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Abstract:



A fast algorithm is established to transform points of the unit sphere into fundamental region symmetrically. With the resulting algorithm, a flexible form of invariant mappings is achieved to generate aesthetic patterns with symmetries of the regular polyhedra.
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1. Introduction


Due to the perfect symmetry of regular polyhedra, they have been the subject of wide attention [1,2,3,4,5,6]. Dutch artist Escher et al. [7] designed several amazing woodcarvings of polyhedral symmetries. His artwork inspired Séquin and Yen to design and manufacture similar spherical artwork semiautomatically [8]. With the development of modern computers, there is considerable research on the automatic generation of aesthetic patterns; see the doctoral dissertation of Kaplan [9] and references therein. Such patterns simultaneously possess complex form and harmonious geometry structure, which exhibit the beauty of math. In this paper, we first review the merit and drawback of strategies used in creating symmetrical patterns. Then, we present a new approach to yield aesthetic patterns with symmetries of the regular polyhedra.



Let [image: there is no content] and [image: there is no content] be, respectively, a symmetry group and a mapping. [image: there is no content] is called invariant with respect to [image: there is no content] if it satisfies:


M∘γ=M,∀γ∈G



(1)







[image: there is no content] is called equivariant with respect to [image: there is no content] if it satisfies:


M∘γ=γ∘M,∀γ∈G



(2)







Invariant mapping and equivariant mapping are two important methods adopted to generate symmetrical patterns. Mathematicians have highlighted the importance of such mappings in many situations [10,11]. Field and Golubitsky first proposed equivariant mappings to yield aesthetic patterns with discrete planar symmetries [12]. This idea later inspired Reiter to create chaotic attractors with symmetries of the tetrahedron [13] and octahedron [14] in three-dimensional Euclidean space [image: there is no content]. Recently, Lu et al. established several families of invariant mappings to generate similar images [15]. All the mappings used above are polynomials, because invariant or equivariant mappings of the polynomial form are easier to construct. However, polynomials are not appropriate to create visually appealing patterns, since they lack variety. Furthermore, for the symmetry group of complex generators, even polynomials are not easy to construct. This is why polynomials do not appear to yield regular dodecahedron patterns of great complexity. Group summation is a classic technique used in the invariant theory [16]. To generate patterns with symmetries of the regular polyhedra, Chung introduced this technique and constructed a flexible form of equivariant mappings [17]. However, this kind of mapping still has to meet certain requirements. The general summation form of equivariant mappings:


∑i=1|G|σif(σi−1(z)),σi∈G,z∈Rn



(3)




was proposed by Dumont, where f is a mapping from [image: there is no content] to [image: there is no content], G is a finite group, and [image: there is no content] the order of G [18]. They utilized (3) to explore chaotic attractors with symmetries that are close to forbidden symmetries. Since f in (3) can be arbitrary mappings rather than the particular polynomials, one can choose f freely, and the resulting patterns are more beautiful. Following (3), Jones et al. created many appealing attractors [19]; Reiter successfully realized a dodecahedron attractor that possesses complex symmetries [20]. Dumont later improved (3) so that it could be applicable for crystallographic point groups [21].



Although (3) is easy to construct and theoretically feasible for any finite group, this strategy is not appropriate for the symmetry group of large order. Notice that there are [image: there is no content] terms in the summation; for a group of large order, (3) usually has ill-conditioned sensitivity. This leads to patterns that have unaesthetic noise. For example, regular dodecahedron attractors of 120 symmetries generated by (3) [20] are not as beautiful as images shown in [19]. Computational cost is also a problem of (3) that should not be neglected. Dumont experimented with space group 227 of order 192 [21]. They commented that “finding a visually interesting attractor for this group was most challenging because experiments ran slowly”.



Regular polytopes are higher-dimensional generalizations of regular polyhedra. Their structures are similar to that of regular polyhedra, but with more symmetries. For example, symmetries of 24-cell and 600-cell in [image: there is no content] are 1152 and 14,400, respectively, which far exceed the symmetries of any regular polyhedron [22]. In this paper, we present a fast and convenient approach to generating aesthetic patterns with symmetries of the regular polyhedra. The proposed mapping not only has flexible form, but also avoids the order restriction appearing in (3).




2. Symmetry Groups of Regular Polyhedra


A regular polyhedron is a convex polyhedron whose faces are regular and equal and whose vertices have similar neighborhoods. A regular polyhedron can be briefly represented as Schläfli symbol of the form [image: there is no content], where p is the number of sides of each face and q the number of faces meeting at each vertex [1]. There are five regular polyhedra, better known as Platonic solids: tetrahedron [image: there is no content], octahedron [image: there is no content], cube [image: there is no content], dodecahedron [image: there is no content], and icosahedron [image: there is no content] (Figure 1).


Figure 1. The five regular polyhedra.
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Groups generated by reflections deserve special consideration for two reasons: (1) there is a general theory covering them all; (2) they contain the remaining point groups as subgroups [1,22]. This section concerns the reflection groups of regular polyhedra. For convenience, we denote the reflection group of [image: there is no content] as [image: there is no content]. We first introduce some basic concepts.



Given an object [image: there is no content], a symmetry of [image: there is no content] is a congruent or isometric transformation. The symmetry group [image: there is no content] of [image: there is no content] comprises all its symmetries. The elements [image: there is no content], [image: there is no content], ... [image: there is no content] of group [image: there is no content] are called a set of generators if every element of [image: there is no content] is expressible as a finite product of their powers (including negative powers). The fundamental region under group [image: there is no content] is a connected set whose transformed copies under the action of [image: there is no content] cover the entire space without overlapping, except at boundaries. In Euclidean space, a reflection group is a discrete group which is generated by a set of reflections.



Suppose that α[p,q],β[p,q] and [image: there is no content] are generators of [image: there is no content]. Then:


[image: there is no content]



(4)




is an abstract presentation of [image: there is no content], where I is the identity [22]. Since [image: there is no content] and [image: there is no content] are dual, they share the same symmetry group [image: there is no content].



Let [image: there is no content] be a regular polyhedron inscribed in the unit sphere S2={(x,y,z)T∈R3|x2+y2+z2=1}. By joining the center O of [image: there is no content] and a point A of [image: there is no content], the directed line [image: there is no content] intersects [image: there is no content] at a point [image: there is no content]. For a given [image: there is no content], this projection establishes an equivalence relation between regular polyhedron [image: there is no content] and spherical tiling [image: there is no content] projected on [image: there is no content]. Therefore, spherical tiling [image: there is no content] can be indiscriminately regarded as [image: there is no content]. Henceforth, we concentrate on spherical tiling [image: there is no content] instead of regular polyhedron [image: there is no content] itself.



Geometrically, generators α[p,q],β[p,q] and [image: there is no content] are reflections which can be realized as [image: there is no content] orthogonal matrixes. Let Π[p,q]α,Π[p,q]β and [image: there is no content] be, respectively, reflection planes associated with α[p,q],β[p,q] and [image: there is no content]. Then, the region surrounded by those planes forms a spherical right triangle [image: there is no content] on [image: there is no content]. Repeated reflections along sides of [image: there is no content] will tile [image: there is no content] exactly once. This suggests that [image: there is no content] is a fundamental region associated with [image: there is no content]. Figure 2a illustrates a fundamental region [image: there is no content].


Figure 2. (a) The blue spherical right triangle [image: there is no content] surrounded by planes Π[3,4]α,Π[3,4]β, and [image: there is no content] forms a fundamental region associated with group [image: there is no content]; (b) Let [image: there is no content] and [image: there is no content] be two points on the different sides of [image: there is no content]. Then, [image: there is no content] and Q lie on the same side of [image: there is no content], and the distance between them is smaller than [image: there is no content] and Q; and (c) A schematic illustration that shows how Theorem 1 transforms [image: there is no content] into [image: there is no content] symmetrically. In this case, [image: there is no content] is first transformed by [image: there is no content] so that [image: there is no content] goes into red tile. Then, [image: there is no content] is transformed by [image: there is no content] so that [image: there is no content] goes into green tile. At last, [image: there is no content] is transformed by [image: there is no content] so that [image: there is no content].



[image: Symmetry 09 00021 g002]






Generators α[p,q],β[p,q], and [image: there is no content], and fundamental region [image: there is no content] are important contents of the next section. We summarize them as follows and refer the reader to [17] for more details.

	■

	
Tetrahedral group [image: there is no content]:


Π[3,3]α:x+y=0,Π[3,3]β:y−z=0,Π[3,3]γ:x−y=0



(5)






α[3,3]=0−10−100001,β[3,3]=100001010,γ[3,3]=010100001



(6)






▵[3,3]={(x,y,z)T∈S2|x+y≥0,y−z≤0,x−y≤0}



(7)








	■

	
Octhedral group [image: there is no content]:


Π[3,4]α:x−z=0,Π[3,4]β:x−y=0,Π[3,4]γ:y=0



(8)






α[3,4]=001010100,β[3,4]=010100001,γ[3,4]=1000−10001



(9)






▵[3,4]={(x,y,z)T∈S2|x−z≤0,x−y≥0,y≥0}



(10)








	■

	
Icosahedral group [image: there is no content]:


Π[3,5]α:y=0,Π[3,5]γ:x=0,Π[3,5]β:−ζx+y−z/ζ=0,whereζ=1+52



(11)






α[3,5]=1000−10001,β[3,5]=12−1/ζζ−1ζ11/ζ−11/ζζ,γ[3,5]=−100010001



(12)






▵[3,5]={(x,y,z)T∈S2|y≥0,x≤0,ζx−y+z/ζ≥0}



(13)














3. Transform Points of [image: there is no content] into Fundamental Region Symmetrically


In this section, we present a fast algorithm that transforms points of [image: there is no content] into fundamental region [image: there is no content] symmetrically. To this end, we first prove a lemma.



Lemma 1.

Let Π:xm1+ym2+zm3=0 be a plane in [image: there is no content] with [image: there is no content],


[image: there is no content]



(14)




be the reflection R associated with Π. Assume P0=(x0,y0,z0)T∈S2 and P1=(x1,y1,z1)T∈S2 are points on the different sides of Π; i.e.:


m1x0+m2y0+m3z0>0m1x1+m2y1+m3z1<0,orm1x0+m2y0+m3z0<0m1x1+m2y1+m3z1>0



(15)







Then:


[image: there is no content]



(16)




where norm [image: there is no content] represents spherical distance.





Proof. 

By the formula of spherical distance, [image: there is no content] Assume [image: there is no content] then direct computation shows [image: there is no content] So the spherical distance between [image: there is no content] and [image: there is no content] is:


[image: there is no content]











By (15), we have [image: there is no content]. Notice that [image: there is no content], and likewise [image: there is no content]. Conclusion (16) follows immediately, since arccos is a monotonically decreasing function. ☐





We use a diagram to explain the geometric meaning of Lemma 1. In Figure 2b, let [image: there is no content] and [image: there is no content] be points on the different sides of plane [image: there is no content]. Then, [image: there is no content] and Q lie on the same side of [image: there is no content]. Lemma 1 says that the distance between [image: there is no content] and Q is smaller than [image: there is no content] and Q. In other words, for two points on the different sides of a plane, reflection transformation of the plane can shorten their distance.



Theorem 1.

Let [image: there is no content] be the fundamental region with respect to [image: there is no content], Q be an interior point of [image: there is no content]. For a point [image: there is no content] outside [image: there is no content], the following algorithm determines a transformation [image: there is no content] and a symmetrically placed point [image: there is no content] so that [image: there is no content]. 



Step 1: let [image: there is no content], [image: there is no content].



Step 2: compute [image: there is no content], where Ri∈{α[p,q],β[p,q],γ[p,q]},i=1,2,3.



Step 3: choose [image: there is no content] so that [image: there is no content] is the subscript of min{D1,D2,D3}, [image: there is no content]



Step 4: let [image: there is no content], [image: there is no content].



Step 5: if [image: there is no content], stop; otherwise, set [image: there is no content], repeat Steps 2–5.



Step 6: assume n is the number of cycles, then [image: there is no content], where:


[image: there is no content]



(17)









Proof. 

[image: there is no content], [image: there is no content], and [image: there is no content] are isometrical symmetrical transformations, so [image: there is no content] obtained in Step 4 is always a symmetrical point of [image: there is no content] lying on [image: there is no content]. Recall that fundamental region [image: there is no content] is a spherical triangle surrounded by planes [image: there is no content], [image: there is no content], and [image: there is no content]. For [image: there is no content], there must exist a plane Π∈{Π[p,q]α,Π[p,q]β, [image: there is no content] so that [image: there is no content] and Q lie on different sides of Π. By Lemma 1, there exists a reflection [image: there is no content] associated with Π so that:


[image: there is no content]



(18)







Thus, each time a chosen transformation [image: there is no content] is employed, the transformed [image: there is no content] will get nearer to Q, and eventually fall into [image: there is no content]. Let [image: there is no content], then [image: there is no content]. ☐





Theorem 1 describes an algorithm that transforms points of [image: there is no content] into [image: there is no content] symmetrically. Figure 2c illustrates an example of how Theorem 1 works.



By the definition of fundamental region, copies of [image: there is no content] can tile [image: there is no content] exactly once; i.e.,


S2=⨆i=1|[p,q]|τi(▵[p,q]),τi∈[p,q]








where [image: there is no content] is the order of group [image: there is no content]. Indeed, for [image: there is no content], Theorem 1 provides a method to find a specific [image: there is no content] of the form (17) so that [image: there is no content]. Thus, we can use Theorem 1 to determine entire elements of [image: there is no content] automatically. In practice, we found that the algorithm of Theorem 1 is a very fast algorithm. On average, each point of [image: there is no content] will be transformed into [image: there is no content], [image: there is no content], [image: there is no content] within 3.16, 4.70, 7.94 times. Essentially, regular polytopes and polyhedra have the same kind of symmetry groups—finite reflection groups. This means that it should be possible to extend this fast algorithm to treat regular polytopes with thousands of symmetries.




4. Colorful Spherical Patterns with [image: there is no content] Symmetry


In this section, we describe how to create colorful spherical patterns with [image: there is no content] symmetry.



For a point [image: there is no content], we define a mapping [image: there is no content] of the form:


M(u1)=F(u1),foru1∈▵[p,q]F(Γn(u1)),foru1∉▵[p,q],butΓn(u1)∈▵[p,q]



(19)




where [image: there is no content] is a transformation determined by Theorem 1, [image: there is no content] is an arbitrary mapping from [image: there is no content] to [image: there is no content]. By (1), mapping [image: there is no content] is essentially an invariant mapping associated with [image: there is no content]. Let [image: there is no content] be the the kth iteration of [image: there is no content] at [image: there is no content]. For a given positive integer m, by the dynamical behavior of iteration sequences [image: there is no content], we assign a certain color to [image: there is no content]. Using this method, point [image: there is no content] and its symmetrical point [image: there is no content] ([image: there is no content]) will be assigned the same color. Consequently, the colored [image: there is no content] obtained by this method will have [image: there is no content] symmetries. Figure 2, Figure 3, Figure 4 and Figure 5 show six aesthetic patterns obtained in this manner.


Figure 3. Two spherical patterns with [3,3] symmetries.



[image: Symmetry 09 00021 g003]





Figure 4. Two spherical patterns with [3,4] symmetries.



[image: Symmetry 09 00021 g004]





Figure 5. Two spherical patterns with [3,5] symmetries.



[image: Symmetry 09 00021 g005]






The color scheme used above was borrowed from [23]. We have employed this scheme to render fractal [24] and hyperbolic patterns [25], which could enhance the visual appeal of patterns effectively. We refer the reader to [26] for more details.



Equation (19) has the following outstanding features. First, to create symmetrical patterns, one needs to construct mappings that meet certain requirements [12,13,14,15,17,18,19,20,21]. However, under certain circumstances, this kind of mapping is not easy to achieve. Mapping (19) has no requirements, and we can construct mappings at will. For example, the mapping used in the left of Figure 3 is:


F(u1)=1.2cos[y+sin(yz+x)]1.65cos(x−y)[cos(x+z)+2siny]esin[−1.5+cos(x+y)],u1=(x,y,z)T∈▵[3,4]











Second, as pointed out in Section 1, (3) is not appropriate for the symmetry group of large order. By contrast, (19) avoids such a restriction on symmetry order, so it should be possible to extend the method to treat regular polytopes with thousands of symmetries.
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