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Abstract: Granular structure plays a very important role in the model construction,
theoretical analysis and algorithm design of a granular computing method. The granular structures
of classical rough sets and fuzzy rough sets have been proven to be clear. In classical rough set
theory, equivalence classes are basic granules, and the lower and upper approximations of a set
can be computed by those basic granules. In the theory of fuzzy rough set, granular fuzzy sets
can be used to describe the lower and upper approximations of a fuzzy set. This paper discusses
the granular structure of type-2 fuzzy rough sets over two universes. Definitions of type-2 fuzzy
rough sets over two universes are given based on a wavy-slice representation of type-2 fuzzy sets.
Two granular type-2 fuzzy sets are deduced and then proven to be basic granules of type-2 fuzzy
rough sets over two universes. Then, the properties of lower and upper approximation operators and
these two granular type-2 fuzzy sets are investigated. At last, several examples are given to show the
applications of type-2 fuzzy rough sets over two universes.

Keywords: type-2 fuzzy rough sets; granular structure; lower approximation operator; upper
approximation operator; two universes

1. Introduction

According to Chen et al., granular computing is a general computing theory for using granules
such as classes, clusters, subsets, groups and intervals to build an efficient computational model for
complex applications with huge amounts of data, information and knowledge [1].

Rough set theory [2], proposed by Pawlak in 1982, can be used to reveal and express knowledge
hidden in information systems in the form of decision rules by the concepts of lower and upper
approximations. Here, equivalence classes are used as the basic granules to express the lower and
upper approximations. Taken in this sense, rough set theory is a granular computing method.

Traditional rough set theory only manipulated decision systems with symbolic attribute values,
whereas in some real-world applications, the values of attributes could be both symbolic and real-valued.
In 1990, Dubois and Prade [3] proposed the definition of fuzzy rough sets by combining fuzzy sets and
rough sets, then many studies were carried out in the field of fuzzy rough sets [4–14]. In [15], fuzzy rough
sets were applied to feature selection for the first time. Wu et al. studied the generalized fuzzy rough
sets using both constructive and axiomatic approaches [16,17]. Mi and Zhang [18] introduced the
definitions of generalized fuzzy lower and upper approximation operators determined by a residual
implication and studied the composition of two approximation spaces. Yeung et al. [19] studied the
lattice and topological structures of fuzzy rough sets. Chen et al. discussed the granular structure
of fuzzy rough sets and developed a theory of granular computing based on fuzzy relations in [20].
They proposed the concept of granular fuzzy sets and investigated the properties of these sets using
constructive and axiomatic approaches. The granular fuzzy sets were used to describe the lower and
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upper approximations of a fuzzy set within the framework of granular computing, and the structure
of attribute reduction in terms of granular fuzzy sets was characterized.

Type-2 fuzzy rough set is a combination of rough sets and type-2 fuzzy sets. As an extension
of fuzzy sets, type-2 fuzzy sets [21] are useful in circumstances where it is difficult to determine the
exact membership functions of a fuzzy set because the membership degrees are fuzzy themselves.
Type-2 fuzzy rough sets may solve problems with higher complexity, and there have been several
literature works in this field [22–24]. In some practical applications, we often encounter situations
involving more than one universe. For example, in medical diagnosis, a certain disease may
simultaneously have several symptoms, whereas one symptom may be shared by different diseases.
Zhang et al. [25] proposed a general study of interval-valued fuzzy rough sets on two universes of
discourse. Sun et al. [26] defined the fuzzy compatible relation and presented the fuzzy rough set
model on the different universes. Liu et al. proposed the graded rough set model on two distinct,
but related universes in [27]. Ma et al. [28] presented the properties of the probabilistic rough set over
two universes and discussed the uncertainty measure of the knowledge granularity and rough entropy
for a probabilistic rough set over two universes. Sun et al. [29] considered a problem of emergency
material demand prediction based on a fuzzy rough set model over two universes. Yang et al. proposed
a fuzzy probabilistic rough set model on two universes and presented concepts of the inverse lower
and upper approximation operators in [30]. However, type-2 fuzzy rough sets over two universes
have not been discussed.

As generalizations of rough sets, type-2 fuzzy rough sets over one or two universes can be
incorporated into the scope of granular computing if we can reveal their granular structures, and the
granular structures will be beneficial to their application. In [24], we generalized the concepts of
granular fuzzy sets in [20] to the frame of type-2 fuzzy sets and presented a definition of granular
type-2 fuzzy sets without proof of its reasonability. Then, we discussed the granular structure of type-2
fuzzy rough sets over one universe based on these two granular type-2 fuzzy sets.

In this paper, the granular structure discussed in [24] will be generalized to the type-2 fuzzy
rough sets over different universes based on novel granular type-2 fuzzy sets, which are deduced
from the definition of type-2 fuzzy rough sets, and consequently, more reasonable than those given
in [24]. The rest of this paper is organized as follows. Fundamental concepts and properties that will
be used in this paper are reviewed in Section 2. Section 3 introduces the definition of a type-2 fuzzy
rough set over two universes. In Section 4, the granular structure of type-2 fuzzy rough sets over
two universes is discussed using granular type-2 fuzzy sets. Some illustrative examples are given in
Section 5, and conclusions are presented in Section 6.

2. Preliminaries

2.1. Type-2 Fuzzy Sets

To facilitate the discussion, we introduce the basic definitions and properties of type-2 fuzzy sets
in this section with reference to [31,32].

For a nonempty universe X, a type-2 fuzzy set Ã on X can be characterized by a type-2
membership function µÃ(x, u), i.e.,

Ã = {((x, u), µÃ(x, u))|x ∈ X, u ∈ Jx ⊆ [0, 1]},

or
Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u), Jx ⊆ [0, 1],

where 0 ≤ µÃ(x, u) ≤ 1 and
∫ ∫

denotes union over all admissible x and u. F̃(X) denotes the class of
all type-2 fuzzy sets on the universe X.

For a given x′, µÃ(x′, u) is a fuzzy set on Jx′ , which is called a vertical slice of µÃ(x, u) or a
secondary membership function, and it can be denoted by µÃ(x′) or fx′ . Jx′ is called the primary
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membership of x′. The amplitude of a secondary membership function is called a secondary grade.
A vertical-slice representation of a type-2 fuzzy set is:

Ã =
∫

x∈X
µÃ(x)/x =

∫
x∈X

[
∫

u∈Jx
fx(u)/u]/x.

Mendel and John [32] presented a wavy-slice representation for discrete type-2 fuzzy sets (both X
and Jx are assumed to be discrete) in 2002. Suppose that X is discretized into N values, x1, . . . , xN ,
and that at each of these values, Jxi is discretized into Mi values, i.e.,

Ã = [
M1

∑
k=1

fx1(u
(k)
1 )/u(k)

1 ]/x1 + . . . + [
MN

∑
k=1

fxN (u
(k)
N )/u(k)

N ]/xN .

For a discrete type-2 fuzzy set Ã, take exactly one element from Jx1 , Jx2 , . . ., JxN ,
namely uj

1, uj
2, . . ., uj

N , each with its associated secondary grade, namely fx1(u
j
1), fx2(u

j
2), . . ., fxN (u

j
N),

then we get a wavy-slice of Ã, i.e.,

Ãj =
N

∑
i=1

[ fxi (u
j
i)/uj

i ]/xi, uj
i ∈ Jxi ⊆ [0, 1],

which is called an embedded type-2 set. An embedded type-1 set Aj is the union of all the primary
memberships of set Ãj, i.e.,

Aj =
N

∑
i=1

uj
i/xi, uj

i ∈ Jxi ⊆ [0, 1].

The total of Ãj is ∏N
i=1 Mi and so is that of Aj.

The Representation Theorem [32] (the wavy-slice representation of a type-2 fuzzy set) proposed
by Mendel and John indicates that a discrete type-2 fuzzy set Ã can be represented as the union of its
embedded type-2 sets, i.e.,

Ã =
n

∑
j=1

Ãj

where n = ∏N
i=1 Mi.

Consider two discrete type-2 fuzzy sets Ã and B̃, which are expressed by their embedded
type-2 sets:

Ã =
nA

∑
j=1

Ãj =
nA

∑
j=1

N

∑
i=1

fxi (u
j
i)/uj

i
xi

and:

B̃ =
nB

∑
k=1

B̃k =
nB

∑
k=1

N

∑
i=1

gxi (w
k
i )/wk

i
xi

,
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the operations of union, intersection and complement are defined as follows:

Ã
⋃

B̃ =

nA

∑
j=1

nB

∑
k=1

{
[ fx1(u

j
1) ∧ gx1(w

k
1)/uj

1 ∨ wk
1]/x1 + . . . +

[ fxN (u
j
N) ∧ gxN (w

k
N)/uj

N ∨ wk
N ]/xN

}
,

Ã
⋂

B̃ =

nA

∑
j=1

nB

∑
k=1

{
[ fx1(u

j
1) ∧ gx1(w

k
1)/uj

1 ∧ wk
1]/x1 + . . . +

[ fxN (u
j
N) ∧ gxN (w

k
N)/uj

N ∧ wk
N ]/xN

}
,

(Ã)c =
nA

∑
j=1

(
N

∑
i=1

[ fxi (u
j
i)/(1− uj

i)]/xi) =
N

∑
i=1

(
Mi

∑
j=1

[ fxi (u
j
i)/(1− uj

i)])/xi.

The expressions for µÃ∪B̃(xi), µÃ∩B̃(xi) and µ(Ã)c(xi) can be obtained as:

µÃ∪B̃(xi) =
nA

∑
j=1

nB

∑
k=1

fxi (u
j
i) ∧ gxi (w

k
i )/uj

i ∨ wk
i ≡ µÃ(xi) t µB̃(xi),

µÃ∩B̃(xi) =
nA

∑
j=1

nB

∑
k=1

fxi (u
j
i) ∧ gxi (w

k
i )/uj

i ∧ wk
i ≡ µÃ(xi) u µB̃(xi),

µ(Ã)c(xi) =
Mi

∑
j=1

fxi (u
j
i)/(1− uj

i) ≡ ¬µÃ(xi),

where µÃ(xi) t µB̃(xi) and µÃ(xi) u µB̃(xi) indicate the join and meet of the secondary membership
functions µÃ(x) and µB̃(xi), and ¬µÃ(xi) indicates the negation of the secondary membership
function µÃ(xi).

Considering two discrete type-2 fuzzy sets Ã and B̃, which have unique embedded type-2 sets, i.e.,

Ã =
N

∑
i=1

fxi (ui)/ui

xi
and B̃ =

N

∑
i=1

gxi (wi)/wi

xi
,

then Ã � B̃ is defined as ui ≤ wi and fxi (ui) ≤ gxi (wi) (∀i = 1, . . . , N).
For a family of discrete type-2 fuzzy sets with unique embedded type-2 sets:

Ã(γ) =
N

∑
i=1

f (γ)xi (u(γ)
i )/u(γ)

i
xi

, γ ∈ Γ,

where Γ is a finite index set, the union of these type-2 fuzzy sets is:

⋃
γ∈Γ

Ã(γ) =
N

∑
i=1

∧
γ∈Γ f (γ)xi (u(γ)

i )/
∨

γ∈Γ u(γ)
i

xi
,

and the intersection of these type-2 fuzzy sets is:

⋂
γ∈Γ

Ã(γ) =
N

∑
i=1

∧
γ∈Γ f (γ)xi (u(γ)

i )/
∧

γ∈Γ u(γ)
i

xi
.
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Obviously, ∪γ∈Γ Ã(γ) � ∪γ∈Γ B̃(γ) and ∩γ∈Γ Ã(γ) � ∩γ∈Γ B̃(γ) if Ã(γ) � B̃(γ)(∀γ ∈ Γ).
Let X and Y be two nonempty universes. A type-2 fuzzy relation from X to Y is a type-2 fuzzy set

R̃ ∈ F̃(X×Y). If X = Y, then R̃ is called a type-2 fuzzy relation on X.
A discrete type-2 fuzzy relation R̃ can be represented as the union of its embedded type-2 sets:

R̃ =
nR

∑
l=1

R̃l
e,

where nR ≡ ∏n
i=1 ∏m

j=1 Mij (Mij = |J(xi ,yj)
|), and R̃l

e is the l-th embedded type-2 set of R̃.

2.2. Fuzzy Rough Sets

In 1982, Pawlak proposed the theory of rough set as a new mathematical tool for reasoning about
data. For a finite and nonempty universe X, if R ⊆ X × X is an equivalence relation on X, i.e., R is
reflexive, symmetric and transitive, the pair (X, R) is called an approximation space. For any x ∈ X,
[x]R = {y ∈ X : (x, y) ∈ R} is called the equivalence class containing x. The family of all equivalence
classes defines a partition of the universe X. Two elements x and y are said to be indiscernible if they
belong to the same equivalence class. Given an arbitrary set A ⊆ X, it may be characterized by a pair
of lower and upper approximations defined as:

RA = ∪{[x]R : [x]R ⊆ A} = {x ∈ X : [x]R ⊆ A},

RA = ∪{[x]R : [x]R ∩ A 6= ∅} = {x ∈ X : [x]R ∩ A 6= ∅} = ∪{[x]R : x ∈ A}.

or:
RA = ∩{([x]R)c : x ∈ Ac}, RA = ∩{([x]R)c : A ⊆ ([x]R)c}.

That is to say, equivalence classes can be used as basic granules to approximate a set.
Let X be a nonempty universe and R be a fuzzy binary relation on X. The fuzzy rough set of a

fuzzy set A is a pair (R(A), R(A)) such that for every x ∈ X :

R(A)(x) ≡ sup
y∈X

min{R(x, y), µA(y)}, (1)

R(A)(x) ≡ inf
y∈X

max{1− R(x, y), µA(y)}. (2)

Chen et al. [20] discovered the granular structure of fuzzy rough sets and pointed out that fuzzy
sets [xλ]

T
R and [xλ]

S
R were basic granules corresponding to the equivalence classes, which were defined

as:
[xλ]

T
R(y) = T(R(x, y), λ), [xλ]

S
R(y) = S(N(R(x, y)), N(λ)),

where xλ is a fuzzy point, T is a triangular norm, S is a triangular conorm, N is a negator and T and S
are dual with respect to N. For a T-fuzzy similarity relation R, the lower and upper approximations of
a fuzzy set A can be expressed as the union or intersection of some basic fuzzy information granules:

Rϑ A = ∪{[xλ]
T
R : [xλ]

T
R ⊆ A}, RT A = ∪{[xA(x)]

T
R : x ∈ X};

RS A = ∩{[xN(A(x))]
S
R : x ∈ X}, Rσ A = ∩{[xλ]

S
R : A ⊆ [xλ]

S
R}.

3. Type-2 Fuzzy Rough Sets over Two Universes

Since type-2 fuzzy sets can be used to describe more uncertainties than type-1 fuzzy sets because
the membership functions of type-2 fuzzy sets are themselves fuzzy, type-2 fuzzy rough sets can be
used to solve problems with more uncertainties. In this section, we will extend the definition of type-2



Symmetry 2017, 9, 284 6 of 29

fuzzy rough set proposed in [24], which was defined on one universe, to the circumstance of two
different universes.

Definition 1. Let X and Y be two nonempty finite universes and R̃ ∈ F̃(X × Y) be a type-2 fuzzy relation
from X to Y. The triple set (X, Y, R̃) is called a type-2 fuzzy approximation space over two different universes.
For any type-2 fuzzy set B̃ ∈ F̃(Y), the lower approximation R̃(B̃) and the upper approximation R̃(B̃) of
B̃ with respect to (X, Y, R̃) are two type-2 fuzzy sets in X, respectively. If R̃ and B̃ can be represented as
R̃ = ∑nR

γ=1 R̃γ and B̃ = ∑nB
β=1 B̃β by the representation theorem, we have:

R̃γ(B̃β)(x) =
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ Bβ(y)]
, x ∈ X,

R̃γ(B̃β)(x) =
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∨y∈Y[Rγ(x, y) ∧ Bβ(y)]
, x ∈ X,

where R̃γ and Rγ are the embedded type-2 set and embedded type-1 set of R̃, respectively, and R∗γ(x, y) is the
simplified notation of R̃γ((x, y), Rγ(x, y)), whereas B̃β and Bβ are the embedded type-2 and embedded type-1
set of B̃, respectively, and B∗β(y) is the simplified notation of B̃β(y, Bβ(y)).

Consequently, R̃(B̃) and R̃(B̃) can be calculated by:

R̃(B̃) =
nR

∑
γ=1

nB

∑
β=1

R̃γ(B̃β)

and

R̃(B̃) =
nR

∑
γ=1

nB

∑
β=1

R̃γ(B̃β).

The ordered pair (R̃(B̃), R̃(B̃)) is called a type-2 fuzzy rough set over two universes.

Note: If R̃ and B̃ degenerate to be interval type-2 fuzzy sets,

R̃γ(B̃β)(x) = ∧y∈Y[(1− Rγ(x, y) ∨ Bβ(y))],

R̃γ(B̃β)(x) = ∨y∈Y[Rγ(x, y) ∧ Bβ(y)],

and:

R̃(B̃) =
nR

∑
γ=1

nB

∑
β=1
{
∧

y∈Y
[(1− Rγ(x, y) ∨ Bβ(y))]}

R̃(B̃) =
nR

∑
γ=1

nB

∑
β=1
{
∨

y∈Y
[Rγ(x, y) ∧ Bβ(y)]}.

If R̃ and B̃ degenerate to be type-1 fuzzy sets, then:

R̃(B̃)(x) = ∧y∈Y[(1− R(x, y)) ∨ B(y)],

R̃(B̃)(x) = ∨y∈Y[R(x, y) ∧ B(y)],

which are in accordance with the definition of (type-1) fuzzy rough set over two universes given
in [29].
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Example 1. Let X = {x1, . . . , x6}, Y = {y1, . . . , y6}. Suppose R̃ is a type-2 fuzzy relation from X to Y,
which can be defined as follows:

R̃(xi, yj) =



1/0.4 1/0.6 1/0.4 0.5/0.7 + 1/0.6 1/0.3 1/0.2
1/0.7 1/0.3 1/0.2 1/0.5 1/0.8 1/0.6
1/0.5 1/0.2 1/0.6 1/0.3 1/0.7 1/0.1
1/0.4 1/0.6 1/0.5 1/0.7 1/0.5 1/0.3
1/0.3 1/0.5 1/0.7 1/0.3 1/0.6 1/0.8
1/0.1 1/0.7 1/0.8 1/0.6 1/0.3 1/0.2


.

Then, R̃ = ∑2
γ=1 R̃γ, where R̃1 and R̃2 are embedded type-2 sets of R̃:

R̃1(xi, yj) =



1/0.4 1/0.6 1/0.4 0.5/0.7 1/0.3 1/0.2
1/0.7 1/0.3 1/0.2 1/0.5 1/0.8 1/0.6
1/0.5 1/0.2 1/0.6 1/0.3 1/0.7 1/0.1
1/0.4 1/0.6 1/0.5 1/0.7 1/0.5 1/0.3
1/0.3 1/0.5 1/0.7 1/0.3 1/0.6 1/0.8
1/0.1 1/0.7 1/0.8 1/0.6 1/0.3 1/0.2


,

R̃2(xi, yj) =



1/0.4 1/0.6 1/0.4 1/0.6 1/0.3 1/0.2
1/0.7 1/0.3 1/0.2 1/0.5 1/0.8 1/0.6
1/0.5 1/0.2 1/0.6 1/0.3 1/0.7 1/0.1
1/0.4 1/0.6 1/0.5 1/0.7 1/0.5 1/0.3
1/0.3 1/0.5 1/0.7 1/0.3 1/0.6 1/0.8
1/0.1 1/0.7 1/0.8 1/0.6 1/0.3 1/0.2


.

Considering a type-2 fuzzy set in Y (Figure 1a):

B̃ =
1/1
y1

+
1/0 + 0.5/0.2

y2
+

1/1
y3

+
1/0.7

y4
+

1/1
y5

+
1/0.5

y6
,

we have B̃ = ∑2
β=1 B̃β, where:

B̃1 =
1/1
y1

+
1/0
y2

+
1/1
y3

+
1/0.7

y4
+

1/1
y5

+
1/0.5

y6

and
B̃2 =

1/1
y1

+
0.5/0.2

y2
+

1/1
y3

+
1/0.7

y4
+

1/1
y5

+
1/0.5

y6

are embedded type-2 sets of B̃, the lower approximation R̃(B̃) and the upper approximation R̃(B̃) of B̃ with
respect to (X, Y, R̃) (Figure 1b) can be calculated as follows:

R̃1(B̃1) =
0.5/0.4

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.4
x4

+
1/0.5

x5
+

1/0.3
x6

,

R̃1(B̃2) =
0.5/0.4

x1
+

0.5/0.5
x2

+
0.5/0.7

x3
+

0.5/0.4
x4

+
0.5/0.5

x5
+

0.5/0.3
x6

,

R̃2(B̃1) =
1/0.4

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.4
x4

+
1/0.5

x5
+

1/0.3
x6

,

R̃2(B̃2) =
0.5/0.4

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.4
x4

+
1/0.5

x5
+

1/0.3
x6

,
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R̃(B̃) =
2

∑
γ=1

2

∑
β=1

R̃γ(B̃β) =
1/0.4

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.4
x4

+
1/0.5

x5
+

1/0.3
x6

;

R̃1(B̃1) =
0.5/0.7

x1
+

1/0.8
x2

+
1/0.7

x3
+

1/0.7
x4

+
1/0.7

x5
+

1/0.8
x6

,

R̃1(B̃2) =
0.5/0.7

x1
+

0.5/0.8
x2

+
0.5/0.7

x3
+

0.5/0.7
x4

+
0.5/0.7

x5
+

0.5/0.8
x6

,

R̃2(B̃1) =
1/0.6

x1
+

1/0.8
x2

+
1/0.7

x3
+

1/0.7
x4

+
1/0.7

x5
+

1/0.8
x6

,

R̃2(B̃2) =
0.5/0.6

x1
+

0.5/0.8
x2

+
0.5/0.7

x3
+

0.5/0.7
x4

+
0.5/0.7

x5
+

0.5/0.8
x6

,

R̃(B̃) =
2

∑
γ=1

2

∑
β=1

R̃γ(B̃β) =
0.5/0.7 + 1/0.6

x1
+

1/0.8
x2

+
1/0.7

x3
+

1/0.7
x4

+
1/0.7

x5
+

1/0.8
x6

.

Next, we will discuss the properties of the lower and upper approximation operators.
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Figure 1. (a) A type-2 fuzzy set B̃, which is defined in Y; (b) the lower approximation and the upper
approximation of B̃ with respect to (X, Y, R̃), which are type-2 fuzzy sets defined in X. The solid lines
depict the upper approximation R̃(B̃); the dotted line depicts the lower approximation R̃(B̃).
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Lemma 1. Let X and Y be two nonempty finite universes and R̃ be a type-2 fuzzy relation from X to Y. For any
Ã, B̃ ∈ F̃(Y), if R̃γ, Ãα, B̃β are embedded type-2 sets of R̃, Ã and B̃ respectively, the following properties hold:

1. R̃γ(B̃c
β) = (R̃γ(B̃β))

c;

2. R̃γ(B̃c
β) = (R̃γ(B̃β))

c;

3. R̃γ(Ãα ∪ B̃β) = R̃γ(Ãα) ∪ R̃γ(B̃β);
4. R̃γ(Ãα ∩ B̃β) = R̃γ(Ãα) ∩ R̃γ(B̃β).

Proof.

1. For any x ∈ X,

[R̃γ(B̃β)]
c(x) = ¬(

∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∨y∈Y[Rγ(x, y) ∧ Bβ(y)]
)

=
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ Bc
β(y)]

= R̃γ(B̃c
β)(x).

2. For any x ∈ X,

[R̃γ(B̃β)]
c(x) = ¬(

∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ Bβ(y)]
)

=
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∨y∈Y[Rγ(x, y) ∧ Bc
β(y)]

= R̃γ(B̃c
β)(x).

3. For any x ∈ X,

R̃γ(Ãα ∪ B̃β)(x) =
∧y∈Y[R∗γ(x, y) ∧ A∗α(y) ∧ B∗β(y)]

∨y∈Y[Rγ(x, y) ∧ (Aα(y) ∨ Bβ(y))]

=
∧y∈Y[R∗γ(x, y) ∧ A∗α(y)] ∧ {∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]}
∨y∈Y[Rγ(x, y) ∧ Aα(y)] ∨ {∨y∈Y[Rγ(x, y) ∧ Bβ(y)]}

=
∧y∈Y[R∗γ(x, y) ∧ A∗α(y)]
∨y∈Y[Rγ(x, y) ∧ Aα(y)]

t
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∨y∈Y[Rγ(x, y) ∧ Bβ(y)]

= R̃γ(Ãα)(x) t R̃γ(B̃β)(x).

4. For any x ∈ X,

R̃γ(Ãα ∩ B̃β)(x)

=
∧y∈Y[R∗γ(x, y) ∧ A∗α(y) ∧ B∗β(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ ((Aα(y) ∧ Bβ(y))]

=
∧y∈Y[R∗γ(x, y) ∧ A∗α(y)] ∧ {∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]}

∧y∈Y[(1− Rγ(x, y)) ∨ Aα(y)] ∧ {∧y∈Y[(1− Rγ(x, y)) ∨ Bβ(y)]}

=
∧y∈Y[R∗γ(x, y) ∧ A∗α(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ Aα(y)]
u

∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ Bβ(y)]

= R̃γ(Ãα)(x) u R̃γ(B̃β)(x).
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Theorem 1. Let X and Y be two nonempty finite universes and R̃ be a type-2 fuzzy relation from X to Y.
For any Ã, B̃ ∈ F̃(Y), the following properties hold:

1. R̃(B̃c) = (R̃(B̃))c;

2. R̃(B̃c) = (R̃(B̃))c;

3. R̃(Ã ∪ B̃) = R̃(Ã) ∪ R̃(B̃);
4. R̃(Ã ∩ B̃) = R̃(Ã) ∩ R̃(B̃).

Proof.

1. R̃(B̃c) = ∑nR
γ=1 ∑nB

β=1 R̃γ(B̃c
β) = ∑nR

γ=1 ∑nB
β=1(R̃γ(B̃β))

c = (R̃(B̃))c.

2. R̃(B̃c) = ∑nR
γ=1 ∑nB

β=1 R̃γ(B̃c
β) = ∑nR

γ=1 ∑nB
β=1(R̃γ(B̃β))

c = (R̃(B̃))c.

3. R̃(Ã ∪ B̃) = ∑nR
γ=1 ∑nA

α=1 ∑nB
β=1 R̃γ(Ãα ∪ B̃β)

= ∑nR
γ=1 ∑nA

α=1 ∑nB
β=1[R̃γ(Ãα) ∪ R̃γ(B̃β)]

= ∑nR
γ=1 ∑nA

α=1 R̃γ(Ãα) ∪∑nR
γ=1 ∑nB

β=1 R̃γ(B̃β)

= R̃(Ã) ∪ R̃(B̃).
4. R̃(Ã ∩ B̃) = ∑nR

γ=1 ∑nA
α=1 ∑nB

β=1 R̃γ(Ãα ∩ B̃β)

= ∑nR
γ=1 ∑nA

α=1 ∑nB
β=1[R̃γ(Ãα) ∩ R̃γ(B̃β)]

= ∑nR
γ=1 ∑nA

α=1 R̃γ(Ãα) ∩∑nR
γ=1 ∑nB

β=1 R̃γ(B̃β)

= R̃(Ã) ∩ R̃(B̃).

4. Granular Structure of Type-2 Fuzzy Rough Sets over Two Universes

The granular structures of classical rough sets and ordinary fuzzy rough sets are clear, and the
lower and upper approximation sets can be represented by some basic granules. Here, we will discuss
the basic granules in type-2 fuzzy rough sets over two universes, which can be used to calculate the
lower and upper approximation sets of a type-2 fuzzy set.

In classical rough set theory, for a nonempty and finite universe X and an equivalent relation
R ⊆ X× X, the upper and lower approximation sets of A ⊆ X can be defined as follows:

RA = ∪{[x]R : x ∈ A},

RA = ∩{([x]R)c : x ∈ Ac}.

Take A = {y} and A = X− {y} = {y}c in the above two equations respectively, and we have:

R({y}) = ∪{[x]R : x ∈ {y}} = [y]R,

R({y}c) = ∩{([x]R)c : x ∈ {y}} = ([y]R)c.

Next, we will try to find the “equivalence classes” of a type-2 fuzzy point and its complement,
both of which should be type-2 fuzzy sets.

Let Y be a nonempty universes. A type-2 fuzzy point in Y is a special type-2 fuzzy set defined as
follows: for any z ∈ Y,

yµ
λ(z) =

{
µ/λ, if z = y
1/0, if z 6= y

,

where λ ∈ [0, 1] and µ ∈ (0, 1]. The complement of yµ
λ, denoted by yµ

λ, is also a type-2 fuzzy set on Y:
for any y ∈ Y,

yµ
λ(z) =

{
µ/1− λ, if z = y
1/1, if z 6= y

.
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Definition 2. Let X and Y be two nonempty finite universes. Suppose R̃ is a type-2 fuzzy relation from X to Y,
R̃γ is an embedded type-2 set of R̃ and Rγ is the corresponding embedded type-1 set. For a type-2 fuzzy point
yµ

λ ∈ F̃(Y), two granular type-2 fuzzy sets [yµ
λ]
∧
R̃γ

and [yµ
λ]
∨
R̃γ

are defined as: for any x ∈ X,

[yµ
λ]
∧
R̃γ
(x) = R̃γ(y

µ
λ)(x) =

∧z∈YR∗γ(x, z) ∧ µ

Rγ(x, y) ∧ λ

and

[yµ
λ]
∨
R̃γ
(x) = R̃γ(y

µ
λ)(x) =

∧z∈YR∗γ(x, z) ∧ µ

[1− Rγ(x, y)] ∨ (1− λ)
.

Let M∧R̃γ
= {[yµ

λ]
∧
R̃γ

: y ∈ Y, λ ∈ [0, 1], µ ∈ (0, 1]}, M∨R̃γ
= {[yµ

λ]
∨
R̃γ

: y ∈ Y, λ ∈ [0, 1], µ ∈ (0, 1]}.

From the above definition, it is clear that ([yµ
λ]
∧
R̃γ
)c = [yµ

λ]
∨
R̃γ

and ([yµ
λ]
∨
R̃γ
)c = [yµ

λ]
∧
R̃γ

.

Example 2. Consider the type-2 fuzzy relation R̃ given in the previous example. Take a type-2 fuzzy point
(y4)

1
0.7, by

[(y4)
1
0.7]
∧
R̃γ
(xi) =

∧z∈YR∗γ(xi, z) ∧ 1
Rγ(xi, y4) ∧ 0.7

, i = 1, . . . , 6; γ = 1, 2,

we have
[(y4)

1
0.7]
∧
R̃1

=
0.5/0.7

x1
+

1/0.5
x2

+
1/0.3

x3
+

1/0.7
x4

+
1/0.3

x5
+

1/0.6
x6

,

[(y4)
1
0.7]
∧
R̃2

=
1/0.6

x1
+

1/0.5
x2

+
1/0.3

x3
+

1/0.7
x4

+
1/0.3

x5
+

1/0.6
x6

,

so:

[(y4)
1
0.7]
∧
R̃ =

2

∑
γ=1

[(y4)
1
0.7]
∧
R̃γ

=
0.5/0.7 + 1/0.6

x1
+

1/0.5
x2

+
1/0.3

x3
+

1/0.7
x4

+
1/0.3

x5
+

1/0.6
x6

.

By:

[(y4)
1
0.7]
∨
R̃γ
(xi) =

∧z∈YR∗γ(xi, z) ∧ 1
[1− Rγ(xi, y4)] ∨ (1− 0.7)

, i = 1, . . . , 6; γ = 1, 2,

we have:
[(y4)

1
0.7]
∨
R̃1

=
0.5/0.3

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.3
x4

+
1/0.7

x5
+

1/0.4
x6

,

[(y4)
1
0.7]
∨
R̃2

=
1/0.4

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.3
x4

+
1/0.7

x5
+

1/0.4
x6

,

so:

[(y4)
1
0.7]
∨
R̃ =

2

∑
γ=1

[(y4)
1
0.7]
∨
R̃γ

=
0.5/0.3 + 1/0.4

x1
+

1/0.5
x2

+
1/0.7

x3
+

1/0.3
x4

+
1/0.7

x5
+

1/0.4
x6

.

[(y4)
1
0.7]
∧
R̃ and [(y4)

1
0.7]
∨
R̃ are depicted in Figure 2. Obviously, [(y4)

1
0.7]
∧
R̃ is exactly the complement

of [(y4)
1
0.7]
∨
R̃.
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Figure 2. The solid lines depict [(y4)
1
0.7]
∨
R̃ and the dotted lines depict [(y4)

1
0.7]
∧
R̃.

Theorem 2. Let X and Y be two nonempty finite universes and R̃ be a type-2 fuzzy relation from X to Y. If R̃γ

is an embedded type-2 set of R̃ and Rγ is the corresponding embedded type-1 set, for y ∈ Y, λ1, λ2 ∈ [0, 1],
µ1, µ2 ∈ (0, 1], we have:

1. [yµ1
λ1
]∧R̃γ
∪ [yµ2

λ2
]∧R̃γ

= [yµ1∧µ2
λ1∨λ2

]∧R̃γ
;

2. [yµ1
λ1
]∧R̃γ
∩ [yµ2

λ2
]∧R̃γ

= [yµ1∧µ2
λ1∧λ2

]∧R̃γ
;

3. [yµ1
λ1
]∨R̃γ
∪ [yµ2

λ2
]∨R̃γ

= [yµ1∧µ2
λ1∧λ2

]∨R̃γ
;

4. [yµ1
λ1
]∨R̃γ
∩ [yµ2

λ2
]∨R̃γ

= [yµ1∧µ2
λ1∨λ2

]∨R̃γ
.

Proof.

1. For any x ∈ X,

[yµ1
λ1
]∧R̃γ

(x) t [yµ2
λ2
]∧R̃γ

(x) =
∧z∈YR∗γ(x, z) ∧ µ1

Rγ(x, y) ∧ λ1
t
∧z∈YR∗γ(x, z) ∧ µ2

Rγ(x, y) ∧ λ2

=
∧z∈YR∗γ(x, z) ∧ µ1 ∧ µ2

Rγ(x, y) ∧ (λ1 ∨ λ2)
= [yµ1∧µ2

λ1∨λ2
]∧R̃γ

(x).

2. For any x ∈ X,

[yµ1
λ1
]∧R̃γ

(x) u [yµ2
λ2
]∧R̃γ

(x) =
∧z∈YR∗γ(x, z) ∧ µ1

Rγ(x, y) ∧ λ1
u
∧z∈YR∗γ(x, z) ∧ µ2

Rγ(x, y) ∧ λ2

=
∧z∈YR∗γ(x, z) ∧ µ1 ∧ µ2

Rγ(x, y) ∧ (λ1 ∧ λ2)
= [yµ1∧µ2

λ1∧λ2
]∧R̃γ

(x).

3. For any x ∈ X,

[yµ1
λ1
]∨R̃γ

(x) t [yµ2
λ2
]∨R̃γ

(x)

=
∧z∈YR∗γ(x, z) ∧ µ1

(1− Rγ(x, y)) ∨ (1− λ1)
t

∧z∈YR∗γ(x, z) ∧ µ2

(1− Rγ(x, y)) ∨ (1− λ2)

=
∧z∈YR∗γ(x, z) ∧ µ1 ∧ µ2

(1− Rγ(x, y)) ∨ [1− (λ1 ∧ λ2)]
= [yµ1∧µ2

λ1∧λ2
]∨R̃γ

(x).
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4. For any x ∈ X,

[yµ1
λ1
]∨R̃γ

(x) u [yµ2
λ2
]∨R̃γ

(x)

=
∧z∈YR∗γ(x, z) ∧ µ1

(1− Rγ(x, y)) ∨ (1− λ1)
u

∧z∈YR∗γ(x, z) ∧ µ2

(1− Rγ(x, y)) ∨ (1− λ2)

=
∧z∈YR∗γ(x, z) ∧ µ1 ∧ µ2

(1− Rγ(x, y)) ∨ [1− (λ1 ∨ λ2)]
= [yµ1∧µ2

λ1∨λ2
]∨R̃γ

(x).

Theorem 3. Let X and Y be two nonempty finite universes. Suppose R̃(1) and R̃(2) are type-2 fuzzy relations
from X to Y and R̃α and R̃β are embedded type-2 sets of R̃(1) and R̃(2), respectively, then for y ∈ Y, λ ∈ [0, 1],
µ ∈ (0, 1],

1. [yµ
λ]
∧
R̃α∩R̃β

= [yµ
λ]
∧
R̃α
∩ [yµ

λ]
∧
R̃β

;

2. [yµ
λ]
∧
R̃α∪R̃β

= [yµ
λ]
∧
R̃α
∪ [yµ

λ]
∧
R̃β

;

3. [yµ
λ]
∨
R̃α∩R̃β

= [yµ
λ]
∨
R̃α
∪ [yµ

λ]
∨
R̃β

;

4. [yµ
λ]
∨
R̃α∪R̃β

= [yµ
λ]
∨
R̃α
∩ [yµ

λ]
∨
R̃β

.

Proof.

1. For any x ∈ X,

[yµ
λ]
∧
R̃α∩R̃β

(x) =
∧z∈Y(R∗α(x, z) ∧ R∗β(x, z)) ∧ µ

Rα(x, y) ∧ Rβ(x, y) ∧ λ

=
[∧z∈YR∗α(x, z) ∧ µ] ∧ [∧z∈YR∗β(x, z) ∧ µ]

[Rα(x, y) ∧ λ] ∧ [Rβ(x, y) ∧ λ]

= [yµ
λ]
∧
R̃α
(x) u [yµ

λ]
∧
R̃β
(x).

2. For any x ∈ X,

[yµ
λ]
∧
R̃α∪R̃β

(x) =
∧z∈Y(R∗α(x, z) ∧ R∗β(x, z)) ∧ µ

[Rα(x, y) ∨ Rβ(x, y)] ∧ λ

=
[∧z∈YR∗α(x, z) ∧ µ] ∧ [∧z∈YR∗β(x, z) ∧ µ]

[Rα(x, y) ∧ λ] ∨ [Rβ(x, y) ∧ λ]

= [yµ
λ]
∧
R̃α
(x) t [yµ

λ]
∧
R̃β
(x).

3. For any x ∈ X,

[yµ
λ]
∨
R̃α∩R̃β

(x) =
∧z∈Y(R∗α(x, z) ∧ R∗β(x, z)) ∧ µ

[1− Rα(x, y) ∧ Rβ(x, y)] ∨ (1− λ)

=
[∧z∈YR∗α(x, z) ∧ µ] ∧ [∧z∈YR∗β(x, z) ∧ µ]

[(1− Rα(x, y)) ∨ (1− λ)] ∨ [(1− Rβ(x, y)) ∨ (1− λ)]

= [yµ
λ]
∨
R̃α
(x) t [yµ

λ]
∨
R̃β
(x).
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4. For any x ∈ X,

[yµ
λ]
∨
R̃α∪R̃β

(x) =
∧z∈Y(R∗α(x, z) ∧ R∗β(x, z)) ∧ µ

[1− Rα(x, y) ∨ Rβ(x, y)] ∨ (1− λ)

=
[∧z∈YR∗α(x, z) ∧ µ] ∧ [∧z∈YR∗β(x, z) ∧ µ]

[(1− Rα(x, y)) ∨ (1− λ)] ∧ [(1− Rβ(x, y)) ∨ (1− λ)]

= [yµ
λ]
∨
R̃α
(x) u [yµ

λ]
∨
R̃β
(x).

Lemma 2. Let X and Y be two nonempty finite universes. Suppose R̃ is a type-2 fuzzy relation from X to Y,
R̃γ is an embedded type-2 set of R̃ and Rγ is the corresponding embedded type-1 set. For y ∈ Y, λ1, λ2 ∈ [0, 1],
µ1, µ2 ∈ (0, 1],

1. If λ1 ≤ λ2, µ1 ≤ µ2, [yµ1
λ1
]∧R̃γ
� [yµ2

λ2
]∧R̃γ

;

2. If λ1 ≥ λ2, µ1 ≤ µ2, [yµ1
λ1
]∨R̃γ
� [yµ2

λ2
]∨R̃γ

.

Proof. Obviously.

Theorem 4. Let R̃ be a discrete type-2 fuzzy relation from X to Y, where X and Y are nonempty finite universes.
For a discrete type-2 fuzzy set B̃ ∈ F̃(Y), if R̃γ and B̃β are embedded type-2 sets of R̃ and B̃ respectively, we
have:

R̃γ(B̃β) = ∪y∈Y[y
B∗β(y)

Bβ(y)
]∧R̃γ

;

and:
R̃γ(B̃β) = ∩y∈Y[y

B∗β(y)

Bc
β(y)

]∨R̃γ
.

Proof. For any x ∈ X,

ty∈Y[y
B∗β(y)

Bβ(y)
]∧R̃γ

(x) = ty∈Y
∧z∈YR∗γ(x, z) ∧ B∗β(y)

Rγ(x, y) ∧ Bβ(y)

=
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∨y∈Y[Rγ(x, y) ∧ Bβ(y)]
= R̃γ(B̃β)(x).

uy∈Y[y
B∗β(y)

Bc
β(y)

]∨R̃γ
(x) = uy∈Y

∧z∈YR∗γ(x, z) ∧ B∗β(y)

[1− Rγ(x, y)] ∨ Bβ(y)

=
∧y∈Y[R∗γ(x, y) ∧ B∗β(y)]

∧y∈Y[(1− Rγ(x, y)) ∨ Bβ(y)]
= R̃γ(B̃β)(x).

We have mentioned in Section 2.2 that basic granules in the theory of the classic rough set are
equivalence classes, and the lower and upper approximations of a crisp set can be computed by the
basic granules or the complements of the basic granules. Similarly, in the theory of fuzzy rough set,
Chen et al. [20] proved that [xλ]

T
R and [xλ]

S
R, which are called basic granules of fuzzy rough sets,

corresponded to the equivalence classes and the complements of equivalence classes, respectively,
and the upper and lower approximations of a fuzzy set can be expressed as the union or intersection of
basic granules. Taking M∧R̃γ

and M∨R̃γ
as basic granule sets, the above theorem reveals that these basic

granules can be used to compute the upper and lower approximations of a type-2 fuzzy set by the
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operators of union and intersection. Therefore, M∧R̃γ
and M∨R̃γ

correspond to the equivalence classes
and the complements of equivalence classes, respectively.

Example 3. Similar to the previous example, we can calculate granular type-2 fuzzy sets of yB̃1(y)
B1(y)

for any y ∈ Y:

[(y1)
1
1]
∧
R̃1

=
0.5/0.4

x1
+

1/0.7
x2

+
1/0.5

x3
+

1/0.4
x4

+
1/0.3

x5
+

1/0.1
x6

,

[(y2)
1
0]
∧
R̃1

=
0.5/0

x1
+

1/0
x2

+
1/0
x3

+
1/0
x4

+
1/0
x5

+
1/0
x6

,

[(y3)
1
1]
∧
R̃1

=
0.5/0.4

x1
+

1/0.2
x2

+
1/0.6

x3
+

1/0.5
x4

+
1/0.7

x5
+

1/0.8
x6

,

[(y4)
1
0.7]
∧
R̃1

=
0.5/0.7

x1
+

1/0.5
x2

+
1/0.3

x3
+

1/0.7
x4

+
1/0.3

x5
+

1/0.6
x6

,

[(y5)
1
1]
∧
R̃1

=
0.5/0.3

x1
+

1/0.8
x2

+
1/0.7

x3
+

1/0.5
x4

+
1/0.6

x5
+

1/0.3
x6

,

[(y6)
1
0.5]
∧
R̃1

=
0.5/0.2

x1
+

1/0.5
x2

+
1/0.1

x3
+

1/0.3
x4

+
1/0.5

x5
+

1/0.2
x6

,

R̃1(B̃1) =
⋃

y∈Y
[yB∗1 (y)

B1(y)
]∧R̃1

=
0.5/0.7

x1
+

1/0.8
x2

+
1/0.7

x3
+

1/0.7
x4

+
1/0.7

x5
+

1/0.8
x6

.

[(y1)
1
0]
∨
R̃1

=
0.5/1

x1
+

1/1
x2

+
1/1
x3

+
1/1
x4

+
1/1
x5

+
1/1
x6

,

[(y2)
0.5
0.8]
∨
R̃1

=
0.5/0.4

x1
+

0.5/0.7
x2

+
0.5/0.8

x3
+

0.5/0.4
x4

+
0.5/0.5

x5
+

0.5/0.3
x6

,

[(y3)
1
0]
∨
R̃1

=
0.5/1

x1
+

1/1
x2

+
1/1
x3

+
1/1
x4

+
1/1
x5

+
1/1
x6

,

[(y4)
1
0.3]
∨
R̃1

=
0.5/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.7
x4

+
1/0.7

x5
+

1/0.7
x6

,

[(y5)
1
0]
∨
R̃1

=
0.5/1

x1
+

1/1
x2

+
1/1
x3

+
1/1
x4

+
1/1
x5

+
1/1
x6

,

[(y6)
1
0.5]
∨
R̃1

=
0.5/0.8

x1
+

1/0.5
x2

+
1/0.9

x3
+

1/0.7
x4

+
1/0.5

x5
+

1/0.8
x6

,

R̃1(B̃2) =
⋂

y∈Y
[yB∗2 (y)

Bc
2(y)

]∨R̃1

=
0.5/0.4

x1
+

0.5/0.5
x2

+
0.5/0.7

x3
+

0.5/0.4
x4

+
0.5/0.5

x5
+

0.5/0.3
x6

.

5. Examples

Example 4. Suppose X = {x1, x2, x3, x4} is a set of four different houses, all of which can be described by
an attribute set Y = {y1, y2, y3, y4, y5}, where y1 stands for Structure, y2 stands for Position, y3 stands for
Surrounding f acilities, y4 stands for Price and y5 stands for Greening.

The correlation degree between X and Y (i.e., R̃(xi, yj)) is given in Table 1.
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Table 1. Correlation degree between xi and yj.

X\Y y1 y2 y3 y4 y5

x1 1/1 1/0.8 1/0.3 + 0.5/0.4 1/0.9 1/0.6
x2 1/0.6 1/0.3 1/0.8 1/1 1/0.4
x3 1/0.4 1/0.6 1/0.5 1/1 1/0.8
x4 1/1 1/0.5 1/0.6 1/0.3 1/0.7

Suppose Ã is a client who wants to purchase a house among the four alternative offers, and the demand of
Ã can be described by a type-2 fuzzy set (Figure 3a):

Ã =
1/0.9

y1
+

1/0.4 + 0.8/0.5
y2

+
1/1
y3

+
1/0.2

y4
+

1/0.7
y5

.

By the definitions of the lower and upper type-2 fuzzy rough approximation operators, we can calculate the
lower and upper type-2 fuzzy rough approximations of Ã.

Since R̃ = R̃1 + R̃2 and Ã = Ã1 + Ã2, where:

R̃1(xi, yj) =


1/1 1/0.8 1/0.3 1/0.9 1/0.6

1/0.6 1/0.3 1/0.8 1/1 1/0.4
1/0.4 1/0.6 1/0.5 1/1 1/0.8
1/1 1/0.5 1/0.6 1/0.3 1/0.7

 ,

R̃2(xi, yj) =


1/1 1/0.8 0.5/0.4 1/0.9 1/0.6

1/0.6 1/0.3 1/0.8 1/1 1/0.4
1/0.4 1/0.6 1/0.5 1/1 1/0.8
1/1 1/0.5 1/0.6 1/0.3 1/0.7

 ,

Ã1 =
1/0.9

y1
+

1/0.4
y2

+
1/1
y3

+
1/0.2

y4
+

1/0.7
y5

,

Ã2 =
1/0.9

y1
+

0.8/0.5
y2

+
1/1
y3

+
1/0.2

y4
+

1/0.7
y5

,

we have:
R̃1(Ã1) =

1/0.2
x1

+
1/0.2

x2
+

1/0.2
x3

+
1/0.5

x4
,

R̃1(Ã2) =
0.8/0.2

x1
+

0.8/0.2
x2

+
0.8/0.2

x3
+

0.8/0.5
x4

,

R̃2(Ã1) =
0.5/0.2

x1
+

1/0.2
x2

+
1/0.2

x3
+

1/0.5
x4

,

and:
R̃2(Ã2) =

0.5/0.2
x1

+
0.8/0.2

x2
+

0.8/0.2
x3

+
0.8/0.5

x4
.

Thus,

R̃(Ã) =
1/0.2

x1
+

1/0.2
x2

+
1/0.2

x3
+

1/0.5
x4

.

From
R̃1(Ã1) =

1/0.9
x1

+
1/0.8

x2
+

1/0.7
x3

+
1/0.9

x4
,

R̃1(Ã2) =
0.8/0.9

x1
+

0.8/0.8
x2

+
0.8/0.7

x3
+

0.8/0.9
x4

,
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R̃2(Ã1) =
0.5/0.9

x1
+

1/0.8
x2

+
1/0.7

x3
+

1/0.9
x4

,

R̃2(Ã2) =
0.5/0.9

x1
+

0.8/0.8
x2

+
0.8/0.7

x3
+

0.8/0.9
x4

,

we have:
R̃(Ã) =

1/0.9
x1

+
1/0.8

x2
+

1/0.7
x3

+
1/0.9

x4
.

Consequently (Figure 3b),

R̃(Ã) + R̃(Ã) =
1/0.2 + 1/0.9

x1
+

1/0.2 + 1/0.8
x2

+
1/0.2 + 1/0.7

x3
+

1/0.5 + 1/0.9
x4

.

Let:
T1 = {i|max

xi∈X
{C(R̃(Ã)(xi))}},

T2 = {j|max
xj∈X
{C(R̃(Ã)(xj))}},

T3 = {k|max
xk∈X
{C([R̃(Ã) + R̃(Ã)](xk))}},

where C(R̃(Ã)(xi)) is the centroid of R̃(Ã)(xi).
If T1 ∩ T2 ∩ T3 6= ∅, then xi(i ∈ T1 ∩ T2 ∩ T3) is the best choice of Ã.
If T1 ∩ T2 ∩ T3 = ∅, then consider T1 ∩ T2: if T1 ∩ T2 6= ∅, we have that xi(i ∈ T1 ∩ T2) is the best

choice of Ã; if T1 ∩ T2 = ∅, we take xi(i ∈ T3) as the best choice of Ã [29].
Since T1 = {4}, T2 = {1, 4}, T3 = {4}, x4 is the best house for Ã.
From the definition of Ã, it is clear that client Ã pays most attention to y3 and y1, the surrounding facilities

and the structure, and y4, price, is the least important factor. x4 is the best house both in surrounding facilities
and structure.
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Figure 3. Cont.
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Figure 3. (a) Demand of client Ã; (b) the lower approximation and the upper approximation of Ã,
which are type-2 fuzzy sets defined in X. The solid line depicts the upper approximation R̃(Ã);
the dotted line depicts the lower approximation R̃(Ã).

Consider another client for house purchasing (Figure 4a):

B̃ =
1/0.6

y1
+

1/0.5
y2

+
1/0.3 + 1/0.4

y3
+

1/0.7
y4

+
1/0.2

y5
.

Take:
B̃1 =

1/0.6
y1

+
1/0.5

y2
+

1/0.3
y3

+
1/0.7

y4
+

1/0.2
y5

and:
B̃2 =

1/0.6
y1

+
1/0.5

y2
+

1/0.4
y3

+
1/0.7

y4
+

1/0.2
y5

,

Using the definition of granular type-2 fuzzy sets, we can compute the upper and lower approximations
of B̃:

R̃(B̃) = R̃1(B̃1) + R̃1(B̃2) + R̃2(B̃1) + R̃2(B̃2),

R̃(B̃) = R̃1(B̃1) + R̃1(B̃2) + R̃2(B̃1) + R̃2(B̃2),

where:
R̃1(B̃1) = [(y1)

1
0.6]
∧
R̃1
∪ [(y2)

1
0.5]
∧
R̃1
∪ [(y3)

1
0.3]
∧
R̃1
∪ [(y4)

1
0.7]
∧
R̃1
∪ [(y5)

1
0.2]
∧
R̃1

R̃1(B̃2) = [(y1)
1
0.6]
∧
R̃1
∪ [(y2)

1
0.5]
∧
R̃1
∪ [(y3)

1
0.4]
∧
R̃1
∪ [(y4)

1
0.7]
∧
R̃1
∪ [(y5)

1
0.2]
∧
R̃1

R̃2(B̃1) = [(y1)
1
0.6]
∧
R̃2
∪ [(y2)

1
0.5]
∧
R̃2
∪ [(y3)

1
0.3]
∧
R̃2
∪ [(y4)

1
0.7]
∧
R̃2
∪ [(y5)

1
0.2]
∧
R̃2

R̃2(B̃2) = [(y1)
1
0.6]
∧
R̃2
∪ [(y2)

1
0.5]
∧
R̃2
∪ [(y3)

1
0.4]
∧
R̃2
∪ [(y4)

1
0.7]
∧
R̃2
∪ [(y5)

1
0.2]
∧
R̃2

R̃1(B̃1) = [(y1)
1
0.4]
∨
R̃1
∩ [(y2)

1
0.5]
∨
R̃1
∩ [(y3)

1
0.7]
∨
R̃1
∩ [(y4)

1
0.3]
∨
R̃1
∩ [(y5)

1
0.8]
∨
R̃1

R̃1(B̃1) = [(y1)
1
0.4]
∨
R̃1
∩ [(y2)

1
0.5]
∨
R̃1
∩ [(y3)

1
0.6]
∨
R̃1
∩ [(y4)

1
0.3]
∨
R̃1
∩ [(y5)

1
0.8]
∨
R̃1

R̃2(B̃1) = [(y1)
1
0.4]
∨
R̃2
∩ [(y2)

1
0.5]
∨
R̃2
∩ [(y3)

1
0.7]
∨
R̃2
∩ [(y4)

1
0.3]
∨
R̃2
∩ [(y5)

1
0.8]
∨
R̃2

R̃2(B̃1) = [(y1)
1
0.4]
∨
R̃2
∩ [(y2)

1
0.5]
∨
R̃2
∩ [(y3)

1
0.6]
∨
R̃2
∩ [(y4)

1
0.3]
∨
R̃2
∩ [(y5)

1
0.8]
∨
R̃2

.
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and:
[(y1)

1
0.6]
∧
R̃1

=
1/0.6

x1
+

1/0.6
x2

+
1/0.4

x3
+

1/0.6
x4

[(y2)
1
0.5]
∧
R̃1

=
1/0.5

x1
+

1/0.3
x2

+
1/0.5

x3
+

1/0.5
x4

[(y3)
1
0.3]
∧
R̃1

=
1/0.3

x1
+

1/0.3
x2

+
1/0.3

x3
+

1/0.3
x4

[(y4)
1
0.7]
∧
R̃1

=
1/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.3
x4

[(y5)
1
0.2]
∧
R̃1

=
1/0.2

x1
+

1/0.2
x2

+
1/0.2

x3
+

1/0.2
x4

[(y3)
1
0.4]
∧
R̃1

=
1/0.3

x1
+

1/0.4
x2

+
1/0.4

x3
+

1/0.4
x4

[(y1)
1
0.6]
∧
R̃2

=
0.5/0.6

x1
+

1/0.6
x2

+
1/0.4

x3
+

1/0.6
x4

[(y2)
1
0.5]
∧
R̃2

=
0.5/0.5

x1
+

1/0.3
x2

+
1/0.5

x3
+

1/0.5
x4

[(y3)
1
0.3]
∧
R̃2

=
0.5/0.3

x1
+

1/0.3
x2

+
1/0.3

x3
+

1/0.3
x4

[(y4)
1
0.7]
∧
R̃2

=
0.5/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.3
x4

[(y5)
1
0.2]
∧
R̃2

=
0.5/0.2

x1
+

1/0.2
x2

+
1/0.2

x3
+

1/0.2
x4

[(y3)
1
0.4]
∧
R̃2

=
0.5/0.4

x1
+

1/0.4
x2

+
1/0.4

x3
+

1/0.4
x4

[(y1)
1
0.4]
∨
R̃1

=
1/0.6

x1
+

1/0.6
x2

+
1/0.6

x3
+

1/0.6
x4

[(y2)
1
0.5]
∨
R̃1

=
1/0.5

x1
+

1/0.7
x2

+
1/0.5

x3
+

1/0.5
x4

[(y3)
1
0.7]
∨
R̃1

=
1/0.7

x1
+

1/0.3
x2

+
1/0.5

x3
+

1/0.4
x4

[(y4)
1
0.3]
∨
R̃1

=
1/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.7
x4

[(y5)
1
0.8]
∨
R̃1

=
1/0.4

x1
+

1/0.6
x2

+
1/0.2

x3
+

1/0.3
x4

[(y3)
1
0.6]
∨
R̃1

=
1/0.7

x1
+

1/0.4
x2

+
1/0.5

x3
+

1/0.4
x4

[(y1)
1
0.4]
∨
R̃2

=
0.5/0.6

x1
+

1/0.6
x2

+
1/0.6

x3
+

1/0.6
x4

[(y2)
1
0.5]
∨
R̃2

=
0.5/0.5

x1
+

1/0.7
x2

+
1/0.5

x3
+

1/0.5
x4

[(y3)
1
0.7]
∨
R̃2

=
0.5/0.6

x1
+

1/0.3
x2

+
1/0.5

x3
+

1/0.4
x4
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[(y4)
1
0.3]
∨
R̃2

=
0.5/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.7
x4

[(y5)
1
0.8]
∨
R̃2

=
0.5/0.4

x1
+

1/0.6
x2

+
1/0.2

x3
+

1/0.3
x4

[(y3)
1
0.6]
∨
R̃2

=
0.5/0.6

x1
+

1/0.4
x2

+
1/0.5

x3
+

1/0.4
x4

.

Then, we have:

R̃1(B̃1) =
1/0.4

x1
+

1/0.3
x2

+
1/0.2

x3
+

1/0.3
x4

,

R̃1(B̃2) =
1/0.4

x1
+

1/0.4
x2

+
1/0.2

x3
+

1/0.3
x4

,

R̃2(B̃1) =
0.5/0.4

x1
+

1/0.3
x2

+
1/0.2

x3
+

1/0.3
x4

,

R̃2(B̃2) =
0.5/0.4

x1
+

1/0.4
x2

+
1/0.2

x3
+

1/0.3
x4

,

and:
R̃(B̃) =

1/0.4
x1

+
1/0.3 + 1/0.4

x2
+

1/0.2
x3

+
1/0.3

x4
.

From:
R̃1(B̃1) =

1/0.7
x1

+
1/0.7

x2
+

1/0.7
x3

+
1/0.6

x4
,

R̃1(B̃2) =
1/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.6
x4

,

R̃2(B̃1) =
0.5/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.6
x4

,

R̃2(B̃2) =
0.5/0.7

x1
+

1/0.7
x2

+
1/0.7

x3
+

1/0.6
x4

,

we have:
R̃(B̃) =

1/0.7
x1

+
1/0.7

x2
+

1/0.7
x3

+
1/0.6

x4
.

Consequently (Figure 4b),

R̃(B̃) + R̃(B̃)

=
1/0.4 + 1/0.7

x1
+

1/0.3 + 1/0.4 + 1/0.7
x2

+
1/0.2 + 1/0.7

x3
+

1/0.3 + 1/0.6
x4

.

Since T1 = {1}, T2 = {1, 2, 3}, T3 = {1}, x1 is the best house for B̃.
For client B̃, the most important factors are y4 and y1, the price and the structure; the least important

factor is y5, the greening. The above method considered all the requirements of the client: the choice x1 is of good
behavior in y4 and y1; whereas, x2 and x3 are affordable, but not well structured. Figure 4a depicts the demand
of B̃, and Figure 4b depicts R̃(B̃) and R̃(B̃). It can be seen from Figure 4b that the memberships of x1 are largest
in both R̃(B̃) and R̃(B̃). That is to say, x1 is the best choice of client B̃.
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Figure 4. (a) Demand of client B̃; (b) the lower approximation and the upper approximation of B̃, which
are type-2 fuzzy sets defined in X. The solid line depicts the upper approximation R̃(B̃); the dotted
lines depict the lower approximation R̃(B̃).

Example 5. We use an emergency decision-making problem to illustrate the application of type-2 fuzzy rough
sets over two universes. Since emergency management is closely related to social stability and economic
development, many studies have been conducted on it. In this example, we use the granular type-2 fuzzy sets of
type-2 fuzzy rough sets to analyze such a problem and compare it to the model of fuzzy rough set on probabilistic
approximation space over two universes proposed by Sun et al. in [33].

Unconventional emergency events, such as tornadoes, typhoons, earthquakes and floods, often occur
unexpectedly, and the severity and extent of the impact are difficult to describe precisely. Approaches to handling
uncertainty and incomplete data and information can be used to study the emergency decision-making problem.

Sun et al. [33] investigated the application of fuzzy rough set on probabilistic approximation space over two
universes by an emergency decision-making problem. In order to compare with their method, we use a similar
example in this section with some data modified.

Consider an emergency decision-making problem during an earthquake and suppose that the area affected
can be divided into several different disaster areas according to the administrative district or the distribution of
geography. We use X = {x1, . . . , x6} to denote the set of disaster areas. The general characteristic factors that are
used to describe the emergency event are denoted by Y = {y1, . . . , y7}, where y1 stands for Affected population,
y2 stands for Economic loss, y3 stands for Risk of occurrence of a new disaster, y4 stands for Damage
to transportation, y5 stands for Number of destroyed facilities, y6 stands for Possibility of a disease
outbreak and y7 stands for Weather conditions. The degree of the relationship between these characteristic
factors and the disaster areas is available based on history records about past earthquakes. For the convenience
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of comparison, we use the data given in [33], which are presented in Table 2. The larger the value of R(xi, yj),
the more important the characteristic yj for the area xi. For example, R(x5, y1) = 0.2 < 0.7 = R(x4, y1)

implies that more population is affected in area x4 than in x5.
In [33], A = 0.2

y1
+ 0.8

y2
+ 0.5

y3
+ 0.3

y4
+ 0.6

y5
+ 0.1

y6
+ 0.9

y7
is the fuzzy description of all the characteristic

factors, and the conclusion is: (1) x2, x3 and x5 are the most seriously affected areas, which need immediate
rescue; (2) x4 does not need rescue immediately; (3) the situation of x6 and x1 cannot be decided because of
insufficient information.

Table 2. Fuzzy relation R from X to Y.

R(xi, yj) y1 y2 y3 y4 y5 y6 y7

x1 0.3 0.1 0.4 0.4 0.1 0.1 0.5
x2 0.3 0.3 0.5 0.1 0.3 0.1 0.5
x3 0.4 0.3 0.5 0.1 0.3 0.1 0.6
x4 0.7 0.4 0.2 0.1 0.2 0.1 0.3
x5 0.2 0.5 0.2 0.3 0.5 0.5 0.4
x6 0.3 0.5 0.2 0.2 0.2 0.3 0.3

Since we cannot acquire accurate and sufficient information immediately after the earthquake, if the exact
memberships for those characteristic factors are unavailable, the information collected after a new earthquake can
be described by a type-2 fuzzy set Ã on Y:

Ã =
1/0.2

y1
+

1/0.8
y2

+
1/0.5 + 0.8/0.6

y3
+

1/0.3
y4

+
1/0.6

y5
+

1/0.1 + 0.5/0.2
y6

+
1/0.8 + 1/0.9

y7
.

By the wavy-slice representation of a type-2 fuzzy set,

Ã =
8

∑
β=1

Ãβ,

where:

Ã1 =
1/0.2

y1
+

1/0.8
y2

+
1/0.5

y3
+

1/0.3
y4

+
1/0.6

y5
+

1/0.1
y6

+
1/0.8

y7
,

Ã2 =
1/0.2

y1
+

1/0.8
y2

+
0.8/0.6

y3
+

1/0.3
y4

+
1/0.6

y5
+

1/0.1
y6

+
1/0.8

y7
,

Ã3 =
1/0.2

y1
+

1/0.8
y2

+
1/0.5

y3
+

1/0.3
y4

+
1/0.6

y5
+

0.5/0.2
y6

+
1/0.8

y7
,

Ã4 =
1/0.2

y1
+

1/0.8
y2

+
1/0.5

y3
+

1/0.3
y4

+
1/0.6

y5
+

1/0.1
y6

+
1/0.9

y7
,

Ã5 =
1/0.2

y1
+

1/0.8
y2

+
1/0.5

y3
+

1/0.3
y4

+
1/0.6

y5
+

0.5/0.2
y6

+
1/0.9

y7
,

Ã6 =
1/0.2

y1
+

1/0.8
y2

+
0.8/0.6

y3
+

1/0.3
y4

+
1/0.6

y5
+

1/0.1
y6

+
1/0.9

y7
,

Ã7 =
1/0.2

y1
+

1/0.8
y2

+
0.8/0.6

y3
+

1/0.3
y4

+
1/0.6

y5
+

0.5/0.2
y6

+
1/0.8

y7
,

Ã8 =
1/0.2

y1
+

1/0.8
y2

+
0.8/0.6

y3
+

1/0.3
y4

+
1/0.6

y5
+

0.5/0.2
y6

+
1/0.9

y7
.

Then, we present a procedure for the emergency decision-making problem based on the granular type-2
fuzzy sets of type-2 fuzzy rough sets over two universes.

Step 1. Computing all the granular type-2 fuzzy sets [(yj)
A∗β(yj)

Aβ(yj)
]∧R, (β = 1, . . . , 8; j = 1, . . . , 7) (Table 3);
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Step 2. Computing R(Ãβ) = ∪7
j=1[(yj)

A∗β(yj)

Aβ(yj)
]∧R for β = 1, . . . , 8 (Table 4);

Step 3. Computing R(Ã) = ∑8
β=1 R(Ãβ) (Table 5);

Step 4. Computing all the granular type-2 fuzzy sets [(yj)
A∗β(yj)

Ac
β(yj)

]∨R, (β = 1, . . . , 8; j = 1, . . . , 7) (Table 6);

Step 5. Computing R(Ãβ) = ∩7
j=1[(yj)

A∗β(yj)

Ac
β(yj)

]∨R for β = 1, . . . , 8 (Table 7);

Step 6. Computing R(Ã) = ∑8
β=1 R(Ãβ) (Table 8);

Step 7. Computing sum of R(Ã) and R(Ã) (Table 9);
Step 8. Making the decision according to:

T1 = {i|max
xi∈X
{C(R̃(Ã)(xi))}},

T2 = {i|max
xi∈X
{C(R̃(Ã)(xi))}},

T3 = {i|max
xi∈X
{C([R̃(Ã) + R̃(Ã)](xi))}},

where C is the centroid of fuzzy sets. If T1 ∩ T2 ∩ T3 6= ∅, then xi(i ∈ T1 ∩ T2 ∩ T3) is the most seriously
affected areas. If T1 ∩ T2 ∩ T3 = ∅, then consider T1 ∩ T2: if T1 ∩ T2 6= ∅, we have xi(i ∈ T1 ∩ T2) is the
most seriously affected areas; if T1 ∩ T2 = ∅, we take xi(i ∈ T2) as the most seriously affected areas [29].

Since T1 = {x6}, T2 = {x3}, T3 = {x6}, x3 is the most seriously affected area, which needs to
be rescued immediately. Since {4} = {i|minxi∈X{C(R(A)(xi))}} = {i|minxi∈X{C(R(A)(xi))}} =

{i|minxi∈X{C([R(A) + R(A)](xi))}}, x4 is the least seriously affected area.

Table 3. Granular type-2 fuzzy sets [(yj)
A∗β(yj)

Aβ(yj)
]∧R.

[(yj)
A∗β(yj)

Aβ(yj)
]∧R x1 x2 x3 x4 x5 x6

[(y1)
1
0.2]
∧
R 1/0.2 1/0.2 1/0.2 1/0.2 1/0.2 1/0.2

[(y2)
1
0.8]
∧
R 1/0.1 1/0.3 1/0.3 1/0.4 1/0.5 1/0.5

[(y3)
1
0.5]
∧
R 1/0.4 1/0.5 1/0.5 1/0.2 1/0.2 1/0.2

[(y3)
0.8
0.6]
∧
R 0.8/0.4 0.8/0.5 0.8/0.5 0.8/0.2 0.8/0.2 0.8/0.2

[(y4)
1
0.3]
∧
R 1/0.3 1/0.1 1/0.1 1/0.1 1/0.3 1/0.2

[(y5)
1
0.6]
∧
R 1/0.1 1/0.3 1/0.3 1/0.2 1/0.5 1/0.2

[(y6)
1
0.1]
∧
R 1/0.1 1/0.1 1/0.1 1/0.1 1/0.1 1/0.1

[(y6)
0.5
0.2]
∧
R 0.5/0.1 0.5/0.1 0.5/0.1 0.5/0.1 0.5/0.2 0.5/0.2

[(y7)
1
0.8]
∧
R 1/0.5 1/0.5 1/0.6 1/0.3 1/0.4 1/0.3

[(y7)
1
0.9]
∧
R 1/0.5 1/0.5 1/0.6 1/0.3 1/0.4 1/0.3

In Table 3, the maximums for every granular type-2 fuzzy sets have been highlighted in bold. We have the
following conclusion:

1. Considering characteristic factor y1, all the areas are equally serious;
2. Considering characteristic factor y2, area x5 and area x6 are more serious;
3. Considering characteristic factor y3, area x2 and area x3 are more serious;
4. Considering characteristic factor y4, area x1 and area x5 are more serious;
5. Considering characteristic factor y5, area x5 is more serious;
6. Considering characteristic factor y6, area x5 and area x6 are more serious;
7. Considering characteristic factor y7, area x3 is more serious;
8. Area x3 is serious in the aspect of y3 (risk of occurrence of a new disaster) and y7 (weather conditions);
9. Area x4 is the least serious area.
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Table 4. The upper approximations R(Ãβ).

R(Ãβ) x1 x2 x3 x4 x5 x6

R(Ã1) 1/0.5 1/0.5 1/0.6 1/0.4 1/0.5 1/0.5
R(Ã2) 0.8/0.5 0.8/0.5 0.8/0.6 0.8/0.4 0.8/0.5 0.8/0.5
R(Ã3) 0.5/0.5 0.5/0.5 0.5/0.6 0.5/0.4 0.5/0.5 0.5/0.5
R(Ã4) 1/0.5 1/0.5 1/0.6 1/0.4 1/0.5 1/0.5
R(Ã5) 0.5/0.5 0.5/0.5 0.5/0.6 0.5/0.4 0.5/0.5 0.5/0.5
R(Ã6) 0.8/0.5 0.8/0.5 0.8/0.6 0.8/0.4 0.8/0.5 0.8/0.5
R(Ã7) 0.5/0.5 0.5/0.5 0.5/0.6 0.5/0.4 0.5/0.5 0.5/0.5
R(Ã8) 0.5/0.5 0.5/0.5 0.5/0.6 0.5/0.4 0.5/0.5 0.5/0.5

Table 5. The upper approximation R(Ã).

x1 x2 x3 x4 x5 x6

R(Ã)(xi) 1/0.5 1/0.5 1/0.6 1/0.4 1/0.5 1/0.5
C(R(Ã)(xi)) 0.5 0.5 0.6 0.4 0.5 0.5

Table 6. Granular type-2 fuzzy sets [(yj)
A∗β(yj)

Ac
β(yj)

]∨R.

[(yj)
A∗β(yj)

Ac
β(yj)

]∨R x1 x2 x3 x4 x5 x6

[(y1)
1
0.8]
∨
R 1/0.7 1/0.7 1/0.6 1/0.3 1/0.8 1/0.7

[(y2)
1
0.2]
∨
R 1/0.9 1/0.8 1/0.8 1/0.8 1/0.8 1/0.8

[(y3)
1
0.5]
∨
R 1/0.6 1/0.5 1/0.5 1/0.8 1/0.8 1/0.8

[(y3)
0.8
0.4]
∨
R 0.8/0.6 0.8/0.6 0.8/0.6 0.8/0.8 0.8/0.8 0.8/0.8

[(y4)
1
0.7]
∨
R 1/0.6 1/0.9 1/0.9 1/0.9 1/0.7 1/0.8

[(y5)
1
0.4]
∨
R 1/0.9 1/0.7 1/0.7 1/0.8 1/0.6 1/0.8

[(y6)
1
0.9]
∨
R 1/0.9 1/0.9 1/0.9 1/0.9 1/0.5 1/0.7

[(y6)
0.5
0.8]
∨
R 0.5/0.9 0.5/0.9 0.5/0.9 0.5/0.9 0.5/0.5 0.5/0.7

[(y7)
1
0.2]
∨
R 1/0.8 1/0.8 1/0.8 1/0.8 1/0.8 1/0.8

[(y7)
1
0.1]
∨
R 1/0.9 1/0.9 1/0.9 1/0.9 1/0.9 1/0.9

Table 7. The upper approximations R(Ãβ).

R(Ãβ) x1 x2 x3 x4 x5 x6

R(Ã1) 1/0.6 1/0.5 1/0.5 1/0.3 1/0.5 1/0.7
R(Ã2) 0.8/0.6 0.8/0.6 0.8/0.6 0.8/0.3 0.8/0.5 0.8/0.7
R(Ã3) 0.5/0.6 0.5/0.5 0.5/0.5 0.5/0.3 0.5/0.5 0.5/0.7
R(Ã4) 1/0.6 1/0.5 1/0.5 1/0.3 1/0.5 1/0.7
R(Ã5) 0.5/0.6 0.5/0.5 0.5/0.5 0.5/0.3 0.5/0.5 0.5/0.7
R(Ã6) 0.8/0.6 0.8/0.6 0.8/0.6 0.8/0.3 0.8/0.5 0.8/0.7
R(Ã7) 0.5/0.6 0.5/0.6 0.5/0.6 0.5/0.3 0.5/0.5 0.5/0.7
R(Ã8) 0.5/0.6 0.5/0.6 0.5/0.6 0.5/0.3 0.5/0.5 0.5/0.7

Table 8. The lower approximation R(Ã).

x1 x2 x3 x4 x5 x6

R(Ã)(xi) 1/0.6 1/0.5 + 0.8/0.6 1/0.5 + 0.8/0.6 1/0.3 1/0.5 1/0.7
C(R(Ã)(xi)) 0.6 0.54 0.54 0.3 0.5 0.7
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Table 9. Sum of lower approximation and upper approximation R(Ã) + R(Ã).

x1 x2 x3 x4 x5 x6

[R(Ã) + R(Ã)](xi) 1/0.5 + 1/0.6 1/0.5 + 0.8/0.6 1/0.5 + 1/0.6 1/0.3 + 1/0.4 1/0.5 1/0.5 + 1/0.7
C([R(Ã) + R(Ã)](xi)) 0.55 0.54 0.55 0.35 0.5 0.6

Consider another type-2 fuzzy description for an earthquake:

B̃ =
0.6/0.7 + 1/0.8

y1
+

1/0.2 + 1/0.3
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

0.5/0.6 + 1/0.9
y6

+
1/0.1

y7
.

By the wavy-slice representation of type-2 fuzzy sets, B̃ can be represented as B̃ = ∑8
β=1 B̃β, where:

B̃1 =
0.6/0.7

y1
+

1/0.2
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

0.5/0.6
y6

+
1/0.1

y7
,

B̃2 =
1/0.8

y1
+

1/0.2
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

0.5/0.6
y6

+
1/0.1

y7
,

B̃3 =
0.6/0.7

y1
+

1/0.3
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

0.5/0.6
y6

+
1/0.1

y7
,

B̃4 =
0.6/0.7

y1
+

1/0.2
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

1/0.9
y6

+
1/0.1

y7
,

B̃5 =
0.6/0.7

y1
+

1/0.3
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

1/0.9
y6

+
1/0.1

y7
,

B̃6 =
1/0.8

y1
+

1/0.2
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

1/0.9
y6

+
1/0.1

y7
,

B̃7 =
1/0.8

y1
+

1/0.3
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

0.5/0.6
y6

+
1/0.1

y7
,

B̃8 =
1/0.8

y1
+

1/0.3
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

1/0.9
y6

+
1/0.1

y7
.

Similar to the above procedure, we should compute T1, T2, T3, and the computation process is presented in
the following tables (Tables 10–16):

Table 10. Granular type-2 fuzzy sets [(yj)
B∗β(yj)

Bβ(yj)
]∧R.

[(yj)
B∗β(yj)

Bβ(yj)
]∧R x1 x2 x3 x4 x5 x6

[(y1)
0.6
0.7]
∧
R 0.6/0.3 0.6/0.3 0.6/0.4 0.6/0.7 0.6/0.2 0.6/0.3

[(y1)
1
0.8]
∧
R 1/0.3 1/0.3 1/0.4 1/0.7 1/0.2 1/0.3

[(y2)
1
0.2]
∧
R 1/0.1 1/0.2 1/0.2 1/0.2 1/0.2 1/0.2

[(y2)
1
0.3]
∧
R 1/0.1 1/0.3 1/0.3 1/0.3 1/0.3 1/0.3

[(y3)
1
0.5]
∧
R 1/0.4 1/0.5 1/0.5 1/0.2 1/0.2 1/0.2

[(y4)
1
0.7]
∧
R 1/0.4 1/0.1 1/0.1 1/0.1 1/0.3 1/0.2

[(y5)
1
0.4]
∧
R 1/0.1 1/0.3 1/0.3 1/0.2 1/0.4 1/0.2

[(y6)
0.5
0.6]
∧
R 0.5/0.1 0.5/0.1 0.5/0.1 0.5/0.1 0.5/0.5 0.5/0.3

[(y6)
1
0.9]
∧
R 1/0.1 1/0.1 1/0.1 1/0.1 1/0.5 1/0.3

[(y7)
1
0.1]
∧
R 1/0.1 1/0.1 1/0.1 1/0.1 1/0.1 1/0.1

In Table 10, the maximums for every granular type-2 fuzzy sets have been highlighted in bold. We have the
following conclusion:

1. Considering characteristic factor y1, x4 is more serious;
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2. Considering characteristic factor y2, x1 is the least serious area;
3. Considering characteristic factor y3, x2 and x3 are more serious;
4. Considering characteristic factor y4, x1 is more serious;
5. Considering characteristic factor y5, x5 is more serious;
6. Considering characteristic factor y6, x5 is more serious;
7. Considering characteristic factor y7, all the areas are equally serious;
8. Area x4 is serious in the respect of y1 (affected population) and y2 (economic loss).

Table 11. The upper approximations R(B̃β).

R(B̃β) x1 x2 x3 x4 x5 x6

R(B̃1) 0.5/0.4 0.5/0.5 0.5/0.5 0.5/0.7 0.5/0.5 0.5/0.3
R(B̃2) 0.5/0.4 0.5/0.5 0.5/0.5 0.5/0.7 0.5/0.5 0.5/0.3
R(B̃3) 0.5/0.4 0.5/0.5 0.5/0.5 0.5/0.7 0.5/0.5 0.5/0.3
R(B̃4) 0.6/0.4 0.6/0.5 0.6/0.5 0.6/0.7 0.6/0.5 0.6/0.3
R(B̃5) 0.6/0.4 0.6/0.5 0.6/0.5 0.6/0.7 0.6/0.5 0.6/0.3
R(B̃6) 1/0.4 1/0.5 1/0.5 1/0.7 1/0.5 1/0.3
R(B̃7) 0.5/0.4 0.5/0.5 0.5/0.5 0.5/0.7 0.5/0.5 0.5/0.3
R(B̃8) 1/0.4 1/0.5 1/0.5 1/0.7 1/0.5 1/0.3

Table 12. The upper approximation R(B̃).

x1 x2 x3 x4 x5 x6

R(B̃)(xi) 1/0.4 1/0.5 1/0.5 1/0.7 1/0.5 1/0.3
C(R(B̃)(xi)) 0.4 0.5 0.5 0.7 0.5 0.3

Table 13. Granular type-2 fuzzy sets [(yj)
B∗β(yj)

Bc
β(yj)

]∨R.

[(yj)
B∗β(yj)

Bc
β(yj)

]∨R x1 x2 x3 x4 x5 x6

[(y1)
0.6
0.3]
∨
R 0.6/0.7 0.6/0.7 0.6/0.7 0.6/0.7 0.6/0.8 0.6/0.7

[(y1)
1
0.2]
∨
R 1/0.8 1/0.8 1/0.8 1/0.8 1/0.8 1/0.8

[(y2)
1
0.8]
∨
R 1/0.9 1/0.7 1/0.7 1/0.6 1/0.5 1/0.5

[(y2)
1
0.7]
∨
R 1/0.9 1/0.7 1/0.7 1/0.6 1/0.5 1/0.5

[(y3)
1
0.5]
∨
R 1/0.6 1/0.5 1/0.5 1/0.8 1/0.8 1/0.8

[(y4)
1
0.3]
∨
R 1/0.7 1/0.9 1/0.9 1/0.9 1/0.7 1/0.8

[(y5)
1
0.6]
∨
R 1/0.9 1/0.7 1/0.7 1/0.8 1/0.5 1/0.8

[(y6)
0.5
0.4]
∨
R 0.5/0.9 0.5/0.9 0.5/0.9 0.5/0.9 0.5/0.6 0.5/0.7

[(y6)
1
0.1]
∨
R 1/0.9 1/0.9 1/0.9 1/0.9 1/0.9 1/0.9

[(y7)
1
0.9]
∨
R 1/0.5 1/0.5 1/0.4 1/0.7 1/0.6 1/0.7

Table 14. The upper approximations R(B̃β).

R(B̃β) x1 x2 x3 x4 x5 x6

R(B̃1) 0.5/0.5 0.5/0.5 0.5/0.4 0.5/0.6 0.5/0.5 0.5/0.5
R(B̃2) 0.5/0.5 0.5/0.5 0.5/0.4 0.5/0.6 0.5/0.5 0.5/0.5
R(B̃3) 0.5/0.5 0.5/0.5 0.5/0.4 0.5/0.6 0.5/0.5 0.5/0.5
R(B̃4) 0.6/0.5 0.6/0.5 0.6/0.4 0.6/0.6 0.6/0.5 0.6/0.5
R(B̃5) 0.6/0.5 0.6/0.5 0.6/0.4 0.6/0.6 0.6/0.5 0.6/0.5
R(B̃6) 1/0.5 1/0.5 1/0.4 1/0.6 1/0.5 1/0.5
R(B̃7) 0.5/0.5 0.5/0.5 0.5/0.4 0.5/0.6 0.5/0.5 0.5/0.5
R(B̃8) 1/0.5 1/0.5 1/0.4 1/0.6 1/0.5 1/0.5
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Table 15. The lower approximation R(B̃).

x1 x2 x3 x4 x5 x6

R(B̃)(xi) 1/0.5 1/0.5 1/0.4 1/0.6 1/0.5 1/0.5
C(R(B̃)(xi)) 0.5 0.5 0.4 0.6 0.5 0.5

Table 16. Sum of lower approximation and upper approximation R(B̃) + R(B̃).

x1 x2 x3 x4 x5 x6

[R(B̃) + R(B̃)](xi) 1/0.4 + 1/0.5 1/0.5 1/0.4 + 1/0.5 1/0.6 + 1/0.7 1/0.5 1/0.3 + 1/0.5
C([R(B̃) + R(B̃)](xi)) 0.45 0.5 0.45 0.65 0.5 0.4

Since T1 = T2 = T3 = {x4}, x4 is the most seriously affected area and needs immediate rescue.
In [33], the description of an earthquake is a fuzzy set:

A =
0.2
y1

+
0.8
y2

+
0.5
y3

+
0.3
y4

+
0.6
y5

+
0.1
y6

+
0.9
y7

,

that is to say, exact memberships of the characteristic factors yi (i = 1, . . . , 7) have been decided by the
information acquired after the earthquake. However, if the information is insufficient and the memberships of
some factors cannot be decided, we have to take fuzzy sets as membership functions of those factors. In this
example, we consider such conditions and use type-2 fuzzy sets as the descriptions of emergency events:

Ã =
1/0.2

y1
+

1/0.8
y2

+
1/0.5 + 0.8/0.6

y3
+

1/0.3
y4

+
1/0.6

y5
+

1/0.1 + 0.5/0.2
y6

+
1/0.8 + 1/0.9

y7

and:

B̃ =
0.6/0.7 + 1/0.8

y1
+

1/0.2 + 1/0.3
y2

+
1/0.5

y3
+

1/0.7
y4

+
1/0.4

y5
+

0.5/0.6 + 1/0.9
y6

+
1/0.1

y7
.

A reasonable decision-making process for the unconventional emergency event has been made using the
type-2 fuzzy rough sets over two universes. For the type-2 fuzzy description Ã, whose secondary membership
functions are equal to or close to the corresponding memberships of the fuzzy description A, the decision is similar
to that of [33], whereas for the type-2 fuzzy description B̃, whose secondary membership functions are equal to or
close to the corresponding memberships of the complement of A, i.e., Ac = 0.8

y1
+ 0.2

y2
+ 0.5

y3
+ 0.7

y4
+ 0.4

y5
+ 0.9

y6
+ 0.1

y7
,

an almost opposite conclusion has been made. Furthermore, the granular type-2 fuzzy sets make it possible to
analyze the problem from each aspect.

6. Conclusions

Rough set theory is a method of granular computing, and equivalence classes are basic granules
that can be used to approximate a set. Whether the granular structure of type-2 fuzzy rough sets over
two universes is as clear as that of classical rough sets is what the authors want to discuss. At first,
the definition of a type-2 fuzzy rough set over two different universes is proposed based on a general
type-2 fuzzy relation from one universe to another, and the lower and upper approximations of a
type-2 fuzzy set are defined in terms of membership functions. Then, two granular type-2 fuzzy sets
are defined for an arbitrary type-2 fuzzy point, which are proven to be analogous to equivalence classes
and complements of equivalence classes of rough sets respectively, since they can be used to express
the upper and lower approximations of a type-2 fuzzy set by the operators union and intersection.
Therefore, these granular type-2 fuzzy sets are the basic granules of type-2 fuzzy rough sets and can
be considered to be type-2 fuzzy equivalence classes and complements of type-2 fuzzy equivalence
classes of a type-2 fuzzy point. The authors discussed the properties of the upper and lower type-2



Symmetry 2017, 9, 284 28 of 29

fuzzy rough approximation operators and the granular type-2 fuzzy sets. Two illustrative examples
showed some simple applications of the model proposed in this paper. Future work by the authors
will consider the practical application of the granular structure of type-2 fuzzy rough sets over two
universes.
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