research directions. 

FS IFS IVIFS SNS NS

INS 

SVNS 
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2. Some Concepts of SVNSs 

As the extension of IFSs, Wang et al. [5] introduced the definition of a SVNS as a subclass of NS 
proposed by Smarandache [4] to easily apply in real scientific and engineering areas. 

Definition 1. [5] Let X be a universal set. A SVNS N in X is described by a truth-membership function tN(x), 
an indeterminacy-membership function uN(x), and a falsity-membership function vN(x). Then, a SVNS N can 
be denoted as the following form: 

{ }, ( ), ( ), ( ) |N N NN x t x u x v x x X= ∈ ,  

where the functions tN(x), uN(x), vN(x) ∈  [0, 1] satisfy the condition 0 ≤ tN(x) + uN(x) + vN(x) ≤ 3 for x ∈  X. 
For convenient expression, a basic element <x, tN(x), uN(x), vN(x)> in N is denoted by s = <t, u, v>, which 

is called a SVNN. 
For any SVNN s = <t, u, v>, its score and accuracy functions [29] can be introduced, respectively, as 

follows: 

( ) (2 ) / 3, ( ) [0,1]E s t u v E s= + − − ∈ , (1) 

( ) , ( ) [ 1,1]H s t v H s= − ∈ − . (2) 

According to the two functions E(s) and H(s), the comparison and ranking of two SVNNs are introduced 
by the following definition [29]. 

Definition 2. [29] Let s1 = <t1, u1, v1> and s2 = <t2, u2, v2> be two SVNNs. Then the ranking method for s1 and 
s2 is defined as follows: 

(1) If E(s1) > E(s2), then s1   s2, 
(2) If E(s1) = E(s2) and H(s1) > H(s2), then s1   s2, 
(3) If E(s1) = E(s2) and H(s1) = H(s2), then s1 = s2. 

3. Some Single-Valued Neutrosophic Dombi Operations 

Definition 3. [37]. Let p and q be any two real numbers. Then, the Dombi T-norm and T-conorm between p 
and q are defined as follows: 

1/
1( , )

1 11

DO p q
p q

p q

ρρ ρ
=

    − − + +    
     

, 
(3) 

1/
1( , ) 1

1
1 1

c
DO p q

p q
p q

ρρ ρ
= −

     + +    − −     

, 
(4) 

where ρ ≥ 1 and (p, q) ∈  [0, 1] × [0, 1]. 

According to the Dombi T-norm and T-conorm, we define the Dombi operations of SVNNs. 

Definition 4. Let s1 = <t1, u1, v1> and s2 = <t2, u2, v2> be two SVNNs, ρ ≥ 1, and λ > 0. Then, the Dombi T-norm 
and T-conorm operations of SVNNs are defined below: 
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1 2 1/ 1/ 1/

1 2 1 2 1 2

1 2 1 2 1 2

1 1 1(1) 1 , ,
1 1 1 11 1 1

1 1

s s
t t u u v v

t t u u v v

ρ ρ ρρ ρ ρ ρ ρ ρ
⊕ = −

                − − − −     + + + + + +                − −                     

; 

1 2 1/ 1/ 1/

1 2 1 2 1 2

1 2 1 2 1 2

1 1 1(2) ,1 ,1
1 11 1 1

1 1 1 1

s s
t t u u v v

t t u u v v

⊗ = − −
                − −     + + + + + +                − − − −                     

ρ ρ ρρ ρ ρ ρ ρ ρ

; 

1 1/ 1/ 1/

1 1 1

1 1 1

1 1 1(3) 1 , ,
1 11 1 1

1

s
t u v

t u v

ρ ρ ρρ ρ ρ
λ

λ λ λ

= −
          − −     + + +          −               

; 

1 1/ 1/ 1/

1 1 1

1 1 1

1 1 1(4) ,1 ,1
11 1 1

1 1

s
t u v

t u v

λ
ρ ρ ρρ ρ ρ

λ λ λ

= − −
          −     + + +          − −               

. 

4. Dombi Weighted Aggregation Operators of SVNNs 

Based on the Dombi operations of SVNNs in Definition 4, we propose the two Dombi weighted 
aggregation operators: the SVNDWAA and SVNDWGA operators, and then investigate their 
properties. 

Definition 5. Let sj = <tj, uj, vj> (j = 1, 2, …, n) be a collection of SVNNs and w = (w1, w2, …, wn) be the weight 

vector for sj with wj ∈  [0, 1] and 
1

1n
jj

w
=

= . Then, the SVNDWAA and SVNDWGA operators are 

defined, respectively, as follows: 

1 2 1
( , ,..., )

n

n j jj
SVNDWAA s s s w s

=
= ⊕ , (5) 

1 2 1
( , ,..., ) j

n w
n jj

SVNDWGA s s s s
=

= ⊗ . (6) 

Theorem 1. Let sj = <tj, uj, vj> (j = 1, 2, …, n) be a collection of SVNNs and w = (w1, w2, …, wn) be the weight 

vector for sj with wj ∈  [0, 1] and 
1

1n
jj

w
=

= . Then, the aggregated value of the SVNDWAA operator is 

still a SVNN, which is calculated by the following formula: 
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1 2 1/ 1/ 1/

1 1 1

1 1 1( , ,..., ) 1 , ,
1 1

1 1 1
1

n
n n n

j j j
j j j

j j jj j j

SVNDWAA s s s
t u v

w w w
t u v

ρ ρ ρρ ρ ρ

= = =

= −
          − −     + + +               −               
  

, 
(7) 

By the mathematical induction, we can prove Theorem 1. 

Proof. If n = 2, based on the Dombi operations of SVNNs in Definition 4 we can obtain the following 

result: 

1 2 1 2

1/ 1/ 1/

1 2 1 2 1 2
1 2 1 2 1 2

1 2 1 2 1 2

2

1

( , )

1 1 11 , ,
1 1 1 11 1 1

1 1

11

1
1

j
j

j j

SVNDWAA s s s s

t t u u v vw w w w w w
t t u u v v

t
w

t

ρ ρ ρρ ρ ρ ρ ρ ρ

ρ

=

= ⊕

= −
                − − − −     + + + + + +                − −                     

= −
  +    −  


1/ 1/ 1/
2 2

1 1

1 1, , .
1 1

1 1j j
j j

j jj j

u v
w w

u v

ρ ρ ρρ ρ

= =

      − −    + +                     
 

 

 

If n = k, based on Equation (7), we have the following equation: 

1 2 1/ 1/ 1/

1 1 1

1 1 1( , ,..., ) 1 , ,
1 1

1 1 1
1

k
k k k

j j j
j j j

j j jj j j

SVNDWAA s s s
t u v

w w w
t u v

ρ ρ ρρ ρ ρ

= = =

= −
          − −     + + +               −               
  

. 
 

If n = k + 1, there is the following result: 
1 2 1

1 11/ 1/ 1/

1 1 1

1/
1

1

( , ,...,s , )

1 1 11 , ,
1 1

1 1 1
1

1 11 ,

1 1
1

k k

k k
k k k

j j j
j j j

j j jj j j

k
j

j
j j

SVNDWAA s s s

w s
t u v

w w w
t u v

t
w

t

ρ ρ ρρ ρ ρ

ρρ

+

+ +

= = =

+

=

= − ⊕
          − −     + + +               −               

= −
   +    −   

  


1/ 1/

1 1

1 1

1,
1 1

1
k k

j j
j j

j jj j

u v
w w

u v

ρ ρρ ρ
+ +

= =

      − −   + +         
         
  . 

 

Hence, Theorem 1 is true for n = k + 1. Thus, Equation (7) holds for all n. □ 

Then, the SVNDWAA operator contains the following properties: 

(1) Reducibility: When w = (1/n, 1/n, …, 1/n), it is obvious that there exists 

1 2 1/ 1/ 1/

1 1 1

1 1 1( , ,..., ) 1 , ,
1 11 1 11 1 1

1

n
n n n

j j j

j j jj j j

SVNDWAA s s s
t u v

n t n u n v

ρ ρ ρρ ρ ρ

= = =

= −
          − −     + + +               −               
  

. 
 

(2) Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, …, n). Then, SVNDWAA(s1, s2, …, sn) 
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= s. 
(3) Commutativity: Let the SVNS (s1’, s2’, …, sn’) be any permutation of (s1, s2, …, sn). Then, there is 

SVNDWAA(s1’, s2’, …, sn’) = SVNDWAA(s1, s2, …, sn). 
(4) Boundedness: Let smin = min(s1, s2, …, sn) and smax = max(s1, s2, …, sn). Then, smin ≤ SVNDWAA(s1, 

s2, …, sn) ≤ smax. 

Proof. (1) Based on Equation (7), the property is obvious. 
(2) Since sj = <tj, uj, vj> = s (j = 1, 2, …, n). Then, by using Equation (7) we can obtain the following 

result: 

1 2 1/ 1/ 1/

1 1 1

1/ 1/

1 1 1( , ,..., ) 1 , ,
1 1

1 1 1
1

1 1 11 , ,
111

1

n
n n n

j j j
j j j

j j jj j j

SVNDWAA s s s
t u v

w w w
t u v

ut
ut

ρ ρ ρρ ρ ρ

ρ ρρ ρ

= = =

= −
          − −     + + +               −               

= −
   −      ++       −      

  

1/
1 1 11 , , , , .1 11 1 111 1

t u v st u vv
u vtv

ρρ
= − = =− − −  + ++ +   − 

   

 

 

Hence, SVNDWAA(s1, s2, …, sn) = s holds. 
(3) The property is obvious. 
(4) Let smin = min(s1, s2, …, sn) = <t−, u−, v−> and smax = max(s1, s2, …, sn) = <t+, u+, v+>. Then, we have 
min( )jj

t t− = , max( )jj
u u− = , max( )jj

v v− = , max( )jj
t t+ = , min( )jj

u u+ = , and min( )jj
v v+ = . Thus, there 

are the following inequalities: 

1/ 1/ 1/

1 11

1 1 11 1 1

1 111 11

n nn
j

j jj
j jj j

t t tw wwt tt

ρ ρ ρρ ρ ρ− +

− +
= ==

− ≤ − ≤ −
              + ++          − −−            
 

, 

 

1/ 1/ 1/

1 11

1 1 1

1 1 11 11
n nn

j
j jj

j jj j

u u uw wwu uu

ρ ρ ρρ ρ ρ+ −

+ −
= ==

≤ ≤
          − − −    + ++                      
 

, 
 

1/ 1/ 1/

1 11

1 1 1

1 1 11 11
n nn

j
j jj

j jj j

v v vw wwv vv

ρ ρ ρρ ρ ρ+ −

+ −
= ==

≤ ≤
          − − −    + ++                      
 

. 
 

Hence, smin ≤ SVNDWAA(s1, s2, …, sn) ≤ smax holds. □ 

Theorem 2. Let sj = <tj, uj, vj> (j = 1, 2, …, n) be a collection of SVNNs and w = (w1, w2, …, wn) be the weight 

vector for sj with wj ∈  [0, 1] and 
1

1n
jj

w
=

= . Then, the aggregated value of the SVNDWGA operator is 

still a SVNN, which is calculated by the following formula: 

1 2 1/ 1/ 1/

1 1 1

1 1 1( , ,..., ) ,1 ,1
1

1 1 1
1 1

n
n n n

j j j
j j j

j j jj j j

SVNDWGA s s s
t u v

w w w
t u v

ρ ρ ρρ ρ ρ

= = =

= − −
          −     + + +               − −               
  

. 
(8) 

The proof of Theorem 2 is the same as that of Theorem 1. Thus, it is omitted here. 
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Obviously, the SVNDWGA operator also contains the following properties: 

(1) Reducibility: When the weight vector is w = (1/n, 1/n, …, 1/n), it is obvious that there exists the 
following result: 

(2) Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, …, n). Then, SVNDWGA(s1, s2, …, sn) 
= s. 

(3) Commutativity: Let the SVNS (s1’, s2’, …, sn’) be any permutation of (s1, s2, …, sn). Then, there is 
SVNDWGA(s1’, s2’, …, sn’) = SVNDWGA(s1, s2, …, sn). 

(4) Boundedness: Let smin = min(s1, s2, …, sn) and smax = max(s1, s2, …, sn). Then, smin ≤ SVNDWGA(s1, 
s2, …, sn) ≤ smax. 

The proof processes of these properties are the same as the ones of the properties for the 
SVNDWAA operator. Hence, they are not repeated here. 

5. MADM Method Using the SVNDWAA Operator or the SVNDWGA Operator 

In this section, we propose a MADM method by using the SVNDWAA operator or the 
SVNDWGA operator to handle MADM problems with SVNN information. 

For a MADM problem with SVNN information, let S = {S1, S2, …, Sm} be a discrete set of 
alternatives and G = {G1, G2, …, Gn} be a discrete set of attributes. Assume that the weight vector of 

the attributes is given as w = (w1, w2, …, wn) such that wj ∈  [0, 1] and 
1

1n
jj

w
=

= . If the decision 

makers are required to provide their suitability evaluation about the alternative Si (i = 1, 2, …, m) 
under the attribute Gj (j = 1, 2, …, n) by the SVNN sij = <tij, uij, vij> (i = 1, 2, …, m; j = 1, 2, …, n), then, 
we can elicit a SVNN decision matrix D = (sij)m×n. 

Thus, we utilize the SVNDWAA operator or the SVNDWGA operator to develop a handling 
approach for MADM problems with SVNN information, which can be described by the following 
decision steps: 

Step 1. Derive the collective SVNN si (i = 1, 2, …, m) for the alternative Si (i = 1, 2, …, m) by 
using the SVNDWAA operator: 

1 2

1/ 1/ 1/

1 1 1

( , ,..., )

1 1 11 , ,
1 1

1 1 1
1

i i i in

n n n
ij ij ij

j j j
j j jij ij ij

s SVNDWAA s s s

t u v
w w w

t u v

ρ ρ ρρ ρ ρ

= = =

=

= −
          − −     + + +               −               
  

, 
(9) 

or by using the SVNDWGA operator: 

1 2

1/ 1/ 1/

1 1 1

( , ,..., )

1 1 1,1 ,1
1

1 1 1
1 1

i i i in

n n n
ij ij ij

j j j
j j jij ij ij

s SVNDWGA s s s

t u v
w w w

t u v

ρ ρ ρρ ρ ρ

= = =

=

= − −
          −     + + +               − −               
  

, 
(10) 

1 2 1/ 1/ 1/

1 1 1

1 1 1( , ,..., ) ,1 ,1
11 1 11 1 1

1 1

n
n n n

j j j

j j jj j j

SVNDWGA s s s
t u v

n t n u n v

ρ ρ ρρ ρ ρ

= = =

= − −
          −     + + +               − −               
  

. 
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where w = (w1, w2, …, wn) is the weight vector such that wj ∈  [0, 1] and 
1

1n
jj

w
=

= . 

Step 2. Calculate the score values of E(si) (the accuracy degrees of H(si) if necessary) of the 
collective SVNN si (i = 1, 2, …, m) by using Equations (1) and (2). 

Step 3. Rank the alternatives and select the best one(s). 
Step 4. End. 

6. Illustrative Example 

An illustrative example about investment alternatives for a MADM problem adapted from Ye 
[10] is used for the applications of the proposed decision-making method under a SVNN 
environment. An investment company wants to invest a sum of money in the best option. To invest 
the money, a panel provides four possible alternatives: (1) S1 is a car company; (2) S2 is a food 
company; (3) S3 is a computer company; (4) S4 is an arms company. The investment company must 
take a decision corresponding to the requirements of the three attributes: (1) G1 is the risk; (2) G2 is 
the growth; (3) G3 is the environmental impact. The suitability evaluations of the alternative Si (i = 1, 
2, 3, 4) corresponding to the three attributes of Gj (j = 1, 2, 3) are given by some decision makers or 
experts and expressed by the form of SVNNs. Thus, when the four possible alternatives 
corresponding to the above three attributes are evaluated by the decision makers, we can give the 
single-valued neutrosophic decision matrix D(sij)m×n, where sij = <tij, uij, vij> (i = 1, 2, 3, 4; j = 1, 2, 3) is 
SVNN, as follows: 

4 3

0.4,0.2,0.3 0.4,0.2,0.3 0.8,0.2,0.5
0.6,0.1,0.2 0.6,0.1,0.2 0.5,0.2,0.8

( )
0.3,0.2,0.3 0.5,0.2,0.3 0.5,0.3,0.8
0.7,0.0,0.1 0.6,0.1,0.2 0.6,0.3,0.8

ijD s ×

 
 
 =
 
 
  

.  

The weight vector of the three attributes is given as w = (0.35, 0.25, 0.4). 
Then, we utilize the SVNDWAA operator or the SVNDWGA operator to handle the MADM 

problem with SVNN information. 
In this decision-making problem, the MADM steps based on the SVNDWAA operator can be 

described as follows: 
Step 1. Derive the collective SVNNs of si for the alternative Si (i = 1, 2, 3, 4) by using Equation 

(9) for ρ = 1 as follows: 

s1 = <0.6667, 0.2000, 0.3571>, s2 = <0.5652, 0.1250, 0.2857>, s3 = <0.4444, 0.2308, 0.4000>, 

and s4 = <0.6418, 0, 0.1905>. 
 

Step 2. Calculate the score values of E(si) of the collective SVNN si (i = 1, 2, 3, 4) for the 
alternatives Si (i = 1, 2, 3, 4) by using Equation (1) as the following results: 

E(s1) = 0.7032, E(s2) = 0.7182, E(s3) = 0.6046, and E(s4) = 0.8171.  

Step 3. Based on the obtained score values, the ranking order of the alternatives is S4   S2   
S1   S3 and the best one is S4. 

Or we use the SVNDWGA operator for the MADM problem, which can be described as the 
following steps: 

Step 1’. Derive the collective SVNNs of si for the alternative Si (i = 1, 2, 3, 4) by using Equation 
(10) for ρ = 1 as follows: 

s1 = <0.5000, 0.2000, 0.3966>, s2 = <0.5556, 0.1429, 0.6364>, s3 = <0.4054, 0.2432, 0.6500>, 

and s4 = <0.6316, 0.1661, 0.6298>. 
 

Step 2’. Calculate the score values of E(si) of the collective SVNN si (i = 1, 2, 3, 4) for the 
alternatives Si (i = 1, 2, 3, 4) by using Equation (1) as the following results: 

E(s1) = 0.6345, E(s2) = 0.5921, E(s3) = 0.5041, and E(s4) = 0.6119.  
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Step 3’. Based on the obtained score values, the ranking order of the alternatives is S1   S4   
S2   S3 and the best one is S1. 

In order to ascertain the effects on the ranking alternatives by changing parameters of ρ ∈  [1, 
10] in the SVNDWAA and SVNDWGA operators, all the results are depicted in Tables 1 and 2. 

Table 1. Ranking results for different operational parameters of the single-valued neutrosophic 
Dombi weighted arithmetic average (SVNDWAA) operator. 

ρ E(s1), E(s2), E(s3), E(s4) Ranking Order 
1 0.7032, 0.7182, 0.6046, 0.8171 S4   S2   S1   S3 
2 0.7259, 0.7356, 0.6257, 0.8326 S4   S2   S1   S3 
3 0.7380, 0.7434, 0.6364, 0.8396 S4   S2   S1   S3 
4 0.7449, 0.7480, 0.6429, 0.8441 S4   S2   S1   S3 
5 0.7492, 0.7511, 0.6472, 0.8474 S4   S2   S1   S3 
6 0.7521, 0.7533, 0.6503, 0.8499 S4   S2   S1   S3 
7 0.7542, 0.7550, 0.6525, 0.8520 S4   S2   S1   S3 
8 0.7558, 0.7564, 0.6543, 0.8536 S4   S2   S1   S3 
9 0.7571, 0.7574, 0.6556, 0.8549 S4   S2   S1   S3 

10 0.7580, 0.7583, 0.6567, 0.8560 S4   S2   S1   S3 

Table 2. Ranking results for different operational parameters of the single-valued neutrosophic 
Dombi weighted geometric average (SVNDWGA) operator. 

ρ E(s1), E(s2), E(s3), E(s4) Ranking Order 
1 0.6345, 0.5921, 0.5041, 0.6119 S1   S4   S2   S3 

2 0.6145, 0.5602, 0.4722, 0.5645 S1   S4   S2   S3 

3 0.6026, 0.5460, 0.4549, 0.5454 S1   S2   S4   S3 

4 0.5950, 0.5374, 0.4439, 0.5351 S1   S2   S4   S3 

5 0.5898, 0.5316, 0.4363, 0.5286 S1   S2   S4   S3 

6 0.5861, 0.5272, 0.4308, 0.5241 S1   S2   S4   S3 

7 0.5834, 0.5238, 0.4266, 0.5208 S1   S2   S4   S3 

8 0.5813, 0.5211, 0.4234, 0.5183 S1   S2   S4   S3 

9 0.5797, 0.5190, 0.4208, 0.5163 S1   S2   S4   S3 

10 0.5784, 0.5172, 0.4188, 0.5147 S1   S2   S4   S3 

From Tables 1 and 2, we see that the ranking orders based on the SVNDWAA and SVNDWGA 
operators indicate their obvious difference due to using different aggregation operators. Then, the 
different operational parameters of ρ can change the ranking orders corresponding to the 
SVNDWGA operator, which is more sensitive to ρ in this decision-making problem; while the 
different operation parameters of ρ show the same ranking orders corresponding to the SVNDWAA 
operator, which is not sensitive to ρ in this decision-making problem.  

Compared with existing related method [38], the decision-making method developed in this 
paper can deal with single-valued neutrosophic or intuitionistic fuzzy MADM problems, while 
existing method [38] cannot handle single-valued neutrosophic MADM problems. 

However, this MADM method based on the SVNDWAA and SVNDWGA operators indicates 
the advantage of its flexibility in actual applications. Therefore, the developed MADM method 
provides a new effective way for decision makers to handle single-valued neutrosophic MADM 
problems. 
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7. Conclusions 

This paper presented some Dombi operations of SVNNs based on the Dombi T-norm and 
T-conorm operations, and then proposed the SVNDWAA and SVNDWGA operators and 
investigated their properties. Further, we developed to a MADM method by using the SVNDWAA 
operator or the SVNDWGA operator to deal with MADM problems under a SVNN environment, in 
which attribute values with respect to alternatives are evaluated by the form of SVNNs and the 
attribute weights are known information. We utilized the SVNDWAA operator or the SVNDWGA 
operator and the score (accuracy) function to rank the alternatives and to determine the best one(s) 
according to the score (accuracy) values in the different operational parameters. Finally, an 
illustrative example about the decision-making problem of investment alternatives was provided to 
demonstrate the application and feasibility of the developed approach. The decision-making results 
of the illustrative example demonstrated the main highlights of the proposed MADM method: (1) 
different operational parameters of ρ in the SVNDWGA and SVNDWAA operators can affect the 
ranking orders; (2) the decision-making process is more flexible corresponding to some operational 
parameter ρ specified by decision makers’ preference and/or actual requirements; (3) the 
SVNDWGA and SVNDWAA operators provide new aggregation methods of SVNNs to solve 
MADM problems under an SVNN environment. 

In the future work, we shall further develop new Dombi aggregation operators for simplified 
neutrosophic sets (including SVNSs and INSs) and apply them to solve practical applications in 
these areas like group decision-making in [39,40], expert system, information fusion system, fault 
diagnosis, medical diagnosis, and so on. 
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