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Abstract: The Dombi operations of T-norm and T-conorm introduced by Dombi can have the
advantage of good flexibility with the operational parameter. In existing studies, however, the Dombi
operations have so far not yet been used for neutrosophic sets. To propose new aggregation
operators for neutrosophic sets by the extension of the Dombi operations, this paper firstly presents
the Dombi operations of single-valued neutrosophic numbers (SVNNs) based on the operations
of the Dombi T-norm and T-conorm, and then proposes the single-valued neutrosophic Dombi
weighted arithmetic average (SVNDWAA) operator and the single-valued neutrosophic Dombi
weighted geometric average (SVNDWGA) operator to deal with the aggregation of SVNNs and
investigates their properties. Because the SVNDWAA and SVNDWGA operators have the advantage
of good flexibility with the operational parameter, we develop a multiple attribute decision-making
(MADM) method based on the SVNWAA or SVNWGA operator under a SVNN environment. Finally,
an illustrative example about the selection problem of investment alternatives is given to demonstrate
the application and feasibility of the developed approach.

Keywords: single-valued neutrosophic number; Dombi operation; single-valued neutrosophic Dombi
weighted arithmetic average (SVNDWAA) operator; single-valued neutrosophic Dombi weighted
geometric average (SVNDWGA) operator; multiple attribute decision-making

1. Introduction

In 1965, Zadeh [1] introduced a membership function between 0 and 1 instead of traditional
crisp value of 0 and 1 and defined the fuzzy set (FS). Fuzzy theory is an important and interesting
research topic in decision-making theory and science. However, FS is characterized only by its
membership function between 0 and 1, but not a non-membership function. To overcome the
insufficient of FS, Atanassov [2] introduced the concept of an intuitionistic fuzzy set (IFS), which is
characterized by its membership function and non-membership function between 0 and 1. As a further
generalization of an IFS, Atanassov and Gargov [3] further introduced the concept of an interval-valued
intuitionistic fuzzy set (IVIFS), which is characterized by its interval membership function and interval
non-membership function in the unit interval [0, 1]. Because IFSs and IVIFSs cannot represent
indeterminate and inconsistent information, Smarandache [4] introduced a neutrosophic set (NS)
from a philosophical point of view to express indeterminate and inconsistent information. In a NS
A, its truth, falsity, and indeterminacy membership functions TA(x), IA(x) and FA(x) are represented
independently, which lie in real standard or nonstandard subsets of ]−0, 1+[, i.e., TA(x): X→ ]−0, 1+[,
IA(x): X→ ]−0, 1+[, and FA(x): X→ ]−0, 1+[. Thus, the nonstandard interval ]−0, 1+[ may result in the
difficulty of actual applications. Based on the real standard interval [0, 1], therefore, the concepts of
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a single-valued neutrosophic set (SVNS) [5] and an interval neutrosophic set (INS) [6] was presented
as subclasses of NS to be easily used for actual applications, and then Ye [7] introduced a simplified
neutrosophic set (SNS), including the concepts of SVNS and INS, which are the extension of IFS and
IVIFS. Obviously, SNS is a subclass of NS, while SVNS and INS are subclasses of SNS. As mentioned
in the literature [4–7], NS is the generalization of FS, IFS, and IVIFS. Thereby, Figure 1 shows the flow
chart extended from FS to NS (SNS, SVNS, INS).
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Figure 1. Flow chart extended from fuzzy set (FS) to neutrosophic set (NS) (simplified neutrosophic set
(SNS), single-valued neutrosophic set (SVNS), interval neutrosophic set (INS)). IFS: intuitionistic fuzzy
set; IVIFS: interval-valued intuitionistic fuzzy set.

On the other hand, some researchers also introduced other fuzzy extensions, such as fuzzy soft
sets, hesitant FSs, and hesitant fuzzy soft sets (see [8,9] for detail).

However, SNS (SVNS and INS) is very suitable for the expression of incomplete, indeterminate,
and inconsistent information in actual applications. Recently, SNSs (INSs, and SVNSs) have
been widely applied in many areas [10–28], such as decision-making, image processing, medical
diagnosis, fault diagnosis, and clustering analysis. Especially, many researchers [7,29–36] have
developed various aggregation operators, like simplified neutrosophic weighted aggregation operators,
simplified neutrosophic prioritized aggregation operators, single-valued neutrosophic normalized
weighted Bonferroni mean operators, generalized neutrosophic Hamacher aggregation operators,
generalized weighted aggregation operators, interval neutrosophic prioritized ordered weighted
average operators, interval neutrosophic Choquet integral operators, interval neutrosophic exponential
weighted aggregation operators, and so on, and applied them to decision-making problems with
SNS/SVNS/INS information. Obviously, the aggregation operators give us powerful tools to deal with
the aggregation of simplified (single-valued and interval) neutrosophic information in the decision
making process.

In 1982, Dombi [37] developed the operations of the Dombi T-norm and T-conorm, which show
the advantage of good flexibility with the operational parameter. Hence, Liu et al. [38] extended
the Dombi operations to IFSs and proposed some intuitionistic fuzzy Dombi Bonferroni mean
operators and applied them to multiple attribute group decision-making (MAGDM) problems with
intuitionistic fuzzy information. From the existing studies, we can see that the Dombi operations
are not extended to neutrosophic sets so far. To develop new aggregation operators for NSs based
on the extension of the Dombi operations, the main purposes of this study are (1) to present some
Dombi operations of single-valued neutrosophic numbers (SVNNs) (basic elements in SVNS), (2) to
propose a single-valued neutrosophic Dombi weighted arithmetic average (SVNDWAA) operator
and a single-valued neutrosophic Dombi weighted geometric average (SVNDWGA) operator for
the aggregation of SVNN information and to investigate their properties, and (3) to develop
a decision-making approach based on the SVNDWAA and SVNDWGA operators for solving multiple
attribute decision-making (MADM) problems with SVNN information.

The rest of the paper is organized as follows. Section 2 briefly describes some concepts of SVNSs
to be used for the study. Section 3 presents some new Dombi operations of SVNNs. In Section 4,
we propose the SVNDWAA and SVNDWGA operators and investigate their properties. Section 5
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develops a MADM approach based on the SVNDWAA and SVNDWGA operators. An illustrative
example is presented in Section 6. Section 7 gives conclusions and future research directions.

2. Some Concepts of SVNSs

As the extension of IFSs, Wang et al. [5] introduced the definition of a SVNS as a subclass of NS
proposed by Smarandache [4] to easily apply in real scientific and engineering areas.

Definition 1. [5] Let X be a universal set. A SVNS N in X is described by a truth-membership function tN(x),
an indeterminacy-membership function uN(x), and a falsity-membership function vN(x). Then, a SVNS N can
be denoted as the following form:

N = {〈x, tN(x), uN(x), vN(x)〉|x ∈ X},

where the functions tN(x), uN(x), vN(x) ∈ [0, 1] satisfy the condition 0 ≤ tN(x) + uN(x) + vN(x) ≤ 3 for x ∈ X.
For convenient expression, a basic element <x, tN(x), uN(x), vN(x)> in N is denoted by s = <t, u, v>,

which is called a SVNN.
For any SVNN s = <t, u, v>, its score and accuracy functions [29] can be introduced, respectively,

as follows:
E(s) = (2 + t− u− v)/3, E(s) ∈ [0, 1], (1)

H(s) = t− v, H(s) ∈ [−1, 1]. (2)

According to the two functions E(s) and H(s), the comparison and ranking of two SVNNs are introduced
by the following definition [29].

Definition 2. [29] Let s1 = <t1, u1, v1> and s2 = <t2, u2, v2> be two SVNNs. Then the ranking method for s1
and s2 is defined as follows:

(1) If E(s1) > E(s2), then s1 � s2,
(2) If E(s1) = E(s2) and H(s1) > H(s2), then s1 � s2,
(3) If E(s1) = E(s2) and H(s1) = H(s2), then s1 = s2.

3. Some Single-Valued Neutrosophic Dombi Operations

Definition 3. [37]. Let p and q be any two real numbers. Then, the Dombi T-norm and T-conorm between p
and q are defined as follows:

OD(p, q) =
1

1 +
{(

1−p
p

)ρ
+
(

1−q
q

)ρ}1/ρ
, (3)

Oc
D(p, q) = 1− 1

1 +
{(

p
1−p

)ρ
+
(

q
1−q

)ρ}1/ρ
, (4)

where ρ ≥ 1 and (p, q) ∈ [0, 1] × [0, 1].
According to the Dombi T-norm and T-conorm, we define the Dombi operations of SVNNs.
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Definition 4. Let s1 = <t1, u1, v1> and s2 = <t2, u2, v2> be two SVNNs, ρ ≥ 1, and λ > 0. Then, the Dombi
T-norm and T-conorm operations of SVNNs are defined below:

(1) s1 ⊕ s2 =

〈
1− 1

1+
{(

t1
1−t1

)ρ
+
(

t2
1−t2

)ρ}1/ρ , 1

1+
{(

1−u1
u1

)ρ
+
(

1−u2
u2

)ρ}1/ρ , 1

1+
{(

1−v1
v1

)ρ
+
(

1−v2
v2

)ρ}1/ρ

〉
;

(2) s1 ⊗ s2 =

〈
1

1+
{(

1−t1
t1

)ρ
+
(

1−t2
t2

)ρ}1/ρ , 1− 1

1+
{(

u1
1−u1

)ρ
+
(

u2
1−u2

)ρ}1/ρ , 1− 1

1+
{(

v1
1−v1

)ρ
+
(

v2
1−v2

)ρ}1/ρ

〉
;

(3) λs1 =

〈
1− 1

1+
{

λ
(

t1
1−t1

)ρ}1/ρ , 1

1+
{

λ
(

1−u1
u1

)ρ}1/ρ , 1

1+
{

λ
(

1−v1
v1

)ρ}1/ρ

〉
;

(4) sλ
1 =

〈
1

1+
{

λ
(

1−t1
t1

)ρ}1/ρ , 1− 1

1+
{

λ
(

u1
1−u1

)ρ}1/ρ , 1− 1

1+
{

λ
(

v1
1−v1

)ρ}1/ρ

〉
.

4. Dombi Weighted Aggregation Operators of SVNNs

Based on the Dombi operations of SVNNs in Definition 4, we propose the two Dombi
weighted aggregation operators: the SVNDWAA and SVNDWGA operators, and then investigate
their properties.

Definition 5. Let sj = <tj, uj, vj> (j = 1, 2, . . . , n) be a collection of SVNNs and w = (w1, w2, . . . , wn) be the
weight vector for sj with wj ∈ [0, 1] and ∑n

j=1 wj = 1. Then, the SVNDWAA and SVNDWGA operators are
defined, respectively, as follows:

SVNDWAA(s1, s2, . . . , sn) =
n
⊕

j=1
wjsj, (5)

SVNDWGA(s1, s2, . . . , sn) =
n
⊗

j=1
s

wj
j . (6)

Theorem 1. Let sj = <tj, uj, vj> (j = 1, 2, . . . , n) be a collection of SVNNs and w = (w1, w2, . . . , wn) be the
weight vector for sj with wj ∈ [0, 1] and ∑n

j=1 wj = 1. Then, the aggregated value of the SVNDWAA operator
is still a SVNN, which is calculated by the following formula:

SVNDWAA(s1, s2, . . . , sn) =

〈
1− 1

1+

{
n
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
, (7)

By the mathematical induction, we can prove Theorem 1.

Proof. If n = 2, based on the Dombi operations of SVNNs in Definition 4 we can obtain the
following result:

SVNDWAA(s1, s2) = s1 ⊕ s2

=

〈
1− 1

1+
{

w1

(
t1

1−t1

)ρ
+w2

(
t2

1−t2

)ρ}1/ρ , 1

1+
{

w1

(
1−u1

u1

)ρ
+w2

(
1−u2

u2

)ρ}1/ρ , 1

1+
{

w1

(
1−v1

v1

)ρ
+w2

(
1−v2

v2

)ρ}1/ρ

〉

=

〈
1− 1

1+

{
2
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
2
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
2
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
.
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If n = k, based on Equation (7), we have the following equation:

SVNDWAA(s1, s2, . . . , sk) =

〈
1− 1

1+

{
k
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
.

If n = k + 1, there is the following result:

SVNDWAA(s1, s2, . . . , sk, sk+1)

=

〈
1− 1

1+

{
k
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
k
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉
⊕ wk+1sk+1

=

〈
1− 1

1+

{
k+1
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
k+1
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
k+1
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉 .

Hence, Theorem 1 is true for n = k + 1. Thus, Equation (7) holds for all n. �

Then, the SVNDWAA operator contains the following properties:

(1) Reducibility: When w = (1/n, 1/n, . . . , 1/n), it is obvious that there exists

SVNDWAA(s1, s2, . . . , sn) =

〈
1− 1

1+

{
n
∑

j=1

1
n

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1

1
n

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1

1
n

(
1−vj

vj

)ρ
}1/ρ

〉
.

(2) Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, . . . , n). Then, SVNDWAA(s1, s2,
. . . , sn) = s.

(3) Commutativity: Let the SVNS (s1’, s2’, . . . , sn’) be any permutation of (s1, s2, . . . , sn). Then,
there is SVNDWAA(s1’, s2’, . . . , sn’) = SVNDWAA(s1, s2, . . . , sn).

(4) Boundedness: Let smin = min(s1, s2, . . . , sn) and smax = max(s1, s2, . . . , sn). Then, smin ≤
SVNDWAA(s1, s2, . . . , sn) ≤ smax.

Proof. (1) Based on Equation (7), the property is obvious.
(2) Since sj = <tj, uj, vj> = s (j = 1, 2, . . . , n). Then, by using Equation (7) we can obtain the

following result:

SVNDWAA(s1, s2, . . . , sn) =

〈
1− 1

1+

{
n
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

〉

=

〈
1− 1

1+
{
( t

1−t )
ρ
}1/ρ , 1

1+
{
( 1−u

u )
ρ
}1/ρ , 1

1+
{
( 1−v

v )
ρ
}1/ρ

〉
=

〈
1− 1

1+ t
1−t

, 1
1+ 1−u

u
, 1

1+ 1−v
v

〉
= 〈t, u, v〉 = s.

Hence, SVNDWAA(s1, s2, . . . , sn) = s holds.
(3) The property is obvious.
(4) Let smin = min(s1, s2, . . . , sn) = <t−, u−, v−> and smax = max(s1, s2, . . . , sn) = <t+, u+, v+>. Then,

we have t− = min
j
(tj), u− = max

j
(uj), v− = max

j
(vj), t+ = max

j
(tj), u+ = min

j
(uj), and v+ = min

j
(vj).

Thus, there are the following inequalities:

1− 1

1+

{
n
∑

j=1
wj

(
t−

1−t−
)ρ
}1/ρ ≤ 1− 1

1+

{
n
∑

j=1
wj

(
tj

1−tj

)ρ
}1/ρ ≤ 1− 1

1+

{
n
∑

j=1
wj

(
t+

1−t+

)ρ
}1/ρ ,
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1

1 +

{
n
∑

j=1
wj

(
1−u+

u+

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−uj

uj

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−u−

u−

)ρ
}1/ρ

,

1

1 +

{
n
∑

j=1
wj

(
1−v+

v+

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−vj

vj

)ρ
}1/ρ

≤ 1

1 +

{
n
∑

j=1
wj

(
1−v−

v−

)ρ
}1/ρ

.

Hence, smin ≤ SVNDWAA(s1, s2, . . . , sn) ≤ smax holds. �

Theorem 2. Let sj = <tj, uj, vj> (j = 1, 2, . . . , n) be a collection of SVNNs and w = (w1, w2, . . . , wn) be the
weight vector for sj with wj ∈ [0, 1] and ∑n

j=1 wj = 1. Then, the aggregated value of the SVNDWGA operator
is still a SVNN, which is calculated by the following formula:

SVNDWGA(s1, s2, . . . , sn) =

〈
1

1+

{
n
∑

j=1
wj

(
1−tj

tj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
uj

1−uj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
vj

1−vj

)ρ
}1/ρ

〉
. (8)

The proof of Theorem 2 is the same as that of Theorem 1. Thus, it is omitted here.
Obviously, the SVNDWGA operator also contains the following properties:

(1) Reducibility: When the weight vector is w = (1/n, 1/n, . . . , 1/n), it is obvious that there exists
the following result:

SVNDWGA(s1, s2, . . . , sn) =

〈
1

1+

{
n
∑

j=1

1
n

(
1−tj

tj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1

1
n

(
uj

1−uj

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1

1
n

(
vj

1−vj

)ρ
}1/ρ

〉
.

(2) Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, . . . , n). Then, SVNDWGA(s1, s2,
. . . , sn) = s.

(3) Commutativity: Let the SVNS (s1’, s2’, . . . , sn’) be any permutation of (s1, s2, . . . , sn). Then,
there is SVNDWGA(s1’, s2’, . . . , sn’) = SVNDWGA(s1, s2, . . . , sn).

(4) Boundedness: Let smin = min(s1, s2, . . . , sn) and smax = max(s1, s2, . . . , sn). Then, smin ≤
SVNDWGA(s1, s2, . . . , sn) ≤ smax.

The proof processes of these properties are the same as the ones of the properties for the
SVNDWAA operator. Hence, they are not repeated here.

5. MADM Method Using the SVNDWAA Operator or the SVNDWGA Operator

In this section, we propose a MADM method by using the SVNDWAA operator or the SVNDWGA
operator to handle MADM problems with SVNN information.

For a MADM problem with SVNN information, let S = {S1, S2, . . . , Sm} be a discrete set of
alternatives and G = {G1, G2, . . . , Gn} be a discrete set of attributes. Assume that the weight vector of
the attributes is given as w = (w1, w2, . . . , wn) such that wj ∈ [0, 1] and ∑n

j=1 wj = 1. If the decision
makers are required to provide their suitability evaluation about the alternative Si (i = 1, 2, . . . , m)
under the attribute Gj (j = 1, 2, . . . , n) by the SVNN sij = <tij, uij, vij> (i = 1, 2, . . . , m; j = 1, 2, . . . , n),
then, we can elicit a SVNN decision matrix D = (sij)m×n.

Thus, we utilize the SVNDWAA operator or the SVNDWGA operator to develop a handling
approach for MADM problems with SVNN information, which can be described by the following
decision steps:
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Step 1. Derive the collective SVNN si (i = 1, 2, . . . , m) for the alternative Si (i = 1, 2, . . . , m) by
using the SVNDWAA operator:

si = SVNDWAA(si1, si2, . . . , sin)

=

〈
1− 1

1+

{
n
∑

j=1
wj

(
tij

1−tij

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−uij

uij

)ρ
}1/ρ , 1

1+

{
n
∑

j=1
wj

(
1−vij

vij

)ρ
}1/ρ

〉
, (9)

or by using the SVNDWGA operator:

si = SVNDWGA(si1, si2, . . . , sin)

=

〈
1

1+

{
n
∑

j=1
wj

(
1−tij

tij

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
uij

1−uij

)ρ
}1/ρ , 1− 1

1+

{
n
∑

j=1
wj

(
vij

1−vij

)ρ
}1/ρ

〉
, (10)

where w = (w1, w2, . . . , wn) is the weight vector such that wj ∈ [0, 1] and ∑n
j=1 wj = 1.

Step 2. Calculate the score values of E(si) (the accuracy degrees of H(si) if necessary) of the
collective SVNN si (i = 1, 2, . . . , m) by using Equations (1) and (2).

Step 3. Rank the alternatives and select the best one(s).
Step 4. End.

6. Illustrative Example

An illustrative example about investment alternatives for a MADM problem adapted from Ye [10]
is used for the applications of the proposed decision-making method under a SVNN environment.
An investment company wants to invest a sum of money in the best option. To invest the money,
a panel provides four possible alternatives: (1) S1 is a car company; (2) S2 is a food company; (3) S3

is a computer company; (4) S4 is an arms company. The investment company must take a decision
corresponding to the requirements of the three attributes: (1) G1 is the risk; (2) G2 is the growth; (3) G3 is
the environmental impact. The suitability evaluations of the alternative Si (i = 1, 2, 3, 4) corresponding
to the three attributes of Gj (j = 1, 2, 3) are given by some decision makers or experts and expressed
by the form of SVNNs. Thus, when the four possible alternatives corresponding to the above three
attributes are evaluated by the decision makers, we can give the single-valued neutrosophic decision
matrix D(sij)m×n, where sij = <tij, uij, vij> (i = 1, 2, 3, 4; j = 1, 2, 3) is SVNN, as follows:

D(sij)4×3 =


〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.8, 0.2, 0.5〉
〈0.6, 0.1, 0.2〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.2, 0.8〉
〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.8〉
〈0.7, 0.0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.6, 0.3, 0.8〉

.

The weight vector of the three attributes is given as w = (0.35, 0.25, 0.4).
Then, we utilize the SVNDWAA operator or the SVNDWGA operator to handle the MADM

problem with SVNN information.
In this decision-making problem, the MADM steps based on the SVNDWAA operator can be

described as follows:
Step 1. Derive the collective SVNNs of si for the alternative Si (i = 1, 2, 3, 4) by using Equation (9)

for ρ = 1 as follows:
s1 = <0.6667, 0.2000, 0.3571>, s2 = <0.5652, 0.1250, 0.2857>, s3 = <0.4444, 0.2308, 0.4000>, and s4 =

<0.6418, 0, 0.1905>.
Step 2. Calculate the score values of E(si) of the collective SVNN si (i = 1, 2, 3, 4) for the alternatives

Si (i = 1, 2, 3, 4) by using Equation (1) as the following results:
E(s1) = 0.7032, E(s2) = 0.7182, E(s3) = 0.6046, and E(s4) = 0.8171.
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Step 3. Based on the obtained score values, the ranking order of the alternatives is S4 � S2 � S1

� S3 and the best one is S4.
Or we use the SVNDWGA operator for the MADM problem, which can be described as the

following steps:
Step 1’. Derive the collective SVNNs of si for the alternative Si (i = 1, 2, 3, 4) by using Equation

(10) for ρ = 1 as follows:
s1 = <0.5000, 0.2000, 0.3966>, s2 = <0.5556, 0.1429, 0.6364>, s3 = <0.4054, 0.2432, 0.6500>, and s4 =

<0.6316, 0.1661, 0.6298>.
Step 2’. Calculate the score values of E(si) of the collective SVNN si (i = 1, 2, 3, 4) for the alternatives

Si (i = 1, 2, 3, 4) by using Equation (1) as the following results:
E(s1) = 0.6345, E(s2) = 0.5921, E(s3) = 0.5041, and E(s4) = 0.6119.
Step 3’. Based on the obtained score values, the ranking order of the alternatives is S1 � S4 � S2

� S3 and the best one is S1.
In order to ascertain the effects on the ranking alternatives by changing parameters of ρ ∈ [1, 10]

in the SVNDWAA and SVNDWGA operators, all the results are depicted in Tables 1 and 2.

Table 1. Ranking results for different operational parameters of the single-valued neutrosophic Dombi
weighted arithmetic average (SVNDWAA) operator.

ρ E(s1), E(s2), E(s3), E(s4) Ranking Order

1 0.7032, 0.7182, 0.6046, 0.8171 S4 � S2 � S1 � S3
2 0.7259, 0.7356, 0.6257, 0.8326 S4 � S2 � S1 � S3
3 0.7380, 0.7434, 0.6364, 0.8396 S4 � S2 � S1 � S3
4 0.7449, 0.7480, 0.6429, 0.8441 S4 � S2 � S1 � S3
5 0.7492, 0.7511, 0.6472, 0.8474 S4 � S2 � S1 � S3
6 0.7521, 0.7533, 0.6503, 0.8499 S4 � S2 � S1 � S3
7 0.7542, 0.7550, 0.6525, 0.8520 S4 � S2 � S1 � S3
8 0.7558, 0.7564, 0.6543, 0.8536 S4 � S2 � S1 � S3
9 0.7571, 0.7574, 0.6556, 0.8549 S4 � S2 � S1 � S3

10 0.7580, 0.7583, 0.6567, 0.8560 S4 � S2 � S1 � S3

Table 2. Ranking results for different operational parameters of the single-valued neutrosophic Dombi
weighted geometric average (SVNDWGA) operator.

ρ E(s1), E(s2), E(s3), E(s4) Ranking Order

1 0.6345, 0.5921, 0.5041, 0.6119 S1 � S4 � S2 � S3
2 0.6145, 0.5602, 0.4722, 0.5645 S1 � S4 � S2 � S3
3 0.6026, 0.5460, 0.4549, 0.5454 S1 � S2 � S4 � S3
4 0.5950, 0.5374, 0.4439, 0.5351 S1 � S2 � S4 � S3
5 0.5898, 0.5316, 0.4363, 0.5286 S1 � S2 � S4 � S3
6 0.5861, 0.5272, 0.4308, 0.5241 S1 � S2 � S4 � S3
7 0.5834, 0.5238, 0.4266, 0.5208 S1 � S2 � S4 � S3
8 0.5813, 0.5211, 0.4234, 0.5183 S1 � S2 � S4 � S3
9 0.5797, 0.5190, 0.4208, 0.5163 S1 � S2 � S4 � S3

10 0.5784, 0.5172, 0.4188, 0.5147 S1 � S2 � S4 � S3

From Tables 1 and 2, we see that the ranking orders based on the SVNDWAA and SVNDWGA
operators indicate their obvious difference due to using different aggregation operators. Then,
the different operational parameters of ρ can change the ranking orders corresponding to the
SVNDWGA operator, which is more sensitive to ρ in this decision-making problem; while the different
operation parameters of ρ show the same ranking orders corresponding to the SVNDWAA operator,
which is not sensitive to ρ in this decision-making problem.
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Compared with existing related method [38], the decision-making method developed in this
paper can deal with single-valued neutrosophic or intuitionistic fuzzy MADM problems, while existing
method [38] cannot handle single-valued neutrosophic MADM problems.

However, this MADM method based on the SVNDWAA and SVNDWGA operators indicates the
advantage of its flexibility in actual applications. Therefore, the developed MADM method provides
a new effective way for decision makers to handle single-valued neutrosophic MADM problems.

7. Conclusions

This paper presented some Dombi operations of SVNNs based on the Dombi T-norm and
T-conorm operations, and then proposed the SVNDWAA and SVNDWGA operators and investigated
their properties. Further, we developed to a MADM method by using the SVNDWAA operator
or the SVNDWGA operator to deal with MADM problems under a SVNN environment, in which
attribute values with respect to alternatives are evaluated by the form of SVNNs and the attribute
weights are known information. We utilized the SVNDWAA operator or the SVNDWGA operator and
the score (accuracy) function to rank the alternatives and to determine the best one(s) according to
the score (accuracy) values in the different operational parameters. Finally, an illustrative example
about the decision-making problem of investment alternatives was provided to demonstrate the
application and feasibility of the developed approach. The decision-making results of the illustrative
example demonstrated the main highlights of the proposed MADM method: (1) different operational
parameters of ρ in the SVNDWGA and SVNDWAA operators can affect the ranking orders; (2) the
decision-making process is more flexible corresponding to some operational parameter ρ specified by
decision makers’ preference and/or actual requirements; (3) the SVNDWGA and SVNDWAA operators
provide new aggregation methods of SVNNs to solve MADM problems under an SVNN environment.

In the future work, we shall further develop new Dombi aggregation operators for simplified
neutrosophic sets (including SVNSs and INSs) and apply them to solve practical applications in these
areas like group decision-making in [39,40], expert system, information fusion system, fault diagnosis,
medical diagnosis, and so on.
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