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Abstract: To fuzzify the crisp functions, the extension principle has been widely used for performing
this fuzzification. The purpose of this paper is to investigate the continuity of fuzzified function
using the more generalized extension principle. The Hausdorff metric will be invoked to study the
continuity of fuzzified function. We also apply the principle of continuity of fuzzified function to the
fuzzy topological vector space.
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1. Introduction

Let U be a universal set. A fuzzy subset Ã of U is defined as a set of ordered pairs:

Ã = {(x, ξ Ã(x)) : x ∈ U} ,

where ξ Ã : U → [0, 1] is called the membership function of Ã. The set of all fuzzy subsets of U is denoted
by F (U).

We consider an onto function f : U → V, where V is another universal set. This function
is also called as a crisp function. The purpose is to fuzzify the crisp function f as a fuzzy function
f̃ : F (U) → F (V); that is, for any Ã ∈ F (U), it means f̃ (Ã) ∈ F (V). We remark that this fuzzy
function is completely different from the concept of fuzzy function studied in Hajek [1], Demirci [2]
and Höhle et al. [3] in which the fuzzy function is treated as a fuzzy relation.

The principle for fuzzifying the crisp functions is called the extension principle, which was proposed
by Zadeh [4–6]. In particular, if V = R, then f : U → R is called a real-valued function, and f̃ :
F (U)→ F (R) induced from f is called a fuzzy-valued function.

For any Ã ∈ F (U), the extension principle says that the membership function of B̃ ≡ f̃ (Ã) is
defined by the following supremum:

ξ B̃(y) = ξ f̃ (Ã)(y) = sup
{x:y= f (x)}

ξ Ã(x). (1)

Suppose that U and V are taken as the topological spaces such that the original crisp function
f : (U, τU) → (V, τV) is continuous. In this paper, we shall investigate the continuity of fuzzified
function f̃ : F (U) → F (V). Román-Flores et al. [7] has studied the continuity of this fuzzified
function when U and V are taken as the Euclidean space Rn. In this paper, we are going to extend these
results to the case of normed spaces and normable topological vector spaces using the generalized
extension principle discussed in Wu [8].

Let U1 and U2 be two universal sets. We consider the onto crisp function f : U1 × U2 → V.
The purpose is to fuzzify the crisp function f as a fuzzy function f̃ : F (U1) × F (U2) → F (V).
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For any two fuzzy subsets Ã(1) and Ã(2) of U1 and U2, respectively, the membership function of
B̃ ≡ f̃ (Ã(1), Ã(2)) ∈ F (V) is defined by:

ξ B̃(y) = ξ f̃ (Ã(1),Ã(2))(y) = sup
{(x1,x2):y= f (x1,x2)}

min
{

ξ Ã(1)(x1), ξ Ã(2)(x2)
}

. (2)

Nguyen [9] has obtained the following result.
For α ∈ (0, 1], the α-level set of Ã is defined and denoted by:

Ãα = {x ∈ U : ξ Ã(x) ≥ α} .

If the universal set U is endowed with a topology, then the 0-level set of Ã is defined by:

Ã0 = cl ({x ∈ U : ξ Ã(x) > 0}) ,

which is the closure of the support {x ∈ U : ξ Ã(x) > 0} of Ã. However, if U is not assumed to be a
topological space, then the 0-level set is usually taken to be the whole set U.

Theorem 1. (Nguyen [9]) Let f : U1 × U2 → V be an onto crisp function defined on U1 × U2 and let
f̃ : F (U1) × F (U2) → F (V) be a fuzzy function induced from f via the extension principle defined in
Equation (2). For Ã(i) ∈ F (Ui), i = 1, 2, the following equality:(

f̃ (Ã(1), Ã(2))
)

α
= f

(
Ã(1)

α , Ã(2)
α

)
(3)

holds true for each α ∈ (0, 1] if and only if, for each y ∈ V, the following supremum:

sup
{(x1,x2):y= f (x1,x2)}

min
{

ξ Ã(1)(x1), ξ Ã(2)(x2)
}

(4)

is attained; that is, we have:

sup
{(x1,x2):y= f (x1,x2)}

min
{

ξ Ã(1)(x1), ξ Ã(2)(x2)
}
= max
{(x1,x2):y= f (x1,x2)}

min
{

ξ Ã(1)(x1), ξ Ã(2)(x2)
}

.

Fullér and Keresztfalvi [10] generalized Theorem 1 by considering the t-norm. In this case,
the extension principle presented in Equation (2) can be generalized in the following form:

ξ B̃(y) = ξ f̃ (Ã(1),Ã(2))(y) = sup
{(x1,x2):y= f (x1,x2)}

t
(
ξ Ã(1)(x1), ξ Ã(2)(x2)

)
, (5)

since min{x, y} is a t-norm. Therefore, Theorem 1 can be generalized as follows.

Theorem 2. (Fullér and Keresztfalvi [10]) Let f : U1×U2 → V be an onto function defined on U1× · · · ×Un

and let f̃ : F (U1)×F (U2)→ F (V) be a fuzzy function induced from f via the extension principle defined in
Equation (5). For Ã(i) ∈ F (Ui), i = 1, 2, the following equality:(

f̃ (Ã(1), Ã(2))
)

α
=

⋃
{(α1,α2):t(α1,α2)≥α}

f
(

Ã(1)
α1 , Ã(2)

α2

)
(6)

holds true for each α ∈ (0, 1] if and only if, for each y ∈ V, the following supremum:

sup
{(x1,x2):y= f (x1,x2)}

t
(
ξ Ã(1)(x1), ξ Ã(2)(x2)

)
(7)

is attained.
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Fullér and Keresztfalvi [10] also obtained the following interesting result.

Theorem 3. (Fullér and Keresztfalvi [10]) Let U1, U2, V be locally compact topological spaces. Let Ã(i) ∈
F (Ui) for i = 1, 2 such that the membership functions ξ Ã(i) are upper semicontinuous and the 0-level sets Ã(i)

0
are compact subsets of Ui for i = 1, 2. Let f : U1 ×U2 → V be a continuous and onto crisp function and
let f̃ : F (U1)×F (U2) → F (V) be a fuzzy function induced from f via the extension principle defined in
Equation (5). If the t-norm t is upper semicontinuous, then the following equality:(

f̃ (Ã(1), Ã(2))
)

α
=

⋃
{(α1,α2):t(α1,α2)≥α}

f
(

Ã(1)
α1 , Ã(2)

α2

)
(8)

holds true for each α ∈ (0, 1].

Based on the Hausdorff space, Wu [8] generalizes Theorems 2 and 3 to the case of generalized
t-norm Tn : [0, 1]n → [0, 1] that is recursively defined by:

Tn(x1, · · · , xn) = t(Tn−1(x1, · · · , xn−1), xn).

Let U1, · · · , Un, V be universal sets and let f : U1 × · · · × Un → V be an onto crisp function
defined on U1× · · · ×Un. For Ã(i) ∈ F (Ui), i = 1, · · · , n, the membership function of the fuzzy subset
B̃ ≡ f̃ (Ã(1), · · · , Ã(n)) of V is defined by:

ξ B̃(y) = ξ f̃ (Ã(1),··· ,Ã(n))(y) = sup
{(x1,··· ,xn):y= f (x1,··· ,xn)}

Tn
(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
(9)

for each y ∈ V. This definition extends the definition given in Equation (7). In the sequel, we are going
to consider the extension principle using an operator called Wn that is more general than Tn.

Let Wn : [0, 1]n → [0, 1] be a function defined on [0, 1]n, which does not assume any extra
conditions. Let U1, · · · , Un, V be universal sets and let f : U1× · · · ×Un → V be an onto crisp function
defined on U1× · · · ×Un. For Ã(i) ∈ F (Ui), i = 1, · · · , n, the membership function of the fuzzy subset
B̃ ≡ f̃ (Ã(1), · · · , Ã(n)) of V is defined by:

ξ B̃(y) = ξ f̃ (Ã(1),··· ,Ã(n))(y) = sup
{(x1,··· ,xn):y= f (x1,··· ,xn)}

Wn
(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
(10)

for each y ∈ V. Of course, this definition extends the definition given in Equation (9). In this paper, we
are going to investigate the continuity of this kind of fuzzy function. We also remark that the operator
Wn is a kind of aggregation operator studied in Calvo et al. [11] and Grabisch et al. [12].

2. Generalized Extension Principle on Normed Spaces

Let (X, ‖ · ‖) be a normed space. Then, we see that the norm ‖ · ‖ can induce a topology τ̂ such
that (X, τ̂) becomes a Hausdorff topological vector space in which τ̂ is also called a norm topology.

Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1 × · · · ×Un be the product
vector space. Since each normed space (Ui, ‖ · ‖Ui ) can induce a Hausdorff topological vector space
(Ui, τ̂Ui ), we can form a product topological vector space (U, τU1×···×Un) using (Ui, τ̂Ui ) for i = 1, · · · , n,
where τU1×···×Un is the product topology. On the other hand, we can define a product norm on the
product vector space U using the norms ‖ · ‖Ui . For example, for (u1, · · · , un) ∈ U, we can define the
maximum norm:

‖ (u1, · · · , un) ‖(1)U1×···×Un
= max

{
‖ u1 ‖U1 , · · · , ‖ un ‖Un

}
which is shown in Kreyszig ([13], p. 71) or the p-norm:

‖ (u1, · · · , un) ‖(2)U1×···×Un
= (‖ u1 ‖p + · · ·+ ‖ un ‖p)1/p ,
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which is shown in Conway ([14], p. 72), where 1 ≤ p < ∞ and ‖ · ‖Ui are taken to be the same norm

‖ · ‖Ui=‖ · ‖ for all i = 1, · · · , n. We also see that the prouct norms ‖ · ‖(1)U1×···×Un
and ‖ · ‖(2)U1×···×Un

can induce the norm topologies τ̂1 and τ̂2, respectively. We can show that τU1×···×Un = τ̂1 = τ̂2.
However, in general, the norm topology generated by the product norm does not necessarily equal
to the product topology τU1×···×Un . Therefore, it is needed to investigate the generalized extension
principle in the case of normed space separately.

We can simply regard U as a vector space over R. Therefore, we can define a norm to make it as
a normed space (U, ‖ · ‖U). In this case, we can induce a norm topology τ̂U. Alternatively, we can
consider the product norm for the product vector space U over R. Let h : Rn → R be a real-valued
function defined on Rn. In general, the product norm on U can be defined as:

‖ (u1, · · · , un) ‖U1×···×Un= h(‖ u1 ‖U1 , · · · , ‖ un ‖Un). (11)

Of course, the product norm is also a norm for U. Based on this product norm, we can also induce
a product norm topology τ̂U1×···×Un . If we take h(x1, · · · , x) = max{x1, · · · , xn}, then we obtain the

product norm ‖ · ‖(1)U1×···×Un
, and if we take h(x1, · · · , xn) = (xp

1 + · · ·+ xp
n)

1/p for 1 ≤ p < ∞, then we

can obtain the product norm ‖ · ‖(2)U1×···×Un
.

For ui ∈ Ui and ε > 0, the open ball in the normed space (Ui, ‖ · ‖Ui ) is defined by:

Bi(ui; ε) =
{

u ∈ Ui :‖ u− ui ‖Ui< ε
}

.

For u = (u1, · · · , un) ∈ U, the open ball in the normed space (U, ‖ · ‖U) is given by:

B(u; ε) = {v ∈ U :‖ v− u ‖U< ε} = {v ∈ U :‖ (v1 − u1, · · · , vn − un) ‖U< ε} ,

and, by referring to Equation (11), the open ball in the product normed space (U, ‖ · ‖U1×···×Un) is
given by:

B(h, u; ε) =
{

v ∈ U :‖ v− u ‖U1×···×Un< ε
}
=
{

v ∈ U : h(‖ v1 − u1 ‖U1 , · · · , ‖ vn − un ‖Un) < ε
}

.

We have the following interesting result.

Proposition 1. Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1× · · · ×Un be the product
vector space which is endowed with a norm ‖ · ‖U. Given any ε > 0 and u = (u1, · · · , un) ∈ U, if there exist
ε̂1, ε̂2 > 0 such that the following inclusions hold true:

B(u; ε̂1) ⊆ B1(u1; ε)× · · · × Bn(un; ε) (12)

and:
B1(u1; ε̂2)× · · · × Bn(un; ε̂2) ⊆ B(u; ε), (13)

then τ̂U = τU1×···×Un , where τ̂U is the norm topology induced by the norm ‖ · ‖U and τU1×···×Un is the
product topology. If the product vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the
inclusions Equations (12) and (13) are satisfied, then we also have τ̂U1×···×Un = τU1×···×Un , where τ̂U1×···×Un

is the product norm topology.

Proof. Since τU1×···×Un is the product topology for U1 × · · · ×Un, we recall that O ∈ τU1×···×Un if
and only if, for any u = (u1, · · · , un) ∈ O, there exist open neighborhoods Ni of ui for i = 1, · · · , n
such that N1 × · · · × Nn ⊆ O. Since Ni is an open neighborhood of ui, there exists εi > 0 such that
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Bi(ui; εi) ⊆ Ni. Let ε = min{ε1, · · · , εn}. Then, we have Bi(ui; ε) ⊆ Bi(ui; εi) ⊆ Ni for all i = 1, · · · , n.
By the assumption in Equation (12), it follows that

B(u; ε̂1) ⊆ B1(u1; ε)× · · · × Bn(un; ε) ⊆ N1 × · · · × Nn ⊆ O.

Therefore, we conclude that O ∈ τ̂U. Conversely, for any open set O ∈ τ̂U and any element
u = (u1, · · · , un) ∈ O, there exists ε > 0 such that B(u; ε) ⊆ O. By the assumption in Equation (13),
we see that B1(u1; ε̂2)× · · · × Bn(un; ε̂2) ⊆ B(u; ε) ⊆ O. Since Bi(ui; ε̂2) is an open neighborhood of ui
for each i = 1, · · · , n, we conclude that O ∈ τU1×···×Un . This completes the proof.

Proposition 2. Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1× · · · ×Un be the product
vector space. Then, the following statements hold true.

(i) We consider the normed space (U, ‖ · ‖U). Given any ε > 0, if ‖ (u1, · · · , un) ‖U< ε if and only if
‖ ui ‖Ui< ε for all i = 1, · · · , n, then τ̂U = τU1×···×Un .

(ii) We consider the product normed space (U, ‖ · ‖U1×···×Un), where the product norm is defined by
Equation (11). Given any ε > 0, if h(x1, · · · , xn) < ε if and only if xi < ε for all i = 1, · · · , n,
then τ̂U1×···×Un = τU1×···×Un .

Proof. It suffices to prove the case of (ii). By definition, we have:

B(u; ε) =
{

v ∈ U :‖ v− u ‖U1×···×Un< ε
}

=
{

v ∈ U : h
(
‖ v1 − u1 ‖U1 , · · · , ‖ vn − un ‖Un

)
< ε

}
=
{

v ∈ U :‖ vi − ui ‖Ui< ε for i = 1, · · · , n
}

(by the asumption of h)

= B1(u1; ε)× · · · × Bn(un; ε).

The results follow immediately from Proposition 1 by taking ε̂1 = ε̂2 = ε.

Remark 1. Note that if the product norm is taken as the maximum norm ‖ · ‖(1)U1×···×Un
or the p-norm

‖ · ‖(2)U1×···×Un
defined above, then the assumption in part (ii) of Proposition 2 is satisfied automatically.

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be two normed spaces. Recall that the function
f : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y) is continuous at x0 if and only if, given any ε > 0, there exists δ > 0
such that ‖ x− x0 ‖X< δ implies ‖ f (x)− f (x0) ‖Y< ε. The function f is continuous on X if and only
if f is continuous at each point x0 ∈ X. Then, we have the following easy observation.

Remark 2. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y) be two normed spaces such that τ̂X and τ̂Y are two norm
topologies induced by the norms ‖ · ‖X and ‖ · ‖Y, respectively. It is well-known that the function
f : (X, ‖ · ‖X)→ (Y, ‖ · ‖Y) is continuous if and only if f : (X, τ̂X)→ (Y, τ̂Y) is continuous. The continuity
of f : (X, τ̂X)→ (Y, τ̂Y) means that if O ∈ τY, then f−1(O) ∈ τX .

Remark 3. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be the normed spaces for i = 1, · · · , n. Then three kinds of
continuity for the function f : U1 × · · · ×Un → V can be presented below.

• Suppose that the product vector space U = U1 × · · · ×Un is endowed with the norm ‖ · ‖U. Then the
function f : (U, ‖ · ‖U) → (V, ‖ · ‖V) is continuous at x0 if and only if, given any ε > 0, there
exists δ > 0 such that ‖ u− u0 ‖U< δ implies ‖ f (u)− f (u0) ‖V< ε, where u = (u1, · · · , un) and
u0 = (u10, · · · , un0) are elements of U. Since ‖ · ‖U can induce a norm topology τ̂U, Remark 2 says that
f : (U, ‖ · ‖U)→ (V, ‖ · ‖V) is continuous if and only if f : (U, τ̂U)→ (V, τ̂V) is continuous.

• Suppose that the product vector space U = U1 × · · · × Un is endowed with the product norm
‖ · ‖U1×···×Un . Then the continuity of the function f : (U, ‖ · ‖U1×···×Un) → (V, ‖ · ‖V) can be
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similarly realized. We also see that f : (U, ‖ · ‖U1×···×Un) → (V, ‖ · ‖V) is continuous if and only if
f : (U, τ̂U1×···×Un)→ (V, τ̂V) is continuous.

• Since we can form a product topological vector space (U, τU1×···×Un) from the normed spaces (Ui, ‖ · ‖Ui )

for i = 1, · · · , n, we say that the function f : U1× · · · ×Un → V is continuous if and only if the function
f : (U, τU1×···×Un)→ (V, τV) is continuous in the topological sense. Propositions 1 and 2 say that this
kind of continuity will be equivalent to one of the above two continuities under some suitable conditions.

We say that Wn is nondecreasing if and only if αi ≥ βi for all i = 1, · · · , n
imply Wn(α1, · · · , αn) ≥Wn(β1, · · · , βn). This definition does not necessarily say that
Wn(α1, · · · , αn) ≥Wn(β1, · · · , βn) implies αi ≥ βi for all i = 1, · · · , n. In the subsequent discussion,
the function Wn will satisfy some of the following conditions:

(a) Wn(α1, · · · , αn) > 0 if and only if αi > 0 for all i = 1, · · · , n.
(b) For each α ∈ (0, 1], Wn(α1, · · · , αn) ≥ α if and only if αi ≥ α for all i = 1, · · · , n.
(c) Wn is upper semicontinuous and nondecreasing.
(d) if any one of {α1, · · · , αn} is zero, then Wn(α1, · · · , αn) = 0.
(e) Wn(1, · · · , 1) = 1.
(f) Wn (min{a1, b1}, · · · , min{an, bn}) ≥ min {Wn(a1, · · · , an), Wn(b1, · · · , bn)}.

Next, we are going to present the generalized extension principle on normed spaces.

Theorem 4. Let f : U1 × · · · × Un → V be an onto crisp function defined on U1 × · · · × Un and let
f̃ : F (U1)× · · · × F (Un)→ F (V) be a fuzzy function induced from f via the extension principle defined in
Equation (10). Assume that (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) are taken to be the normed spaces for i = 1, · · · , n,
and that the product vector space U = U1 × · · · ×Un is endowed with a norm ‖ · ‖U such that the inclusions
Equations (12) and (13) are satisfied. We also assume that the following supremum:

sup
{(x1,··· ,xn):y= f (x1,··· ,xn)}

Wn
(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
(14)

is attained for each y ∈ V. Then, the following equality:(
f̃ (Ã(1), · · · , Ã(n))

)
α
=
{

f (x1, · · · , xn) : Wn
(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
≥ α

}
holds true for each α ∈ (0, 1]. The results for the 0-level sets are given below.

• We have:(
f̃ (Ã(1), · · · , Ã(n))

)
0
= cl

({
f (x1, · · · , xn) : Wn

(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
> 0

})
• If we further assume that condition (a) for Wn is satisfied, then:(

f̃ (Ã(1), · · · , Ã(n))
)

0
= cl

(
f
(

Ã(1)
0+ , · · · , Ã(n)

0+

))
⊆ cl

(
f
(

Ã(1)
0 , · · · , Ã(n)

0

))
.

• If we further assume that the function f : (U, ‖ · ‖U)→ (V, ‖ · ‖V) is continuous and that condition (a)
for Wn is satisfied, then:(

f̃ (Ã(1), · · · , Ã(n))
)

0
= cl

({
f (x1, · · · , xn) : Wn

(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
> 0

})
= cl

(
f
(

Ã(1)
0+ , · · · , Ã(n)

0+

))
= f

(
Ã(1)

0 , · · · , Ã(n)
0

)
.

If the product vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions
Equations (12) and (13) are satisfied, then we also have the same results. The assumptions satisfying the
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inclusions Equations (12) and (13) are not needed when we say that the function f : U1 × · · · ×Un → V
is continuous directly in topological sense without considering the norm ‖ · ‖U and the product norm
‖ · ‖U1×···×Un .

Proof. Since a normed space can induce a Hausdorff topological space, the results follow immediately
from Remarks 2 and 3, Proposition 1 and Wu ([8], Theorem 5.1).

By referring to Remark 1, from part (ii) of Proposition 2, we see that if the product norm is taken
as the maximum norm ‖ · ‖(1)U1×···×Un

or the p-norm ‖ · ‖(2)U1×···×Un
, then Theorem 4 is applicable for

these norms.

Theorem 5. Let f : U1 × · · · × Un → V be an onto crisp function defined on U1 × · · · × Un and let
f̃ : F (U1)× · · · × F (Un)→ F (V) be a fuzzy function induced from f via the extension principle defined in
Equation (10). Suppose that the following supremum:

sup
{(x1,··· ,xn):y= f (x1,··· ,xn)}

Wn
(
ξ Ã(1)(x1), · · · , ξ Ã(n)(xn)

)
is attained for each y ∈ V, and that that condition (b) for Wn is satisfied. Then, for each α ∈ (0, 1], we have the
following equalities.(

f̃ (Ã(1), · · · , Ã(n))
)

α
= f

(
Ã(1)

α , · · · , Ã(n)
α

)
and

(
f̃ (Ã(1), · · · , Ã(n))

)
0+

= f
(

Ã(1)
0+ , · · · , Ã(n)

0+

)
.

Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be now taken to be the normed spaces for i = 1, · · · , n, and let
the product vector space U = U1 × · · · × Un be endowed with a norm ‖ · ‖U such that the inclusions
Equations (12) and (13) are satisfied. If we further assume that the function f : (U, ‖ · ‖U)→ (V, ‖ · ‖V) is
continuous, then we also have the following equality:(

f̃ (Ã(1), · · · , Ã(n))
)

0
= f

(
Ã(1)

0 , · · · , Ã(n)
0

)
.

If the product vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions
Equations (12) and (13) are satisfied, then we also have the same results. The assumptions satisfying the
inclusions Equations (12) and (13) are not needed when we say that the function f : U1 × · · · ×Un → V
is continuous directly in topological sense without considering the norm ‖ · ‖U and the product norm
‖ · ‖U1×···×Un .

Proof. Since a normed space can induce a Hausdorff topological space, the results follow immediately
from Remarks 2 and 3, Proposition 1 and Wu ([8], Theorem 5.2).

Theorem 6. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be normed spaces for i = 1, · · · , n, and let the product vector
space U = U1 × · · · ×Un be endowed with a norm ‖ · ‖U such that the inclusions Equations (12) and (13)
are satisfied. Let Ã(i) ∈ F (Ui) for all i = 1, · · · , n such that the membership functions ξ Ã(i) are upper

semicontinuous and the 0-level sets Ã(i)
0 are compact subsets of Ui for all i = 1, · · · , n. Let f : (U, ‖ · ‖U)→

(V, ‖ · ‖V) be a continuous and onto crisp function, and let f̃ : F (U1)× · · · × F (Un) → F (V) be a fuzzy
function induced from f via the extension principle defined in Equation (10). Suppose that conditions (c) and (d)
for Wn are satisfied. Then, the following statements hold true.

(i) The membership function ξ f̃ (Ã(1),··· ,Ã(n)) is upper semicontinuous.
(ii) For each α ∈ (0, 1], we have the following equality:(

f̃ (Ã(1), · · · , Ã(n))
)

α
=

⋃
{(α1,··· ,αn):Wn(α1,··· ,αn)≥α}

f
(

Ã(1)
α1 , · · · , Ã(n)

αn

)
.
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For the 0-level sets, if we further assume that conditions (a) for Wn is satisfied, then:(
f̃ (Ã(1), · · · , Ã(n))

)
0+

= f
(

Ã(1)
0+ , · · · , Ã(n)

0+

)
and

(
f̃ (Ã(1), · · · , Ã(n))

)
0
= f

(
Ã(1)

0 , · · · , Ã(n)
0

)
.

Under this further assumption, the α-level sets ( f̃ (Ã(1), · · · , Ã(n)))α of f̃ (Ã(1), · · · , Ã(n)) are closed and
compact subsets of V for all α ∈ [0, 1].

(iii) If we further assume that conditions (b) for Wn is satisfied, then:(
f̃ (Ã(1), · · · , Ã(n))

)
α
= f

(
Ã(1)

α , · · · , Ã(n)
α

)
for each α ∈ [0, 1].

If the product vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions
Equations (12) and (13) are satisfied, then we also have the same results. The assumptions satisfying the
inclusions Equations (12) and (13) are not needed when we say that the function f : U1 × · · · ×Un → V
is continuous directly in topological sense without considering the norm ‖ · ‖U and the product norm
‖ · ‖U1×···×Un .

Proof. Since a normed space can induce a Hausdorff topological space, the results follow immediately
from Remarks 2 and 3, Proposition 1 and Wu ([8], Theorem 5.3 and Corollary 5.1).

Since we are going to consider the concept of convexity, we need to impose the vector addition and
scalar multiplication upon the universal set U. Therefore, the universal set U is taken as a vector space.
For any fuzzy subset Ã of U, we say that Ã is convex if and only if each α-level set Ãα = {x : ξ Ã(x)} is
a convex subset of U for each α ∈ (0, 1]. It is well-known that:

Ã is convex if and only if ξ Ã(λx1 + (1− λ)x2) ≥ min {ξ Ã(x1), ξ Ã(x2)}; (15)

that is, the membership function ξ Ã is quasi-concave.
Let U be a vector space over R which is endowed with a topology τ and let Ã be a fuzzy subset of

U. Since Ã0 = cl(
⋃

α>0 Ãα), we see that if Ã is convex, then its 0-level set Ã0 is also a convex subset
of U.

Definition 1. Let U be a vector space over R which is endowed with a topology τ. We denote by Fcc(U) the
set of all fuzzy subsets of U such that each ã ∈ Fcc(U) satisfies the following conditions:

• ã is normal, i.e., ξ ã(x) = 1 for some x ∈ U;
• ã is convex;
• the membership function ξ ã is upper semicontinuous;
• the 0-level set ã0 is a compact subset of U.

For ã ∈ Fcc(U), we see that, for each α ∈ [0, 1], the α-level set ãα is a compact and convex subset
of U. Each element of Fcc(U) is called a fuzzy element. If U = R, then each element of Fcc(R) is called
a fuzzy number. In addition, if U = Rn, then each element of Fcc(Rn) is called a fuzzy vector. Moreover,
for any fuzzy number ã ∈ Fcc(R), we see that each of its α-level sets ãα is a closed, bounded and
convex subset of R, i.e., a closed interval in R.

Theorem 7. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be normed spaces for i = 1, · · · , n, and let the product vector
space U = U1 × · · · ×Un be endowed with a norm ‖ · ‖U such that the inclusions Equations (12) and (13) are
satisfied. Let f : (U, ‖ · ‖U)→ (V, ‖ · ‖V) be a continuous and onto crisp function. We also assume that f is
linear in the sense of:

λ f (x1, · · · , xn) + (1− λ) f (y1, · · · , yn) = f (λx1 + (1− λ)y1, · · · , λxn + (1− λ)yn) .
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Let f̃ : F (U1)× · · · × F (Un)→ F (V) be a fuzzy function induced from f via the extension principle
defined in Equation (10). Suppose that conditions (a), (c), (d), (e) and (f) for Wn are satisfied. For Ã(i) ∈ Fcc(Ui),
i = 1, · · · , n, the following statements hold true.

(i) We have f̃ (Ã(1), · · · , Ã(n)) ∈ Fcc(V). The α-level sets ( f̃ (Ã(1), · · · , Ã(n)))α are compact, convex and
closed subsets of V for all α ∈ [0, 1].

(ii) For each α ∈ (0, 1], we have the following equality:(
f̃ (Ã(1), · · · , Ã(n))

)
α
=

⋃
{(α1,··· ,αn):Wn(α1,··· ,αn)≥α}

f
(

Ã(1)
α1 , · · · , Ã(n)

αn

)
.

For the 0-level sets, we also have:(
f̃ (Ã(1), · · · , Ã(n))

)
0+

= f
(

Ã(1)
0+ , · · · , Ã(n)

0+

)
and

(
f̃ (Ã(1), · · · , Ã(n))

)
0
= f

(
Ã(1)

0 , · · · , Ã(n)
0

)
.

(iii) If we further assume that conditions (b) for Wn is satisfied, then:(
f̃ (Ã(1), · · · , Ã(n))

)
α
= f

(
Ã(1)

α , · · · , Ã(n)
α

)
for each α ∈ [0, 1].

If the product vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions
Equations (12) and (13) are satisfied, then we also have the same results. The assumptions satisfying the
inclusions Equations (12) and (13) are not needed when we say that the function f : U1 × · · · ×Un → V
is continuous directly in topological sense without considering the norm ‖ · ‖U and the product norm
‖ · ‖U1×···×Un .

Proof. Since a normed space can induce a Hausdorff topological space, the results follow immediately
from Remarks 2 and 3, Proposition 1 and Wu ([8], Theorem 6.1 and Corollary 6.1).

The linearity in Theorem 7 can be replaced by assuming the convexity.

Theorem 8. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be normed spaces for i = 1, · · · , n, and let the product vector
space U = U1 × · · · ×Un be endowed with a norm ‖ · ‖U such that the inclusions Equations (12) and (13)
are satisfied. Let f : (U, ‖ · ‖U) → (V, ‖ · ‖V) be a continuous and onto crisp function and let
f̃ : F (U1)× · · · × F (Un)→ F (V) be a fuzzy function induced from f via the extension principle defined
in Equation (10). We further assume that f (A1, · · · , An) is a convex subset of V for any convex subsets Ai
of Ui, i = 1, · · · , n. Suppose that conditions (b), (c), (d) and (e) for Wn are satisfied. For Ã(i) ∈ Fcc(Ui),
i = 1, · · · , n, the following statements hold true.

(i) We have f̃ (Ã(1), · · · , Ã(n)) ∈ Fcc(V). The α-level sets ( f̃ (Ã(1), · · · , Ã(n)))α are compact, convex and
closed subsets of V for all α ∈ [0, 1].

(ii) For each α ∈ (0, 1], we have the following equality:(
f̃ (Ã(1), · · · , Ã(n))

)
α
= f

(
Ã(1)

α , · · · , Ã(n)
α

)
.

For the 0-level sets, we also have:(
f̃ (Ã(1), · · · , Ã(n))

)
0+

= f
(

Ã(1)
0+ , · · · , Ã(n)

0+

)
and

(
f̃ (Ã(1), · · · , Ã(n))

)
0
= f

(
Ã(1)

0 , · · · , Ã(n)
0

)
.

If the product vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions
Equations (12) and (13) are satisfied, then we also have the same results. The assumptions satisfying the
inclusions Equations (12) and (13) are not needed when we say that the function f : U1 × · · · ×Un → V
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is continuous directly in topological sense without considering the norm ‖ · ‖U and the product norm
‖ · ‖U1×···×Un .

Proof. Since a normed space can induce a Hausdorff topological space, the results follow immediately
from Remarks 2 and 3, Proposition 1 and Wu ([8], Theorem 6.2).

Remark 4. For n = 2, the following functions:

W2(x, y) = min{x, y} and W2(x, y) =
xy

max{x, y, α} for some constant α ∈ [0, 1]

satisfy the conditions of Theorem 8.

Let (X, ‖ · ‖) be a normed space. We recall that the norm ‖ · ‖ can induce a norm topology τ̂

such that (X, τ̂) becomes a Hausdorff topological vector space. Conversely, if (X, τ) is a topological
vector space, we say that X is normable if and only if there exists a norm ‖ · ‖ which can induce a norm
topology τ̂ such that τ = τ̂. A subset Y of a topological vector space (X, τ) is called bounded if and
only if, for each neighborhood N of θ, where θ is the zero element of X, there is a real number r such
that Y ⊆ rN. We have the following interesting results.

Proposition 3. (Kelley and Namioka ([15], p. 44)) The following statements hold true.

(i) A topological Hausdorff vector space is normable if and only if there is a bounded convex neighborhood of 0.
(ii) A finite product of normable spaces is normable.

From part (ii) of Proposition 3, we see that Theorems 4–8 are still valid if the normed
spaces are replaced by the normable topological vector spaces. However, if we consider the
continuity of the function f : (U, τU1×···×Un) → (V, τV) instead of the continuity of the function
f : (U, ‖ · ‖U)→ (V, ‖ · ‖V), then the assumption satisfying the inclusions Equations (12) and (13)
is not needed, since, in this case, we can just apply Wu ([8], Theorems 5.1, 5.2, 5.3, 6.1 and 6.2) by
considering the product topology τU1×···×Un instead of the norm topology τ̂U or the product norm
topology τ̂U1×···×Un .

3. Continuity of Fuzzified Functions

Let (X, ‖ · ‖) be a normed space. We denote by K(X) the family of all compact subsets of X in
the sense of norm topology τ̂X induced by the norm ‖ · ‖. Let A and B be any two compact subsets of
X. We can define the Hausdorff metric dH between A and B as follows:

dH = max

{
sup
a∈A

inf
b∈B
‖ a− b ‖, sup

b∈B
inf
a∈A
‖ a− b ‖

}
.

If X is a normable topological vector space, then we can also define the Hausdorff metric dH .
Now we have the following simple observation.

Lemma 1. The function f : (X, ‖ · ‖)→ R defined by f (x) =‖ x− x0 ‖ is continuous for any given x0 ∈ X.

Proof. We have:

| f (x)− f (y)| = |‖ x− x0 ‖ − ‖ y− x0 ‖| ≤‖ (x− x0)− (y− x0) ‖=‖ x− y ‖ .

The continuity follows immediately from the above inequality.

We need some useful properties from topological space.
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Proposition 4. The following statements hold true.

(i) (Royden ([16], p. 158)) If X is a Hausdorff space, then a compact subset of X is closed.
(ii) (Royden ([16], p. 158)) If f is a continuous function from the topological space X to another topological

space Y, then the image f (K) is a compact subset of Y when K is a compact subset of X.
(iii) (Royden ([16], p. 161)) If f is an upper semicontinuous real-valued function defined on X, then f assumes

its maximum on a compact subset of X. If f is a lower semicontinuous real-valued function defined on X,
then f assumes its minimum on a compact subset of X.

(iv) (Royden ([16], p. 158)) Let X be a topological space and let K be a compact subset of X. If A is a closed
subset of X and is also a subset of K, then A is also a compact subset of X.

(v) (Royden ([16], p. 166)) (Tychonoff’s Theorem) Let (Xi, τXi ) be n topological spaces and let Ki be
compact subsets of Xi for i = 1, · · · , n. Then the product K1 × · · · × Kn is a compact subset of the
product topological space (X1 × · · · × Xn, τX1×···×Xn), where τX1×···×Xn is the product topology for
X1 × · · · × Xn.

Proposition 5. Let the function f : (X, ‖ · ‖X) → (Y, ‖ · ‖Y) be continuous. Let dHX and dHY be the
Hausdorff metrics defined by ‖ · ‖X and ‖ · ‖Y, respectively. Then the function F : (K(X), dHX ) →
(K(Y), dHY ) defined by:

F(A) = f (A) = { f (a) : a ∈ A}

is uniformly continuous.

Proof. For any A, B ∈ K(X), i.e., A and B are compact subsets of (X, ‖ · ‖X), since f is continuous,
by part (ii) of Proposition 4, we see that C = f (A) = F(A) and D = f (B) = F(B) are also compact
subsets of Y, i.e., C, D ∈ K(Y). We need to show that, for any ε > 0, there exists δ > 0 such that, for
any A, B ∈ K(X), dHX (A, B) < δ implies dHY (C, D) < ε. By definition, for any a0 ∈ A and b0 ∈ B,
dHX (A, B) < δ implies:

inf
a∈A
‖ a− b0 ‖X< δ and inf

b∈B
‖ a0 − b ‖X< δ.

By Lemma 1 and part (iii) of Proposition 4, we see that the above infimum are attained, i.e.,
‖ a∗ − b0 ‖X< δ and ‖ a0 − b∗ ‖< δ for some a∗ ∈ A and b∗ ∈ B. Since f is continuous at a0 and b0,
we have ‖ f (a∗)− f (b0) ‖Y< ε/2 and ‖ f (a0)− f (b∗) ‖Y< ε/2. Since a0 and b0 are any elements of A
and B, respectively, we have:

sup
d∈D
‖ f (a∗)− d ‖Y= sup

b0∈B
‖ f (a∗)− f (b0) ‖Y≤ ε/2 < ε (16)

and:
sup
c∈C
‖ c− f (b∗) ‖Y= sup

a0∈A
‖ f (a0)− f (b∗) ‖Y≤ ε/2 < ε. (17)

Since C and D are compact subsets of Y, there exist c∗ ∈ C and d∗ ∈ D such that:

‖ c∗ − d ‖Y= inf
c∈C
‖ c− d ‖Y≤‖ f (a∗)− d ‖Y and ‖ c− d∗ ‖Y= inf

d∈D
‖ c− d ‖Y≤‖ c− f (b∗) ‖Y .

From Equations (16) and (17), we obtain:

sup
d∈D

inf
c∈C
‖ c− d ‖Y≤ sup

d∈D
‖ f (a∗)− d ‖Y< ε and sup

c∈C
inf
d∈D
‖ c− d ‖Y≤ sup

c∈C
‖ c− f (b∗) ‖Y< ε,

which implies dHY (C, D) < ε. This completes the proof.

Let (X, τ) be a normable topological vector space. Then, we can topologize K(X) by considering
the Hausdorff metric dH . This topological space is denoted by (K(X), τH).
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Proposition 6. Let (X, τX) and (Y, τY) be two normable topological vector spaces. Let τHX and τHY be the
topologies generated by the Hausdorff metrics dHX and dHY , respectively. If the function f : (X, τX)→ (Y, τY)

is continuous, then the function F : (K(X), τHX )→ (K(Y), τHY ) defined by F(A) = f (A) = { f (a) : a ∈ A}
is uniformly continuous; that is, the function F : (K(X), dHX )→ (K(Y), dHY ) is uniformly continuous.

Proof. The result follows immediately from Proposition 5.

To study the continuity of fuzzified function, we are going to consider the space Fc(U) instead
of F (U), which is defined below. Let U be a topological space. We denote by Fc(U) the set of all
fuzzy subsets of U such that, for each Ã ∈ Fc(U), its α-level sets Ãα are compact subsets of U for all
α ∈ [0, 1]. Let (U, ‖ · ‖U) be a normed space. Then, we can define the Hausdorff metric dHU on K(U).
For any Ã ∈ Fc(U), we see that Ãα ∈ K(U) for all α ∈ [0, 1]. Therefore, for any Ã, B̃ ∈ Fc(U), we can
define a distance dFc(U) between Ã and B̃ as:

dFc(U)(Ã, B̃) = sup
α∈[0,1]

dHU

(
Ãα, B̃α

)
. (18)

Then, we can show that (Fc(U), dFc(U)) forms a metric space. Based on this metric dFc(U), we can
induce a topology τFc(U) that is called a metric topology for Fc(U).

Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1 × · · · ×Un be the product
vector space that is endowed with the norm ‖ · ‖U or the product norm ‖ · ‖U1×···×Un . In this case,
we can define a Hausdorff metric dHU on K(U) based on the norm ‖ · ‖U or the product norm
‖ · ‖U1×···×Un . We write Fc(U) = Fc(U1)× · · · × Fc(Un). The element of Fc(U) can be realized as

Ã = (Ã(1), · · · , Ã(n)), where Ã(i) ∈ Fc(Ui) for i = 1, · · · , n. We also write Ãα = (Ã(1)
α , · · · , Ã(n)

α ) for
all α ∈ [0, 1]. Using the Tychonoff’s theorem in part (v) of Proposition 4, we see that Ãα ∈ K(U) for all
α ∈ [0, 1]; that is, the product set Ãα is a compact subset of the product space U. For any Ã, B̃ ∈ Fc(U),
we define dFc(U) between Ã and B̃ as follows:

dFc(U)(Ã, B̃) = sup
α∈[0,1]

dHU

(
Ãα, B̃α

)
.

Then, we can also show that (Fc(U), dFc(U)) forms a metric space. Based on this metric dFc(U),
we can induce a metric topology τFc(U) for Fc(U). Now, if we assume that U1, · · · , Un are normable
topological vector spaces and let U = U1 × · · · ×Un be the product vector space, then part (ii) of
Proposition 3 says that U is also a normable topological vector space. Therefore, we still can define a
Hausdorff metric dHU on K(U). In this case, we can also obtain the metric space (Fc(U), dFc(U)).

Let U1, · · · , Un, V be topological spaces such that f : U1 × · · · ×Un → V is an onto crisp function.
Then, we can induce a fuzzy function f̃ : F (U1)× · · · × F (Un) → F (V) from f via the extension
principle defined in Equation (10). However, even f is continuous, we cannot always induce a
fuzzy function f̃ : Fc(U1) × · · · × Fc(Un) → Fc(V), where the spaces Fc(Ui) and Fc(V), instead
of F (Ui) and F (V), are considered for i = 1. · · · , n. In fact, we can just induce a fuzzy function
f̃ : Fc(U1)× · · · × Fc(Un)→ F (V), where the range is the space F (V). In other words, given Ã(i) ∈
Fc(Ui) for i = 1, · · · , n, we can just have f̃ (Ã(1), · · · , Ã(n)) ∈ F (V), and we cannot always guarantee
f̃ (Ã(1), · · · , Ã(n)) ∈ Fc(V). The purpose is to present the sufficient conditions to guarantee this
desired result. First of all, we need a useful lemma.

Lemma 2. (Wu [8]) Let U1, · · · , Un be topological spaces and let V be a Hausdorff space.
Let f : (U1 × · · · ×Un, τU1×···×Un)→ (V, τV) be a continuous and onto crisp function defined on U1 ×
· · · ×Un and let f̃ : F (U1)× · · · × F (Un) → F (V) be a fuzzy function induced from f via the extension
principle defined in Equation (10). Assume that Ã(i) ∈ F (Ui) such that its membership function ξ Ã(i) is upper

semicontinuous and each 0-level set Ã(i)
0 of Ã(i) is a compact subset of Ui for all i = 1, · · · , n. Suppose that

conditions (c) and (d) for Wn are satisfied. Then, the supremum given in Equation (14) is attained.
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Proposition 7. Let U1, · · · , Un, V be Hausdorff spaces, and let f : (U1 × · · · ×Un, τU1×···×Un)→ (V, τV)

be a continuous and onto crisp function. Suppose that conditions (b), (c) and (d) for Wn are satisfied.
If Ã(i) ∈ Fc(Ui) for all i = 1, · · · , n, then f̃ (Ã(1), · · · , Ã(n)) ∈ Fc(V).

Proof. Since the α-level sets Ã(i)
α of Ã(i) are compact subsets of Ui for all α ∈ [0, 1] and i = 1, · · · , n,

part (i) of Proposition 4 says that Ã(i)
α are also closed subsets of Ui for all α ∈ [0, 1] and i = 1, · · · , n.

In other words, the membership functions ξ Ã(i) are upper semicontinuous for all i = 1, · · · , n.
Therefore, applying Lemma 2, we see that the supremum given in Equation (14) is attained for
each y ∈ V. According to Wu ([8], Theorem 5.2), since f is continuous, we have:(

f̃ (Ã(1), · · · , Ã(n))
)

α
= f

(
Ã(1)

α , · · · , Ã(n)
α

)
for each α ∈ [0, 1], which is a compact subset of V by part (ii) of Proposition 4 and the Tychonoff’s
theorem in part (v) of Proposition 4, i.e., f̃ (Ã(1), · · · , Ã(n)) ∈ Fc(V). This completes the proof.

Under the assumptions of Proposition 7, we can indeed induce a fuzzy function
f̃ : Fc(U1)× · · · × Fc(Un)→ Fc(V) based on the spaces Fc(Ui) and Fc(V), instead of the spaces
F (Ui) and F (V) for i = 1, · · · , n. Now, if we take (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) to be the
normed spaces, i = 1, · · · , n, then we need to apply Theorem 5 to induce the fuzzy function
f̃ : Fc(U1)× · · · × Fc(Un)→ Fc(V). Now we have the following result.

Theorem 9. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be the normed spaces for i = 1, · · · , n, and let the product vector
space U = U1 × · · · ×Un be endowed with a norm ‖ · ‖U such that the inclusions Equations (12) and (13)
are satisfied. We assume that f : (U, ‖ · ‖U) → (V, ‖ · ‖V) is a continuous and onto crisp function.
Suppose that conditions (b), (c) and (d) for Wn are satisfied. Let f̃ : Fc(U1)× · · · × Fc(Un)→ Fc(V)

be a fuzzy function induced from f via the extension principle defined in Equation (10). Then, the
fuzzy function f̃ : (Fc(U1) × · · · × Fc(Un), dFc(U)) → (Fc(V), dFc(V)) is continuous; that is,
f̃ : (Fc(U1)× · · · × Fc(Un), τFc(U))→ (Fc(V), τFc(V)) is continuous. If the product vector space U is
endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions Equations (12) and (13) are satisfied,
then we also have the same results. The assumptions satisfying the inclusions Equations (12) and (13) are not
needed when we say that the function f : U1 × · · · ×Un → V is continuous directly in topological sense
without considering the norm ‖ · ‖U and the product norm ‖ · ‖U1×···×Un .

Proof. Since a normed space can induce a Hausdorff topological space, from Remarks 2 and 3,
Proposition 1 and the arguments of Proposition 7, Lemma 2 says that the supremum given in
Equation (14) is attained for each y ∈ V. Therefore, from Theorem 5, we have:(

f̃ (Ã(1), · · · , Ã(n))
)

α
= f

(
Ã(1)

α , · · · , Ã(n)
α

)
for each α ∈ [0, 1]. From the arguments of Proposition 7, we can induce a fuzzy function
f̃ : Fc(U1)× · · · × Fc(Un)→ Fc(V). Suppose that Ãm, Ã0 ∈ Fc(U) for m = 1, 2, · · · satisfy
dFc(U)(Ãm, Ã0)→ 0 as m→ ∞. We need to show:

dFc(V)

(
f̃ (Ãm), f̃ (Ã0)

)
→ 0

as m→ ∞. For A, B ∈ K(U), Proposition 6 says that, for any ε > 0, there exists δ > 0 such that:

dHU(A, B) < δ implies dHV ( f (A), f (B)) = dHV (F(A), F(B)) < ε/2. (19)
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Since dFc(U)(Ãm, Ã0)→ 0 as m→ 0, there exists m0 ∈ N such that:

dFc(U)(Ãm, Ã0) = sup
α∈[0,1]

dHU

(
Ãmα, Ã0α

)
< δ

for m > m0, where Ãmα and Ã0α denote the α-level sets of Ãm and Ã0, respectively, which also
says that dHU(Ãmα, Ã0α) < δ for all α ∈ [0, 1]. Therefore, according to Equation (19), we have
dHV ( f (Ãmα), f (Ã0α)) < ε/2 for all α ∈ [0, 1]. Applying Lemma 2, we see that the supremum given
in Equation (14) is attained for each y ∈ V. From Theorem 5, we also see that, for each α ∈ [0, 1],
( f̃ (Ãm))α = f (Ãmα) and ( f̃ (Ã0))α = f (Ã0α). Therefore, we obtain:

dFc(V)

(
f̃ (Ãm), f̃ (Ã0)

)
= sup

α∈[0,1]
dHV

(
( f̃ (Ãm))α, ( f̃ (Ã0))α

)
= sup

α∈[0,1]
dHV

(
f (Ãmα), f (Ã0α)

)
≤ ε/2 < ε.

for m > m0. This completes the proof.

Theorem 10. Let U1, · · · , Un, V be normable topological vector spaces. We also assume that V is a
Hausdorff space. Let f : (U1 × · · · ×Un, τU1×···×Un) → (V, τV) be a continuous and onto crisp function.
Suppose that conditions (b), (c) and (d) for Wn are satisfied. Let f̃ : Fc(U1)× · · · × Fc(Un)→ Fc(V)

be a fuzzy function induced from f via the extension principle defined in Equation (10). Then,
the fuzzy function f̃ : (Fc(U1)× · · · × Fc(Un), dFc(U))→ (Fc(V), dFc(V)) is continuous; that is,
f̃ : (Fc(U1)× · · · × Fc(Un), τFc(U))→ (Fc(V), τFc(V)) is continuous.

Proof. From Lemma 2 and Wu ([8], Theorem 5.2), we see that, for each α ∈ [0, 1], ( f̃ (Ãm))α = f (Ãmα)

and ( f̃ (Ã0))α = f (Ã0α). Since the normable topological vector spaces are also Hausdorff spaces,
the result follows immediately from the same arguments of Theorem 9.

Example 1. To apply Theorem 10, we take V = Rm and Ui = R for i = 1, · · · , n. Let f : Rn → Rm be a
continuous and onto function, where the continuity is based on the usual topologies τRn and τRm . Suppose that
conditions (b), (c) and (d) for Wn are satisfied. For convenient, we write:

Fc(R)× · · · × Fc(R) = Fn
c (R).

Let f̃ : Fn
c (R)→ Fc(Rm) be a fuzzy function induced from f via the extension principle defined in (10).

Then the fuzzy function f̃ : (Fn
c (R), dFc(Rn))→ (Fc(Rm), dFc(Rm)) is continuous.

Example 2. Continued from Example 1, we consider a continuous and onto function
f : [0, 2π]× [0, 2π]→ [−2, 2] defined by f (x, y) = sin x + cos y. Now we take W2(a, b) = min{a, b}.
Then, conditions (b), (c) and (d) are satisfied automatically. In this case, the fuzzy function
f̃ : (F 2

c (R), dFc(R2)) → (Fc(R), dFc(R) is continuous, where the membership function of C̃ = f̃ (Ã, B̃) for
Ã, B̃ ∈ Fc(R) is given by:

ξC̃(z) = sup
{(x,y):z= f (x,y)}

min {ξ Ã(x), ξ B̃(y)} = sup
{(x,y):z=sin x+cos y}

min {ξ Ã(x), ξ B̃(y)} .

Let U be a topological space. We denote by F0(U) the set of all fuzzy subsets of U such that,
for each Ã ∈ F0(U), its membership function ξ Ã is upper semicontinuous and the 0-level set Ã0 is a
compact subset of U.

Remark 5. We have the following observations.
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• Let U be a topological space. For any Ã ∈ F0(U), by the upper semicontinuity of ξ Ã, we see that Ãα are
closed subsets of U for all α ∈ (0, 1]. Since Ãα ⊆ Ã0 for all α ∈ (0, 1] and Ã0 is a compact subset of
U, part (iv) of Proposition 4 says that Ãα are also compact subsets of U for all α ∈ (0, 1]. Therefore we
conclude that F0(U) ⊆ Fc(U).

• Let U be a Hausdorff space. For any Ã ∈ Fc(U), we see that Ãα are compact subsets of U for all α ∈ [0, 1].
From Proposition 4 (i), the α-level sets Ãα are also closed subsets of U for all α ∈ (0, 1], i.e., the membership
function ξ Ã is upper semicontinuous. Therefore we conclude that F0(U) = Fc(U).

• If U is taken as a normable topological vector space or (U, ‖ · ‖) is taken as the normed space,
then F0(U) = Fc(U), since the normable topological vector space and normed space are also the
Hausdorff spaces.

Let U1, · · · , Un be topological spaces and let V be a Hausdorff space. Let f : (U1 × · · · ×
Un, τU1×···×Un) → (V, τV) be a continuous and onto crisp function. In general, we cannot induce
a fuzzy function f̃ : F0(U1)× · · · × F0(Un) → F0(V) from f via the extension principle defined in
Equation (10). The following proposition presents the sufficient conditions to guarantee this property.

Proposition 8. Let U1, · · · , Un be topological spaces and let V be a Hausdorff space. Let
f : (U1 × · · · ×Un, τU1×···×Un)→ (V, τV) be a continuous and onto crisp function. Suppose that conditions
(c) and (d) for Wn are satisfied. If Ã(i) ∈ F0(Ui) for all i = 1, · · · , n, then f̃ (Ã(1), · · · , Ã(n)) ∈ F0(V).

Proof. The result follows immediately from Wu ([8], Theorem 5.3).

Under the assumptions of Proposition 8, we can induce a fuzzy function
f̃ : F0(U1)× · · · × F0(Un)→ F0(V). We also have the following interesting observations.

Remark 6. We remark that Theorems 9 and 10 are still valid if Fc(Ui) and Fc(V) are replaced by F0(Ui)

and F0(V) for all i = 1, · · · , n, since the third observation of Remark 5 says that Fc(Ui) = F0(Ui) and
Fc(V) = F0(V) for all i = 1, · · · , n.

Theorems 9 and 10 present the continuity of fuzzified functions based on the spaces Fc(Ui) and
Fc(V) for i = 1, · · · , n. In the sequel, we are going to investigate the continuity of fuzzified functions
based on the spaces Fcc(Ui) and Fcc(V) for i = 1, · · · , n.

Theorem 11. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be normed spaces for i = 1, · · · , n, and let the product vector
space U = U1 × · · · ×Un be endowed with a norm ‖ · ‖U such that the inclusions Equations (12) and (13) are
satisfied. We assume that f : (U, ‖ · ‖U)→ (V, ‖ · ‖V) is a linear, continuous and onto crisp function. Suppose
that conditions (b), (c), (d), (e) and (f) for Wn are satisfied. Let f̃ : Fcc(U1)× · · · × Fcc(Un)→ Fcc(V)

be a fuzzy function induced from f via the extension principle defined in Equation (10). Then the
fuzzy function f̃ : (Fcc(U1) × · · · × Fcc(Un), dFcc(U)) → (Fcc(V), dFcc(V)) is continuous; that is,
f̃ : (Fcc(U1)× · · · × Fcc(Un), τFcc(U))→ (Fcc(V), τFcc(V)) is continuous. If the product vector space U
is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions Equations (12) and (13) are satisfied,
then we also have the same results. The assumptions satisfying the inclusions Equations (12) and (13) are
not needed when we say that the function f : U1 × · · · ×Un → V is continuous directly in topological sense
without considering the norm ‖ · ‖U and the product norm ‖ · ‖U1×···×Un .

Proof. From Remarks 2 and 3 and part (iii) of Theorem 7, we see that, for each α ∈ [0, 1],(
f̃ (ãm)

)
α
= f (ãmα) and

(
f̃ (ã0)

)
α
= f (ã0α). (20)

The result follows immediately from the same arguments of Theorem 9.
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Theorem 12. Let U1, · · · , Un, V be normable topological vector spaces. We also assume that V is a Hausdorff
space. Let f : (U1× · · · ×Un, τU1×···×Un)→ (V, τV) be a linear, continuous and onto crisp function. Suppose
that conditions (b), (c), (d), (e) and (f) for Wn are satisfied. Let f̃ : Fcc(U1)× · · · × Fcc(Un)→ Fcc(V)

be a fuzzy function induced from f via the extension principle defined in Equation (10). Then the
fuzzy function f̃ : (Fcc(U1) × · · · × Fcc(Un), dFcc(U)) → (Fcc(V), dFcc(V)) is continuous; that is,
f̃ : (Fcc(U1)× · · · × Fcc(Un), τFcc(U))→ (Fcc(V), τFcc(V)) is continuous.

Proof. From Wu ([8], Corollary 6.1), we see that the equalities in (20) are satisfied for each α ∈ [0, 1].
The result follows immediately from the same arguments of Theorem 9.

The linearity in Theorems 11 and 12 can be replaced by assuming the convexity.

Theorem 13. Let (Ui, ‖ · ‖Ui ) and (V, ‖ · ‖V) be normed spaces for i = 1, · · · , n, and let the product vector
space U = U1 × · · · ×Un be endowed with a norm ‖ · ‖U such that the inclusions Equations (12) and (13)
are satisfied. Let f : (U, ‖ · ‖U) → (V, ‖ · ‖V) be a continuous and onto crisp function. We further
assume that f (A1, · · · , An) is a convex subset of V for any convex subsets Ai of Ui, i = 1, · · · , n.
Suppose that conditions (b), (c), (d) and (e) for Wn are satisfied. Let f̃ : Fcc(U1)× · · · × Fcc(Un)→ Fcc(V)

be a fuzzy function induced from f via the extension principle defined in Equation (10). Then the
fuzzy function f̃ : (Fcc(U1) × · · · × Fcc(Un), dFcc(U)) → (Fcc(V), dFcc(V)) is continuous; that is,
f̃ : (Fcc(U1)× · · · × Fcc(Un), τFcc(U))→ (Fcc(V), τFcc(V)) is continuous. If the product vector space U
is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions Equations (12) and (13) are satisfied,
then we also have the same results. The assumptions satisfying the inclusions Equations (12) and (13) are
not needed when we say that the function f : U1 × · · · ×Un → V is continuous directly in topological sense
without considering the norm ‖ · ‖U and the product norm ‖ · ‖U1×···×Un .

Proof. From Remarks 2 and 3 and part (ii) of Theorem 8, we see that the equalities in Equation (20) are
satisfied for each α ∈ [0, 1]. The result follows immediately from the same arguments of Theorem 9.

Theorem 14. Let U1, · · · , Un, V be normable topological vector spaces. We also assume that V is a Hausdorff
space. Let f : (U1 × · · · ×Un, τU1×···×Un) → (V, τV) be a continuous and onto crisp function. We further
assume that f (A1, · · · , An) is a convex subset of V for any convex subsets Ai of Ui, i = 1, · · · , n. Suppose
that conditions (b), (c), (d) and (e) for Wn are satisfied. Let f̃ : Fcc(U1)× · · · × Fcc(Un) → Fcc(V) be a
fuzzy function induced from f via the extension principle defined in Equation (10). Then, the fuzzy function
f̃ : (Fcc(U1)× · · · × Fcc(Un), dFcc(U)) → (Fcc(V), dFcc(V)) is continuous; that is, f̃ : (Fcc(U1)× · · · ×
Fcc(Un), τFcc(U))→ (Fcc(V), τFcc(V)) is continuous.

Proof. From Wu ([8], Theorem 6.2), we see that the equalities in (20) are satisfied for each α ∈ [0, 1].
The result follows immediately from the same arguments of Theorem 9.

4. Applications to Fuzzy Topological Vector Spaces

Before introducing the concept of fuzzy vector space, we need to consider the fuzzy addition and
fuzzy scalar multiplication. Let U be a vector space over R. For any ã, b̃ ∈ F (U), the membership
function of ã⊕ b̃ is defined by:

ξ ã⊕b̃(z) = sup
{(x,y):z=x+y}

W2
(
ξ ã(x), ξ b̃(y)

)
.

Let λ̃ ∈ F (R). The membership function of λ̃⊗ ã is defined by:

ξλ̃⊗ã(z) = sup
{(λ,x):z=λx}

W2
(
ξλ̃(λ), ξ ã(x)

)
.
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If λ̃ is taken to be the crisp number 1̃{λ} with value λ ∈ R, i.e.,

1̃{λ}(r) =

{
1 if r = λ

0 if r 6= λ

then, we simply write 1̃{λ} ⊗ ã as λã with the membership function given by:

ξλã(z) = sup
{(k,x):z=kx}

W2

(
ξ1̃{λ}

(k), ξ ã(x)
)

.

We have the following interesting observation.

Remark 7. Suppose that W2 satisfies the following conditions:

W2(0, a) = 0 and W2(1, a) = a (21)

for any a ∈ [0, 1]. Then, we have

ξλã(z) = sup
{(k,x):z=kx}

W2

(
ξ1̃{λ}

(k), ξ ã(x)
)
= ξ ã(z/λ).

If we take W2(a, b) = min{a, b}, then conditions in Equation (21) are satisfied automatically.

The following result will be used in the further discussion.

Proposition 9. (Wu [8]) Let U be a Hausdorff topological vector space over R. Suppose that conditions (b),
(c), (d) and (e) for Wn are satisfied. Then, we have the following results.

(i) If ã, b̃ ∈ Fcc(U), then ã⊕ b̃ ∈ Fcc(U) and (ã⊕ b̃)α = ãα ⊕ b̃α for any α ∈ [0, 1].
(ii) If λ̃ ∈ Fcc(R) and ã ∈ Fcc(U), then (λ̃⊗ ã)α = λ̃α ãα for any α ∈ [0, 1].

(iii) If we take λ̃ to be a nonnegative or nonpositive fuzzy number, then λ̃⊗ ã ∈ Fcc(U).
(iv) For λ ∈ R, we have λã = 1̃{λ} ⊗ ã ∈ Fcc(U), where 1̃{λ} is a crisp number with value λ.
(v) If λ̃, ã ∈ Fcc(R), then λ̃⊗ ã ∈ Fcc(R).

Definition 2. Let U be a vector space over R and let F be a subset of F (U). We say that F is a fuzzy vector
space over R if and only if ã⊕ b̃ ∈ F and λã ∈ F for any ã, b̃ ∈ F and λ ∈ R. In other words, F is closed
under the fuzzy addition and scalar multiplication.

Proposition 10. Let U be a Hausdorff topological vector space over R. Then, the following statements hold true.

(i) Suppose that conditions (b), (c), (d) and (e) for Wn are satisfied. Then Fcc(U) is a fuzzy vector space
over R.

(ii) Suppose that conditions (c) and (d) for Wn are satisfied. Then F0(U) = Fc(U) is a fuzzy vector space
over R.

Proof. Part (i) follows immediately from parts (i) and (iv) of Proposition 9. Part (ii) follows immediately
from Proposition 8 and the arguments of Proposition 9.

If we consider F (R) instead of R, then we can introduce another concept of fuzzy vector space in
which we consider the so-called fuzzy scalar multiplication instead of scalar multiplication.

Definition 3. Let U be a vector space over R. Let F be a subset of F (U) and FR be a subset of F (R). We say
that F is a fuzzy vector space over FR if and only if ã⊕ b̃ ∈ F and λ̃ã ∈ F for ã, b̃ ∈ F and λ̃ ∈ FR.
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In other words, F is closed under the fuzzy addition and fuzzy scalar multiplication, where the fuzzy scalar
multiplication should be defined in another way.

Proposition 11. Let U be a Hausdorff topological vector space over R. Suppose that conditions (c) and (d) for
Wn are satisfied. If the fuzzy scalar multiplication is defined as λ̃ã = λ̃⊗ ã, then F0(U) = Fc(U) is a fuzzy
vector space over F0(R) = Fc(R).

Proof. The result follows immediately from Remark 5, Proposition 8 and the arguments of
Proposition 9.

We say that the fuzzy number ã ∈ Fcc(R) is nonnegative if and only if ξ ã(r) = 0 for all r < 0,
and nonpositive if and only if ξ ã(r) = 0 for all r > 0. We denote by F+

cc (R) the set of all nonnegative
fuzzy numbers, and by F−cc (R) the set of all nonpositive fuzzy numbers. Let ã be a fuzzy number.
We define the membership functions of ã+ and ã− as follows:

ξ ã+(r) =


ξ ã(r) if r > 0
1 if r = 0 and ξ ã(r′) < 1 for all r′ > 0
ξ ã(0) if r = 0 and there exists a r′ > 0 such that ξ ã(r′) = 1
0 otherwise

and:

ξ ã−(r) =


ξ ã(r) if r < 0
1 if r = 0 and ξ ã(r′) < 1 for all r′ < 0
ξ ã(0) if r = 0 and there exists a r′ < 0 such that ξ ã(r′) = 1
0 otherwise.

We see that ã+ is a nonnegative fuzzy number and ã− is a nonpositive fuzzy number, since
the α-level sets ã+α and ã−α are closed intervals for all α ∈ [0, 1]; that is, their membership functions
ξ ã+(r) and ξ ã−(r) are upper semicontinuous (the other conditions in Definition 1 are obviously true).
Furthermore, we have:

ãα = ã+α ⊕ ã−α = (ã+ ⊕ ã−)α

for all α ∈ [0, 1]. Thus ã = ã+ ⊕ ã−. We call ã+ and ã− the positive part and the negative part of ã,
respectively.

Proposition 12. Let U be a Hausdorff topological vector space over R. Suppose that conditions (b), (c), (d) and
(e) for Wn are satisfied. Then, the following statements hold true.

(i) Let F±cc (R) = F+
cc (R)∪F−cc (R). If the fuzzy scalar multiplication is defined as λ̃ã = λ̃⊗ ã, then Fcc(U)

is a fuzzy vector space over F±cc (R).
(ii) If the fuzzy scalar multiplication is defined as:

λ̃ã =

{
λ̃⊗ ã if λ̃ ∈ F±cc (R)(
λ̃+ ⊗ ã

)
⊕
(
λ̃− ⊗ ã

)
if λ̃ ∈ Fcc(R) \ F±cc (R),

where λ̃ = λ̃+ ⊕ λ̃−, then Fcc(U) is a fuzzy vector space over Fcc(R).

Proof. Part (i) follows immediately from part (iii) of Proposition 9. To prove part (ii), we just need to
claim that λ̃ã ∈ Fcc(U) for λ̃ ∈ Fcc(R) \ F±cc (R). By definition, we see that λ̃+ ⊗ ã, λ̃− ⊗ ã ∈ Fcc(U)

by part (iii) of Proposition 9, since λ̃+, λ̃− ∈ Fcc(R). By part (i) of Proposition 9 again, we see that
λ̃ã = (λ̃+ ⊗ ã)⊕ (λ̃− ⊗ ã) ∈ Fcc(U). This completes the proof.

In the sequel, we are going to introduce the concept of the fuzzy topological vector space. Recall
that, for each normed space (Ui, ‖ · ‖Ui ), we can induce a metric space (Fc(Ui), dFc(Ui)

) for i = 1, · · · , n,
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where the metric dFc(Ui)
is defined in (18). Given any ε > 0, the open ball with center Ã ∈ Fc(Ui) is

given by:
Bi(Ã; ε) =

{
B̃ ∈ Fc(Ui) : dFc(Ui)

(Ã, B̃) < ε
}

.

Based on these open balls, we can induce a topological space (Fc(Ui), τFc(Ui)
), where τFc(Ui)

is
the so-called metric topology. Based on the topological spaces (Fc(Ui), τFc(Ui)

) for i = 1, · · · , n, we
can also form a topological space (Fc(U), τFc(U1)×···×Fc(Un)), where Fc(U) = Fc(U1)× · · · × Fc(Un)

and τFc(U1)×···×Fc(Un) is the product topology. On the other hand, we can induce another metric space
(Fc(U), dFc(U)) by considering the norm ‖ · ‖U or the product norm ‖ · ‖U1×···×Un . The open ball with
center Ã ∈ Fc(U) is given by:

B(Ã; ε) =
{

B̃ ∈ Fc(U) : dFc(U)(Ã, B̃) < ε
}

.

Based on these open balls, we can also induce the metric topology τFc(U) for Fc(U). To introduce
the concept of the fuzzy topological vector space, we need to provide some suitable conditions
to guarantee the equality τFc(U1)×···×Fc(Un) = τFc(U); that is, the product topology is equal to the
metric topology.

Proposition 13. Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1 × · · · ×Un be the
product vector space which is endowed with a norm ‖ · ‖U. Given any ε > 0 and:

Ã = (Ã(1), · · · , Ã(n)) ∈ Fc(U) = Fc(U1)× · · · × Fc(Un),

if there exist ε̂1, ε̂2 > 0 such that the following inclusions hold true:

B(Ã; ε̂1) ⊆ B1(Ã(1); ε)× · · · × Bn(Ã(n); ε) (22)

and:
B1(Ã(1); ε̂2)× · · · × Bn(Ã(n); ε̂2) ⊆ B(Ã; ε), (23)

then the product topology τFc(U1)×···×Fc(Un) is equal to the metric topology τFc(U) for Fc(U). If the product
vector space U is endowed with the product norm ‖ · ‖U1×···×Un such that the inclusions Equations (22) and (23)
are satisfied, then the product topology is also equal to the metric topology.

Proof. The results follow immediately from the same arguments of Proposition 1.

Lemma 3. Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1 × · · · ×Un be the product
vector space. Then, the following statements hold true.

(i) We consider the normed space (U, ‖ · ‖U). Given any ε > 0, assume that ‖ (u1, · · · , un) ‖U< ε if and
only if ‖ ui ‖Ui< ε for all i = 1, · · · , n. Then, we have the following inclusions:

B(Ã; ε/2) ⊆ B1(Ã(1); ε)× · · · × Bn(Ã(n); ε) (24)

and
B1(Ã(1); ε/2)× · · · × Bn(Ã(n); ε/2) ⊆ B(Ã; ε). (25)

(ii) We consider the product normed space (U, ‖ · ‖U1×···×Un), where the product norm is defined by (11).
Given any ε > 0, assume that h(x1, · · · , xn) < ε if and only if xi < ε for all i = 1, · · · , n. Then, we also
have the inclusions in Equations (24) and (25).
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Proof. To prove part (i), for B̃ = (B̃(1), · · · , B̃(n)) ∈ B(Ã; ε/2), i.e., dFc(U)(Ã, B̃) < ε/2, we have
dHU(Ãα, B̃α) < ε/2 for all α ∈ [0, 1]; that is,

sup
a∈Ãα

inf
b∈B̃α

‖ a− b ‖U< ε/2 and sup
b∈B̃α

inf
a∈Ãα

‖ a− b ‖U< ε/2

for all α ∈ [0, 1]. It suffices to consider the case of:

sup
a∈Ãα

inf
b∈B̃α

‖ a− b ‖U< ε/2

for all α ∈ [0, 1]. In this case, we see that infb∈B̃α
‖ a− b ‖U< ε/2 for all a ∈ Ãα and α ∈ [0, 1]. Since

B̃α is a compact subset of U, by Lemma 1 and part (iii) of Proposition 4, we see that the above infimum
is attained, i.e., ‖ a− b∗ ‖U< ε/2 for some b∗ ∈ B̃α, where a = (a1, · · · , an) and b∗ = (b∗1 , · · · , b∗n)
are in U. By the assumption of ‖ · ‖U, we have ‖ ai − b∗i ‖Ui< ε/2 for all i = 1, · · · , n. Therefore, we
also have:

inf
bi∈B̃(i)

α

‖ ai − bi ‖Ui≤‖ ai − b∗i ‖Ui< ε/2

for all ai ∈ Ã(i)
α and α ∈ [0, 1], which also says that:

sup
ai∈Ã(i)

α

inf
bi∈B̃(i)

α

‖ ai − bi ‖Ui≤ ε/2

for all α ∈ [0, 1]. By considering another case, we can similarly show that:

sup
bi∈B̃(i)

α

inf
ai∈Ã(i)

α

‖ ai − bi ‖Ui≤ ε/2

for all α ∈ [0, 1]. Then, we have:

dFc(Ui)
(Ã(i), B̃(i)) = sup

α∈[0,1]
max

 sup
ai∈Ã(i)

α

inf
bi∈B̃(i)

α

‖ ai − bi ‖Ui , sup
bi∈B̃(i)

α

inf
ai∈Ã(i)

α

‖ ai − bi ‖Ui

 ≤ ε/2 < ε,

which says that B̃(i) ∈ Bi(Ã(i); ε) for all i = 1, · · · , n. Therefore, we conclude the inclusion:

B(Ã; ε/2) ⊆ B1(Ã(1); ε)× · · · × Bn(Ã(n); ε).

On the other hand, for B̃(i) ∈ Bi(Ã(i); ε/2), i = 1, · · · , n, we have:

sup
ai∈Ã(i)

α

inf
bi∈B̃(i)

α

‖ ai − bi ‖Ui< ε/2 and sup
bi∈B̃(i)

α

inf
ai∈Ã(i)

α

‖ ai − bi ‖Ui< ε/2

for all α ∈ [0, 1]. We consider the case of:

sup
ai∈Ã(i)

α

inf
bi∈B̃(i)

α

‖ ai − bi ‖Ui< ε/2

for all α ∈ [0, 1] and i = 1, · · · , n. This says that inf
bi∈B̃(i)

α
‖ ai − bi ‖Ui< ε/2 for all ai ∈ Ã(i)

α , α ∈ [0, 1]

and i = 1, · · · , n. By Lemma 1 and part (iii) of Proposition 4, we see that ‖ ai − b∗i ‖Ui< ε/2 for some
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b∗i ∈ B̃(i)
α . By the assumption of ‖ · ‖U, there exists b∗ = (b∗1 , · · · , b∗n) ∈ B̃α such that ‖ a− b∗ ‖U< ε/2

for all a ∈ Ãα and α ∈ [0, 1]. Therefore, we obtain:

sup
a∈Ãα

inf
b∈B̃α

‖ a− b ‖U≤ sup
a∈Ãα

‖ a− b∗ ‖U≤ ε/2

for all α ∈ [0, 1]. By considering another case, we can similarly show that:

sup
b∈B̃α

inf
a∈Ãα

‖ a− b ‖U≤ ε/2

for all α ∈ [0, 1]. Then, we have:

dFc(U)(Ã, B̃) = sup
α∈[0,1]

max

{
sup
a∈Ãα

inf
b∈B̃α

‖ a− b ‖U, sup
b∈B̃α

inf
a∈Ãα

‖ a− b ‖U

}
≤ ε/2 < ε.

Therefore, we conclude the inclusion:

B1(Ã(1); ε/2)× · · · × Bn(Ã(n); ε/2) ⊆ B(Ã; ε).

The above same arguments can similarly apply to part (ii). This completes the proof.

Proposition 14. Let (Ui, ‖ · ‖Ui ) be normed spaces for i = 1, · · · , n and let U = U1 × · · · ×Un be the
product vector space. Then, the following statements hold true.

(i) We consider the normed space (U, ‖ · ‖U). Given any ε > 0, assume that ‖ (u1, · · · , un) ‖U< ε if and
only if ‖ ui ‖Ui< ε for all i = 1, · · · , n. Then the product topology τFc(U1)×···×Fc(Un) is equal to the
metric topology τFc(U) for Fc(U).

(ii) We consider the product normed space (U, ‖ · ‖U1×···×Un), where the product norm is defined by (11).
Given any ε > 0, assume that h(x1, · · · , xn) < ε if and only if xi < ε for all i = 1, · · · , n. Then the
product topology τFc(U1)×···×Fc(Un) is equal to the metric topology τFc(U) for Fc(U).

Proof. The results follow immediately from Proposition 13 and Lemma 3.

We recall that if (U, τ) is a topological vector space, then the mappings of vector addition
(x, y) 7→ x + y and scalar multiplication (λ, x) 7→ λx are continuous under this topology τ. Therefore,
we can also introduce the concept of fuzzy topological vector space as follows.

Definition 4. Let U be a vector space over R and let F be a subset of F (U). We say that (F , τF ) is a fuzzy
topological vector space over R if and only if the following conditions are satisfied:

• F is a fuzzy vector space over R;
• the mapping of fuzzy addition (F ×F , τF×F )→ (F , τF ) defined by (ã, b̃) 7→ ã⊕ b̃ is continuous, where

τF×F is the product topology for F ×F ;
• the mapping of scalar multiplication (R×F , τR×F )→ (F , τF ) defined by (λ, ã) 7→ λã is continuous,

where τR×F is the product topology for R×F .

Remark 8. Let (U, ‖ · ‖U) be a normed space, which can also induce a norm topology τ̂U . It is
well-known that the mapping f1 : (U ×U, τU×U)→ (U, τ̂U) defined by (x, y) 7→ x + y and the mapping
f2 : (R×U, τR×U)→ (U, τ̂U) defined by (λ, x) 7→ λx are continuous, where τU×U is the product topology
for U ×U formed by the norm topology τ̂U and τR×U is the product topology for R×U formed by the norm
topology τ̂U and the usual topology for R. In this case, the normed space (U, ‖ · ‖U) becomes a Hausdorff
topological vector space (U, τ̂U). Let U = U ×U be the product vector space such that U is endowed with the
norm ‖ · ‖U or the product norm ‖ · ‖U×U , which can also induce the norm topology τ̂U or the product norm



Symmetry 2017, 9, 299 22 of 25

topology τ̂U×U . Let UR = R×U be the product vector space such that UR is endowed with the norm ‖ · ‖UR
or the product norm ‖ · ‖R×U , which can also induce the norm topology τ̂UR or the product norm topology
τ̂R×U . In this case, the mapping f1 : (U ×U, τ̂U) → (U, τ̂U) or f1 : (U ×U, τ̂U×U) → (U, τ̂U) defined by
(x, y) 7→ x + y and the ampping f2 : (R×U, τ̂UR)→ (U, τ̂U) or f2 : (R×U, τ̂R×U)→ (U, τ̂U) defined by
(λ, x) 7→ λx are not necessarily continuous unless the inclusions in Equations (12) and (13) are satisfied.

Theorem 15. Let (U, ‖ · ‖U) be a normed space and let the product vector space U = U ×U be endowed with
a norm ‖ · ‖U such that the inclusions in Equations (12), (13), (22) and (23) are satisfied. Then, the following
statements hold true.

(i) Suppose that conditions (b), (c) and (d) for Wn are satisfied. Then,

(Fc(U), τFc(U)) = (F0(U), τF0(U))

is a fuzzy topological vector space over R.
(ii) Suppose that conditions (b), (c), (d) and (e) for Wn are satisfied. Then, (Fcc(U), τFcc(U)) is a fuzzy

topological vector space over R.

If the product vector space U is endowed with the product norm ‖ · ‖U×U such that the inclusions in
Equations (12), (13), (22) and (23) are satisfied, then we also have the same results. The assumptions satisfying
the inclusions Equations (12) and (13) are not needed when we say that the function f : U1 × · · · ×Un → V is
continuous directly in topological sense without considering the norm ‖ · ‖U and the product norm ‖ · ‖U×U .

Proof. To prove part (i), using part (ii) of Proposition 10, it follows that Fc(U) = F0(U) is a fuzzy
vector space over R. From Remark 8, Proposition 13 and Theorem 9, we see that the mappings of
fuzzy addition:

(Fc(U)×Fc(U), τFc(U)×Fc(U))→ (Fc(U), τFc(U)) by (ã, b̃) 7→ ã⊕ b̃,

and scalar multiplication:
(R×Fc(U), τR×Fc(U)) by (λ, ã) 7→ λã

are continuous, where λ ∈ R is regarded as the crisp number 1̃{λ}.
To prove part (ii), we consider the mapping f1 : U ×U → U defined by (x1, x2) 7→ x1 + x2 and

the mapping f2 : R×U → U defined by (λ, x) 7→ λx. From the arguments of Proposition 9, we see
that, for any convex subsets A1, A2 of U and any convex subset A3 of R, f1(A1, A2) and f2(A3, A1) are
also convex subsets of U. Therefore, the result follows immediately from Remark 8, Proposition 13 and
Theorem 13. This completes the proof.

Corollary 1. Let (U, ‖ · ‖U) be a normed space and let the product vector space U = U ×U be endowed with
a norm ‖ · ‖U such that, given any ε > 0, ‖ (u1, u2) ‖U< ε if and only if ‖ ui ‖Ui< ε for i = 1, 2. Then,
the following statements hold true.

(i) Suppose that conditions (b), (c) and (d) for Wn are satisfied. Then,

(Fc(U), τFc(U)) = (F0(U), τF0(U))

is a fuzzy topological vector space over R.
(ii) Suppose that conditions (b), (c), (d) and (e) for Wn are satisfied. Then (Fcc(U), τFcc(U)) is a fuzzy

topological vector space over R.

Proof. The results follow immediately from Remark 8, part (i) of Proposition 2 part (i) of Proposition 14
and Theorem 15.
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Corollary 2. Let (U, ‖ · ‖U) be a normed space and let the product vector space U = U ×U be endowed with
a product norm ‖ · ‖U×U that is defined by (11) such that, given any ε > 0, h(x1, x2) < ε if and only if xi < ε

for i = 1, 2. Then, the following statements hold true.

(i) Suppose that conditions (b), (c) and (d) for Wn are satisfied. Then:

(Fc(U), τFc(U)) = (F0(U), τF0(U))

is a fuzzy topological vector space over R.
(ii) Suppose that conditions (b), (c), (d) and (e) for Wn are satisfied. Then, (Fcc(U), τFcc(U)) is a fuzzy

topological vector space over R.

Proof. The results follow immediately from Remark 8, part (ii) of Proposition 2 (ii), part (ii) of
Proposition 14 and Theorem 15.

In the sequel, we consider the case of fuzzy scalar multiplication.

Definition 5. Let U be a vector space over R. Let F be a subset of F (U) and let FR be a subset of F (R).
We say that (F , τF ) is a fuzzy topological vector space over FR if and only if the following conditions
are satisfied:

• F is a fuzzy vector space over FR;
• the mapping of fuzzy addition (F ×F , τF×F )→ (F , τF ) defined by (ã, b̃) 7→ ã⊕ b̃ is continuous, where

τF×F is the product topology for F ×F ; and
• the mapping of fuzzy scalar multiplication (FR × F , τFR×F ) → (F , τF ) defined by (λ̃, ã) 7→ λ̃ã is

continuous, where τFR×F is the product topology for FR ×F .

Theorem 16. Let (U, ‖ · ‖U) be a normed space and let the product vector space U = U ×U be endowed
with a norm ‖ · ‖U such that the inclusions in Equations (12), (13), (22) and (23) are satisfied. Suppose that
conditions (b), (c) and (d) for Wn are satisfied. If the fuzzy scalar multiplication is defined as λ̃ã = λ̃⊗ ã, then

(Fc(U), τFc(U)) = (F0(U), τF0(U))

is a fuzzy topological vector space over Fc(R) = F0(R). If the product vector space U is endowed with the
product norm ‖ · ‖U×U such that the inclusions in Equations (12), (13), (22) and (23) are satisfied, then we
also have the same results. The assumptions satisfying the inclusions Equations (12) and (13) are not needed
when the normed space (U, ‖ · ‖U) is directly regarded as a Hausdorff topological vector space over R without
considering the norm ‖ · ‖U and the product norm ‖ · ‖U×U .

Proof. Proposition 11 says that Fc(U) = F0(U) is a fuzzy vector space over Fc(R) = F0(R).
From Remark 8, Proposition 13 and Theorem 9, we see that the mappings of fuzzy addition:

(Fc(U)×Fc(U), τFc(U)×Fc(U))→ (Fc(U), τFc(U)) defined by (ã, b̃) 7→ ã⊕ b̃,

and fuzzy scalar multiplication:

(Fc(R)×Fc(U), τFc(R)×Fc(U)) defined by (λ̃, ã) 7→ λ̃ã = λ̃⊗ ã

are continuous. This completes the proof.

Corollary 3. Let (U, ‖ · ‖U) be a normed space and let U = U ×U be the product vector space such that one
of the following conditions is satisfied:

• the product vector space U is endowed with a norm ‖ · ‖U such that, given any ε > 0, ‖ (u1, u2) ‖U< ε

if and only if ‖ ui ‖Ui< ε for i = 1, 2; and
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• the product vector space U is endowed with a product norm ‖ · ‖U×U that is defined by Equation (11) such
that, given any ε > 0, h(x1, x2) < ε if and only if xi < ε for i = 1, 2.

If the fuzzy scalar multiplication is defined as λ̃ã = λ̃⊗ ã, then:

(Fc(U), τFc(U)) = (F0(U), τF0(U))

is a fuzzy topological vector space over Fc(R) = F0(R).

Proof. The results follow immediately from Remark 8, Propositions 2, 14 and Theorem 16.

Theorem 17. Let (U, ‖ · ‖U) be a normed space and let the product vector space U = U ×U be endowed
with a norm ‖ · ‖U such that the inclusions in Equations (12), (13), (22) and (23) are satisfied. Suppose that
conditions (b), (c), (d) and (e) for Wn are satisfied. Then, the following statements hold true.

(i) If the fuzzy scalar multiplication is defined by λ̃ã = λ̃⊗ ã, then (Fcc(U), τFcc(U)) is a fuzzy topological
vector space over F±cc (R).

(ii) If the fuzzy scalar multiplication is defined by:

λ̃ã =

{
λ̃⊗ ã if λ̃ ∈ F±cc (R)(
λ̃+ ⊗ ã

)
⊕
(
λ̃− ⊗ ã

)
if λ̃ ∈ Fcc(R) \ F±cc (R),

where λ̃ = λ̃+ ⊕ λ̃−, then (Fcc(U), τFcc(U)) is a fuzzy topological vector space over Fcc(R).

If the product vector space U is endowed with the product norm ‖ · ‖U×U such that the inclusions in
Equations (12), (13), (22) and (23) are satisfied, then we also have the same results. The assumptions satisfying
the inclusions Equations (12) and (13) are not needed when the normed space (U, ‖ · ‖U) is directly regarded
as a Hausdorff topological vector space over R without considering the norm ‖ · ‖U and the product norm
‖ · ‖U×U .

Proof. Part (i) of Proposition 12 says that Fcc(U) is a fuzzy vector space over F±cc (R). We consider
the mapping f1 : U × U → U defined by (x1, x2) 7→ x1 + x2 and the mapping f2 : R× U → U
defined by (λ, x) 7→ λx. From the arguments of Proposition 9, we see that, for any convex subsets
A1, A2 of U and any convex subset A3 of R, f1(A1, A2) and f2(A3, A1) are also convex subsets of
U. Therefore, the result follows immediately from Remark 8, Proposition 13 and Theorem 13. This
completes the proof.

Corollary 4. Let (U, ‖ · ‖U) be a normed space and let U = U ×U be the product vector space such that one
of the following conditions is satisfied:

• the product vector space U is endowed with a norm ‖ · ‖U such that, given any ε > 0, ‖ (u1, u2) ‖U< ε

if and only if ‖ ui ‖Ui< ε for i = 1, 2; and
• the product vector space U is endowed with a product norm ‖ · ‖U×U that is defined by Equation (11) such

that, given any ε > 0, h(x1, x2) < ε if and only if xi < ε for i = 1, 2.

Then, the following statements hold true.

(i) If the fuzzy scalar multiplication is defined by λ̃ã = λ̃⊗ ã, then (Fcc(U), τFcc(U)) is a fuzzy topological
vector space over F±cc (R).

(ii) If the fuzzy scalar multiplication is defined by:

λ̃ã =

{
λ̃⊗ ã if λ̃ ∈ F±cc (R)(
λ̃+ ⊗ ã

)
⊕
(
λ̃− ⊗ ã

)
if λ̃ ∈ Fcc(R) \ F±cc (R),

where λ̃ = λ̃+ ⊕ λ̃−, then (Fcc(U), τFcc(U)) is a fuzzy topological vector space over Fcc(R).
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Proof. The results follow immediately from Remark 8, Propositions 2, 14 and Theorem 17.
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