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Abstract: The normal distribution is a usual one of various distributions in the real world. A 
normal neutrosophic set (NNS) is composed of both a normal fuzzy number and a neutrosophic 
number, which a significant tool for describing the incompleteness, indeterminacy, and 
inconsistency of the decision-making information. In this paper, we propose two correlation 
coefficients between NNSs based on the score functions of normal neutrosophic numbers (NNNs) 
(basic elements in NNSs) and investigate their properties. Then, we develop a multiple attribute 
decision-making (MADM) method with NNSs under normal neutrosophic environments, where, 
by correlation coefficient values between each alternative (each evaluated NNS) and the ideal 
alternative (the ideal NNS), the ranking order of alternatives and the best one are given in the 
normal neutrosophic decision-making process. Finally, an illustrative example about the selection 
problem of investment alternatives is provided to demonstrate the application and feasibility of the 
developed decision-making method. Compared to the existing MADM approaches based on 
aggregation operators of NNNs, the proposed MADM method based on the correlation coefficients 
of NNSs shows the advantage of its simple decision-making process. 

Keywords: multiple attribute decision-making; normal neutrosophic set; normal neutrosophic 
number; correlation coefficient 

 

1. Introduction 

In probability theory [1], the normal (or Gaussian) distribution is a very common continuous 
probability distribution. Normal distribution is an important distribution form in statistics and is 
very useful in the natural and social sciences to express real-valued random variables whose 
distributions are not known. Hence, it has been widely applied to various fields. Then, the fuzziness 
and uncertainty of the real decision-making information are a common phenomenon because some 
numerical values may be inadequate or insufficient to complex decision-making problems. In some 
occasions, it can be more reasonable to describe the attribute values by the fuzzy numbers in a fuzzy 
environment. Thus, Zadeh [2] firstly introduced the fuzzy set, which is described by the membership 
function. After that, Yang and Ko [3] defined a normal fuzzy number (NFN) to express the normal 
fuzzy information in random fuzzy situations. It is obvious that its main advantage is reasonable 
and realistic to normal distribution environments. As an extension of the fuzzy set, Atanassov [4] 
proposed the intuitionistic fuzzy set (IFS) by adding the non-membership function to the fuzzy set. 
However, because NFN only contains its normal fuzzy membership degree, Wang et al. [5] 
presented an intuitionistic normal fuzzy number (INFN) based on the combination of both an NFN 
and an intuitionistic fuzzy number (IFN) (a basic element in IFS), defined the score function and 
operational laws of INFNs, and presented some aggregation operators of INFNs, including an 
ordered intuitionistic normal ordered fuzzy weighted averaging operator, an INFN ordered 
weighted geometric averaging operator, two INFN-related ordered weighted arithmetic and 
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geometric averaging operators, two induced INFN-related ordered weighted arithmetic and 
geometric averaging operators, and they then applied them to multiple criteria decision-making 
(MCDM) problems, where the criteria are interactive and the criteria values are the INFNs. Then, 
Wang and Li [6] proposed a score function of INFN based on relative entropy and an INFN 
weighted arithmetic averaging operator, and then applied them to normal intuitionistic fuzzy 
MCAD problems. Wang and Li [7] also introduced Euclidean distance between INFNs and an INFN 
weighted arithmetic averaging operator and an INFN weighted geometric averaging operator for 
MCDM problems with INFNs. Wang et al. [8] further introduced a normal intuitionistic fuzzy 
number (NIFN) weighted arithmetic averaging operator, an NIFN weighted geometric averaging 
operator, an NIFN-induced ordered weighted averaging operator, an NIFN-induced ordered 
weighted geometric averaging operator, and an NIFN-induced generalized ordered weighted 
averaging (NIFN-IGOWA) operator, and then applied the NIFN-IGOWA operator to MCDM 
problems with NIFN information. To express the truth, indeterminacy, and falsity information in 
real world, Smarandache [9] proposed a concept of a neutrosophic set from a philosophical point of 
view. As a subclass of the neutrosophic set, Smarandache [9] and Wang et al. [10] introduced the 
concept of a single-valued neutrosophic set (SVNS). Obviously, SVNS is a generalization of IFS and 
represents incomplete, indeterminate, and inconsistent information, which cannot be expressed by 
IFS. For example, assume that an investment company wants to invest a sum of money to some 
investment alternative. Then, there are 10 voters in the voting process of the investment alternative. 
Five vote “aye”, four vote ‘blackball’, and one votes ‘indeterminacy/neutrality’. From neutrosophic 
notation, it can be represented as (x, 0.5, 0.4, 0.1). It is obvious that this expression is beyond the 
scope of IFS. Hence, SVNS is suitable for the expression of indeterminate and inconsistent 
information. Recently, the neutrosophic sets have been applied in many decision-making problems 
[11–17]. Liu and Teng [18] presented a normal neutrosophic number (NNN) as an extension of NIFN 
and its generalized weighted power averaging operator, and then applied it to multiple attribute 
decision-making (MADM) problems with normal neutrosophic information. Liu and Li [19] further 
introduced some normal neutrosophic Bonferroni mean operators for decision-making problems 
with normal neutrosophic information. After that, Sahin [20] proposed some normal neutrosophic 
generalized prioritized aggregation operators for MADM problems under normal neutrosophic 
environments.  

However, the aforementioned decision-making methods depend on aggregation operators of 
NNNs in the normal neutrosophic decision-making process. Then, the correlation coefficient is an 
important mathematical tool in decision-making problems [11–13]. Compared with the 
decision-making methods using aggregation operators [18–20], the decision-making methods based 
on correlation coefficients imply relatively simple decision-making processes. However, there is no 
research on correlation coefficients of NNSs in existing normal neutrosophic decision-making 
methods. On the other hand, the applications of NNNs (basic elements in NNSs) in science and 
engineering fields are necessary and significant because the normal distribution is a typical and 
common distribution in the real world [18–20]. Additionally, NNN contain much more information 
than the general neutrosophic number because NNN is expressed by the combination information of 
both an NFN and a single-valued neutrosophic number (SVNN) (a basic element in SVNS). Hence, 
NNN used in decision-making can show its rationality and reality. Motivated by the 
decision-making methods [18–20], this study firstly proposes two correlation coefficients of normal 
neutrosophic sets (NNSs) based on the score functions of NNNs and then develops an MADM 
method using the correlation coefficients of NNSs to simplify the decision-making process under 
normal neutrosophic environments.  

The rest of this paper is organized as follows. In Section 2, we review some basic concepts of 
NIFNs and NNSs. In Section 3, two correlation coefficients between NNSs are presented based on 
the score functions of NNNs. Section 4 develops an MADM method using the correlation coefficients 
of NNSs under normal neutrosophic environments. In Section 5, an illustrative example about the 
selection problem of investment alternatives is provided to demonstrate the applications and 
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effectiveness of the proposed MADM method with normal neutrosophic information. Conclusions 
and future work are contained in Section 6. 

2. Some Basic Concepts of NIFNs and NNSs 

Yang and Ko [4] defined an NFN to express the normal fuzzy information in random fuzzy 
situations. 

For a real number set X, if the membership function satisfies the form 

( )2

( ) e
x

N x
μ

σ
−−

=  (1) 

then N(x) is called NFN, where μ is the mean or expectation of the distribution (and its median and 
mode) and σ is standard deviation. Then, this NFN is symmetric around x = μ , denoted by N(μ, σ).  

Based on the combination of an IFN and an NFN, Wang et al. [8] defined an NIFN A = <x| N(μ, 
σ), tA(x), vA(x)>, where its membership function is expressed as 

( )2

( ) e ,    X
x

A At x t x
−−

= ∈
μ

σ   

and its non-membership function is expressed as 

( )2

( ) 1 (1 )e ,    X
x

A Av x v x
−−

= − − ∈
μ

σ  
 

where tA and vA are a membership degree and a non-membership degree in an IFN and satisfy tA, vA 
∈ [0,1], and 0 ≤ tA + vA ≤ 1. 

To express indeterminate and inconsistent information in the real world, Smarandache [9] 
introduced a concept of a neutrosophic set from a philosophical point of view. A neutrosophic set B 
in a universe of discourse X can be described independently by its truth, indeterminacy, and falsity 
membership functions tB(x), uB(x), and vB(x) in real standard interval [0,1] or nonstandard interval ]−0, 
1+[, such that tB(x): X → ]−0, 1+[, uB(x): X → ]−0, 1+[, vB(x): U → ]−0, 1+[, and −0 ≤ sup tB(x) + sup uB(x) + 
sup vB(x) ≤ 3+ for x ∈ X.  

However, when the three membership functions in the neutrosophic set lie in the nonstandard 
interval ]−0, 1+[, the neutrosophic set shows the difficulty of its actual applications. Thus, 
Smarandache [9] and Wang et al. [10] introduced the concept of an SVNS as a subclass of the 
neutrosophic set when the three membership functions in the neutrosophic set are constrained in the 
real standard interval [0,1]. 

Definition 1. [9,10]. Let X be a universe of discourse. An SVNS S in X is described independently by its truth, 
indeterminacy, and falsity membership functions tS(x), uS(x), and vS(x), where tS(x), uS(x), vS(x) ∈ [0,1], and 0 
≤ tS(x) + uS(x) + vS(x) ≤ 3 for x ∈ X. Then, the SVNS S can be denoted as. { }, ( ), ( ), ( ) :S S SS x t x u x v x x X= ∈ . 

For convenience, a basic element , ( ), ( ), ( )S S Sx t x u x v x  in S is denoted by s = <t, u, v> for 

short, which is called an SVNN. 
As an extension of NIFN, Liu and Teng [11] and Liu and Li [12] presented a concept of NNS 

based on the combination of NFN and SVNN. 

Definition 2. [11,12]. Let X be a finite non-empty set and N(μ, σ) be a normal distribution function. An NNS 
is defined as  

{ }| ( , ), ( ( ), ( ), ( )) :P P P P PP x N t x u x v x x Xμ σ= ∈  (2) 

where the three functions tP(x), uP(x), and vP(x) for x ∈ X satisfy the following properties: 

( )2

( ) e
x

P Pt x t
μ

σ
−−

=   
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( )2

( ) 1 (1 )e
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P Pu x u
μ

σ
−−

= − −   

( )2

( ) 1 (1 )e
x

P Pv x v
μ

σ
−−

= − −   

0 ≤ tP(x) + uP(x) + vP(x) ≤ 1  

and tp, up, and vp are the truth, indeterminacy, and falsity degrees in the SVNN, respectively, and satisfy tp, 
up, and vp ∈ [0,1] and 0 ≤ tp + up + vp ≤ 3. 

Then, an NNN (a basic element) in the NNS P is denoted by p = <N(μ, σ), (t, u, v)> for 
convenience, where t, u, and v are the truth, indeterminacy, and falsity degrees, respectively, in the 
SVNN (t, u, v) and satisfy t, u, v ∈ [0,1] and 0 ≤ t + u + v ≤ 3. 

Definition 3. [12]. Let p = <N(μ, σ), (t, u, v)> be an NNN. Then, its score functions are defined as 

1

2

( ) (2 ),
( ) (2 ).

S p t u v
S p t u v

μ
σ

= + − −
= + − −

 (3) 

3. Correlation Coefficients between NNSs 

Based on the score functions of NNNs in Definition 3, we can give the definitions of the 
correlation and correlation coefficients between NNSs under normal neutrosophic environments. 

Definition 4. Let two NNSs be P = {p1, p2, …, pn} and Q = {q1, q2, …, qn}, where pj = <N(μpj, σpj), (tpj, upj, vpj)> 
and qj = <N(μqj, σqj), (tqj, uqj, vqj)> for j = 1, 2, …, n are NNNs in P and Q. The correlation between two NNSs P 
and Q is defined as 

1

( , ) (2 )(2 )( )
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C P Q t u v t u v μ μ σ σ
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 = + − − + − − +   (4) 

Thus, based on the correlation between two NNSs P and Q, we can introduce the definition of 
the following correlation coefficients between two NNSs P and Q. 

Definition 5. Let two NNSs be P = {p1, p2, …, pn} and Q = {q1, q2, …, qn}, where pj = <N(μpj, σpj), (tpj, upj, vpj)> 
and qj = <N(μqj, σqj), (tqj, uqj, vqj)> for j = 1, 2, …, n are NNNs in P and Q. The correlation coefficients between 
two NNSs P and Q are defined as 
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Proposition 1. The correlation coefficients of ρk(P, Q) (k = 1, 2) satisfy the following properties: 
1. 0 ≤ ρk(P, Q) ≤ 1; 
2. ρk(P, Q) = 1 if P = Q, i.e., N(μpj, σpj) = N(μqj, σqj) and (tpj, upj, vpj) = (tqj, uqj, vqj); 
3. ρk(P, Q) = ρk(Q, P). 

Proof. 
Firstly, we prove that the correlation coefficient of ρ1(P, Q) satisfies the properties (1)–(3). 
The inequality ρ1(P, Q) ≥ 0 is obvious. Then, we only prove ρ1(P, Q) ≤ 1. 
Based on the Cauchy–Schwarz inequality: 

( ) ( ) ( )2 2 2 2 2 2 2
1 1 2 2 1 2 1 2n n n nx y x y x y x x x y y y+ + + ≤ + + × + +     

where (x1, x2, …, xn) ∈ Rn and (y1, y2, …, yn) ∈ Rn, we can yield the following inequality: 

( ) ( ) ( )2 2 2 2 2 2
1 1 2 2 1 2 1 2n n n nx y x y x y x x x y y y+ + + ≤ + + × + +     

Corresponding to the above inequality and the definition of correlations coefficients in 
Definition 3, we have the following inequality: 

1 1

2 2 2

1 1

(2 ) (2 ) (2 ) (2 ) )  

(2 ) (2 ) (2 ) (2 )

n n

pj pj pj pj qj qj qj qj pj pj pj pj qj qj qj qj
j j

n n

pj pj pj pj pj pj pj pj qj qj qj qj qj qj qj qj
j j

t u v t u v t u v t u v

t u v t u v t u v t u v

= =

= =

   + − − × + − − + + − − × + − − ≤   

       + − − + + − − × + − − + + − −       

 

 

μ μ σ σ

μ σ μ σ
2

1 1

n n

j j= =
 

 
 

Hence, there is the following result: 
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Based on Equation (5), we have ρ1(P, Q) ≤ 1. Hence, 0 ≤ ρ1(P, Q) ≤ 1 holds. 
(2) P = Q  N(μpj, σpj) = N(μqj, σqj) and (tpj, upj, vpj) = (tqj, uqj, vqj)  μpj = μqj, σpj = σqj, tpj = tqj, upj = uqj, 

and vpj = vqj for j = 1, 2, …, n  ρ1(P, Q) = 1. 
(3) It is straightforward.  
Secondly, we prove that the correlation coefficient of ρ2(P, Q) satisfies the properties (1)–(3). 
By the similar proof manner of the properties (1)–(3) of ρ1(P, Q), we can prove the properties 

(1)–(3) of ρ2(P, Q). It is not repeated here. 
Therefore, we complete these proofs.  
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When the weight of the elements pj and qj (j = 1, 2, . . . , n) is taken into account, w = {w1, w2, . . . , 
wn} is given as the weight vector of the elements pj and qj (j = 1, 2, . . . , n) with wj ∈ [0,1] and 

1
1n

jj
w

=
= . Then, we have the following weighted correlation coefficients of NNSs: 
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(8) 

Proposition 2. The weighted correlation coefficients of ρkw(P, Q) (k = 1, 2) also satisfy the following properties: 
1. 0 ≤ ρkw(P, Q) ≤ 1; 
2. ρkw(P, Q) = 1 if and only if P = Q, i.e., N(μpj, σpj) = N(μqj, σqj) and (tpj, upj, vpj) = (tqj, uqj, vqj); 
3. ρkw(P, Q) = ρkw(Q, P). 

By the similar proofs of the properties in Proposition 1, we can prove the ones in Proposition 2. 

They are not repeated here. 

Especially when w = {1/n, 1/n, . . . , 1/n}, Equations (7) and (8) are reduced to Equations (5) and (6). 

4. The MADM Method Using the Correlation Coefficients of NNSs 

In this section, we present a handling method for the MADM problems with normal 
neutrosophic information by means of the weighted correlation coefficients between NNSs. 

In an MADM problem with normal neutrosophic information, assume that P = {P1, P2, …, Pm} is 
a set of m alternatives and R = {R1, R2, …, Rn} is a set of n attributes. The weight vector of the attributes 

is given as w = (w1, w2, …, wn) satisfying wj ∈ [0,1] and 
1

1n
jj
w

=
= . Then, the average value μij and 

standard derivation σij in the normal distribution N(μij, σij) are obtained by the statistical analysis of 
data corresponding to the alternative Pi (i = 1, 2, …, m) over the attribute Rj (j = 1, 2, …, n), while the 
evaluation values of SVNNs corresponding to the alternative Pi (i = 1, 2, …, m) over the attribute Rj (j 
= 1, 2, …, n) are given by decision-makers. Based on the obtained NNNs pij = <N(μij, σij), (tij, uij, vij)> (i 
= 1, 2, …, m; j = 1, 2, …, n), we can yield the normal neutrosophic decision matrix M(pij)m×n: 

11 11 11 11 11 12 12 12 12 12 1 1 1 1 1

21 21 21 21 21 22 22 22 22 22 2 2 2 2 2

1 1 1 1 1 2 2 2

( , ), ( , , ) ( , ), ( , , ) ( , ), ( , , )
( , ), ( , , ( , ), ( , , ) ( , ), ( , , )
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n n n n n

n n n n n
ij m n

m m m m m m m m
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N t u v N t u v N t u v
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μ σ μ σ μ σ
μ σ μ σ μ σ

μ σ μ σ
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


   

2 2, ) ( , ), ( , , )m m mn mn mn mn mnv N t u vμ σ

 
 
 
 
 
  

 
 

In MADM problems, the concept of the ideal point has been used to help the identification of 
the best alternative in the decision set. It does provide a useful method to evaluate alternatives [13]. 
However, there are two types of attributes, i.e., benefit type and cost type, in decision-making 
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problems. Hence, we firstly need to determinate an ideal solution/alternative (an ideal NNS) 
corresponding to the benefit type and cost type of attributes. Then, by correlation coefficient values 
between each alternative (each evaluated NNS) and the ideal alternative (the ideal NNS), the 
ranking order of alternatives and the best one are given in the normal neutrosophic 
decision-making process. 

Thus, we use the developed method to deal with the MADM problem with normal 
neutrosophic information, which is described by the following procedures: 

Step 1: Establish an ideal solution (an ideal alternative) * * * *
1 2{ , ,..., }nP p p p=  by the ideal NNN 

( ) ( )* max( ), min( ) , max( ), min( ), min( )j ij ij ij ij iji i ii i
p N m t u vσ=  corresponding to the benefit type of attributes 

and ( )* min( ),min( ) , min( ),max( ),max( )j ij ij ij ij iji i i ii
p N m t u vσ  =  

 
 corresponding to the cost type of 

attributes. 
Step 2: Calculate the weighted correlation coefficients between an alternative Pi (i = 1, 2, …, m) 

and the ideal solution P* by using Equation (7) or Equation (8) and obtain the values of ρ1w(Pi, P*) or 
ρ2w(Pi, P*) (i = 1, 2, …, m). 

Step 3: Rank the alternatives in a descending order corresponding to the weighted correlation 
coefficient values and select the best one(s) according to the bigger value of ρ1w(Pi, P*) or ρ2w(Pi, P*). 

Step 4: End. 

5. Illustrative Example 

For convenient comparison, an illustrative example about the selection problem of investment 
alternatives adopted from [18] is provided to demonstrate the applications and effectiveness of the 
proposed MADM method with normal neutrosophic information.  

An investment company wants to invest a sum of money to the best industry. Then, four 
possible alternatives are considered as four potential industries: (1) P1 is a car company; (2) P2 is a 
food company; (3) P3 is a computer company; (4) P4 is an arms company. In the decision-making 
process, the four possible alternatives must satisfy the requirements of the three attributes: (1) R1 is 
the risk; (2) R2 is the growth; (3) R3 is the environment, where the attributes R1 and R2 are benefit 
types and the attribute R3 is a cost type. Assume that the weighting vector of the attributes is given 
by w = (0.35, 0.25, 0.4). By the statistical analysis and the evaluation of investment data regarding 
the four possible alternatives of Pi (i = 1, 2, 3, 4) over the three attributes of Rj (j = 1, 2, 3), we can 
establish the following NNN decision matrix [18]: 

4 3

(3,0.4), (0.4,0.2,0.3) (7,0.6), (0.4,0.1,0.2) (5,0.4), (0.7,0.2,0.4)
(4,0.2), (0.6,0.1,0.2) (8,0.4), (0.6,0.1,0.2) (6,0.7), (0.3,0.5,0.8)

( )
(3.5,0.3), (0.3,0.2,0.3) (6,0.2), (0.5,0.2,0.3) (5.5,0.6), (ij

N N N
N N N

M p
N N N× =

0.4,0.2,0.7)
(5,0.5), (0.7,0.1,0.2) (7,0.5), (0.6,0.1,0.1) (4.5,0.5), (0.6,0.3,0.8)N N N

 
 
 
 
 
  

 
 

Then, we use Equation (7) to deal with the MADM problem with normal neutrosophic 
information, which is described by the following procedures: 

Step 1: Establish an ideal solution (an ideal alternative) * * * *
1 2{ , ,..., }nP p p p=  expressed by the 

ideal NNS ( ) ( ) ( ){ }* 5,0.2 , (0.7,0.1,0.2) , 8,0.2 , (0.6,0.1,0.1) , 4.5,0.4 , (0.3,0.5,0.8)P N N N=  

corresponding to the benefit types and cost types of attributes. 
Step 2: Calculate the weighted correlation coefficient between the alternative P1 and the ideal 

solution P* by using Equation (7) as follows: 
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{ }
* * * * *1 1 1 1 1

1 1 1 1 1 1 1 1

* * * * * * * *

3

1*
1 1 3 2 2

1

2

(2 )(2 )( )
( , )

(2 ) (2 )

(2 ) (2 )

j j j j jj j j j j

j j j j j j j j

j j j j j j j j

j p p p p pp p p p p
j

w

j p P p p p p p p
j

j p p p p p p p p

w t u v t u v
P P

w t u v t u v

w t u v t u v

μ μ σ σ
ρ

μ σ

μ σ

=

=

 + − − + − − +  
=

   + − − + + − −   

   × + − − + + − −    




3 2

1

0.35 [(2 0.4 0.2 0.3) (2 0.7 0.1 0.2) (3 5 0.4 0.2)]
0.25 [(2 0.4 0.1 0.2) (2 0.6 0.1 0.1) (7 8 0.6 0.2)]
0.4 [(2 0.7 0.2 0.4) (2 0.3 0.5 0.8) (5 4.5 0.4 0.4)]

0.

j=

 
 
 
 

  
    

× + − − × + − − × × + × 
 + × + − − × + − − × × + × 
 + × + − − × + − − × × + × =



2 2

2 2

2 2

2 2

35 {[(2 0.4 0.2 0.3) 3] [(2 0.4 0.2 0.3) 0.4] }
0.25 {[(2 0.4 0.1 0.2) 7] [(2 0.4 0.1 0.2) 0.6] }
0.4 {[(2 0.7 0.2 0.4) 5] [(2 0.7 0.2 0.4) 0.4] }

0.35 {[(2 0.7 0.1 0.2) 5] [(2 0.7 0.1 0.2) 0.2] }

× + − − × + + − − ×
+ × + − − × + + − − ×
+ × + − − × + + − − ×

× + − − × + + − − ×
× 2 2

2 2

0.25 {[(2 0.6 0.1 0.1) 8] [(2 0.6 0.1 0.1) 0.2] }
0.4 {[(2 0.3 0.5 0.8) 4.5] [(2 0.3 0.5 0.8) 0.4] }

0.8820.

 
 
 
 
 
 
 
 + × + − − × + + − − × 
 + × + − − × + + − − × 

=  

 

By similar calculations, the weighted correlation coefficients between each alternative Pi (i = 2, 3, 
4) and the ideal solution P* can be given as the following values of ρ1w(Pi, P*) (i = 2, 3, 4): 

ρ1w(P2, P*) = 0.9891, ρ1w(P3, P*) = 0.9169, and ρ1w(P4, P*) = 0.9875. 
Step 3: According to the values of ρ1w(Pi, P*) (i = 1, 2, 3, 4), the ranking order of the alternatives is 

P2 > P4 > P3 > P1 and the best one is P2. These results are the same as in [18]. 
We could also use Equation (8) to deal with the MADM problem with normal neutrosophic 

information, which is described by the following steps: 
Step 1’: The same as Step 1. 
Step 2’: Calculate the weighted correlation coefficient between the alternative P1 and the ideal 

solution P* by using Equation (8) as follows: 

{ }
* * * * *1 1 1 1 1

1 1 1 1 1 1 1 1

* * * * * * * *

3

1*
2 1 3 2 2

1

2

(2 )(2 )( )
( , )

(2 ) (2 ) ,
max

(2 ) (2 )

j j j j jj j j j j

j j j j j j j j

j j j j j j j j

j p p p p pp p p p p
j

w

j p P p p p p p p
j

j p p p p p p p p

w t u v t u v
P P

w t u v t u v

w t u v t u v

μ μ σ σ
ρ

μ σ

μ σ

=

=

 + − − + − − +  
=

   + − − + + − −   

  + − − + + − −  




3 2

1

0.35 [(2 0.4 0.2 0.3) (2 0.7 0.1 0.2) (3 5 0.4 0.2)]
0.25 [(2 0.4 0.1 0.2) (2 0.6 0.1 0.1) (7 8 0.6 0.2)]
0.4 [(2 0.7 0.2 0.4) (2 0.3 0.5 0.8) (5 4.5 0.4 0.4)]

j=

 
 
 
 

        
× + − − × + − − × × + × 

 + × + − − × + − − × × + × 
+ × + − − × + − − × × + × =



2 2

2 2

2 2

2

0.35 {[(2 0.4 0.2 0.3) 3] [(2 0.4 0.2 0.3) 0.4] }
0.25 {[(2 0.4 0.1 0.2) 7] [(2 0.4 0.1 0.2) 0.6] } ,
0.4 {[(2 0.7 0.2 0.4) 5] [(2 0.7 0.2 0.4) 0.4] }

max
0.35 {[(2 0.7 0.1 0.2) 5] [(2 0.7



 × + − − × + + − − ×
 

+ × + − − × + + − − × 
 + × + − − × + + − − × 

× + − − × + + 2

2 2

2 2

0.1 0.2) 0.2] }
0.25 {[(2 0.6 0.1 0.1) 8] [(2 0.6 0.1 0.1) 0.2] }
0.4 {[(2 0.3 0.5 0.8) 4.5] [(2 0.3 0.5 0.8) 0.4] }

0.7544.

 
 
 
 
 
 
 − − × 
  + × + − − × + + − − ×  
  + × + − − × + + − − ×  

=
 

 

By similar calculations, the weighted correlation coefficients between each alternative Pi (i = 2, 
3, 4) and the ideal solution P* can be given as the following values of ρ2w(Pi, P*) (i = 2, 3, 4): 
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ρ2w(P2, P*) = 0.9151, ρ2w(P3, P*) = 0.6575, and ρ2w(P4, P*) = 0.9522. 
Step 3’: According to the values of ρ2w(Pi, P*) (i = 1, 2, 3, 4), the ranking order of the alternatives is 

P4 > P2 > P1 > P3, and the best one is P4. These results also are the same as in [18]. 
Obviously, the above two ranking orders are different corresponding to different correlation 

coefficients for this decision-making problem; these results are thus in accordance with the ones in 
[18]. Hence, the proposed normal neutrosophic decision-making method based on the correlation 
coefficients illustrates its feasibility and effectiveness. Compared with existing decision-making 
methods based on aggregation operators of NNNs, the proposed decision-making method based on 
the correlation coefficients of NNSs shows that it is simpler to employ than existing normal 
neutrosophic decision-making methods in [18–20] under normal neutrosophic environments 
because the decision-making method proposed in this paper implies its simple algorithms and 
decision steps in the normal neutrosophic decision-making problems.  

From the decision results of the illustrative example, we see that different correlation 
coefficients used in the decision-making problem can result in different ranking orders and selecting 
alternatives. Hence, the decision-maker can select one of both corresponding to his/her preference or 
actual requirements. 

6. Conclusions 

To simplify the complex decision-making process/steps and algorithms of existing normal 
neutrosophic decision-making methods in [18–20], this paper proposed two correlation coefficients 
between NNSs based on the score functions of NNNs under normal neutrosophic environments. 
Then, we developed an MADM method with normal neutrosophic information by using the 
correlation coefficients of NNSs under normal neutrosophic environments. An illustrative example 
about the selection problem of investment alternatives was provided to demonstrate the 
applications and effectiveness of the proposed MADM method under normal neutrosophic 
environments. 

The main advantages of this study are (1) the evaluation information expressed by NNNs is 
relatively more reasonable and more realistic than the evaluation information expressed by general 
neutrosophic numbers in the decision-making process; (2) the proposed decision-making method 
based on the correlation coefficients of NNSs is simpler to employ than existing ones based on 
aggregation operators of NNNs in the normal neutrosophic decision-making algorithms; (3) the 
proposed decision-making method with NNNs contains much more information and shows its 
rationality and reality, while the existing decision-making methods with single neutrosophic 
information may lose some useful evaluation information of attributes in the decision-making 
process. 

In future work, the study about new similarity measures of NNSs and applications in science 
and engineering fields are necessary and significant because the applications of the normal 
distribution widely exist in many domains. 
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