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Abstract: Face recognition systems have been widely adopted for user authentication in security
systems due to their simplicity and effectiveness. However, spoofing attacks, including printed photos,
displayed photos, and replayed video attacks, are critical challenges to authentication, and these
spoofing attacks allow malicious invaders to gain access to the system. This paper proposes two novel
features for face liveness detection systems to protect against printed photo attacks and replayed
attacks for biometric authentication systems. The first feature obtains the texture difference between
red and green channels of face images inspired by the observation that skin blood flow in the face
has properties that enable distinction between live and spoofing face images. The second feature
estimates the color distribution in the local regions of face images, instead of whole images, because
image quality might be more discriminative in small areas of face images. These two features are
concatenated together, along with a multi-scale local binary pattern feature, and a support vector
machine classifier is trained to discriminate between live and spoofing face images. The experimental
results show that the performance of the proposed method for face spoof detection is promising when
compared with that of previously published methods. Furthermore, the proposed system can be
implemented in real time, which is valuable for mobile applications.
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1. Introduction

To protect personal privacy, biometric authentication systems, such as face and fingerprint
recognition systems, have gained considerable attention for their ability to confirm user identity.
Thus, face and fingerprint recognition systems [1,2] have been extensively researched and implemented
in various security systems. In recent decades, human face recognition systems have been widely
studied due to their simplicity and effectiveness for performing user authentication in security systems.
One of the most popular mobile operating systems, Android, even allows users to unlock their
smartphones through face recognition. As the need for face-recognition-based unlocking techniques
increases, determining how to deal with spoofing attacks becomes a critical authentication challenge [3].
Spoofing attacks launched against an authentication system may allow malicious invaders to gain
access to the system and can therefore lead to the leakage of private data [4]. A face recognition
system mainly conducts face representation and face matching when a face is detected by a face
detection algorithm. For face representation, most methods extract facial landmarks by geometrical
descriptors for both 2D and 3D faces, and are robust in dealing with expression and occlusion [5-7].
For face matching, multi-class classifiers are usually adopted, such as support vector machine (SVM)
and Bayesian classifiers. These face recognition systems have achieved satisfactory performance
in security and forensic applications. However, a recent study showed that state-of-the-art face
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recognition systems that use commercial software are vulnerable to spoofing attacks using face
images [8]. The reason for this is that live and spoofing face images of the same user may be similar in
the feature space when a high resolution spoofing face image is provided. Even the human eye cannot
distinguish a live face image from a spoofing face image at first glance [9]. Such attacks on a secure
system is a substantial problem because acquiring face images or video from a camera or social media
is easier than acquiring other biometric traits, such as fingerprints. Therefore, detection of face liveness
is a difficult problem for the face recognition system. It is important to design face liveness detection
algorithms to discriminate between live and spoofing face images.

With the rapid development of multimedia technology, malicious invaders can easily collect
photographs or video of a targeted person from the Internet. Figure 1 shows samples of live face image,
printed face image, and displayed face image. Because printed photos and video replay attacks are
more easily launched than 3D mask attacks, this study focused its examination on printed photos,
displayed photos, and replayed video attacks. The purpose of this paper is to develop a face liveness
detection algorithm which protects the biometric system from printed photos, displayed photos,
and replayed video attacks.

(a) (b)

Figure 1. Examples of (a) a live face image, (b) a printed photo, and (c) a photo displayed on a
mobile phone.

2. Related Work

Various studies have proposed several “face liveness” detection methods to protect against
printed photo attacks and replayed attacks. These methods are based on motion, image quality, texture,
and depth, and are as follows:

1. Motion-Based Methods: Motion-based methods aim to detect the natural responses of live faces,
such as eye blinking [10,11], head rotation [12], and mouth movements [13]. Although these
methods can successfully detect printed photo attacks, they are ineffective at identifying replayed
video attacks, which present natural responses. Furthermore, they require multiple frames
(usually >3 s) to estimate facial motions restricted by the human physiological rhythm [14].

2. Image Quality Analysis-Based Methods: Image quality analysis-based methods [15,16] capture the
image quality differences between live and spoofing face images. Image quality degradations,
which are caused by spoofing mediums (e.g., paper and screen), usually appear in spoofing face
images, and printed photos and replayed videos displayed on a monitor can be detected using
color space analysis [17]. Thus, these methods extract chromatic moment features to distinguish
a live face image from a spoofing face image. These methods usually assess image quality
by using whole images and are highly generalizable. However, image quality might be more
discriminative in small and local areas of face images.

3. Texture-Based Methods: Texture-based methods [9,18] assume that the use of various spoofing
mediums would result in distinct surface reflection and shape deformation, which lead to texture
differences between live and spoofing face images. These methods are used to perform face
spoof detection by extracting texture features from a single face image and can thus provide a
quick response. However, the texture features may lack good generalizability to various facial
expressions, poses, and spoofing schemes when the training data are collected from few subjects
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and under limited conditions. Therefore, combining texture features and image quality features
may improve the performance of face spoof detection.

4. Depth-Based Methods: Depth-based methods [12,19] estimate the depth information of a face to
discriminate a live 3D face from a spoofing face presented on 2D planar media. The defocusing
technique [20], near-infrared sensors [21], and light field cameras [22] are representative examples
of these methods. Depth features can be used to effectively detect printed photos and video
replay attacks. On the other hand, few studies have developed 3D depth analysis methods to
estimate the 3D depth information of a face. An optical flow field-based approach is proposed
to analyze the difference in the optical flow field between a planar object and a 3D face [12].
Another study exploits geometric invariants according to a set of facial landmarks for detecting
replay attacks [19]. However, to estimate the depth information, these methods generally require
multiple frames or a depth-measuring device, which might increase the cost of the systems.

To address the problems identified in the aforementioned methods, this study proposes a new
framework, including two new features inspired by the texture-based method [18] and image distortion
analysis [16], for face spoof detection. The experimental results showed that the proposed framework
is competitive with state-of-the-art approaches, and the key contributions of this framework can be
summarized as follows:

e  The first feature highlights the distinct properties in red and green channels between live and
spoofing face images. This feature can reveal skin blood flow differences between live and
spoofing face images. This skin-related texture feature is extracted by the local binary pattern
(LBP) operator in red and green channels and can detect both shape and color distortion. In other
words, it combines the advantages of texture- and image quality analysis-based methods.

e  The second feature is a block-based color moment that estimates the color distribution in the local
regions of face images. This feature can preserve the local color distribution of face images and,
further, provides more spatial information than does the color moment determined from a whole
image. The local information helps discriminate between live and spoofing face images.

The proposed features were concatenated, along with a multi-scale local binary pattern (MLBP)
feature, to construct a feature vector from a single image for providing a quick response. The feature
vector was fed into an SVM to discriminate between live and spoofing face images. Four public
domain databases, namely NUAA Photograph Imposter Database [23], CASIA Face Anti-Spoofing
Database [24], Idiap Replay-Attack [9], and MSU Mobile Face Spoofing Database [16], were used to
evaluate the performance of the proposed method. The experimental results demonstrated that the
performance of the proposed method for face spoof detection is promising when compared with that
of previously published methods. Furthermore, the proposed system requires less computational time
(54.6 ms) and can thus be performed in real-time.

The remainder of this paper is organized as follows: Section 2 describes the proposed face spoof
detection method in detail, Section 3 outlines the experimental results based on the public domain
databases, and Section 4 presents a conclusion.

3. Face Livenss Detection

This section describes the individual steps of the proposed face liveness detection system,
which are outlined in Figure 2. Faces were detected using the Viola—Jones face detection algorithm [25]
when the coordinates were not available in the databases; thereafter, they were normalized into a
64 x 64 pixel image. Distortions in the specular reflection components and color distribution usually
appear in spoofing face images due to the spoofing mediums. In this study, three features were
set to extract discriminative information for the live and spoofing face images according to skin
texture and color distortion analysis. Subsequently, the features were concatenated to create a feature
vector, which was fed into an SVM for classification. In the subsequent subsections, these features are
explained in greater detail.
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Figure 2. Proposed face liveness detection system.

3.1. Multi-Scale Local Binary Pattern

As noted, live face images possess distinct surface reflection properties that distinguish them
from 2D spoofing face images captured from printed photos and video replays. This differentiation
is mainly due to specular and diffusion components. Thus, MLBP generalized from a LBP [26] was
used as an image descriptor to extract the texture features related to reflection properties, which have
been shown to have good discriminative ability for face spoof detection [18]. Furthermore, a uniform
LBP operator [27] was employed to keep, at most, two bitwise transitions between 1 and 0 and to
accumulate the other patterns in another bin. The uniform LBP operator for a pixel with value g,
surrounded by P neighborhood pixels in radius R is defined as

P-1
Yy s(gp —gc)ZV , ifU(LBPpRr) <2
p=0

LBPf%; = , (1)
P+1 , otherwise
rP—-1
U(LBPpr) = |s(gp-1 — &) —s(80 — &)+ Y |s(8p — 8c) —5(gp-1— &)/, 2
p=1

where u2 denotes a uniform pattern and g, denotes the pth neighborhood pixel value. A feature vector
was then constructed by concatenating a uniform LBP histogram from the whole image.

It has been found that the pixel intensity of the red channel of human skin is usually higher
than that of either of the blue or green channels due to skin blood flow. Additionally, the reflectance
characteristic of the red channel in live face images may be different from that in spoofing face images.
Therefore, this study examined MLBP features in the red channel to determine facial texture according
to three scales of LBP operators: LBPg‘E, LBPg"%, and LBP1”62/2. The feature vector was a concatenation
ofa LB Pg‘% histogram of nine overlapping image blocks and of LBPéf% and LBP1”62,2 histograms over
the whole image. Each image block was divided from a normalized 64 x 64 face image with a
16-pixel overlap to highlight the central regions of an image, which may provide key facial details.
Thus, the dimensionality of the MLBP feature vector is 531 + 243 + 59 = 833. Notably, the parameters
of MLBP, such as P, R, and the number of overlapping image blocks, were designed according to the
suggestion of [18] due to their satisfactory performance.

3.2. Red—Green Deviated Texture

It is known that skin blood flow in the face enables a live face to reflect red light and absorb green
light [28]. A live face image therefore consists of a wider variety of intensity values and more detailed
texture in the red channel than in the green channel. By contrast, a spoofing face image generated by
a printer or displayed on a screen usually possesses a monotonic color distribution in both the red
and green channels due to the imperfect color reproduction property of printing or display devices.
The difference between red and green channels may help distinguish between live and spoofing face
images. Furthermore, the specular and diffusion components in red and green channels of a live face
image are different from those in a spoofing face image. This study therefore proposed a new feature,
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called the red—green (R-G) deviated texture, which is a dual-channel extraction based on the LBP
operator for identifying the texture difference between the red and green channels.

The R-G deviated texture is histogram-generated from a whole face image and is defined as
Hr_g = (Hg ¢ Hy g -+ HY ) with

Hi ¢ = ’HiBP_R —Higpg|, i=12--,5, 3)

where Hi ,,, » and Hi 5, ¢ denote the ith bin of the LBP histogram using LBPé‘E in the red and green
channels, respectively. Notably, a uniform pattern [29] was adopted to implement a simple rotation
invariant descriptor, which consists of at most two 1-0 or 0-1 transitions. Therefore, the LBP histogram
used in this study is a 59-dimensional feature vector including 58 separate bins for uniform patterns
and a single bin for all 198 nonuniform patterns.

Because the R-G deviated texture may contain discriminative information in small and local areas
of an image, the normalized 64 x 64 face images in this study were divided into 3 x 3 blocks with
16-pixel overlapping. The R-G deviated texture was formed by concatenating the LBP histograms;
it has a dimensionality of 531. This study analyzed the influence of the color channel on textures due
to the skin blood flow differences between live and spoofing face images.

Figure 3 presents a graphical representation of the R-G deviated textures in live and spoofing
face images, where the y axis denotes the percentage of deviation between the red and green channels.
As revealed by the figure, the texture difference between red and green channels in the live face image
is larger than that in the spoofing face image. In other words, spoofing face images present a different
texture distribution compared with that in live face images, which suggests that the R-G deviated
texture may be a feature with the ability to differentiate between live and spoofing face images.
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Figure 3. R-G deviated texture in (a) a live face image and (b) a spoofing face image; (¢,d) Graphical
representation of the R-G deviated texture in the live and spoofing images.

3.3. Block-Based Color Moment

Image chromaticity and contrast distortion are the major distortions that occur in a spoofing
face image captured from printed photo and replayed video [16]. These distortions lead to color
distribution differences between live and spoofing face images due to the imperfect color reproduction
property of spoofing media, such as printers and screens.

Figure 4 shows the color distributions in the hue, saturation, and value (HSV) space of a live face
image, a printed photo, and an on-screen photo. In general, printed photos tend to have less color
contrast and saturation than do live face images. By contrast, on-screen photos tend to have more
contrast and brightness than do live face images.
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Figure 4. Examples of a live face image (first row), spoofing face image used in a printed photo attack
(second row), and spoofing face image used in a video replay attack. Images were retrieved from the
CASIA database. (a) Face image; (b) Histogram of the hue component; (c) Histogram of the saturation
component; (d) Histogram of the value component.

In this study, the color distribution of an image was estimated to elucidate the chromatic
differences between live and spoofing face images. First, the face image was converted from the
RGB space to the HSV space. Subsequently, the mean, standard deviation, and skewness of the color
distribution of an image were computed in the ith channel as follows:

1N
Ei = N; Pij, 4)
j=1
1N
0; = NZ(Pi]’ ~E)?, (5)
=1
1N
si=2 NZ(Pij_Ei)gz (6)
=1

where p;; denotes the jth image pixel value in the ith color channel, and N is the total number of
pixels. These three statistical moments of each channel are also known as color moment features [30].
Therefore, the dimensionality of the color moment feature vector is 3 x 3 = 9.

In [30], the color moment features were extracted from a whole face image. However, the color
moment features can reveal distinct properties in small and local areas of face images. The local regions
of face images may show larger color distribution differences between live and spoofing face images
than do entire face images. This study therefore proposed a block-based color moment, which is a
concatenation of color moment features calculated from the local regions of a face image. Face images
were first divided into 2 x 2 blocks without overlapping; subsequently, the color moment features from
each of the four blocks were extracted for each color channel. By concatenating all of the color moment
features from the four blocks, a block-based color moment with 36 dimensions was constructed.

Finally, the MLBP features, block-based color moment, and R-G deviated texture feature were
concatenated together to create a feature vector whose dimensionality was 833 + 531 + 36 = 1400.
An SVM classifier [31] was then trained to discriminate between live and spoofing face images by
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using library LibSVM [32]. The objective of the SVM is to search for an optimal hyper-plane which
separates the face images into live and spoofing face images with a maximum margin. A linear SVM
was implemented for NUAA Photograph Imposter Database, CASIA Face Anti-Spoofing Database,
and Idiap Replay-Attack, while a nonlinear SVM with the radial basis function kernel was implemented
for MSU Mobile Face Spoofing Database in order to compare the proposed method with that developed
by Wen et al. [16]. Notably, the linear SVM was trained with the default parameters due to their reliable
performance. A parameter optimization was performed for the nonlinear SVM by cross-validation to
ensure a fair comparison. Furthermore, the attributes were scaled to avoid numerical difficulties [33].
Because the R-G deviated texture and block-based color moment were extracted as the features,
the proposed system required color images.

4. Empirical Work

The proposed face liveness detection system was evaluated using four public domain databases
according to the training and testing protocols from [9,23,24]. This section first introduces the four public
domain databases: NUAA Photograph Imposter Database [23], CASIA Face Anti-Spoofing Database [24],
Idiap Replay-Attack [9], and MSU Mobile Face Spoofing Database [16]. Then, the empirical results
including the effects of the color channel and individual features on the performance of the proposed
method were demonstrated.

4.1. Face Spoofing Database

Four public domain databases containing images of various 2D face spoof attacks were used to
evaluate the performance of the proposed face liveness detection system. The system detected the face
using the Viola—Jones face detection algorithm [25] and normalized the face image into a 64 x 64 pixel
image. The properties of the four public domain databases are summarized as follows.

4.1.1. NUAA Photograph Imposter Database

The NUAA Photograph Imposter Database [23] was created in 2010 and is currently one of the
most widely used benchmark databases. This database contains 5105 live client and 7509 printed
photo attack images from 15 Asian subjects in various environments and under different illumination
conditions. The live client images were captured using a webcam (20 fps, 640 x 480 pixels), whereas the
printed photo attack images were captured using a Canon camera (Canon, Inc., Lake Success, NY, USA)
and were then printed on both A4 paper and photographic paper. Figure 5 shows a few samples of the
live client and printed photo attack images available in the NUAA database.

L r
e
- - -
~r o

“ad A
-
Figure 5. Samples of live face images (top row) and spoofing face images (bottom row) in the
NUAA database.

4.1.2. CASIA Face Anti-Spoofing Database

The CASIA Face Anti-Spoofing Database [24] was launched in 2012 and contains images of three
types of spoofing attacks: printed photo attack, printed photos with perforated eye regions, and video
replay attacks. This database contains 150 live and 450 spoofing videos collected from 50 Asian subjects,
which were captured in triplicate using a low-quality camera (640 x 480), a normal quality camera
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(480 x 640), and a high-quality Sony NEX-5 camera (Sony, Tokyo, Japan) (1920 x 1080). Figure 6 shows
examples of each of the three types of spoofing attacks.

.

(b)

Figure 6. Samples of spoofing attack images in the CASIA database. (a) Printed photo attack; (b) Printed
photo with perforated eye regions; (c) Video replay attack.

4.1.3. Idiap Replay-Attack

Idiap Replay-Attack [9] emerged in 2012 and consists of three types of spoofing attack videos:
printed photos, mobile phone attacks, and tablet attacks. This database contains 200 live and
1000 spoofing attack videos collected from 50 subjects who are identified as Caucasian, Asian,
or African. The live face videos were collected using a MacBook Webcam (Apple Inc., Cupertino,
CA, USA) (320 x 240 pixels), whereas the spoof face videos were collected using a Canon PowerShot
SX150 IS camera (Canon, Inc., Lake Success, NY, USA) (1280 x 720 pixels). Additionally, the videos
are captured under two types of stationary conditions: with a fluorescent lamp against a uniform
background or in daylight against a nonuniform background. Furthermore, each attack video is
captured in both hand-based and fixed-support modes. Figure 7 shows the face samples of the live and
spoofing face images. This study followed the protocols specified in [9] and, thus, adopted all frames
in the training set to train the classifier and those in the developing set to determine the threshold
value. The classifier was then tested using all of the frames in the testing set of Idiap Replay-Attack.

Figure 7. Face samples in Idiap Replay-Attack. (a) Live face image; (b) Spoofing face image used in
printed photo attacks; (c) Spoofing face image used in mobile phone attacks; (d) Spoofing face image
used in tablet attacks.

4.1.4. MSU Mobile Face Spoofing Database

The MSU Mobile Face Spoofing Database [16] was launched in 2015 and contains both printed
photos and replayed video attacks. In total, this database contains 110 live videos and 330 spoofing
attack videos collected from 35 subjects who are identified as Caucasian (70%), Asian (28%), or African
(2%). Similar to Idiap Replay-Attack, live face videos were captured using a MacBook Air laptop
camera (Apple Inc., Cupertino, CA, USA) (640 x 480 pixels) and Google Nexus 5 mobile phone camera
(Google, Mountain View, CA, USA) (720 x 480 pixels), whereas the spoof face videos were captured
using a Canon 550D SLR camera (Canon, Inc., Lake Success, NY, USA) (1920 x 1088 pixels) and iPhone
5s camera (Apple Inc., Cupertino, CA, USA) (1920 x 1080 pixels). Each video is at least 9 s long,
with 30 fps. Because the face images are captured on a mobile phone, the MSU database can simulate
mobile phone unlocking applications. Furthermore, the printed photos are of higher quality than those
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from other databases due to the use of a state-of-the-art color printer (HP Color Laserjet CP6015xh).
The videos are replayed on two attack media (iPad Air and iPhone 5S screens). Figure 8 shows samples
of some live and spoofing face images found in the database.

Figure 8. Face samples in the MSU database that were captured using the cameras in a Google Nexus
5 mobile phone (top row) and MacBook Air (bottom row). (a) Live face images; (b) Spoofing face
images replayed on an iPad Air screen; (c) Spoofing face images replayed on an iPhone 5S screen;
(d) Spoofing face images used in a printed photo attack.

4.2. Effects of Different Color Channels

The MLBP used in this study could extract texture features from a specific color channel of a facial
image. In this section, the influence of various color channels (i.e., red, green, and blue channels in the
RGB space; the luminance channel in the YUV space where Y is the luminance, and U and V are the
chrominance; and the luminance channel in the HSV space) on the proposed face liveness detection
system in the four public domain databases is reviewed. Notably, only the MLBP was extracted as the
feature vector, which was then fed into the SVM classifier. Figure 9a—d present the receiver operating
characteristic (ROC) curves of various color channels in the NUAA, CASIA, Idiap, and MSU databases,
respectively. The Grey and Value lines represent the luminance channels in the YUV and HSV spaces,
respectively. As described in the earlier text, the red channel provided the best performance among all
color channels. This finding indicated that the texture features in the red channel offer information
that helps discriminate between live and spoofing face images.
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Figure 9. Face spoofing detection performance on the (a) NUAA; (b) CASIA; (c) Idiap; and (d) MSU
databases, using the MLBP to extract features from various color channels.

4.3. Effects of Different Features

The proposed face liveness detection system utilizes a combination of three features: the MLBP,
R-G deviated texture, and the block-based color moment. The effects of individual features and various
combinations of the features were analyzed, and the results are listed in Table 1. For all combinations,
the face detection and classifier were identical to the proposed face liveness detection system.
The performance of the system using various features from each database was evaluated by calculating
the accuracy rate, as follows:

TP+TN
Accuracy rate = % x 100(%), (7)
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where N denotes the total number of face images (including live and spoofing face images), and TP and
TN indicate the numbers of correctly identified live and spoofing face images, respectively. In addition
to the accuracy rate, ROC curve data were collected, and the area under the ROC curve (AUC)
was calculated as another performance index of the proposed face spoof detection system. Notably,
methods that have larger AUCs are generally considered to be more accurate methods. The training
and testing protocols for the four public domain databases were identical to those used in [9,23,24].

Table 1. Face spoofing detection performance (%) regarding various combinations of features in
images from the four public domain databases where values in bold indicate the best results among

the features.
NUAA CAISA Idiap MSU

Feature
Accuracy AUC  Accuracy AUC  Accuracy AUC  Accuracy AUC
(i) 80.04 91.68 82.90 90.52 86.04 90.12 75.99 86.82
(ii) 85.60 92.46 80.72 86.08 87.13 92.79 85.15 91.17
(iif) 72.48 90.97 85.66 89.27 84.76 92.28 78.19 86.64
(iv) 73.60 91.34 89.03 91.85 91.56 93.78 79.19 87.72
) 95.45 99.29 90.72 95.13 93.74 97 .46 82.13 90.44
(vi) 95.52 99.34 91.70 95.35 95.52 98.73 88.45 93.89
(vii) 98.56 99.85 88.59 94.00 92.59 97.13 86.31 92.57
(viii) 92.16 99.43 90.02 94.27 92.01 97.08 88.68 94.47
(ix) 96.69 99.96 93.24 96.57 96.55 99.34 90.06 95.71

i—ix: MLBP, R-G deviated texture, color moment, block-based color moment, MLBP + color moment, MLBP +
block-based color moment, MLBP + R-G deviated texture, R-G deviated texture + block-based color moment,
and proposed feature, respectively.

Notably, the color moment in [16] was calculated from a whole image (i.e., without dividing the
image into blocks), whereas the block-based color moment used in the present study was calculated
from the four individual blocks of an image. We assumed that the color moments may be more
discriminative in small and local areas of the image than the moments calculated from a whole image.
Therefore, the images were divided into 2 x 2 blocks without overlap for examination. The feature
vector of the block-based color moment was formed by concatenating the color moments calculated
from each individual block. As shown in Table 1, the block-based color moment (iii) achieved better
performance than did a single color moment calculated from a whole image (iv), in terms of both the
accuracy rate and AUC, in all of the databases. In other words, the color moments in the local areas of
an image provided more spatial information about the face and were more discriminative than was
the color moment calculated from a whole image.

Table 1 also reveals that the R-G deviated feature achieves better performance than do the
other individual features in the NUAA and MSU databases, but not in the Idiap or CASIA database.
This feature also achieved the lowest AUC (86.08%) among all individual features in the CASIA
database. The result indicated that the difference between the red and green channels in live face
images is distinct from those in the spoof face images in the NUAA and MSU databases, but the same
is not true in the Idiap or CASIA database. By contrast, the block-based color moment achieved better
performance than the other individual features in both the Idiap and CASIA databases, but not in
the NUAA or MSU databases. Furthermore, this feature achieved the highest AUC (93.78%) among
all individual features in the Idiap database. This result showed that spoof attack images possess
imperfect color reproduction properties, which lead to a color distribution that is distinct from that in
the live face images in both the Idiap and CASIA databases. Therefore, this color-based feature can
discriminate between live and spoofing face images in these two databases.

Most of the combinations of the features (v—viii) achieved better performance than did the
individual features (i-iv). For example, the R-G deviated feature improved when it was combined
with the MLBP in the NUAA database: combining these two features enhanced the AUC by 7.39%
and generated the highest AUC of 99.85%. The block-based color moment also improved when it was
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combined with the MLBP in the CASIA, Idiap, and MSU databases. Combining these two features
enhanced the AUC by 3.5%, 4.95%, and 2.72% in the CASIA, Idiap, and MSU databases, respectively,
and generated the highest AUCs of 95.35% and 98.73% in the CASIA and Idiap databases, respectively.
Both the R-G deviated feature alone and combined with the MLBP achieved the optimum performance
in the NUAA database. Furthermore, both the block-based color moment alone and combined with
the MLBP achieved the optimum performance in the CASIA and Idiap databases. The MLBP was
helpful in differentiating reflectance between live and spoofing face images. However, among all
combinations, none of these combinations achieved the best performance (regarding either the accuracy
rate or AUC) in all databases. By contrast, the proposed face liveness detection system combined all
three features to further improve spoofing image identification. Specifically, the AUC results were
96.57%, 99.34%, and 95.71% in the CASIA, Idiap, and MSU databases, respectively. Although the
proposed method had a lower accuracy rate than did the method combining the MLBP and R-G
deviated texture, the proposed method achieved the highest AUC (99.96%) in the NUAA database.
This finding confirmed that the proposed method has an excellent ability to discriminate between live
and spoofing face images and can accurately identify spoofing face images in all of the databases.

5. Performance Evaluation

In this section, the proposed method is compared with previously published methods
from [16,18,23,34,35], which adopted various preprocessing techniques, features, and classifiers.
First, the performance indices that are used to measure the performance of a face liveness detection
system are described. Subsequently, the performance of different face spoofing detection methods
is compared.

5.1. Performance Index

The performance of a face liveness detection system was determined based on its accuracy rate
(in the NUAA database), equal error rate (EER) (in the CASIA and MSU databases), and half total
error rate (HTER) (in the Idiap database). Face liveness detection system errors can be divided into
false acceptance (wherein a spoofing face image is classified as a live face image) and false rejection
(wherein a live face image is classified as a spoofing face image). The HTER is defined as half of the
sum of the false acceptance rate (FAR) and false rejection rate (FRR) and is calculated as
_ FAR(1) + FRR(71)

HTER(7) = 5 , ®)

where T denotes the threshold of a classifier. FAR and FRR are the ratios of incorrectly classified
spoofing face images and live face images, respectively, and are defined as follows:

FAR(7) — # of false acceptance
~ # of spoofing faces ’

©)

# of false rejection
FRR(7) = # of real faces

(10)

Typically, when the FAR increases, the FRR decreases; the lower the HTER, the better the method
is. Additionally, the EER is defined as a point in an ROC curve where the FAR equals the FRR; the lower
an EER value, the better the classification ability of a detection system is.

Table 2 reveals the abilities of different face liveness detection systems that were applied to identify
live and spoofing face images in four public domain databases.
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Table 2. Performance of various spoofing detection methods for images in the four public domain
databases. N/ A means not applicable and values in bold indicate the best results among the methods.

NUAA CASIA Idiap MSU
Method Classifier

Accuracy AUC EER HTER EER

Maitti et al. [18] Nonlinear SVM 92.70% 99.00% N/A N/A N/A

Tan et al. [23] Sparse nonlinear o) 500 g5 g9, N/A N/A  N/A

logistic regression

Kim et al. [35] Linear SVM 98.45% N/A N/A 12.50% N/A

Pinto et al. [34] Linear SVM N/A N/A 14.00% N/A N/A

Wen et al. [16] Ensemble SVM N/A N/A 12.90% 7.41% 8.58%
Proposed method Linear SVM 96.69% 99.96% 7.01% 4.92% 10.20%

Proposed method 1 Nonlinear SVM N/A N/A N/A N/A 7.23%

1 A nonlinear support vector machine (SVM) was adopted to compare the proposed method with that developed by
Wen et al. [16] in the MSU database.

5.2. Comparison with Other Methods in NUAA Database

For the NUAA database, our proposed method achieved an accuracy rate of 96.69%. This is slightly
worse than the method proposed by Kim et al. [35] but outperforms the other two methods [18,23].
Furthermore, our proposed method achieved an AUC of 99.96%, which exceeds those achieved
by [18] (AUC = 99%) and [23] (AUC = 95%). Kim et al. [35] did not include AUC results in their
study. This finding indicated that our proposed method can effectively classify live and spoofing face
images in the NUAA database. Figure 10 shows ten examples of correctly classified images. Because
the live face images are captured under adequate illumination and lighting conditions, the texture-
based feature can capture facial textures from live face images. Furthermore, the proposed method
also captured the color distortion, shape deformation, and surface reflection from the spoofing face
images. Figure 11 presents five examples of misclassified spoofing face images in the NUAA database.
Notably, there were no false rejection results (i.e., no live face images were misclassified). This result
implied that the spoofing face images that were dimly lit or too bright or those that had an unknown
light reflection were often misclassified by the proposed method. Although some correctly classified
images were recorded under bright conditions (e.g., the last two images of the first row in Figure 10),
the misclassified spoofing face images (e.g., the third image in Figure 11) were recorded under a
“too bright” condition, which created an unclear texture. One possible reason for such misclassification
is the lack of detailed texture information due to the dim light and too bright conditions. Additionally,
there is a large portion of the background shown in the cropped images (e.g., the fourth image
in Figure 11). Thus, the face detector might affect the performance of the proposed face spoofing
detection method.

Figure 10. Ten examples of correctly classified images in the NUAA database by using our proposed
method.
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Figure 11. Five examples of misclassified spoofing face images in the NUAA database by using our
proposed method.

5.3. Comparison with Other Methods in CASIA Database

For the CASIA database, the proposed method achieved a lower EER (7.01%) than did the other
methods. The CASIA database consists of low-quality subset (L), normal-quality subset (N), and high-quality
subset (H) images. To analyze the influence of quality on image classification, the proposed method was
applied to each subset. The results indicated an EER of 2.9%, 7.32%, and 9.96% on the L, N, and H subsets,
respectively. Thus, the proposed method performed optimally on the L subset but degraded the N and
H subsets. One possible reason for this result is that the faces were normalized into 64 x 64 pixel images,
and the facial details may have been compressed in the N and H subsets.

Figure 12 shows ten examples of correctly classified face images that were captured with adequate
and white light sources. Conversely, Figure 13 shows ten examples of misclassified images that were
captured with an unknown white balance adjustment, in a dim or too bright light environment, or with
oversaturated exposure. These images may have been misclassified because of the failure of color-based
features, such as R-G deviated texture and the block-based color moment, for spoofing detection
due to poor illumination. Furthermore, images with non-neutral facial expressions (e.g., images in
the last column in Figure 13) were often misclassified. Facial expression can affect the facial texture;
thus, non-neutral facial expressions can lead to the failure of texture-based features. Another possible
reason is the imbalance in the proportion of face images with and without non-neutral facial expressions
in the training set.

Figure 12. Ten examples of correctly classified images in the CASIA database by using the proposed
method. (top row) live face images; (bottom row) spoofing face images.

Figure 13. Ten examples of misclassified images in the CASIA database by using the proposed method.
(top row) live face images; (bottom row) spoofing face images.
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5.4. Comparison with Other Methods in Idiap Database

For the Idiap database, the proposed method achieved an HTER of 4.92%, which is the lowest
HTER among all of the studied methods. Although the proposed method was slightly worse at
classifying images in the NUAA database than the method in [35] (in terms of the accuracy rate),
the HTER of the method in [35] for images in Idiap database was 12.5%. Notably, the Idiap database is
much larger than the NUAA database, and contains various types of spoofing face samples, including
printed photos, displayed photos, and replayed videos. Furthermore, Idiap database includes images
of subjects variously identified as Caucasian, Asian, and African. This diversity implies that Idiap
database has been extensively used by researchers and has been utilized for spoofing detection
performance evaluation in many studies. Figure 14 shows ten examples of correctly classified face
images. As shown in the figure, the surface reflection and color distortion that appear in the spoofing
face images were adequately captured by the proposed method. Figure 15 shows ten examples of
misclassified face images in Idiap database, which were incorrectly assessed due to dim lighting,
skin color, face position, or colored light source. In particular, a live face image in which the person is
not looking directly at the camera (i.e., the fourth image of the first row in Figure 15) was misclassified
by the proposed method. Both live and spoofing face images that portray a person with dark skin
were also often misclassified. One possible reason for this misclassification is the imbalance of images
of individuals of various races in the training set, which was discussed in [16].

Figure 14. Ten examples of correctly classified images in Idiap database by using the proposed method.
(top row) live face images; (bottom row) spoofing face images.

Figure 15. Ten examples of misclassified images in Idiap database by using the proposed method.
(top row) live face images; (bottom row) spoofing face images.

5.5. Comparison with Other Methods in MSU Database

For the MSU database, the proposed method achieved an EER of 10.20%, which is higher than
that in [16] (8.58%). However, the EER achieved by the proposed method was improved from 10.20%
to 7.23% when a nonlinear SVM with the radial basis function kernel was utilized. The parameters
used in the nonlinear SVM were obtained through cross-validation, and the attributes were scaled
to avoid numerical difficulties [33]. Following this addition, the proposed method achieved better
performance than did the method developed by Wen et al. [16], and the proposed method effectively
discriminated live and spoofing face images in the MSU database. Figure 16 shows ten examples of
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correctly classified images in the MSU database. Most of the live face images were captured under
appropriate illumination conditions, whereas the spoofing face images possessed imperfect color
and texture reproduction properties caused by the printing and display devices. In other words,
the proposed method successfully extracted color- and texture-based features to differentiate between
the live and spoofing face images. Figure 17 shows ten examples of misclassified images in the MSU
database. Some potential reasons for the false rejection of the live face images are the inclusion of
an accessory (e.g., cap), poor illumination, low resolution, and non-neutral facial expression. These
factors can lead to poor facial texture and thus affect the performance of texture-based features in
a detection system. Some potential reasons for the false acceptance of spoofing face images are
overexposure, an external light source from above the subject, specular reflection on the bilateral
forehead, and imperfect face alignment. These region-related factors can affect the performance of the
block-based color moment due to the use of information from local areas of the image. Several of the
misclassified spoofing face images were captured in high resolution and thus provided facial textures
similar to the live face images.

Figure 16. Ten examples of correctly classified images in the MSU database by using the proposed
method. (top row) live face images; (bottom row) spoofing face images.

Figure 17. Ten examples of misclassified images in the MSU database by using the proposed method.
(top row) live face images; (bottom row) spoofing face images.

According to the experimental results, previously published methods and the proposed method
performed better or worse than each other depending on the database utilized. In particular, various
illumination conditions rendered the identification of face spoofing images difficult. Moreover, the lack
of images containing diverse facial expressions, face positions, and skin color in the training sample led
to failures in the proper classification of live and spoofing face images. Although the proposed method
did not consistently achieve the best performance for each database in the present study, it performed
excellently in terms of the accuracy rate (96.69%), EER (7.01%), HTER (4.92%), and EER (7.23%) under
the original testing protocols for the NUAA, CASIA, Idiap, and MSU databases.

5.6. Computational Complexity Analysis

The computational complexity of the proposed face liveness detection system is theoretically
analyzed as follows. The proposed system consists of feature extraction and classification. The first two
features, MLBP and R-G deviated texture, rely on the LBP operator. The computational complexity of
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the LBP operator is O(PN) + O(P2") where P is the number of neighborhood pixels, N is the total
number of pixels, and O() is big O notation [36]. Because P is a user-specified parameter and can be
considered as a constant in the experiments, the computational complexity of the LBP operator is a
linear-time process. For the block-based color moment, the computational complexity of computing
the mean, standard deviation, and skewness of the color distribution of all blocks is O(mNy, ), where m
is the number of blocks and Ny, is the total number of pixels in one block. Because the image is divided
into blocks without overlapping, the computational complexity of the block-based color moment is
O(N).

For the classification, the computational complexity of the SVM classifier is O(N2,) in the training
phase where Nrs is the number of training samples, and O(DNgy ) is in testing phase where D is
the dimension of the input vector and Nsy is the number of support vectors [37]. Note that the
computational complexity of the SVM classifier in testing phase is only considered for real-time
implementation. All experiments were performed on a personal computer (3.2 GHz CPU and 16 GB
RAM), and the proposed method was implemented in MATLAB. The average processing time for one
single image is 54.6 ms, which makes the proposed system feasible for real-time applications.

6. Conclusions

This study proposed a face liveness detection system that could identify printed photo attacks and
replayed attacks through a single face image. The proposed system adopted the MLBP, R-G deviated
texture, and block-based color moment as key features. The MLBP-extracted texture features were
collected from the red channel in the images to capture the specular and diffusion components caused
by distinct surface reflection and shape deformation properties in 3D and 2D planar objects. The R-G
deviated texture was extracted to determine the texture differences between the red and green channels
due to skin blood flow. Finally, the block-based color moment was extracted from each image block to
identify color distribution differences between live and spoofing face images caused by the imperfect
color reproduction property of spoofing mediums. An SVM was trained to discriminate between
live and spoofing face images by using the concatenation of the three features. The experimental
results showed that the proposed system showed promising performance for face spoof detection on
images in four public domain databases (the NUAA, CASIA, Idiap, and MSU databases). Moreover,
this system can actually be performed in real time due to shorter computational time. Future research
should focus on collecting more images that portray various races, ages, and facial expressions and on
developing effective features that can address a wide range of spoofing scenarios.

Acknowledgments: This work was financially supported by the Ministry of Science and Technology of the
Republic of China, Taiwan, under Contract numbers MOST 106-2221-E-035-092, MOST 105-2221-E-035-014,
and NSC 102-2511-5-009-011-MY3.

Author Contributions: Shun-Yi Wang designed the algorithm, conducted all experiments, analyzed the results,
wrote the manuscript, and conducted the literature review. Yon-Ping Chen conceived the algorithm and wrote
the manuscript. Jyun-We Huang partially conducted experiments. Shih-Hung Yang conceived and designed the
algorithm, guided all experiments, analyzed the results, wrote the manuscript, conducted the literature review,
and guided the direction and all details of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jain, AK,; Prabhakar, S.; Hong, L.; Pankanti, S. Filterbank-based fingerprint matching. IEEE Trans. Image Process.
2000, 9, 846-859. [CrossRef] [PubMed]

2. Ramachandra, R.; Busch, C. Presentation attack detection methods for face recognition systems: A comprehensive
survey. ACM Comput. Surv. (CSUR) 2017, 50, 8. [CrossRef]

3. Soldera, J.; Schu, G.; Schardosim, L.R.; Beltrao, E.T. Facial biometrics and applications. IEEE Instrum. Meas. Mag.
2017, 20, 4-10. [CrossRef]

4. Arashloo, S.R;; Kittler, ]J.; Christmas, W. An Anomaly Detection Approach to Face Spoofing Detection: A New
Formulation and Evaluation Protocol. IEEE Access 2017, 5, 13868-13882. [CrossRef]


http://dx.doi.org/10.1109/83.841531
http://www.ncbi.nlm.nih.gov/pubmed/18255456
http://dx.doi.org/10.1145/3038924
http://dx.doi.org/10.1109/MIM.2017.7919105
http://dx.doi.org/10.1109/ACCESS.2017.2729161

Symmetry 2017, 9, 305 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

Vezzetti, E.; Marcolin, F,; Tornincasa, S.; Ulrich, L.; Dagnes, N. 3D geometry-based automatic landmark
localization in presence of facial occlusions. Multimed. Tools Appl. 2017, 1-29. [CrossRef]

Marcolin, F.; Vezzetti, E. Novel descriptors for geometrical 3D face analysis. Multimed. Tools Appl. 2017, 76,
13805-13834. [CrossRef]

Huang, K.-K,; Dai, D.-Q.; Ren, C.-X,; Yu, Y.-F; Lai, Z.-R. Fusing landmark-based features at kernel level for
face recognition. Pattern Recognit. 2017, 63, 406—415. [CrossRef]

Smith, D.F,; Wiliem, A.; Lovell, B.C. Face recognition on consumer devices: Reflections on replay attacks.
IEEE Trans. Inf. Forensics Secur. 2015, 10, 736-745. [CrossRef]

Chingovska, I.; Anjos, A.; Marcel, S. On the Effectiveness of Local Binary Patterns in Face Anti-Spoofing.
In Proceedings of the 2012 BIOSIG International Conference of the Biometrics Special Interest Group
(BIOSIG), Darmstadt, Germany, 6-7 September 2012; pp. 1-7.

Pan, G.; Sun, L.; Wu, Z,; Lao, S. Eyeblink-Based Anti-Spoofing in Face Recognition from a Generic Webcamera.
In Proceedings of the IEEE 11th International Conference on Computer Vision (ICCV 2007), Rio de Janeiro,
Brazil, 14-21 October 2007; pp. 1-8.

Sun, L.; Pan, G.; Wu, Z,; Lao, S. Blinking-based live face detection using conditional random fields. Adv. Biom.
2007, 252-260.

Bao, W,; Li, H.; Li, N,; Jiang, W. A liveness Detection Method for Face Recognition Based on Optical Flow
Field. In Proceedings of the International Conference on Image Analysis and Signal Processing (IASP),
Taizhou, China, 11-12 April 2009; pp. 233-236.

Kollreider, K.; Fronthaler, H.; Faraj, M.L; Bigun, J. Real-time face detection and motion analysis with
application in “liveness” assessment. IEEE Trans. Inf. Forensics Secur. 2007, 2, 548-558. [CrossRef]

Akhtar, Z.; Foresti, G.L. Face spoof attack recognition using discriminative image patches. J. Electr. Comput. Eng.
2016, 2016. [CrossRef]

Galbally, J.; Marcel, S.; Fierrez, J. Image quality assessment for fake biometric detection: Application to iris,
fingerprint, and face recognition. IEEE Trans. Image Process. 2014, 23, 710-724. [CrossRef] [PubMed]

Wen, D.; Han, H.; Jain, A K. Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur.
2015, 10, 746-761. [CrossRef]

Lai, C.; Tai, C. A Smart Spoofing Face Detector by Display Features Analysis. Sensors 2016, 16, 1136.
[CrossRef] [PubMed]

Maittd, J.; Hadid, A.; Pietikdinen, M. Face Spoofing Detection from Single Images Using Micro-Texture
Analysis. In Proceedings of the 2011 International Joint Conference on Biometrics (IJCB), Washington, DC,
USA, 12-14 October 2011; pp. 1-7.

De Marsico, M.; Nappi, M.; Riccio, D.; Dugelay, J.-L. Moving Face Spoofing Detection via 3D Projective
Invariants. In Proceedings of the 5th IAPR International Conference on Biometrics (ICB), New Delhi, India,
29 March-1 April 2012; pp. 73-78.

Kim, S.; Ban, Y.; Lee, S. Face Liveness Detection Using Defocus. Sensors 2015, 15, 1537-1563. [CrossRef]
[PubMed]

Zhang, Z.;Yi, D.; Lei, Z.; Li, S.Z. Face Liveness Detection by Learning Multispectral Reflectance Distributions.
In Proceedings of the IEEE International Conference on Automatic Face & Gesture Recognition and
Workshops (FG 2011), Santa Barbara, CA, USA, 21-25 March 2011; pp. 436-441.

Kim, S.; Ban, Y.; Lee, S. Face Liveness Detection Using a Light Field Camera. Sensors 2014, 14, 22471-22499.
[CrossRef] [PubMed]

Tan, X,; Li, Y.; Liu, J.; Jiang, L. Face liveness detection from a single image with sparse low rank bilinear
discriminative model. Comput. Vis. ECCV 2010, 2010, 504-517.

Zhang, Z.; Yan, J; Liu, S; Lei, Z; Yi, D.; Li, SZ. A Face Antispoofing Database with Diverse Attacks.
In Proceedings of the 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March—
1 April 2012; pp. 26-31.

Viola, P,; Jones, M.]. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137-154. [CrossRef]

Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based
on Kullback discrimination of distributions. In Proceedings of the IEEE 12th International Conference on
Pattern Recognition, Jerusalem, Israel, 9-13 October 1994; pp. 582-585.

Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971-987. [CrossRef]


http://dx.doi.org/10.1007/s11042-017-5025-y
http://dx.doi.org/10.1007/s11042-016-3741-3
http://dx.doi.org/10.1016/j.patcog.2016.10.021
http://dx.doi.org/10.1109/TIFS.2015.2398819
http://dx.doi.org/10.1109/TIFS.2007.902037
http://dx.doi.org/10.1155/2016/4721849
http://dx.doi.org/10.1109/TIP.2013.2292332
http://www.ncbi.nlm.nih.gov/pubmed/26270913
http://dx.doi.org/10.1109/TIFS.2015.2400395
http://dx.doi.org/10.3390/s16071136
http://www.ncbi.nlm.nih.gov/pubmed/27455259
http://dx.doi.org/10.3390/s150101537
http://www.ncbi.nlm.nih.gov/pubmed/25594594
http://dx.doi.org/10.3390/s141222471
http://www.ncbi.nlm.nih.gov/pubmed/25436651
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1109/TPAMI.2002.1017623

Symmetry 2017, 9, 305 18 of 18

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

Lin, K.-Y.; Chen, D.-Y.,; Tsai, W.-]. Face-Based Heart Rate Signal Decomposition and Evaluation Using
Multiple Linear Regression. IEEE Sens. ]. 2016, 16, 1351-1360. [CrossRef]

Barkan, O.; Weill, ].; Wolf, L.; Aronowitz, H. Fast High Dimensional Vector Multiplication Face Recognition. In
Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1-8 December 2013;
pp- 1960-1967.

Stricker, M.A.; Orengo, M. Similarity of Color Images. In Proceedings of the IS&T/SPIE’s Symposium on
Electronic Imaging: Science & Technology, San Jose, CA, USA, 5-10 February 1995; pp. 381-392.

Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273-297. [CrossRef]

Chang, C.-C,; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST)
2011, 2, 27. [CrossRef]

Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification; National Taiwan
University: Taipei, Taiwan, 2003.

Menotti, D.; Chiachia, G.; Pinto, A.; Schwartz, W.R.; Pedrini, H.; Falcao, A.X.; Rocha, A. Deep representations
for iris, face, and fingerprint spoofing detection. IEEE Trans. Inf. Forensics Secur. 2015, 10, 864-879. [CrossRef]
Kim, W,; Suh, S.; Han, J.-]. Face liveness detection from a single image via diffusion speed model. IEEE Trans.
Image Process. 2015, 24, 2456-2465.

Liao, S.; Law, M.W.; Chung, A.C. Dominant local binary patterns for texture classification. IEEE Trans.
Image Process. 2009, 18, 1107-1118. [CrossRef] [PubMed]

Burges, C.J. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2,
121-167. [CrossRef]

@ © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1109/JSEN.2015.2500032
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1109/TIFS.2015.2398817
http://dx.doi.org/10.1109/TIP.2009.2015682
http://www.ncbi.nlm.nih.gov/pubmed/19342342
http://dx.doi.org/10.1023/A:1009715923555
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Face Livenss Detection 
	Multi-Scale Local Binary Pattern 
	Red–Green Deviated Texture 
	Block-Based Color Moment 

	Empirical Work 
	Face Spoofing Database 
	NUAA Photograph Imposter Database 
	CASIA Face Anti-Spoofing Database 
	Idiap Replay-Attack 
	MSU Mobile Face Spoofing Database 

	Effects of Different Color Channels 
	Effects of Different Features 

	Performance Evaluation 
	Performance Index 
	Comparison with Other Methods in NUAA Database 
	Comparison with Other Methods in CASIA Database 
	Comparison with Other Methods in Idiap Database 
	Comparison with Other Methods in MSU Database 
	Computational Complexity Analysis 

	Conclusions 

