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Abstract: Flexibility of manufacturing systems is an essential factor in maintaining the
competitiveness of industrial production. Flexibility can be defined in several ways and according
to several factors, but in order to obtain adequate results in implementing a flexible manufacturing
system able to compete on the market, a high level of autonomy (free of human intervention) of the
manufacturing system must be achieved. There are many factors that can disturb the production
process and reduce the autonomy of the system, because of the need of human intervention to
overcome these disturbances. One of these factors is tool wear. The aim of this paper is to present an
experimental study on the possibility to determine the state of tool wear in a flexible manufacturing
cell environment, using image acquisition and processing methods.

Keywords: image processing; flexible manufacturing; tool-flank-wear monitoring; artificial neural
networks

1. Introduction

The assessment of tool wear is of major importance in a manufacturing system that aims for
higher automation and flexibility. The automatic tool readjustment (ATR) function implemented in
flexible manufacturing systems (FMSs) prepares a new set of tools in the storage unit of the automatic
tool changer (ATC) of the machine. The basic implementation of the ATR function in a FMS is based on
a tool list. Each individual machine in the FMS transfers the tool list of its ATC magazine to a central
control system; the system also has a list of workpieces to be manufactured that includes a tool list
needed for each workpiece to be manufactured. The goal of the ATR is to transfer the required tools
to the ATC in “hidden time”, meaning that the machine is still working while the tools for the new
task are transferred, so the machine will have all the tools needed for each workpiece. Although the
implementation of the ATR function significantly decreases the down time of the machines as a result of
tool replacement in the ATC magazine, it has no effect in case of tool-life management (TLM). In order
to manage the tool life with the ATR function, the system must monitor the tool wear and, on the basis
of the standard life-time of the tools, include the tool determined to be close to its usage life in the
ATR list of tools that need replacement. This system can improve the autonomy of the manufacturing
system and the quality of the pieces. This kind of TLM, although bringing a significant improvement,
has its own disadvantages. The efficiency of the system strongly depends on the precision of the
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tool-life calculation. Depending on the true situation of cutting conditions (tool-material quality and its
accordance with the standard, exact composition and homogeneity of the part material, and efficiency
of the cooling system), a tool can present early signs of wear, causing a decrease in the quality of
manufactured workpieces (the true life-time is shorter than the standard), or a tool can be removed on
the basis of a standard life-time even if the quality of the cutting process is satisfactory and the tool
is performing with acceptable parameters (the true life-time is longer than the standard). There are
considerably many studies regarding different approaches to tool management. A tool-management
approach enabling an autonomous cooperation of tools and machine tools within a batch production
system is presented in [1]. Considering the type of parameter of the cutting process that is monitored,
these range from surface roughness and cutting force to vibration and chip shape. In [2], the authors
analyzed whether cutting parameters (feed rate, and spindle speed) have an effect on tool wear and
surface roughness. Surface roughness of processed parts is also studied as a parameter that can predict
the state of the tool wear. Prediction of the surface roughness of a workpiece by using adaptive
neuro-fuzzy inference system (ANFIS) modeling for the monitoring of unmanned production systems
with tool-life management is presented in [3]. In other studies, machined surface images are analyzed
on the basis of a support vector machine using as input the features extracted from the gray-level
co-occurrence matrix [4], and in-process surface-roughness monitoring system for an end-milling
operation is analyzed using neural-fuzzy methods in [5]. Another parameter monitored in order to
identify tool wear is the cutting force. In [6], force-based tool-condition monitoring for a turning
process using support vector regression analysis is used to establish the flank wear of the cutting tool.
Cutting force signals are also used in [7] to estimate the tool wear and the surface quality, and in [8],
a partial least-square regression method is presented to make the tool-wear prediction also on the basis
of the force signal. Related to cutting-force measurements are measurements of the current amplitude
of the main drive of the machine tool, presented in [9,10], where it is shown that this parameter can
also be linked to tool-wear development. Vibrations and machine tool dynamics are studied in order to
find their relation with tool wear [11]. Some studies combine signals from different sensors, such as, for
example, in [12], where tool-wear prediction in milling is analyzed using the simultaneous detection
of acceleration and spindle drive current. Additionally, chip morphologies are analyzed in order to
evaluate tool-flank wear and its effects on surface roughness [13]. More direct methods are focused
on measuring spatial tool wear using a three-dimensional (3D) laser profile sensor [14]. Regarding
processing and analysis techniques used to identify tool wear, there are also a large number of methods
employed: machine learning and computer vision techniques [15], wavelet extreme learning machine
models [16] support vector regression [17], analytical mathematical models [18], empirical models [19]
and co-evolutionary particle swarm optimization-based selective neural network ensembles [20].
Tool wear is also studied experimentally; researchers aim to develop different models to predict tool
wear from experimental data [21–23]. In this paper, we analyzed a system on the basis of image
acquisition and processing, which can provide useful information regarding the cutting tool usage on
the basis of the cutting edge wear. Our system is intended to be used in conjunction with methods
to detect tool breakage, such as, for example, measuring the main drive current or torque, which are
already built into the computer numerical control (CNC) of modern machine tools. Regarding the
image processing methods, we describe one artificial neural network (ANN) applied to classify the
image features obtained by processing the images with classical image processing methods (filtering,
edge detection and morphological operations) and two ANNs applied directly on the images without
their preprocessing (one single-hidden-layer ANN and one two-hidden-layer autoencoder). In order
to compare the results obtained for each ANN, we describe in detail the training and testing of the
ANNs. We also studied the Training Success Rate (TSR) for these ANNs for a large range of nodes
in each layer. The integration of such a system with the ATR function of a FMS could increase the
autonomy of the system and the quality of manufactured parts, as well as ensure a rational tool usage.
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2. Tool-Flank-Wear Monitoring System

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results and their interpretation, as well as the experimental conclusions that can
be drawn.

This area is relatively protected from chips and cooling liquid used during the processing,
which could substantially impede the acquisition of the images. Thus, after every instance that
the tool has been used and placed in the magazine, a tool-flank image can be acquired and processed.
In this approach, it is important that one of the tool flanks is in the area covered by the camera.
We assume that all the teeth of the tool are more or less equally affected by wear, so that it is enough
to acquire the image of the flank of only one tooth. One of the conditions for image acquisition is to
have one tooth of the tool oriented toward the camera, so that the tool has to be positioned in the tool
holder accordingly. In order to acquire more accurate images, the camera is placed on an positioning
device, which moves the camera in the appropriate position for each tool (Figure 1). The coordinates
for each tool are stored in the tool database on the FMS controller. This controller also transmits the
coordinates to the camera positioning controller. The acquisitioned images are processed on a separate
computer (tool wear identification in Figure 1), which decides whether the tool is worn or not. If the
system decides that the tool-flank wear exceeds the acceptable limit, the information is transmitted to
the FMS, which in turn replaces the tool in the magazine or updates the information in the tool list so
that a replacement tool is used from that time on, if such a replacement tool exists in the magazine.
Flank wear of tools can be detected as a result of changes in the angle of the worn surface relative to
the unworn flank surface. The worn surface will have a different orientation, causing the light to be
reflected at a different angle and then observed on the acquired image (Figure 2).

Figure 1. Tool-wear monitoring system.

Figure 2. Tool-wear monitoring system. (a) unworn flank; (b) worn flank.
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In practice, these surfaces are not ideal planes but are packed with irregularities. The new tool
flank has marks as a consequence of sharpening, and the worn surface is much more irregular because
of particle displacement by friction with the surface of the workpiece and chips. Thus, in the resulting
images, the two surfaces (worn and unworn) are not simple to separate.

3. Experimental Setup for Tool-Flank-Wear Detection

The experimental system was developed with the goal to obtain consecutive images of the tool
flank, which then can be used to test and analyze different image processing methods. Extensive study
of flank wear for different tools, tool and workpiece materials or different processing parameters is
beyond the scope of our study.

The system presented in Figure 3 is composed of a computer system (1), National Instruments
CCD camera (2), optical microscope with lighting system (3), cutting tool (4), tool holder (5), and
National Instruments camera source (6).

Figure 3. Image acquisition system for the automatic determination of tool wear.

For the experimental tests, a high-speed steel end mill HS18-0-1 (AISI T1) was used, with two
helical teeth and with a diameter of 14 mm (the tool is presented in Figure 4).

Figure 4. Tool used for the experimental test.

The workpiece was made of C45 carbon steel (AISI 1045) and is shown in Figure 5.
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Figure 5. Workpiece used for the experimental test.

Using the experimental setup, images of the cutting tool were acquired. During the experiments,
a total of eight complete steps of the cutting tool were made (the tool cut a total of eight entire lengths
of the workpiece). Images of the tool flank were acquired after cutting every 200 mm in the workpiece.
The processing parameters were set to a feed rate of 50 mm/min, a spindle speed of 500 rpm, a width
of cut of 6 mm (representing 43% of the tool diameter) and a depth of cut of 2 mm. During the
experiments, 21 images of the tool flank were acquired showing consecutive stages of flank-wear
development. A larger number of images obtained for successive stages of wear would be generally
similar for larger numbers of tools of the same type, dimension and material and under the same
cutting conditions, having little effect on the results of an image processing algorithm. The reason for
this is that the number and complexity of the features contained in the images of a tool flank is fairly
low. The images have been analyzed and it was concluded that the wear begins to be visible at the
14th image and progresses forward from this, as can be seen in Figure 6. After the images had been
acquired, three different algorithms were tested in order to find out which of these, if presented with
an unlabeled image, could decide whether the tool had reached an unacceptable degree of wear.

13 images 
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f) 
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Figure 6. Images taken at successive times during processing showing the stages of tool wear: (a) new
tool; (b) first stage when the wear became visible; and (c) last stage with massive wear.

4. Image Processing for Tool-Flank-Wear Detection

4.1. Image Classification Using One-Hidden-Layer ANN on Features Extracted from Image Data

On the basis of a step-by-step analysis of the acquired images, we developed an algorithm in order
to extract significant features that can help to distinguish worn and unworn tools. In the following, we
describe the steps of the developed algorithm. First, the filtering of the original gray image is done
with a range filter, for which each output pixel contains the maximum value minus the minimum
value of a 3 × 3 neighborhood of the filtered pixel. This is followed by transforming the gray-level
image into a black and white (b/w) image using Otsu’s method. This method establishes the threshold
used to transform the image automatically from the image’s gray-level histogram, so that no manual
adjustment of the threshold is needed. The next step was to find edges in the b/w image using the
Sobel edge detection method. Using this method, we obtained a new b/w image of the frontiers of the
objects from the previous b/w image. Here, the “object” has to be understood as any white region
separated from other similar regions, so that the word object has no physical meaning. The result of
the above described steps is shown in Figure 7.
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Figure 7. Binary black and white (b/w) image of (a) the new and (b) last stage of wear of the tool flank.

Starting from the observation that feature extraction can be more computationally efficient if the
objects in the image are aligned to lines and columns of the internal computational representation
(matrices) of the images, we computed the Hough transform of the image to find the angle of rotation
of the tool edge; then we rotated the image with the angle identified by the Hough transform in
order to position the edge of the tool horizontally in the image. This was followed by performing an
image-opening morphological operation in order to enhance the objects in the image. The last step of
the preprocessing was to apply a third-order one-dimensional median filter to the image. The result of
these operations is presented in Figure 8.

Figure 8. Enhanced and “rotated-to-horizontal” images of (a) the flank of the new tool and (b) tool
with wear.

Studying the structure of the enhanced and rotated images, we tried to use different morphological
parameters to extract features that could distinguish between worn and unworn tool-flank images.
One of these parameters was the Euler number (EN). The EN is the total number of objects (as defined
above) in the image minus the total number of holes (dark regions surrounded by white regions).

Computing the ENs for the whole set of images, we obtained the diagram in Figure 9. As can be
seen in the diagram in Figure 9, the EN has a significant drop from the 14th image, which corresponds
to the first image that has visible signs of wear. If we establish a threshold (in this case at about EN =
3500), we can fairly discriminate between ENs corresponding to worn and unworn tool-flank images.
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Although we obtained good results in this case, in order to consider the EN as a reliable feature, a large
number of experiments with different tools should be made and thresholds for the EN diagram have
to be established manually (by a human agent) for each tool, which impedes the practicality of the
method. Another feature had been found by observing differences between the worn and unworn
flank images. We computed the normalized sum of white pixels (denoted NSP), having the value of 1,
on each horizontal line of the image. The NSP on each line is computed as the sum of pixels on that
line divided by the number of pixels on the line with the maximum number of pixels. Clearly, the sum
of the pixels in a line will be equal to the number of white pixels in that line, given that the black pixels
have a value of 0. The NSP is defined by the expressions:

wi =
n

∑
j=1

vi,j (1)

NSPi =
wi

max(wi)i=1...m
(2)

where i is the current line with n as the number of lines in the image; j is the current column with n
as the number of columns in the image; wi,j is the value of the pixel intensity on line i and column j,
which in this case is 0 for dark and 1 for white pixels; wi is the sum of pixels on line i; and NSPi is the
value of the NSP on line i.

Figure 9. Euler number diagram for the experimental images set (points corresponding to worn tool
flank are marked with red).

Computing the NSP for each image, we obtained the diagrams in Figures 10 and 11. It can be
seen that the shape of the NSP diagram of worn and unworn tool flanks are quite different.
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Figure 10. Normalized sum of white pixels (NSP) diagrams for unworn tool flank.

Figure 11. Normalized sum of white pixels (NSP) diagrams for worn tool flank.

Analyzing these diagrams, we can conclude that the NSP can be regarded as a fairly reliable
feature to be used as a flank-wear detection parameter. From this point on, the main goal is to find
a method to discriminate between the shapes (patterns) of NSP curves representing unworn flank
images and those representing worn flank images. In order to do so, we analyzed two methods:
one based on approximations with second-degree polynomials and the other based on ANN pattern
recognition. The approximation of the NSP curves is shown in Figures 12 and 13. Differentiating the
two types of curves are the locations (abscissa or line number i) of their maxima: point M.
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Figure 12. Normalized sum of white pixels (NSP) diagram for unworn tool flank and the second-order
polynomial approximation (blue curve) with maxima at point M.

Figure 13. Normalized sum of white pixels (NSP) diagram for worn tool flank and the second-order
polynomial approximation (blue curve) with maxima at point M.

Plotting the location of maxima versus the processing time until the image was acquired gives us
the diagram in Figure 14.

Figure 14. Normalized sum of white pixels (NSP) diagram for worn tool flank and the second-order
polynomial approximation (blue curve) with maxima at point M.
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As in the case of the EN parameter, the location of maxima of the second-degree polynomial
approximation of the NSP curve shows a good separation of worn and unworn flank images, but the
manual adjustment of the threshold for the locations of maxima still remains an issue.

Another approach to classify the NSP curves is to use ANN pattern-recognition methods. For this
purpose, we used the MATLAB nprtool module of the Neural Network Toolbox. The toolbox employs
a two-layer feedforward network, with a sigmoid transfer function in the hidden layer and a softmax
transfer function in the output layer [24]. The learning process is based on a scaled conjugate gradient
backpropagation algorithm. The input data for the ANN consisted of 21 samples of 100 data points
on each NSP curve, from which 13 were extracted from unworn flank images and 8 from worn flank
images. These had been further divided into two groups: 13 samples (representing 8 unworn and
5 worn flanks) had been used for training and 8 samples had been used for testing (representing 5
unworn and 3 worn flanks). The input layer consisted of 100 neurons corresponding to the 100 data
points of the NSP curve (Figures 10 and 11). The number of output neurons must be equal to the
number of elements in the target vector, which is the number of categories of the classification process.
In our case, there were two categories: worn and unworn tool-flank images. Essentially, the target
vector represented the labeling of the NSP dataset with the dimension of 2 × 13 for training and 2 × 8
for testing.

For successful training, the training performance of the network is represented in Figure 15,
which shows that, in this case, a very small error had been achieved in a short run of just 23 epochs.
We can see the result of a successful testing session presented in Figure 16 in the form of a confusion
matrix. In this representation, each column of the matrix represents a predicted class, while each
row represents a true class. The green squares represent the correctly classified and the red squares
represent the incorrectly classified samples. As can be seen in the confusion matrix, each sample,
for this case, was correctly classified.

Figure 15. Training performance diagram for the artificial neural network (ANN).
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Figure 16. Confusion matrix for the test set.

Although working with ANN software—in our case using the MATLAB Neural Network Toolbox,
but generally with other ANN software products as well—is quite straightforward, there are some
specific issues which have to be dealt with:

1. The number of neurons in the hidden layer must be established on a somehow empirical basis.
The number of neurons in the hidden layers may be important in order to extract the meaningful
features of the image.

2. Every training session can produce different results because of the fact that the initial weights and
biases of each neuron are set randomly. Training the network with the same number of neurons
on the same input datasets can produce different results when tested with unlabeled data.

3. The number of training epochs has to be well established in order to avoid overfitting.
If overfitting occurs, the network will be less successful in classifying unlabeled data.

In order to find the influence of these parameters on successfully training the networks, we ran
training sessions multiple times with different number of neurons in the hidden layer. Every trained
network was tested on the test sample set of five unworn and three worn flank images that were not
used in the training sessions. For the network type described in this paragraph, we trained networks
with a number of neurons in the hidden layer in the range of 10 to 200 with a step of 10 (10, 20, 30, . . . ,
200 neurons). A way to reduce the influence of the randomly set initial weights is to run training
sessions a large number of times for the same number of neurons. For each network with a specific
neuron number, we trained the network 100 times. After each training, the network was tested, and we
counted the number of times the testing was successful (successfully classified every test image from
the test set). We defined the TSR as the percentage of trainings that produced successful testing results
from the whole number of trainings (in this case, 100). The TSR is a good indicator of the influence of
neuron numbers, as the influence of initial weights is diminished by the high number of trainings. The
results are presented in the diagram in Figure 17.

As can be seen, the number of successful trainings decreases with the increase of the number
of neurons in the hidden layer. This led us to the conclusion that for this type of classification, it is
better to use a small number of neurons (from 10 to 60). Using a small number of neurons is also
recommended because the network will use less memory, which is important if we have a large number
of types of tools which have to be classified.



Symmetry 2017, 9, 296 12 of 18

Figure 17. Training success rate (TSR) for networks with 10 to 200 neurons in the hidden layer
(100 training sessions for each network; each point in the diagram).

4.2. Image Classification Using One-Hidden-Layer ANN on Image Data

In the above paragraph, we described the application of the ANN pattern-recognition method
to discriminate between NSP features extracted from worn and unworn flank images. To avoid
lengthy computations to extract features (e.g., EN or NSP) from the images, we tried to apply the
pattern-recognition method directly to the images. The original images had a size of 640 × 480 pixels;
the input for the ANN should be a vector, which would have resulted in a size of 307,200 elements. In
order to reduce the number of elements for the input vector, we resized the original image to a size of
126 × 94 pixels, resulting in an input vector of 11,844 elements. The samples were divided in training
and testing datasets in the same manner as described in the previous paragraph. The target vector
and output layer were the same as in the previous paragraph. An example of a successful training
performance for 30 neurons in the hidden layer is presented in Figure 18.

Figure 18. Performance diagram for the artificial neural network (ANN).

The confusion matrix in this case was similar to that in Figure 16. We also tested the TSR for
this type of network. At first, we trained networks with a number of neurons from 10 to 1000 with
10 training sessions for each case, to see the overall trend of the TSR as a function of neuron numbers.
The results are presented in the diagram in Figure 19. The trend has been established using a first-order
(linear) approximation of the set of TSRs (the red line in Figure 19), which shows that the TSR decreases
slightly with the increase in the number of neurons in the hidden layer.
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Figure 19. Training success rate (TSR) for networks with 10 to 1000 neurons in the hidden layer
(10 training sessions for each network; each point in the diagram).

Secondly, we raised the number of training sessions to 100 for the range of 10 to 200 neurons.
The TSR obtained is shown in the diagram in Figure 20.

Figure 20. Training success rate (TSR) for networks with 10 to 200 neurons in the hidden layer
(100 training sessions for each network; each point in the diagram).

It can be observed from Figure 20 that the TSR was much less stable in this case than the TSR
referenced in the previous paragraph (Figure 17). This means that there was a smaller chance to
successfully train a network directly on the image data (e.g., 55% for 30 neurons) than on NSP data
(for 30 neurons is 100%). In the studied range, the best TSR was for 90 neurons, at 57%.

4.3. Image Classification with Autoencoders on Image Data

Deep learning is a new approach that has been introduced in the field of ANNs in the last decades
by a number of researchers (e.g., [25,26]). There are a relatively large number of methods classified
as deep learning, such as deep belief networks, restricted Boltzmann machines, deep autoencoders,
and others. Deep learning algorithms, which use more than one hidden layer, have been successfully
applied to image classification. In order to find out whether this type of network would be better
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than the above presented networks, we used the MATLAB Neural Network Toolbox’s Deep Learning
section, which contains a module for autoencoder networks [24]. Autoencoders use methods to
separately train each layer; they then stack these together in a single network with multiple layers and
train the final network as a whole. As input and target data, we used the same sets as in Section 4.2.
The network we used was composed of two autoencoder layers and one softmax layer as output. An
example of successful training performance for 30 neurons in the first hidden layer, 10 neurons in the
second hidden layer and 2 neurons in the output layer is presented in Figure 21.

Figure 21. Performance diagram for the second layer of a two-hidden-layer autoencoder artificial
neural network (ANN).

Regarding the TSR for this type of network, we trained the network for 10 to 520 neurons in the
first hidden layer with a step of 10 (10, 20, 30, . . . , 520) and a constant number of 10 neurons for the
second layer. For each number of neurons, we trained the network 10 times, and we obtained the
diagram in Figure 22.

Figure 22. Training success rate (TSR) for networks with 10 to 520 neurons in the first hidden layer and
10 neurons in the second layer (10 training sessions for each network; each point in the diagram).

As we can see in the diagram in Figure 22, the TSR rises abruptly at 150 neurons in the first
hidden layer (increasing by more than 60%), then falls again to a mean value of about 40%. This shows
that the probability to successfully train an autoencoder network, for the types of images we studied,
is higher for a range of 150 to 350 neurons in the first layer. For a second set of experiments, we chose
to have a fixed number of 300 neurons in the first hidden layer, which was a maximal value of 90%
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TSR (Figure 22), and we ran the trainings for a range from 10 to 200 neurons in the second layer, with a
step of 10, each 10 times. The results are presented in Figure 23.

Figure 23. Training success rate (TSR) for networks with 300 neurons in the first hidden layer and 10 to
200 neurons in the second layer (10 training sessions for each network; each point in the diagram).

The results show that for 300 neurons in the first layer and a range of 100 to 150 neurons in the
second layer, we could obtain a TSR of 100%.

5. Conclusions

Our goal in this study was to analyze a tool-flank-wear monitoring system according to the
paradigm described in Section 2 (Figure 1). The hardware needed to develop such a system is relatively
simple to implement; there are a large number of suppliers for machine vision systems and positioning
devices. The tool database can be easily extended with the specific parameters for tool-wear monitoring,
with the observation that for a large database, the number of parameters has to be kept as low as
possible. The main questions we focused on were the following:

1. What kind of image processing and classification method would be successful?
2. What are the costs for such a system to be implemented?

Regarding the first question, we developed and tested three methods, which used ANNs to
classify the tool-flank images: one based on image-processing feature extraction followed by ANN
classification, and the other two methods applying ANNs directly on the image data. A comparison of
the three methods’ performances is presented in Table 1.

For method A, the image processing time to extract features was 4.2 s for all images of the image
set (21 images). The computational times for network training are given in Table 1. For method A, the
preprocessing time had to be added (4.2 s). As our focus was to compare only the presented algorithms,
these are the only important computational times. Method A has the highest TSR, which suggests
that this is the most reliable of the three methods tested. It also has the smallest training time and
the smallest number of epochs needed for training. Method B is less attractive mainly because of the
smaller TSR, which means that there may be a greater number of training sessions needed to develop
a successful network. Even so, its advantage is that it is simpler to implement and requires a small
number of neurons. Comparing the TSR for methods B and C, both working directly on the image
data, we can conclude that autoencoders perform better than single-hidden-layer networks for large
numbers of neurons. Method C requires the largest number of neurons, the largest number of epochs
and the longest time to train.
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Table 1. Comparative network training parameters.

Type of Network No. of Neurons Average No.
of Training Epochs

Average
Training Success Rate

Average Training
Time (s)

A. Single hidden layer
on image features

10 15–20 100 0.20
200 25–30 96 0.25

B. Single hidden layer
on image data

10 30–40 46 0.75
200 30–40 42 12

C. Two autoencoder hidden
layers (L1, L2) on image data

L1, L2 L1, L2 L1 + L2 L1 + L2
10 to 140, 10 1000, 1000 15 280

150 to 200, 10 1000, 1000 70 1900
300, 100 to 150 1000, 1000 100 1900

Our experiments show that the TSR increases with the increase in the number of neurons.
During the training of the analyzed networks, we counted the percentage of misclassifications

for each image in the testing set from the total number of misclassifications occurring for each of the
three network types, with the same number of training sessions as in the case of the TSR. The result is
presented in Figure 24. It can be observed that image number 3 from the training set (Figure 25) had
the highest number of misclassifications regardless of the network type or number of neurons, which
means that greater care has to be taken in the selection of the training set in order to produce a good
result during operation.

Figure 24. Number of misclassifications of tool-flank images from the total number of misclassifications.

Figure 25. Image of sample number 3 from the test set labeled as unworn tool flank but misclassified,
in some cases, as worn tool flank.
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Regarding the second question, our assessment is that the major parts of the costs to implement
this tool-wear monitoring solution are the cost of image acquisition, the cost of developing the
software, and training the decision-making system to discriminate between the unworn and worn
tools. The image-acquisition process costs increase with the number of acquisitioned images. To reduce
these costs, the method that is successful when trained with a small number of images is recommended.
Although it seems that method A gives the best results, an image-processing specialist may be needed
to develop the feature extraction algorithm, as there is a large amount of work spent on the manual
adjustment of parameters. Additionally, the feature extraction algorithm may be different for different
types of tools, further increasing the development costs.

For methods B and C, no image processing is needed before applying the ANN classification.
If ANN software is available (MATLAB Neural Network Toolbox or other similar software product),
the development process is relatively straightforward with few parameters to adjust (e.g., number of
neurons in the hidden layer); thus the training process does not require highly qualified software
experts. A discussion has to be made also on how many networks should be employed: Is it possible
to use one network for a larger set of tools or does each tool have to be provided with its own
network? The implementation of the system is made gradually as the manufacturing system is
running, without interrupting the production process. The only interruption of the production is for
the time needed to install the camera and the positioning device. After installing the camera and the
positioning device, images are acquired without interrupting the production process. In time, as the
tools are used to process the parts, an image database is developed. As soon as the image database for
a specific tool is complete, the training stage is accomplished during the runtime of the manufacturing
system. When the training has produced a reliable neural network, this is implemented in the system.
In this paper, we described the concept of a new system based on image acquisition and processing
of the tool flank. The system is capable of automatically detecting tool wear in an early stage.
Regarding the image processing methods, we present two new methods to obtain image features,
which make the discrimination between worn and unworn tool-flank images possible (EN and NSP).
We applied, to the best of our knowledge for the first time, a classification of the worn and unworn
tool-flank images using a two-hidden-layer autoencoder ANN, which proved to be 100% successful
for a large range of the number of nodes. We also present a detailed comparison of three ANNs in
order to establish their capabilities to classify worn and unworn tool-flank images.
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