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Abstract: To characterize the influence of decision makers’ psychological factors on the group decision
process, this paper develops a new class of aggregation operators based on reference-dependent utility
functions (RUs) in multi-attribute group decision analysis. We consider two types of RUs: S-shaped,
representing decision makers who are risk-seeking for relative losses, and non-S-shaped, representing
those that are risk-averse for relative losses. Based on these RUs, we establish two new classes of
reference-dependent aggregation operators; we study their properties and show that their generality
covers a number of existing aggregation operators. To determine the optimal weights for these
aggregation operators, we construct an attribute deviation weight model and a decision maker (DM)
deviation weight model. Furthermore, we develop a new multi-attribute group decision-making
(MAGDM) approach based on these RU aggregation operators and weight models. Finally, numerical
examples are given to illustrate the application of the approach.

Keywords: group decision-making; decision analysis; aggregation operator; reference-dependent;
utility theory

1. Introduction

As an important part of modern decision-making science, multi-attribute group decision-making
(MAGDM) has been applied with enormous success to various fields such as strategic planning,
portfolio selection, medical diagnosis, and military system evaluation [1,2]. To better understand
the procedure for solving MAGDM problems, we develop a general framework for the MAGDM
aggregation procedure (see Figure 1) which contains two stages: (1) individual aggregation, which is
a multi-attribute decision-making process for each decision maker (DM) composed by multiple
attributes and multiple alternatives; and (2) group aggregation, which is a decision-making process
composed of multiple experts and multiple alternatives. In both stages, developing efficient
aggregation methods and determining the optimal weights for aggregation operators are two key steps.

Methods developed for aggregating information can be classified into three types. The first is
the weighted-average method, which aggregates the information by using different importance
degrees of the arguments [3,4]. The second is the probabilistic aggregation method, which unifies the
ordered weighted averaging (OWA) operator and the corresponding probabilities by incorporating the
importance degree of each case in the aggregation process [5,6]. The third is the deviation aggregation
method, which minimizes the deviation between the aggregation result and evaluation information
characterized by distance metrics or penalty functions [7,8].

Reference-dependent utility function to characterize psychological factors. There is a consensus
that the psychological factors of the DM, such as reference wealth [9], cognitive elements [10]
and the behavior towards risk [11], play important roles in decision analysis. Nevertheless,
the aforementioned aggregation methods fail to capture the psychological character of DMs in the
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aggregation process. In this paper, we attempt to partially fill this gap by modeling psychological
factors via reference-dependent utility functions (RUs). The most famous RU is the value function of
Prospect theory [12,13], which involves a basic utility function, loss aversion coefficient and a reference
outcome. This is the fundamental framework of RUs.
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Figure 1. A general framework for the multi-attribute group decision-making (MAGDM) aggregation
procedure. DM: decision maker.

We build the multi-attribute aggregation operators upon two types of RUs: an S-shaped RU [9,14]
and a non-S-shaped RU [11,15]. The S-shaped RU describes the risk attitude of a DM who is risk-averse
for relative gains (with a concave function above the reference point) and risk-seeking for relative losses
(with a convex function below the reference point), as can be seen in Figure 2. On the other hand, the
non-S-shaped RU maintains concavity regardless of the value of outcomes (either above or below the
reference point), indicating risk-aversion for both gains and losses (see Figure 3). How to choose an RU
depends on the DM’s psychological standpoint: if the DM views relative losses as distorted positive
(negative) outcomes, then his/her attitude tends to be risk-averse (risk-seeking) [16]. Although RUs
have been widely applied to behavioral models of decision-making in economics and finance [17,18],
to the best of our knowledge, there is little research of RU-based MAGDM aggregation methods.

Weight models of attributes and decision makers. Another crucial step in the application of
aggregation operators to MAGDM is to determine the associated weights for both attributes and DMs
(see, Figure 1). Relevant methods include the minimum variance method [19], minimum dispersion
method [20], minimum chi-square method [21], minimum disparity method [22], and maximum
Bayesian entropy method [23]. An unresolved issue in the aforementioned methods is how to factor
the influence of input arguments in the process of determining weights. In practice, an attribute
with similar attribute values across most alternatives is deemed less important, so it should be
assigned a smaller weight; on the other hand, an attribute with values fluctuating across alternatives is
considered more important, it then should be assigned a larger weight.

The weights of DMs also play an important role in the aggregation process. Many researchers
directly apply attribute weight models to compute the weights of DMs, such as the minimum variance
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method [19], minimum chi-square method [21], minimizing distances from the extreme points (MDP)
method [24], voting method [25] and improved minimax disparity method [26]. However, the common
disadvantage of the above approaches is that the high subjectivity of DMs may cause inaccuracy,
sometimes leading to biased decision results.

V(x)

xb

Risk averse in

gain dimension

Risk seeking in

loss dimension

Reference point

Figure 2. An S-Shaped Reference-Dependent Utility Function.

bx

u(b)

u(x)

u(x)- [u(b)-u(x)]

Figure 3. A non-S-shaped reference-dependent utility function (here u(x) =
√

x + 1 for x ≥ 0
and θ = 1).

We aim to resolve the above issues by developing two new optimization weight models. On the
one hand, our model considers the impact of the attribute variation across the alternatives on choosing
the optimal alternative; we will assign a relatively larger (smaller) weight to an attribute having a larger
(smaller) variation across the alternatives. On the other hand, we try to achieve a fairly small deviation
among the weights to maintain fairness.

Our contributions. We summarize our contributions in three directions.

(1) To investigate the impact of DMs psychological factors on the decision-making result, we propose
for the first time two new operators based on RUs: the S-shaped and non-S-shaped operators.
The DM can choose different RU operators to get the result according to his/her attitude toward
the relative losses. To be specific, if the attitude of the DM is risk-seeking for relative losses,
he/she can use the S-shaped operators (see Equation (11)) to select the optimal alternative. If the
attitude of the DM is risk-averse for relative losses, he/she can apply the non-S-shaped operators
(see, Equation (16)) in the decision-making process. If the attitude of a DM is risk-neutral,
he/she can make decisions via the generalized ordered weighted multiple averaging (GOWMA)
operator (see, Equation (18)) which is degenerated by the non-S-shaped operator. The main
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advantage of the RU operators is that they not only reflect the psychological character of the
DM while the aforementioned aggregation methods fail to capture in the aggregation process,
but also generate a family of aggregation operators by taking different parameters. Specifically,
the RU operators can degenerate to the existing aggregation operators (see Tables A1–A3 in
Appendix A.3), which can be seen as the particular case of the RU operators.

(2) To determine the associated weights for the multiple attributes and DMs, we propose an attribute-
deviation weight model and a DMs-deviation weight model (see, models (19) and (20)). Going
beyond the framework of existing weight models which ignored the dependence on the attribute
variation (deviation), our new weight models consider the variations impacts of the attribute
values on the determination of the weight in aggregation process. In addition, the attributes
weights and the DMs weights are calculated by using attribute-deviation and DM-deviation
models respectively, while the most research uses the same model to determine the associated
weights for both attributes and DMs, sometimes leading to biased decision results.

(3) We develop a new approach for MAGDM based on the RU operators and the weight models.
In addition, the numerical examples are given to illustrate the application of the approach.
Two novel findings emerge from the numerical analysis in Section 6. First, the optimal alternative
will change to a relatively prudent alternative with the absolute risk aversion coefficient
increasing. Second, the optimal alternative changes to a relatively risky one with the reference
point (or, loss aversion coefficient) increasing.

The rest of the paper is organized as follows. Under the general frameworks of S-shaped RU,
Section 2 derives the S-shaped operators for the DM whose attitude is risk-seeking for relative losses.
As for the specific S-shaped RU, we focus on prospect value function and S-shaped hyperbolic absolute
risk aversion function respectively and develop their corresponding aggregation operators. Under the
general frameworks of non-S-shaped RU, Section 3 proposes the non-S-shaped operators for the DM
whose attitude is risk-averse for relative losses. As for the specific non-S-shaped RU, we focus on
non-S-shaped hyperbolic absolute risk aversion function and develop its corresponding aggregation
operators. In Section 4, we construct two new nonlinear optimization weight models by applying
the deviation measure method. The approach is summarized through six steps in Section 5 and its
superiority is tested via numerical examples in Section 6. In the end, the conclusions are drawn in
Section 7, and all proofs are given in the E-companion.

2. Aggregation Operators for Risk-Seeking DMs Regarding Relative Losses

2.1. General Framework

According to Prospect theory, the risk attitude of DMs for relative gains (outcomes above the
reference point) is risk-averse whereas it tends to be risk-seeking for relative losses (outcomes below
the reference point) [10,12,13]. Consequently, the utility function capturing DMs psychological
effects is S-shaped; it is concave (convex) when the outcome is above (below) the reference point,
as shown in Figure 2 (the curve is derived from utility Function (10) with β = β1 = 7, η = η1 = 2,
γ = γ1 = 0.55 and θ1 = 1.5). In this section, we study S-shaped RUs and develop their corresponding
aggregation operators. In general, an S-shaped RU is given by:

v(x) =

{
v1(x), x ≥ b
−v2(x), x < b

(1)

where v1(x) > 0 and v2(x) > 0. Let v1 be the basic utility function, that is, v(x) = v1(x) if there is no
reference point. The utility v(x) satisfies the following conditions:

(1) v is strictly increasing;
(2) v is convex for x < b and concave for x > b;
(3) v is asymmetry for x > b: v(x− b) < −v(b− x);
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(4) v′(x− b) < v′(b− x) for all x > b, and v(b) = 0.

In the decision-making process, attribute values below (above) the reference point can be viewed
as relative losses (gains). We next specify our S-shaped RUs. Let x = (x1, x2, · · · , xn) be a collection of
input arguments and w = (w1, w2, · · · , wn) be a weight vector satisfying:

n

∑
i=1

wi = 1 and wi > 0 for 1 ≤ i ≤ n. (2)

An n-dimensional S-shaped RU aggregation operator mapping f is determined by:

v1(z) = f (v(x1), v(x2), · · · , v(xn)), (3)

where v(x) is an S-shaped RU and z is the aggregation result. Since the aggregation result z has no
reference point, we use the basic utility function v1 (rather than piecewise utility function v) to denote
the utility of the aggregation result z. In order to obtain effective aggregation results, we aim to achieve
the least variation in v1(z) across all outcomes, that is, we intend to minimize the weighted sum of
deviations between the aggregation result v1(z) and the value of each input v(xi):

min
n

∑
i=1

wid(v1(z), v(xi)) (4)

where d(v1(z), v(xi)) is a deviation metric measuring the deviation between v(xi) and v1(z).
Based on the penalty function theory, there are three deviation measures [8,27], i.e.,

d1(v1(z), v(xi)) =

(
v(xi)

v1(z)

)λ

+

(
v1(z)
v(xi)

)λ

− 2,

d2(v1(z), v(xi)) =

(
1−

(
v(xi)

v1(z)

)λ
)2

,

d3(v1(z), v(xi)) = (vλ
1 (z)− vλ(xi))

2,

where λ is a parameter satisfying λ ∈ (−∞, 0)
⋃
(0,+∞). First-order condition (matching the derivative

with respect to z to 0) of the objective function in model (4) yields the following three operators:
(1) multiple-reference-dependent aggregation (MR) operator; (2) proportional-reference-dependent
aggregation (PR) operator; and (3) subtract-reference-dependent aggregation (SR) operator. See Table 1
for the detailed formulas of these three operators.

Table 1. Reference-dependent aggregation operators based on three deviation metrics. MR: multiple-
reference-dependent aggregation; PR: proportional-reference-dependent aggregation; SR: subtract-
reference-dependent aggregation.

Operator d(v1(z), v(xi)) z

MR
vλ(xi)

vλ
1 (z)

+
vλ

1 (z)
vλ(xi)

− 2 v−1
1

((
n
∑

i=1
wivλ(xi)

/
n
∑

i=1

(
wi

/
vλ(xi)

))1/2λ
)

PR

(
1− vλ(xi)

vλ
1 (z)

)2

v−1
1

((
n
∑

i=1
wiv2λ(xi)

/
n
∑

i=1
wivλ(xi)

)1/λ
)

SR (vλ
1 (z)− vλ(xi))

2 v−1
1

((
n
∑

i=1
wivλ(xi)

)1/λ
)

Without loss of generality, we focus on the MR operator throughout the rest of this paper;
the other two operators in Table 1 can be derived by the similar method. For a given vector x,
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let y = (y1, y2, · · · , yn) be the ordered version of x, that is, yi is the ith largest of the argument
of x = (x1, x2, · · · , xn). In the following we propose a new S-shaped ordered multiple reference-
dependent aggregation operator.

Definition 1. An n-dimensional S-shaped ordered multiple reference-dependent aggregation (SOMR) operator
is a mapping of SOMR: R+n → R+ defined below:

SOMR(x) = v−1
1

((∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))1/2λ
 , (5)

where the two sets are:

Y1 = {1 ≤ i ≤ n, yi ≥ bi} , Y2 = {1 ≤ i ≤ n, yi < bi} , (6)

and bi is a reference point of yi (i.e., the reference point of the ith largest xi), the weight vector w satisfies
Expression (2), and λ > 0 is an odd number which ensures that the inverse function is well-defined (i.e.,
uniquely determined).

The following proposition shows that the SOMR operator is monotonic, bounded, commutative,
idempotent, thus satisfying common properties of aggregation operators [6]. The proofs of these
properties are given in Appendix A.1.

Proposition 1 (Properties of SOMR). The SOMR operator given in Definition 1 satisfies the
following properties:

(1) (Monotonicity) For two vectors x and x with xi ≥ xi and the same reference points,
then SOMR(x) ≥ SOMR(x).

(2) (Boundedness) If b1 ≤ y1 = max
i
{xi} and bn > yn = min

i
{xi}, then v−1

1 (v2(yn)) ≤ SOMR(x) ≤ y1.

(3) (Commutativity) If x̂ is a permutation of x, then SOMR(x) = SOMR(x̂).
(4) (Idempotency) If xi = x ≥ x0 for all 1 ≤ i ≤ n, then SOMR(x) = x.

2.2. Prospect Reference-Dependent Aggregation Operator

A commonly used RU in decision analysis is the prospect value function [10], which has the
following form:

v(x) =

{
v1(x) = (x− b)α0 , x ≥ b
−v2(x) = −θ0(b− x)β0 , x < b

(7)

where 0 < α0, β0 < 1, and θ0 > 1 is the loss aversion coefficient. Introducing prospect value
Function (7) in Equation (5), we derive the following prospect ordered multiple reference-dependent
aggregation operator.

Definition 2. An n-dimensional prospect ordered multiple reference-dependent aggregation (POMR) operator
is a mapping of POMR: R+n → R+

POMR(x) =

((
∑

i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))1/2λα0

, (8)

where y = (y1, y2, · · · , yn) is the ordered version of x, v1(yi) and v2(yi) are given in prospect value
Function (7), and Y1 and Y2 are given by Set (6).
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Taking special values of the parameters λ, α0, β0, θ0 and bi, the POMR operator degenerates to
many different aggregation operators including ordered multiple reference-dependent (OMR) operator,
GOWMA operator [8], prospect ordered multiple geometric (POMG) operator, ordered weighted
multiple averaging (OWMA) operator [8], etc. (see, Table A1 in Appendix A.3).

We note that the power-utility structure of prospect value function is a function with a constant
relative risk aversion (CRRA). However, empirical studies suggest that risk aversion among
individuals is not an exact constant, which is referred to as constant absolute risk aversion
(CARA) [28]. This motivates us to further consider a more general SOMR operator (extending the
power-utility structure).

2.3. S-Shaped Hyperbolic Absolute Risk Aversion (HARA) Reference-Dependent Aggregation Operator

Grasselli [29] and Jung & Kim [30] introduced the hyperbolic absolute risk aversion utility function:

u(x) =
1− γ

βγ

(
β

1− γ
x + η

)γ

, (9)

where β > 0, η > 0 and γ ∈ (−∞, 0) ∪ (0, 1) (for more discussions on the parameters, cf. [28,31]).
The general structure of HARA enables it to cover a rich class of operators by suitable adjustment

of the parameters. For instance, special cases of HARA include the power utility function when
β = 1 − γ and η = 0, exponential utility function when η = 1 and γ → −∞, and logarithm
utility function when η = γ = 0 and β = 1. In this subsection we introduce an S-shaped HARA
reference-dependent utility function and develop its corresponding aggregation operator.

We generalize the HARA utility Function (9) to the following S-shaped HARA RU:

v(x) =


v1(x) =

1− γ

βγ

((
β

1− γ
(x− b) + η

)γ

− ηγ

)
, x ≥ b

−v2(x) = − θ1(1− γ1)

β1γ1

((
β1

1− γ1
(b− x) + η1

)γ1

− η
γ1
1

)
, x < b

(10)

where x − b, the difference between outcome x and the reference point b, denotes relative gain
(when x ≥ b) and relative loss (when x < b), and θ1 > 1 is the loss aversion coefficient, β, β1, η, η1 > 0,
and γ, γ1 ∈ (−∞, 0) ∪ (0, 1).

It is unequivocal to verify that the above S-shaped HARA RU satisfies all basic properties
discussed in Section 2.1. Applying utility Function (10) to Equation (5) yields the following S-shaped
HARA ordered multiple reference-dependent aggregation operator.

Definition 3. An n-dimensional S-shaped HARA ordered multiple reference-dependent aggregation (SHOMR)
operator is a mapping of SHOMR: R+n → R+

SHOMR(x) =
1− γ

β


 βγ

1− γ

 ∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

∑
i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)


1/2λ

+ ηγ


1/γ

− η

 , (11)

where y = (y1, y2, · · · , yn) is the ordered version of x, v1(yi) and v2(yi) are given in utility Function (10),
and Y1 and Y2 are given by Set (6).
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When β = β1, γ = γ1, η = η1, the SHOMR operator degenerates into:

SHOMR(x) =
1− γ

β



 ∑

i∈Y1

wiµ
λ
1 (yi)− ∑

i∈Y2

wiµ
λ
2 (yi)

∑
i∈Y1

wiµ
−λ
1 (yi)− ∑

i∈Y2

wiµ
−λ
2 (yi)


1/2λ

+ ηγ


1/γ

− η

 , (12)

where µ1(yi) = (β(yi − bi)/(1− γ) + η)γ − ηγ and µ2(yi) = θ1((β(bi − yi)/(1− γ) + η)γ − ηγ).
We remark that the family of the SHOMR operator is quite rich. Considering special values of λ,

β, η, γ, θ1 and bi, we can show that the SHOMR operator covers a wide class of existing aggregation
operators, including the S-shaped ordered multiple (SOM) operator, GOWMA operator [8], S-shaped
ordered geometric (SOG) operator, ordered multiple geometric reference-dependent (OMGR) operator,
OWMA operator [8], etc. See Table A2 for detailed parameters and formulations for these operators
in Appendix A.3.

3. Aggregation Operators for Risk-Averse DMs Regarding Relative Losses

3.1. General Framework

Another interesting case is that a DM may have the risk-averse attitude for relative losses (rather
than risk-seeking) if the DM views the relative losses as distorted positive outcomes [11]. In this
case, the total utility curve (for both relative gains and losses) becomes a piecewise non-S-shaped
RU with both pieces being concave. A non-S-shaped RU distinguishes from an S-shaped RU in
two directions: (1) non-S-shaped RUs reflect a risk-averse attitude for relative losses whereas S-shaped
RUs characterize a risk-seeking attitude for relative losses; (2) non-S-shaped RUs interpret a positive
outcome below the reference point as a distorted positive gain, while S-shaped RUs view it as the real
loss. Studies that investigate non-S-shaped RUs can be found in [15,16].

According to Shalev [11], utilities of a non-S-shaped RU below the reference point are scaled
down by subtracting the loss multiplied by a loss aversion coefficient. That is,

v(x) =

{
u(x), x ≥ b
u1(x) = u(x)− θ(u(b)− u(x)), x < b

(13)

where the function v(x) is non-decreasing, b is the reference point, and θ ≥ 0 is the loss aversion
coefficient. A larger value of θ indicates a higher degree of risk aversion.

The utility of the non-S-shaped RU for relative losses is concave (rather than convex for the
S-shape RU). In the presence of reference points, utility values below the reference points represent
that the gains do not meet the expectation. Hence, the utility of outcomes below the reference point is
below the basic utility function, as depicted in Figure 3.

The non-S-shaped RU aggregation operator can be developed by using the penalty function
method proposed in Section 2.

Definition 4. An n-dimensional non-S-shaped ordered multiple reference-dependent aggregation (NOMR)
operator is a mapping of NOMR: R+n → R+

NOMR(x) = u−1

((∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu −λ
1 (yi)

))1/2λ
 , (14)

where u(yi) and u1(yi) are given in utility Function (13), λ ∈ (−∞, 0) ∪ (0,+∞), y is the ordered sequence
of x, and Y1 and Y2 are given by Set (6).

Similar to SOMR, the NOMR operator satisfies desirable properties of aggregation operators,
that is, it is monotonic, bounded, commutative, idempotent. See Proposition A2 in Appendix A.2.
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3.2. Non-S-Shaped HARA Reference-Dependent Aggregation Operator

Introducing the HARA (9) in utility Function (13), we obtain,

v(x) =


u(x) =

1− γ

βγ

(
β

1− γ
x + η

)γ

, x ≥ b

u1(x) =
1− γ

βγ

[(
β

1− γ
x + η

)γ

− θ

((
β

1− γ
b + η

)γ

−
(

β

1− γ
x + η

)γ)]
, x < b

(15)

where β > 0, η > 0, γ ∈ (−∞, 0) ∪ (0, 1). Similar to Section 2.3, substituting the utility Function (15)
into Equation (14), we can obtain a new non-S-shaped HARA ordered multiple reference-dependent
aggregation operator.

Definition 5. An n-dimensional non-S-shaped HARA ordered multiple reference-dependent aggregation
(NHOMR) operator is a mapping of NHOMR: R+n → R+

NHOMR(x) =
1− γ

β


 βγ

1− γ

 ∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiu1
λ(yi)

∑
i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu1
−λ(yi)


1/2λ


1/γ

− η

 , (16)

where u(yi) and u1(yi) are given in utility Function (15), y is the ordered sequence of x, and Y1 and Y2 are
given by Set (6).

Remark 1 (special cases of NHOMR operator). The NHOMR operator is quite general.
(1) Considering the regular HARA utility without the reference point b and the loss aversion θ, NHOMR

operator in Equation (16) degenerates to a HARA ordered multiple aggregation (HOM) operator:

HOM(x) =
1− γ

β

( n

∑
i=1

wi

(
β

1− γ
yi + η

)λγ
/

n

∑
i=1

wi

(
β

1− γ
yi + η

)−λγ
)1/2λγ

− η

 . (17)

(2) In order to model a risk-neutral attitude of the DM, we can simply let u(x) = x and θ = 0; in this case
Equation (14) degenerates to,

GOWMA(x) =

(
n

∑
i=1

wiyi
λ

/
n

∑
i=1

wiyi
−λ

)1/2λ

, (18)

which is the well-known GOWMA operator [8]; (3) Taking special values of λ, γ, β, η and θ in NHOMR
operator, we find that it covers many existing aggregation operators, such as the GOWMA operator [8],
the ordered weighted geometric averaging (OWGA) operator [4], OWMA operator [8], the constant
coefficient-OWGA (CC-OWGA) operator [32], etc. See Table A3 in Appendix A.3.

4. New Weight Models for Reference-Dependent Aggregation Operators

Because MAGDM problems have multiple alternatives, multiple attributes and multiple DMs,
it becomes a crucial step to appropriately determine the weights of the attributes and the DMs. In this
section, we propose new models to compute weights; our models capture realistic features in the
decision-making process by taking into account the variations of the attribute values. In practice, if the
values of an attribute have a small (large) variation across all alternatives, such an attribute should
play a less (more) important role in choosing the optimal alternative, thus it deserves a smaller (larger)
weight. We first compute weights for the attributes (Section 4.1) and next compute weights for the
DMs (Section 4.2).
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4.1. Weight Model for Attributes

We briefly review related weight methods in the literature. One popular idea is to obtain the
desired OWA operator according to a given orness level (an attitudinal character of the DM; see [33]
for details of orness) which is formulated as a constrained optimization problem. The objectives of the
optimization problems include the minimum variance method [19], minimum dispersion method [20],
minimum chi-square method [21], minimum disparity method [22], and maximum Bayesian entropy
method [23], etc.

The methods mentioned above, however, fail to consider the influence of the input argument
information on weighting the attribute. In other words, these methods assume that the determination
of the weights for the attribute is independent of the distributions of the attribute values, which is
evidently unreasonable [34].

It is a consensus in decision science that the larger variation the outcomes of an attribute have
across the alternatives, the more important this attribute becomes (indicating a larger weight should
be assigned) [34]. For instance, we consider the following two decision matrices X1 and X2; here X2 is
derived from X1 (with the two columns in X1 swapped):

X1 =

G1 G2

A1

A2

A3

 0.2 0.1
0.3 0.9
0.2 0.5

 and X2 =

G1 G2

A1

A2

A3

 0.1 0.2
0.9 0.3
0.5 0.2

 ,

In the matrix X1, attribute G1 should play a less significant role than G2 in the decision-making
process because outcomes of G1 have similar values across all alternatives (thus a very small variation
occurs) while the outcomes of G2 have a much larger variation across A1, A2 and A3. If outcomes of an
attribute (such as G1) are nearly identical, then such an attribute can perhaps be removed from the
decision-making process (that is, a zero weight can be assigned to this attribute).

Nevertheless, the weight models reviewed above fail to take into account the impact of the
attribute variation. In addition, these weight models will yield the same weights for the two decision
matrices X1 and X2 (with the two columns in X1 swapped), which is unrealistic. To the best of
our knowledge, there is little research considering the impact of the attributes variations on the
determination of operators weights. To resolve this issue, we propose a new weight model for the
attributes. In our model, a relatively larger (smaller) weight will be assigned to an attribute having
a larger (smaller) variation across the alternatives. We name our model as the attribute-deviation
weight model.

Generalizing the weight model in Wang & Parkan [20], we propose a new optimization model
to determine the weights of the attributes. Here, w(k) = (w(k)

1 , w(k)
2 , · · · , w(k)

n ) denotes the attribute
weight vector for the kth DM.

max P1
n
∑

j=1

m
∑

i=1

m
∑

h=1
w(k)

j d(x(k)ij , x(k)hj )− P2
n−1
∑

j=1
d(w(k)

j , w(k)
j+1)

s.t. w(k)
j ∈ H,

n
∑

j=1
w(k)

j = 1, w(k)
j > 0.

(19)

We now explain the objective function of our new model. To maintain fairness, all attributes
should be considered equally important, thus suggesting equal weights. On the other hand, the impact
of the attribute variations should also be considered in the determination of the weights. That is,
an attribute with a larger variation should be assigned a larger weight. In our model, the first term
in the objective function of model (19) accounts for the attribute deviation: d(x(k)ij , x(k)hj ) denotes the

deviation of xk
ij and xk

hj, and
m
∑

i=1

m
∑

h=1
w(k)

j d(x(k)ij , x(k)hj ) represents the deviation of all alternatives for

the attribute Gj under the DMk. Next, the second term aims to minimize the total variation of the
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weights. The two factors P1 and P2 stand for the relative importance of the two terms, here, P1 + P2 = 1.
The set H represents incomplete information regarding the weights (e.g., due to the lack of data and
limited knowledge about the problem domain) [35,36]. The set H usually satisfies one or several of the
following forms:

• A weak ranking: {w(k)
i ≥ w(k)

j };
• A strict ranking: {w(k)

i − w(k)
j ≥ αi};

• A ranking with multiples: {w(k)
i ≥ αiw

(k)
j };

• An interval form: {αi ≤ w(k)
i ≤ αi + εi};

• A ranking of differences: {w(k)
i − w(k)

j ≥ w(k)
h − w(k)

l }, for j 6= h 6= l, αi, εi > 0.

Remark 2 (Generality of the attribute-weight model (19)). We advocate that model (19) not only captures
the evaluation information of DM, but also maintains certain fairness. If P2 = 0, the objective function of
model (19) focuses on maximizing the total deviation for the attributes across all alternatives. On the other hand,
if P1 = 0, model (19) degenerates to several existing models, including the minimum chi-square model [21],
minimum disparity model [22], etc.

Similar to model (4), various forms for the deviation measure d can be used in model (19).
Without loss of generality, this paper considers d(p, q) = pλ/qλ + qλ/pλ − 2.

4.2. Weight Model for Decision Makers

Once the individual aggregation is completed, there will exist a new matrix composed of multiple
DMs and multiple alternatives. Due to the participation of multiple DMs, the final decision should be
made collectively; it should reflect opinions of all DMs. A remaining question in the decision-making
process is how weights of DMs should be determined.

Attribute weight models have been applied to compute the weights of DMs, such as the minimum
variance method [19], minimum chi-square method [21], minimizing distances from the extreme points
(MDP) method [24], voting method [25] and improved minimax disparity method [26]. However,
the common disadvantage of the above approaches is that the high subjectivity of DMs may cause
decision inaccuracy, sometimes leading to biased decision results.

In order to resolve this issue, we propose a new method. The idea of this method is to allocate
larger weights to DMs that have smaller individual aggregation deviation. Specifically, if the kth
DM’s opinions are more agreeable to the optimal aggregation result, that is, the kth individual result
r(k) = {r1k, r2k, · · · , rmk} is closer to the optimal aggregation result r∗ = {r∗1 , r∗2 , · · · , r∗m}, a larger
weight will be assigned to the kth DM.

We illustrate our idea by considering three DM matrices D(1), D(2) and D(3), and their ideal
matrix D(∗) (average of the three matrices). There are three alternatives and two attributes.

D(1) =

G1 G2

A1

A2

A3

 1 2
3 4
2 3

 , D(2) =

G1 G2

A1

A2

A3

 4 5
6 7
5 6

 ,

D(3) =

G1 G2

A1

A2

A3

 6 7
8 9
7 8

 , D∗ =

G1 G2

A1

A2

A3

 3.7 4.7
5.7 6.7
4.7 5.7
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It is easy to see that D(2) is closest to D∗ while D(3) is farthest from D∗. Consequently, the weights
should satisfy w(DM)

2 > w(DM)
1 > w(DM)

3 . Therefore, we propose the following new optimization
model to compute the optimal weights for DMs.

min P1
l

∑
k=1

m
∑

i=1
w(DM)

k d(rik, r∗i ) + P2
l−1
∑

k=1
d(w(DM)

k , w(DM)
k+1 )

s.t. w(DM)
k ∈ H(DM),

l
∑

k=1
w(DM)

k = 1, w(DM)
k > 0,

(20)

where w(DM) = (w(DM)
1 , w(DM)

2 , · · · , w(DM)
l ) represents the weight vector for the DMs,

d(rik, r∗i ) denotes the deviation rik and r∗i , and d(w(DM)
k , w(DM)

k+1 ) denotes the deviation of w(DM)
k

and w(DM)
k+1 .

Similar to the model (19), the second term of the objective function in (20) aims to maintain
fairness for all DMs. H(DM) is a weighting set and has the similar condition in model (19). We call
model (20) as the DM-deviation weight model.

We remark that the nonlinear optimization problems (19) and (20) (along with their corresponding
optimal weight vectors w(k) and w(DM)) can be quickly solved by numerical solvers, such as MATLAB
and Lingo software. We conduct detailed numerical experiments in Section 6, where we use Lingo to
solve models (19) and (20).

5. A New Reference-Dependent Aggregation Approach for MAGDM

In this section we develop a new approach for MAGDM based on the RU aggregation operators
in Sections 2 and 3 and the new weight models in Section 4. The approach is summarized in a simple
algorithm through six steps. We first describe the algorithm inputs.

Input data of our new MAGDM algorithm. Let A = {A1, A2, · · · , Am} be the set of m
alternatives, G = {G1, G2, · · · , Gn} be the set of n attributes, and D = {D1, D2, · · · , Dl} be the
set of l DMs. Assume that w(DM) = (w(DM)

1 , w(DM)
2 , · · · , w(DM)

l ) is the weight vector for the DMs

and w(k) = (w(k)
1 , w(k)

2 , · · · , w(k)
n ) is the attribute weight vector for the kth DM such that w(k)

j ≥ 0,
n
∑

j=1
w(k)

j = 1, w(DM)
k ≥ 0 and

l
∑

k=1
w(DM)

k = 1. Opinions of DM Dk, 1 ≤ k ≤ l, are characterized by the

decision matrix S(k) = (s(k)ij )m×n and reference point vector B(k) = (b(k)1 , b(k)2 , · · · , b(k)n ), where s(k)ij is

the input argument of Dk ∈ D for alternative Ai ∈ A and attribute Gj ∈ G, and b(k)j is the reference
point of Dk ∈ D for attribute Gj ∈ G. We summarize all input data below,

I =
(
A,G,D, w(k), w(DM), S(k), B(k)

)
. (21)

Given the input data I in (21), our objective is to determine the optimal alternative A∗ ∈ A.
We give a new MAGDM algorithm below.

Step 1 Transform the decision matrixes S(k) to the corresponding normalized version
R(k) = (r(k)ij )m×n [8]:

r(k)ij = s(k)ij

/
max

i
s(k)ij for j ∈ I1 and r(k)ij = min

i
s(k)ij

/
s(k)ij for j ∈ I2 (22)

where I1 is a set of profit attributes and I2 is a set of cost attribute.
Step 2 Calculate the attribute weight vector of the kth decision matrix w(k) by solving the optimization

problem in model (19) for k = 1, 2, · · · , l.
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Step 3 Aggregate all individual decision matrixes R(k) to obtain a collective decision matrix
R = (rik)m×l by using the attribute weight vector and the aggregation operator, and following
Equations (11) and (16) for cases of risk-seeking and risk-averse attitude.

Step 4 Calculate the DMs weights w(DM) by solving the optimization problem in model (20).
Step 5 Aggregate all attribute values rik to obtain an overall preference value ti of the alternative Ai

by using the DM weight vector w(DM) = (w(DM)
1 , w(DM)

2 , · · · , w(DM)
l ) and the HOM operator

given in Equation (17).
Step 6 Rank the collective overall preference values t1, t2, · · · , tm in the descending order and

consequently, select the optimal alternative(s) (e.g., the one(s) with the greatest value ti).

6. Numerical Examples

This section conducts numerical experiments to evaluate the effectiveness of the new MAGDM
approach developed in Section 5. First, in Section 6.1 we apply the new method to a multi-attribute
investment selection problem introduced in Merigó & Casanovas [7], and show that the new method
outperforms existing results in the presence of reference point and loss aversion coefficient. Second,
to illustrate the influence of DMs’ psychological factors (e.g., basic utility function, reference point and
loss-aversion coefficient) on the decision-making results, Section 6.2 performs sensitivity analysis on β,
η, γ, b and θ in the SHOMR operator and the NHOMR operator.

6.1. An Investment Selection Problem

We initially explain the framework of our experiments. Following Merigó & Casanovas [7],
we consider an investment company that plans to invest in six possible alternatives (A1, A2, · · · , A6).
There are six attributes (G1, G2, · · · , G6) in the group decision-making for each of the alternatives.
Table 2 shows the detailed information of the alternatives and attributes. The group of company
experts is constituted by three DMs (D1, D2, D3), each DM provides his/her own opinions regarding
all attributes of all alternatives. The results after standardization are given in Table 3.

Table 2. Detailed information of alternatives (left) and attributes (right).

Notations Alternatives Notations Attributes

A1 A chemical company G1 Benefits in the short term
A2 A food company G2 Benefits in the mid-term
A3 A computer company G3 Benefits in the long term
A4 A car company G4 Risk of the investment
A5 A furniture company G5 Difficulty of the investment
A6 A pharmaceutical company G6 Other factors

Table 3. Evaluation of the investments.

D1 D2 D3

G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G6

A1 0.7 0.8 0.6 0.7 0.5 0.9 0.6 0.8 0.5 0.6 0.4 0.8 0.7 0.6 0.6 0.6 0.4 0.7
A2 0.8 0.6 0.9 0.7 0.6 0.7 0.7 0.6 0.8 0.6 0.7 0.7 0.7 0.6 0.7 0.6 0.6 0.7
A3 0.5 0.4 0.8 0.3 0.8 0.8 0.7 0.6 0.8 0.7 0.8 0.8 0.6 0.5 0.8 0.5 0.8 0.8
A4 0.6 0.7 0.6 0.7 0.8 0.6 0.6 0.7 0.5 0.6 0.8 0.7 0.6 0.7 0.7 0.5 0.8 0.6
A5 0.9 0.8 0.4 0.7 0.7 0.8 0.7 0.8 0.7 0.7 0.6 0.8 0.7 0.8 0.6 0.7 0.6 0.8
A6 0.8 0.3 0.7 0.7 0.6 0.7 0.6 0.4 0.8 0.7 0.6 0.7 0.4 0.5 0.9 0.7 0.6 0.6

We consider three DMs with different risk attitudes for losses: (1) D1 is risk-seeking; (2) D2 is
risk-averse; and (3) D3 is risk-neutral for completeness. Their corresponding aggregation operators are
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given by Equations (12), (16) and (18) respectively. Similar to Ahn [35], weight vectors w(k) ∈ H and
w(DM) ∈ H(DM) satisfy,

H =

{
0.05 ≤ w(k)

1 ≤ 0.2, w(k)
2 ≥ 0.1, w(k)

3 − w(k)
2 ≥ 0.2, 0.2 ≤ w(k)

3 ≤ 0.3,

0.05 ≤ w(k)
4 ≤ 0.15, 0.1 ≤ w(k)

5 − w(k)
4 ≤ 0.2, 0.1 ≤ w(k)

6 ≤ 0.3

}

for k = 1, 2, 3 and,

H(DM) ∈ {w(DM)
2 ≤ w(DM)

1 , 0.1 ≤ w(DM)
2 ≤ 0.2, 0.1 ≤ w(DM)

3 − w(DM)
2 ≤ 0.2}.

Throughout the numerical analysis, for simplicity, we assume that λ = 1, θ = θ1 and P1 = P2 = 0.5.
Following Cox & Huang [31], we let β = β1 = 5, η = η1 = 0.5 and γ = γ1 = −7 for the basic HARA
utility. By applying the new MAGDM algorithm, we derive different optimal alternatives in the
following three cases.

Case 1. Let the reference points be the averages of attributes values, i.e., B(1) = (0.72, 0.60, 0.67, 0.63,
0.67, 0.75), B(2) = (0.65, 0.65, 0.68, 0.65, 0.65, 0.75) and loss aversion coefficient θ = 1.5. Our MAGDM
algorithm in Section 5 yields an aggregation result and the ranked alternatives:

(t1, t2, t3, t4, t5, t6) = (0.461, 0.558, 0.485, 0.484, 0.534, 0.441), A2 � A5 � A3 � A4 � A1 � A6.

Therefore, the optimal investment alterative is the food company A2.

Case 2. Assume that the reference points are B(1) = (0.62, 0.50, 0.57, 0.53, 0.57, 0.65) and B(2) = (0.55,
0.55, 0.58, 0.55, 0.55, 0.65), and the loss aversion coefficient is θ = 1. Applying the MAGDM algorithm
presented in Section 5, we derive that:

(t1, t2, t3, t4, t5, t6) = (0.529, 0.576, 0.585, 0.547, 0.592, 0.483), A5 � A3 � A2 � A4 � A1 � A6.

This implies that the optimal investment alterative is the furniture company A5. We remark that
our result in this case coincides with Merigó & Casanovas [7].

Case 3. Setting B(1) = (0.77, 0.65, 0.72, 0.68, 0.72, 0.80), B(2) = (0.7, 0.7, 0.73, 0.7, 0.7, 0.8) and θ = 3
yields that:

(t1, t2, t3, t4, t5, t6) = (0.292, 0.316, 0.325, 0.287, 0.304, 0.238), A3 � A2 � A5 � A1 � A4 � A6.

In this case, the optimal investment alterative is the computer company A3.

Remark 3 (Characteristics of the new approach). Compared with the approach of Merigó & Casanovas [7],
the main characteristics of our approach can be concluded as follows:

(1) The SHOMR operators (see, Equation (11)) and NHOMR operators (see, Equation (16)) can capture the
psychological preference of the DM with regard to the input argument information, while the aggregation
operators in Merigó & Casanovas [7] fail to consider in the decision-making process. Specifically, the above
three cases clearly show that the optimal alternative highly depends on the reference point B and the loss
aversion coefficient θ; this confirms the significance of capturing psychological factors of DMs in the
aggregation process. The DMs can choose different B and θ based on their risk preference to select the
optimal alternative.

(2) The attribute-deviation weight model (see, model (19)) and DM-deviation weight model (see, model (20))
are constructed to determine the associated weights of the attributes and DMs, while the weights of the
attributes and DMs are completely known in Merigó & Casanovas [7]. In fact, owing to the complexity
and uncertainty of things in reality, the weights of the attributes and DMs are generally incomplete known.
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(3) The new aggregation operators can degenerate to the traditional aggregation operators including the
OWGA operator [4], OWMA operator [8], CC-OWGA operator [32] and GOWMA operator [8], etc.
(see, Table A1–A3 in Appendix A.3). In this way, the new aggregation approach can consider a wide
range of scenarios according to the interests of the DM and select the alternative which is closest to his/her
real interests.

6.2. Sensitive Analysis of Reference-Dependent Aggregation Operators

We note that introducing the SHOMR and NHOMR operators has an impact on the DM
to aggregate information and finally influences the selection of the optimal alternative(s) (see,
Equations (12) and (16)). However, it is difficult to find what role these parameters of the RU
aggregation operators play in the selection process. Therefore, we conduct sensitivity analysis about:
(1) the parameters of the basic utility function in Section 6.2.1; (2) the reference points in Section 6.2.2;
and (3) the loss aversion coefficient in Section 6.2.3.

6.2.1. Sensitive Analysis of Parameters in the Basic Utility Function

Based on the parameters given in Section 6.1, Figures 4 and 5 and Table 4 illustrate the change of
the choice on the optimal alternative with the variations of one parameter, two parameters and three
parameters, respectively.

From Figure 4 we find that the optimal alternative will change with the parameter β increasing
to a certain point (see, Figure 4a) or with η (or, γ) decreasing to a certain point (see, Figure 4b,c).
For example, the optimal alternative switches from A2 to A5 when β increases from 4 to about 7,
or when η decreases from 1 to about 0.1, or when γ decreases from −6.5 to about −8.3.
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Figure 4. Sensitivity analysis of the optimal alternatives with respect to one parameter: (a) β; (b) η;
and (c) γ.
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Figure 5. Sensitivity analysis of the optimal alternatives with respect to two parameters: (a) β and η;
(b) β and γ; and (c) η and γ.
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Table 4. Sensitivity analysis of the optimal alternatives with respect to parameters β, η and γ.

β η γ r(x) Overall Preference Value ti Orderingt1 t2 t3 t4 t5 t6

1 12 0.5 0.0746 0.4502 0.5226 0.3793 0.4783 0.4539 0.3361 A2 � A4 � A5 � A1 � A3 � A6
3 5 −3 0.5430 0.4557 0.5235 0.4110 0.4804 0.4709 0.3630 A2 � A4 � A5 � A1 � A3 � A6
4 2 −5 1.6216 0.4598 0.5252 0.4395 0.4825 0.4907 0.3881 A2 � A5 � A4 � A1 � A3 � A6
5 0.5 −7 5.3333 0.4613 0.5384 0.4854 0.4839 0.5336 0.4406 A2 � A5 � A3 � A4 � A1 � A6
6 0.45 −6 5.7143 0.4597 0.5327 0.4815 0.4801 0.5329 0.4371 A5 � A2 � A3 � A4 � A1 � A6
7 0.3 −9 8.8608 0.4578 0.5298 0.4795 0.4769 0.5307 0.4329 A5 � A2 � A3 � A4 � A1 � A6
9 0.1 −11 14.400 0.4418 0.5241 0.4725 0.4711 0.5279 0.4290 A5 � A2 � A3 � A4 � A1 � A6

12 0.05 −12 17.238 0.4388 0.5125 0.4688 0.4695 0.5210 0.4258 A5 � A2 � A4 � A3 � A1 � A6

Figure 5 and Table 4 show that the changing of two or three parameters will also affect the selection
of the optimal alternative. For instance, Figure 5a illustrates that when 0 < β < 5.5 and η > 0.3,
the optimal investment alternative is A2; when β > 5.5 and 0 < η < 0.3, the optimal investment
alternative is A5.

In particular, Table 4 shows that the optimal alternative will change from A2 to A5 with the
absolute risk aversion coefficient changing to a certain point. This change tendency is also suitable for
one-parameter and two-parameters situations. For example, in Table 4, the optimal alternative is still
A2 if the value of absolute risk aversion coefficient r(x, γ, β, η) = β(1− γ)/(βx + η(1− γ)) ≤ 5.33
(here, we assume x = 0.7), while it will become A5 when the value of r(x, γ, β, η) > 5.71. We further
investigate the sensitivity of r(x, γ, β, η) in Figures 6 and 7. We see that r(x, γ, β, η) increases in β

(Figure 6a) and decreases in both η and γ (Figure 6b,c). Figure 7 shows how r(x, γ, β, η) depends on
two parameters with the third parameter fixed.

The above changes in Figures 4 and 5 and Table 4 can be understood by the implication of
the absolute risk aversion coefficient r(x, γ, β, η). Note that as the absolute risk aversion coefficient
increases, the risk attitude of the DM becomes more prudent [37]. We find that from Table 3 the
alternative A5 dominates alternative A2 with respect to the attributes G1, G2 and G4. Notice that
G1, G2 and G4 denote the short term benefits, the mid-term benefits, and the risk of the investment,
respectively. In the decision-making process, these attributes generally draw higher attention from
DMs than those of G3 (benefits in the long term), G5 (difficulty of the investment) and G6 (other factors).
Therefore, from the perspective of investment prudency, A5 dominates A2 as r(x, γ, β, η) increases.
In other words, we can conclude that the optimal alternative will change to a relatively prudent
alternative with the absolute risk aversion coefficient increasing. We remark that the new MAGDM
method has practical values because the results in Figures 4 and 5 or Table 4 can quickly provide useful
advice to DMs.
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Figure 6. Variations of the absolute risk aversion function for one parameter: (a) β; (b) η; and (c) γ.
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Figure 7. Variations of the absolute risk aversion function for two parameters: (a) β and η; (b) β and γ;
and (c) η and γ.

6.2.2. Sensitive Analysis of Reference Points

With all other parameters specified in Section 6.1, Figure 8 shows that the change of the reference
points can affect the choice of the optimal investment alternative.
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Figure 8. Sensitivity analysis of the optimal alternatives with respect to reference point B.

From Figure 8, we see that the aggregation results of all alternatives decrease as the reference
point B increases, and that the optimal alternative changes with the reference point B increasing to
a certain point. More precisely, the optimal alternative changes to a relatively risky one with the
reference point B increasing to a certain point. For example, with the reference point B changing from
−0.15 to −0.05, the aggregation result of A5 decreases from 0.57 to 0.555. Consequently, the optimal
alternative switches from A5 to A2. When the reference point B continuously increases to about 0.07,
the optimal alternative shifts from A2 to A3.

The above changing tendency in Figure 8 can be explained by the implication of the reference
point B in RUs. On the one hand, the input arguments below the reference point B are regarded as
relative losses for S-shaped RUs, and the utility curve for relative losses is convex which reflects the
risk-seeking attitude of the DM. As the reference point B increases, the relative loss becomes larger,
which further makes the DM more risk-seeking. On the other hand, although outcomes below the
reference point B are viewed as distorted positive gains for non-S-shaped RUs, the utility curve below
this reference point is steeper than in the case without any reference point, which means that larger
reference points imply smaller degrees of risk-aversion.

In addition, Table 3 shows that alternatives A3 ≺ A2 ≺ A5 for attributes G1 (benefits in the
short term), G2 (benefits in the mid-term) and G4 (risk of the investment). In the view of investment
prudency, these attributes usually seem more important than the other three attributes: G3 (benefits in
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the long term), G5 (difficulty of the investment) and G6 (other factors). Therefore, larger reference
points imply less risk-averse attitudes (DMs pay more attention to the risky alternative). As a result,
the optimal alternative changes A5 → A2 → A3 as the reference points increase.

6.2.3. Sensitive Analysis of the Loss Aversion Coefficient

Finally, we study the impact of the loss aversion coefficient on the ranking of alternatives in
the decision-making process. Using the example in Section 6.1, we plot the aggregation results for
six alternatives as functions of the loss aversion coefficient θ in Figure 9.

31.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

A
g

g
re

g
a

ti
o

n
 r

e
su

lt
s

A
1

A
2

A
3

A
4

A
5

A
6

Figure 9. Sensitivity analysis of the optimal alternatives with respect to loss aversion coefficient θ.

We find that from Figure 9 the aggregation results of each alternative decrease as θ increases,
and that the optimal alternative changes to a relatively risky one with the loss aversion coefficient
increasing to a certain point. For instance, the aggregation result of A5 decreases from 0.6 to 0.24 when
θ increases from 1 to about 3; the optimal alternative switches from A5 to A2 when θ increases from
1 to about 1.3, and the optimal alternative will change from A2 to A3 with the loss aversion coefficient
θ continuously increasing to about 2.7.

We provide some intuitive insights for the above observations. On the one hand, for S-shaped
RUs, a larger value for θ implies a steeper utility curve for relative losses (i.e., a larger negative utility
value for losses), which means that the risk attitude of the DM is more risk-seeking. On the other
hand, for non-S-shaped RUs, a larger loss aversion coefficient indicates a smaller utility value for
relative losses, and this case illustrates a steeper utility curve for relative losses. In other words,
larger loss aversion coefficients imply smaller degrees of risk-aversion for relative losses. From Table 3,
we find that alternatives A3 ≺ A2 ≺ A5 for attributes G1, G2 and G4. In the view of investment
prudency, these tattributes are more attractive to DMs than other attributes. Note that the attitude of
the DM towards risk becomes more adventurous with the loss aversion coefficient increasing, therefore,
the optimal alternative changes A5 → A2 → A3 as θ increases.

7. Conclusions

This paper introduced new reference-dependent utility functions in the aggregation process.
To better model the psychological factors in MAGDM, we proposed S-shaped RU and non-S-shaped
RU aggregation operators to characterize two attitudes of DMs for relative losses: risk-seeking and
risk-averse. The S-shaped operator represented one type of aggregation functions where the attitude
of the DM is risk-seeking for relative losses, and the non-S-shaped operator indicated another type
of aggregation functions where the attitude of the DM is risk-averse for relative losses. In addition,
the non-S-shaped operator can degenerate into the GOWMA operator, which implied the attitude
of the DM is risk-neutral. Specifically, we developed an SOMR aggregation operator and an NOMR
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aggregation operator under S-shaped HARA and non-S-shaped HARA utility framework; we found
that they are commutative, monotonic, bounded and idempotent.

In addition, we proposed an attribute-deviation weight model and a DMs-deviation weight model
to determine the weights of attributes and DMs, which overcame the shortcomings of the existing
aggregation operator weight models. We summarized the new MAGDM approach based on the
RU operators and the weight models. In the end, we tested its effectiveness and demonstrated
how to choose the optimal alternatives via numerical examples. The approach can be used in
many fields such as strategic planning, portfolio selection, medical diagnosis, and military system
evaluation. We believe that our proposed approach leaves space for further study of many interesting
questions regarding (1) how to obtain accurate information about psychological preference from
the DM; and (2) how to choose the utilities that will most efficiently guide the optimization problem to
an optimal decision-making.
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Appendix A

This appendix has three sections, presenting the supporting materials of the main paper.
In Appendix A.1 we give the proof of Proposition 1 in Section 2. In Appendix A.2 we give the
proof for Properties of NOMR operator in Section 3. In Appendix A.3 we provide the families of the
reference-dependent aggregation operators and the corresponding proofs.

Appendix A.1. Proof for Properties of SOMR Operator

Proposition A1. The SOMR operator given in Definition 1 satisfies the following properties:

(1) (Monotonicity) For two vectors x and x with xi ≥ xi and the same reference points,
then SOMR(x) ≥ SOMR(x).

(2) (Boundedness) If b1 ≤ y1 = max
i
{xi} and bn > yn = min

i
{xi}, then v−1

1 (v2(yn)) ≤ SOMR(x) ≤ y1.

(3) (Commutativity) If x̂ is a permutation of x, then SOMR(x) = SOMR(x̂).
(4) (Idempotency) If xi = x ≥ x0 for all 1 ≤ i ≤ n, then SOMR(x) = x.

Proof of Proposition A1. (1) Monotonicity. For convenience, let S denote:

SOMR(x) = v−1
1

((∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))1/2λ
 .

• For i ∈ Y1, by taking the first-order condition of S with respect to yi, we have that,

∂S
∂yi

=
1

2v′1(S)

((∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))1/2λ−1
×(

∑
i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

)−2 [(
wivλ−1

1 (yi)v′1(yi)
)(

∑
i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

)
+(

∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)(
wiv−λ−1

1 (yi)v′1(yi)
)]

.
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• For i ∈ Y2, by taking the first-order condition of S with respect to yi, we have that,

∂S
∂yi

=
1

2v′1(S)

((∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))1/2λ−1
×(

∑
i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

)−2 [(
−wivλ−1

2 (yi)(v2(yi))
′
)(

∑
i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

)
+(

∑
i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)(
−wiv−λ−1

2 (yi)(v2(yi))
′
)]

.

Since v1(yi) > 0, v′1(yi) > 0, v2(yi) > 0 and (v2(·))′ = (v2(bi − yi))
′ = −v′2(bi − yi) < 0,

we obtain that ∂S
/

∂yi > 0, which implies that S increases monotonically with respect to yi. Note that
xi ≥ xi and they have the same reference point bi (i = 1, 2, · · · , n), we then get SOMR(x) ≥ SOMR(x).

(2) Boundedness. If b1 ≤ y1 = max
1≤i≤n

{xi}, according to the above proof, we have that,

SOMR(x) ≤ SOMR(y1, y1, · · · , y1)=v−1
1

(( n

∑
i=1

wivλ
1 (y1)

)/(
n

∑
i=1

wiv−λ
1 (y1)

))1/2λ
 = y1.

If bn > yn = min
1≤i≤n

{xi}, then by monotonicity, we have that,

SOMR(x) ≥ SOMR(yn, yn, · · · , yn) = v−1
1

[((
n
∑

i=1
wivλ

2 (yn)

)/(
n
∑

i=1
wiv−λ

2 (yn)

))1/2λ
]
= v−1

1 (v2(yn)) .

Thus, v−1
1 (v2(yn)) ≤ SOMR(x) ≤ y1.

(3) Commutativity. Let,

SOMR(x̂) = v−1
1

((∑
i∈T1

wivλ
1 (ti)− ∑

i∈T2

wivλ
2 (ti)

)/(
∑

i∈T1

wiv−λ
1 (ti)− ∑

i∈T2

wiv−λ
2 (ti)

))1/2λ
 .

Since (x̂1, x̂2, · · · , x̂n) is any permutation of the arguments (x1, x2, · · · , xn), we can get yi = ti for
all i. We then obtain that SOMR(x) = SOMR(x̂).

(4) Idempotency. Since xi = x ≥ x0, then we have,

SOMR(x) = v−1
1

(( n

∑
i=1

wivλ
1 (x)

)/(
n

∑
i=1

wiv−λ
1 (x)

))1/2λ
 = x.

Appendix A.2. Proof for Properties of NOMR Operator

Proposition A2. The NOMR operator given in Definition 4 satisfies:

(1) (Monotonicity) For two vectors x and x with xi ≥ xi and the same reference points,
then NOMR(x) ≥ NOMR(x).

(2) (Boundedness) If b1 ≤ y1 = max
i
{xi} and bn > yn = min

i
{xi}, then u−1(u1(yn)) ≤ NOMR(x) ≤ y1.

Especially, yn ≤ NOMR(x) ≤ y1 while yn = bn.
(3) (Commutativity) If x̂ is a permutation of x, then NOMR(x) = NOMR(x̂).
(4) (Idempotency). If xi = x ≥ x0 for all 1 ≤ i ≤ n, then NOMR(x) = x.

(1) Monotonicity. For convenience, let N denote,

NOMR(x) = u−1

((∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu −λ
1 (yi)

))1/2λ
 ,
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where u1(yi) = u(yi)− θ(u(bi)− u(yi)).
• For i ∈ Y1, the first-order condition of N with respect to yi implies that,

∂N
∂yi

=
1

2u′ (N)

((∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

))1/2λ−1
×[(

wiuλ−1(yi)u′(yi)
)(

∑
i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

)
+
(

wiu−λ−1(yi)u′(yi)
)
×(

∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)](
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

)−2

.

• For i ∈ Y2, the first-order condition of N with respect to yi implies that,

∂N
∂yi

=
1

2u′ (N)

((∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

))1/2λ−1
×[(

wiuλ−1
1 (yi)u′1(yi)

)(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

)
+
(

wiu−λ−1
1 (yi)u′1(yi)

)
×(

∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)](
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

)−2

.

Since u(yi) > 0, u′(yi) > 0, u1(yi) > 0 and u1
′(yi) > 0, we obtain that ∂N

/
∂yi > 0 for i ∈ Y1 or

i ∈ Y2, meaning that N increases monotonically with respect to yi. Note that xi ≥ xi and they have the
same reference point bi (i = 1, 2, · · · , n), we then get NOMR(x) ≥ NOMR(x).

(2) Boundedness. Similar to Proposition 1, if b1 ≤ y1 = max
1≤i≤n

{xi}, we then have that,

NOMR(x) ≤ NOMR(y1, · · · , y1)=u−1

( n

∑
i=1

wiuλ(y1)

/
n

∑
i=1

wiu−λ(y1)

)1/2λ
 = y1.

If bn > yn = min
1≤i≤n

{xi}, then from monotonicity we derive,

NOMR(x) ≥ NOMR(yn, · · · , yn) = u−1

( n

∑
i=1

wiuλ
1 (yn)

/
n

∑
i=1

wiu−λ
1 (yn)

)1/2λ
 = u−1(u1(yn)).

Thus, u−1(u1(yn)) ≤ NOMR(x) ≤ y1. Especially, yn ≤ NOMR(x) ≤ y1 while yn = bn.

(3) Commutativity. Let,

NOMR(x̂) = u−1

((∑
i∈T1

wiuλ(ti) + ∑
i∈T2

wiuλ
1 (ti)

)/(
∑

i∈T1

wiu−λ(ti) + ∑
i∈T2

wiu −λ
1 (ti)

))1/2λ
 ,

Since (x̂1, x̂2, · · · , x̂n) is any permutation of the arguments (x1, x2, · · · , xn), we can get yi = ti for
all i. We then obtain that NOMR(x) = NOMR(x̂).

(4) Idempotency. Since xi = x ≥ x0, then we have,

NOMR(x) = u−1

(( n

∑
i=1

wiuλ(x)

)/(
n

∑
i=1

wiu−λ(x)

))1/2λ
 = x.
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Appendix A.3. Families of the Reference-Dependent Aggregation Operators

Table A1. Families of the POMR operator.

λ α0, β0, θ0 bi Formulation The Name of Aggregation Operator

λ is

odd

and

λ > 0

0 < α0 < 1,

0 < β0 < 1,

θ0 > 1

yi ≥ bi,

bi 6= 0

((
n
∑

i=1
wi(yi − bi)

α0λ

)/(
n
∑

i=1
wi(yi − bi)

−α0λ

))1/2λα0 Prospect gain ordered multiple reference-

dependent operator (PGOMR)

yi ≥ bi,

bi = 0

((
n
∑

i=1
wiy

α0λ
i

)/(
n
∑

i=1
wiy
−α0λ
i

))1/2λα0 Prospect gain ordered multiple operator

(PGOM)

yi < bi,

bi 6= 0

(
n
∑

i=1
wi(−θ0(bi − yi)

β0 )λ

/
n
∑

i=1
wi(−θ0(bi − yi)

β0 )−λ

)1/2λα0 Prospect loss ordered multiple reference-

dependent operator (PLOMR)

yi < bi,

bi = 0

(
n
∑

i=1
wi(−θ0(−yi)

β0 )λ

/
n
∑

i=1
wi(−θ0(−yi)

β0 )−λ

)1/2λα0 Prospect loss ordered multiple operator

(PLOM)

α0 → 1,

β0 → 1,

θ0 → 1

bi 6= 0

(
n

∑
i=1

wi(yi − bi)
λ

/
n

∑
i=1

wi(yi − bi)
−λ

)1/2λ Ordered multiple reference-dependent

operator (OMR)

bi = 0

(
n

∑
i=1

wiyi
λ

/
n

∑
i=1

wiyi
−λ

)1/2λ

GOWMA operator [8]

λ→ 0

0 < α0 < 1,

0 < β0 < 1,

θ0 > 1

bi 6= 0 ∏
i∈Y1

(yi − bi)
wi

/
∏

i∈Y2

(θ0(bi − yi)
β0 )wi/α0

Prospect ordered multiple geometric

reference-dependent operator (POMGR)

bi = 0 ∏
i∈Y1

ywi
i

/
∏

i∈Y2

(θ0(−yi)
β0 )wi/α0

Prospect ordered multiple geometric

operator (POMG)

α0 → 1,

β0 → 1,

θ0 → 1

bi 6= 0 ∏
i∈Y1

(yi − bi)
wi

/
∏
i∈Y2

(bi − yi)
wi

Ordered multiple geometric reference-

dependent aggregation operator (OMGR)

bi = 0 ∏
i∈Y1

yi
wi

/
∏
i∈Y2

(−yi)
wi

Ordered multiple geometric aggregation

operator (OMG)

λ = 1

0 < α0 < 1,

0 < β0 < 1,

θ0 > 1

bi 6= 0

 ∑
i∈Y1

wi(yi − bi)
α0 − ∑

i∈Y2

wiθ0(bi − yi)
β0

∑
i∈Y1

wi(yi − bi)−α0 − ∑
i∈Y2

wi(θ0(bi − yi)
β0 )−1


1/2α0

Constant prospect ordered multiple reference-

dependent operator (CPOMR)

bi = 0

 ∑
i∈Y1

wiy
α0
i − ∑

i∈Y2

wiθ0(−yi)
β0

∑
i∈Y1

wiy
−α0
i − ∑

i∈Y2

wi(θ0(−yi)
β0 )−1


1/2α0

Constant prospect ordered multiple

dependent operator (CPOM)

α0 → 1,

β0 → 1,

θ0 → 1

bi 6= 0

√√√√ n

∑
i=1

wi(yi − bi)

/
n

∑
i=1

wi(yi − bi)
−1

Constant ordered multiple reference-

dependent operator (COMR)

bi = 0

√√√√ n

∑
i=1

wiyi

/
n

∑
i=1

wiyi
−1

OWMA operator [8]

α0 → 0,

β0 → 0,

θ0 → 1

bi 6= 0

(
∏

i∈Y1

(yi − bi)
wi

/
∏

i∈Y2

(yi − bi)
wi

)( ∑
i∈Y1

wi− ∑
i∈Y2

wi

)
.

Constant prospect ordered multiple geometric

reference-dependent operator (CPOMGR)

bi = 0

(
∏

i∈Y1

yi
wi

/
∏

i∈Y2

yi
wi

)( ∑
i∈Y1

wi− ∑
i∈Y2

wi

)
.

Constant prospect ordered multiple geometric

operator (CPOMG)
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Table A2. Families of the SHOMR operator (β = β1, γ = γ1, η = η1).

λ β, η, γ, θ1 bi Formulation The Name of Aggregation Operator

λ is

odd

and

λ > 0

β = 1− γ,

η → 0,

γ→ 1

θ1 > 1

bi 6= 0

 ∑
i∈Y1

wi(yi − bi)
λ − ∑

i∈Y2

wiθ
λ
1 (bi − yi)

λ

∑
i∈Y1

wi(yi − bi)−λ − ∑
i∈Y2

wiθ
−λ
1 (bi − yi)−λ


1/2λ

S-shaped ordered multiple reference-

dependent operator (SOMR)

bi = 0

 ∑
i∈Y1

wiyλ
i + ∑

i∈Y2

wiθ
λ
1 yλ

i

∑
i∈Y1

wiy−λ
i + ∑

i∈Y2

wiθ
−λ
1 y−λ

i


1/2λ

S-shaped ordered multiple operator

(SOM)

yi ≥ bior

yi < bi,

bi 6= 0

(
n
∑

i=1
wi(yi − bi)

λ

/
n
∑

i=1
wi(yi − bi)

−λ

)1/2λ Ordered multiple reference-dependent

operator (OMR)

yi ≥ bior

yi < bi,

bi = 0

(
n
∑

i=1
wiyλ

i

/
n
∑

i=1
wiy−λ

i

)1/2λ

GOWMA operator [8]

λ→ 0

β, η > 0,

γ ∈ R− ∪ (0, 1)

θ1 > 1

bi 6= 0
1− γ

β


 ∏

i∈Y1

((
β

1−γ (yi − bi) + η
)γ
− ηγ

)wi

∏
i∈Y2

θwi
1

((
β

1−γ (bi − yi) + η
)γ
− ηγ

)wi
+ ηγ


1/γ

− η

 S-shaped HARA ordered geometric

reference-dependent operator (SHOGR)

bi = 0
1− γ

β


 ∏

i∈Y1

((
β

1−γ yi + η
)γ
− ηγ

)wi

∏
i∈Y2

θwi
1

((
β

1−γ (−yi) + η
)γ
− ηγ

)wi
+ ηγ


1/γ

− η

 S-shaped HARA ordered geometric

operator (SHOG)

β = 1− γ,

η → 0,

θ1 > 1

bi 6= 0 ∏
i∈Y1

(yi − bi)
wi

/
∏

i∈Y2

θ
wi/γ
1 (bi − yi)

wi

S-shaped ordered geometric reference-

dependent operator (SOGR)

bi = 0 ∏
i∈Y1

ywi
i

/
∏

i∈Y2

θ
wi/γ
1 (−yi)

wi

S-shaped ordered geometric operator

(SOG)

β = 1− γ,

η → 0, γ→ 1

θ1 → 1

bi 6= 0 ∏
i∈Y1

(yi − bi)
wi

/
∏

i∈Y2

(bi − yi)
wi

Ordered multiple geometric reference-

dependent operator (OMGR)

bi = 0 ∏
i∈Y1

ywi
i

/
∏

i∈Y2

(−yi)
wi

Ordered multiple geometric operator

(OMG)

λ = 1

β, η > 0,

γ ∈ R− ∪ (0, 1)

θ1 > 1

bi 6= 0
1− γ

β



√√√√√√ ∑

i∈Y1

wiµ1(yi)− ∑
i∈Y2

wiµ2(yi)

∑
i∈Y1

wiµ
−1
1 (yi)− ∑

i∈Y2

wiµ
−1

2 (yi)
+ ηγ


1/γ

− η

 Constant HARA ordered multiple

reference-dependent operator(CHOMR)

bi = 0

1− γ

β



√√√√√√ ∑

i∈Y1

wi A− ∑
i∈Y2

wiB

∑
i∈Y1

wi A−1 − ∑
i∈Y2

wiB−1 + ηγ


1/γ

− η

 ,

A =

(
βyi

1− γ
+ η

)γ

− ηγ, B = θ1

((
− βyi

1− γ
+ η

)γ

− ηγ

)
Constant HARA ordered multiple

operator (CHOM)

β > 0, η → 0,

γ ∈ R− ∪ (0, 1)

θ1 > 1

bi 6= 0

 ∑
i∈Y1

wi(yi − bi)
γ − ∑

i∈Y2

wiθ1 (bi − yi)
γ

∑
i∈Y1

wi(yi − bi)−γ − ∑
i∈Y2

wi
(
θ1 (bi − yi)

γ)−1


1/2γ

Constant ordered multiple reference-

dependent operator (COMR)

bi = 0

 ∑
i∈Y1

wiy
γ
i − ∑

i∈Y2

wiθ1 (−yi)
γ

∑
i∈Y1

wiy
−γ
i − ∑

i∈Y2

wi
(
θ1 (−yi)

γ)−1


1/2γ

Constant ordered multiple

operator (COM)

β > 0, η → 0,

γ, θ1 → 1

bi 6= 0

√
n
∑

i=1
wi(yi − bi)

/
n
∑

i=1
wi(yi − bi)−1

Constant ordered multiple reference-

dependent operator (COMR)

bi = 0

√√√√ n

∑
i=1

wiyi

/
n

∑
i=1

wiyi
−1

OWMA operator [8]
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Table A3. Families of the NHOMR operator.

λ β, η, γ θ Formulation The Name of Aggregation Operator

λ ∈ R,

λ 6= 0

β = 1− γ,

η → 0, γ→ 1

θ 6= 0

 ∑
i∈Y1

wiyλ
i + ∑

i∈Y2

wi ((1 + θ) yi − θbi)
λ

∑
i∈Y1

wiy−λ
i + ∑

i∈Y2

wi ((1 + θ) yi − θbi)
−λ


1/2λ

Non-S-shaped ordered multiple reference-

dependent basic operator (NOMRB)

θ = 0
(

n
∑

i=1
wiyλ

i

/
n
∑

i=1
wiy−λ

i

)1/2λ

GOWMA operator [8]

λ→ 0

β > 0, η > 0,

γ ∈ R− ∪ (0, 1)

θ 6= 0

1− γ

β

((
∏
i∈Y1

Cwi ∏
i∈Y2

((1 + θ)Cγ − θDγ)wi/γ

)
− η

)
,

C =
β

1− γ
yi + η, D =

β

1− γ
bi + η

Non-S-shaped HARA ordered reference-

dependent geometric operator (NHORG)

θ = 0
1− γ

β

((
n

∏
i=1

(
β

1− γ
yi + η

)wi
)
− η

) Ordered weighted utility geometric

averaging-HARA operator (OWUGA

-HARA) [32]

β > 0, η → 0,

γ→ 1

θ 6= 0 ∏
i∈Y1

ywi
i ∏

i∈Y2

((1 + θ) yi − θbi)
wi

Non-S-shaped ordered geometric operator

(NOG)

θ = 0
n
∏
i=1

ywi
i OWGA operator [4]

λ = 1

or

λ = −1

β, η > 0,

γ ∈ R− ∪ (0, 1)

θ 6= 0
1− γ

β


 ∑

i∈Y1

wiCγ + ∑
i∈Y2

wi ((1 + θ)Cγ − θDγ)

∑
i∈Y1

wiC−γ + ∑
i∈Y2

wi ((1 + θ)Cγ − θDγ)−1


1/2γ

− η


Constant non-S-shaped HARA ordered

multiple reference-dependent operator

(CNHOMR)

θ = 0
1− γ

β

( n

∑
i=1

wi

(
β

1− γ
yi + η

)γ
/

n

∑
i=1

wi

(
β

1− γ
yi + η

)−γ
)1/2γ

− η

 Constant HARA ordered multiple

operator (CHOM)

β > 0, η → 0,

γ ∈ R− ∪ (0, 1)

θ 6= 0

 ∑
i∈Y1

wiy
γ
i + ∑

i∈Y2

wi
(
(1 + θ) yγ

i − θbγ
i
)

∑
i∈Y1

wiy
−γ
i + ∑

i∈Y2

wi
(
(1 + θ) yγ

i − θbγ
i
)−1


1/2γ

Constant non-S-shaped HARA ordered

reference-dependent power operator

(CNHORP)

θ = 0
(

n
∑

i=1
wiy

γ
i

/
n
∑

i=1
wiy
−γ
i

)1/2γ

Constant ordered power operator (COP)

β > 0, η → 0,

γ→ 1

θ 6= 0

√√√√√√
∑

i∈Y1

wiyi + ∑
i∈Y2

wi ((1 + θ) yi − θbi)

∑
i∈Y1

wiy−1
i + ∑

i∈Y2

wi ((1 + θ) yi − θbi)
−1

Constant non-S-shaped ordered reference-

dependent operator (CNOR)

θ = 0

√√√√ n

∑
i=1

wiyi

/
n

∑
i=1

wiyi
−1

OWMA operator [8]

β, η > 0,

γ→ 0

θ 6= 0
1
β

((
∏
i∈Y1

(βyi + η)wi ∏
i∈Y2

(
(βyi + η)(1+θ)wi

/
(βbi + η)θwi

))
− η

) Constant non-S-shaped HARA ordered

geometric operator (CNHOG)

θ = 0
1
β

((
n

∏
i=1

(βyi + η)wi

)
− η

)
CC-OWGA operator [32]

β > 0,

η, γ→ 0

θ 6= 0 ∏
i∈Y1

ywi
i ∏

i∈Y2

(
y(1+θ)wi

i

/
bθwi

i

) Constant non-S-shaped ordered

geometric operator (CNOG)

θ = 0
n
∏
i=1

ywi
i OWGA operator [4]
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Proofs of Operators in Tables A1–A3.
Proof of the POMGR operator. Let P(x) denote,

POMR(x) =

((
∑

i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))1/2λα0

,

where v1(yi) = (yi − bi)
α0 , v2(yi) = θ0(bi − yi)

β0 . By the L’Hôpital’s rule, we have that

lim
λ→0

P(x) = lim
λ→0

exp

[
1

2α0λ
log

((
∑

i∈Y1

wivλ
1 (yi)− ∑

i∈Y2

wivλ
2 (yi)

)/(
∑

i∈Y1

wiv−λ
1 (yi)− ∑

i∈Y2

wiv−λ
2 (yi)

))]

= exp

{
1
α0

(
∑

i∈Y1

wiα0 log(yi − bi)− ∑
i∈Y2

wi log(θ0(bi − yi)
β0 )

)}

= ∏
i∈Y1

(yi − bi)
wi

/
∏

i∈Y2

(θ0(bi − yi)
β0 )wi/α0 .

Thus,

lim
λ→0

P(x) = ∏
i∈Y1

(yi − bi)
wi

/
∏
i∈Y2

(θ0(bi − yi)
β0)wi/α0 .

Especially, if bi = 0, then we have,

lim
λ→0

P(x) = ∏
i∈Y1

ywi
i

/
∏
i∈Y2

(θ0(−yi)
β0)wi/α0 .

Proof of the CPOMGR operator. By the L’Hôpital’s rule, we get that,

lim
α0, β0→0,θ0→1

P(x) = lim
α0, β0→0,θ0→1

exp

 1
2α0

log

 ∑
i∈Y1

wiv1(yi)− ∑
i∈Y2

wiv2(yi)

∑
i∈Y1

wiv−1
1 (yi)− ∑

i∈Y2

wiv−1
2 (yi)




= exp

{(
∑

i∈Y1

wi log(yi − bi)− ∑
i∈Y2

wi log(yi − bi)

)(
∑

i∈Y1

wi − ∑
i∈Y2

wi

)}

=

(
∏

i∈Y1

(yi − bi)
wi

/
∏

i∈Y2

(yi − bi)
wi

)( ∑
i∈Y1

wi− ∑
i∈Y2

wi

)
.

Thus,

lim
α0, β0→0,θ0→1

P(x) =

(
∏
i∈Y1

(yi − bi)
wi

/
∏
i∈Y2

(yi − bi)
wi

)( ∑
i∈Y1

wi− ∑
i∈Y2

wi

)
.

Especially, if bi = 0, then we have,

lim
α0, β0→0,θ0→1

P(x) =

(
∏
i∈Y1

yi
wi

/
∏
i∈Y2

yi
wi

)( ∑
i∈Y1

wi− ∑
i∈Y2

wi

)
.
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Proof of the SHOGR operator. Let S(x) denote

SHOMR(x) =
1− γ

β



 ∑

i∈Y1

wiµ
λ
1 (yi)− ∑

i∈Y2

wiµ
λ
2 (yi)

∑
i∈Y1

wiµ
−λ
1 (yi)− ∑

i∈Y2

wiµ
−λ
2 (yi)


1/2λ

+ ηγ


1/γ

− η

 ,

where µ1(yi) = (β(yi − bi)/(1− γ) + η)γ − ηγ, µ2(yi) = θ1
(
(β(bi − yi)/(1− γ) + η)γ − ηγ

)
. By the

L’Hôpital’s rule, we get that,

lim
λ→0

((
∑

i∈Y1

wiµ
λ
1 (yi)− ∑

i∈Y2

wiµ
λ
2 (yi)

)/(
∑

i∈Y1

wiµ
−λ
1 (yi)− ∑

i∈Y2

wiµ
−λ

2 (yi)

))1/2λ

= lim
λ→0

exp

{
1

2λ
log

((
∑

i∈Y1

wiµ
λ
1 (yi)− ∑

i∈Y2

wiµ
λ
2 (yi)

)/(
∑

i∈Y1

wiµ
−λ
1 (yi)− ∑

i∈Y2

wiµ
−λ

2 (yi)

))}

= ∏
i∈Y1

µ
wi
1 (yi)

/
∏

i∈Y2

µ
wi
2 (yi).

Thus,

lim
λ→0

S(x) =
1− γ

β



 ∏

i∈Y1

((
β

1−γ (yi − bi) + η
)γ
− ηγ

)wi

∏
i∈Y2

θwi
1

((
β

1−γ (bi − yi) + η
)γ
− ηγ

)wi

+ ηγ


1/γ

− η

 .

Especially, if bi = 0, then we have,

lim
λ→0

S(x) =
1− γ

β



 ∏

i∈Y1

((
β

1−γ yi + η
)γ
− ηγ

)wi

∏
i∈Y2

θwi
1

((
β

1−γ (−yi) + η
)γ
− ηγ

)wi

+ ηγ


1/γ

− η

 .

Proof of the NOMRB operator. Let N(x) denote,

NHOMR(x) =
1− γ

β


((

∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu −λ
1 (yi)

))1/2λγ

− η

 ,

where u(yi) = (βyi/(1− γ) + η)γ, u1(yi) = (1 + θ) (βyi/(1− γ) + η)γ − θ (βbi/(1− γ) + η)γ. Thus,
we get that

lim
β=1−γ, η→0, γ→1

N(x)

= lim
β=1−γ, η→0, γ→1

1− γ

β

((∑
i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

))1/2λγ

− η


=

((
∑

i∈Y1

wiyλ
i + ∑

i∈Y2

wi ((1 + θ) yi − θbi)
λ

)/(
∑

i∈Y1

wiy−λ
i + ∑

i∈Y2

wi ((1 + θ) yi − θbi)
−λ

))1/2λ

.

Noting that if θ = 0, we then obtain,

lim
β=1−γ, η→0, γ→1

N(x) =

(
n

∑
i=1

wiyλ
i

/
n

∑
i=1

wiy−λ
i

)1/2λ

.
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Proof of the NHORG operator. By the L’Hôpital’s rule, we have that,

lim
λ→0

((
∑

i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiu−λ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

))1/2λγ

= lim
λ→0

exp

{
1

2λγ
log

((
∑

i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiuλ
1 (yi)

)/(
∑

i∈Y1

wiuλ(yi) + ∑
i∈Y2

wiu−λ
1 (yi)

))}

=

(
∏

i∈Y1

(u(yi))
wi/γ

)(
∏

i∈Y2

(u1(yi))
wi/γ

)
.

Thus,

lim
λ→0

N(x) =
1− γ

β

{[
∏
i∈Y1

(
β

1− γ
yi + η

)wi

∏
i∈Y2

(
(1 + θ)

(
β

1− γ
yi + η

)γ

− θ

(
β

1− γ
bi + η

)γ)wi/γ
]
− η

}
.

In addition, if θ = 0, we derive,

lim
λ→0

N(x) =
1− γ

β

{[
n

∏
i=1

(
β

1− γ
yi + η

)wi
]
− η

}
.

Proof of the CNHOG operator. By the L’Hôpital’s rule, we have that,

lim
γ→0

((
∑

i∈Y1

wiu(yi) + ∑
i∈Y2

wiu1(yi)

)/(
∑

i∈Y1

wiu−1(yi) + ∑
i∈Y2

wiu−1
1 (yi)

))1/2γ

= lim
γ→0

exp

{
1

2γ
log

((
∑

i∈Y1

wiu(yi) + ∑
i∈Y2

wiu1(yi)

)/(
∑

i∈Y1

wiu−1(yi) + ∑
i∈Y2

wiu−1
1 (yi)

))}

=

(
∏

i∈Y1

(βyi + η)wi

)(
∏

i∈Y2

(
(βyi + η)(1+θ)

/
(βbi + η)θ

)wi

)
.

Thus,

lim
γ→0

N(x) =
1
β

((
∏
i∈Y1

(βyi + η)wi

)(
∏
i∈Y2

(
(βyi + η)(1+θ)

/
(βbi + η)θ

)wi

)
− η

)
.

This completes the proof.
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