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Abstract: We define a new seasonal forecasting method based on fuzzy transforms. We use the best 

interpolating polynomial for extracting the trend of the time series and generate the inverse fuzzy 

transform on each seasonal subset of the universe of discourse for predicting the value of an 

assigned output. In the first example, we use the daily weather dataset of the municipality of 

Naples (Italy) starting from data collected from 2003 to 2015 making predictions on mean 

temperature, max temperature and min temperature, all considered daily. In the second example, 

we use the daily mean temperature measured at the weather station “Chiavari Caperana” in the 

Liguria Italian Region. We compare the results with our method, the average seasonal variation, 

Auto Regressive Integrated Moving Average (ARIMA) and the usual fuzzy transforms concluding that 

the best results are obtained under our approach in both examples. In addition, the comparison 

results show that, for seasonal time series that have no consistent irregular variations, the 

performance obtained with our method is comparable with the ones obtained using Support Vector 

Machine- and Artificial Neural Networks-based models. 
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1. Introduction 

Time series forecasting methods are quantitative techniques that analyze historical data of a 

variable for predicting its values. Traditional forecasting methods [1–7] use statistical techniques to 

estimate the future trend of a variable starting from numerical datasets. Many time series data 

contain seasonal patterns that have regular, repetitive and predictable changes that happen 

sequentially in a period of time which could be a year, a season, a month, a week, etc.  

Different approaches have been developed to deal with trend and seasonal time series. 

Traditional approaches, such the moving average method, additive and multiplicative models, 

Holt-Winters exponential smoothing, etc. [3,4,5,7], use statistical methods for removing the seasonal 

components: they decompose the series into trend, seasonal, cyclical and irregular components [8]. 

Other statistical approaches are based on the Box–Jenkins model, called Autoregressive Integrated 

Moving Average (ARIMA) [3,5,7,9]. In the first phase of ARIMA, an auto-correlation analysis is 

performed for verifying if the series is non-stationary. Then, the series is transformed into a 

stationary series formed by the differences between the value at the actual moment and the value at 

the previous moment.  

The main limitation of the seasonal ARIMA model is the fact that the process is considered to be 

linear. Many soft computing models have been presented in the literature for capturing nonlinear 

characteristics in seasonal time series, e.g., Support Vector Machine (SVM) [10,11] used for wind 

speed prediction [12], air quality forecasting [13], and rainfall forecasting [14]. SVM utilizes a kernel 

function to transform the input variables into a multi-dimensional feature space, and then the 

Lagrange multipliers are used for finding the best hyperplane to model the data in the feature space. 
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The main advantage of an SVM method is that that the solution is unique and there are no risk to 

move towards local minima, but some problems remain as the choice of the kernel parameters which 

influences the structure of the feature space, affecting the final solution. Another method is based on 

an Artificial Neural Network (ANN) [8,15–17]. The most widely used ANN architectures for 

forecasting problems are given by multi-layer Feed Forward Network (FNN) architectures [18,19], 

where the input nodes are given by the successive observations of the time series; that is, target yt is a 

function of the values yt−1, yt−2, …, yt-p, where p is the number of input nodes.  

A variation of FNN is the Time Lagged Neural Network (TLNN) architecture [20,21], where the 

input nodes are the time series values at some particular lags. For example, in a time series having 

the month as seasonal period, the neural network used for forecasting the parameter value at the 

time t can contain input nodes corresponding to the lagged values at the time t−1, t−2,..,t−12. The key 

point is that an ANN can be considered a nonlinear auto-regression model. ANNs are inherently 

nonlinear and can accurately model complex characteristics in data patterns with respect to linear 

approaches such as ARIMA models. One of the main problems in the ANN forecasting models is the 

selection of appropriate network parameters. This operation is crucial since it strongly affects the 

final results. Furthermore, the presence of a high number of network parameters in the model can 

produce overtraining of data, giving rise to incorrect forecasting solutions. 

To reduce the problems present in the SVM and ANN approaches, some authors have recently 

developed some hybrid models, e.g., genetic algorithms and tabu search (GA/TS) [11] and the 

Modified Firefly Algorithm (MFA). 

In [22], a Discrete Wavelet Transform (DWT) algorithm is used to decompose the time series 

into linear and nonlinear components. Afterwards, the ARIMA and the ANN models are used to 

forecasting separately the two components.  

In [23], the authors present four seasonal forecasting models: an adaptive ANN model that uses 

a genetic algorithm for evolving the ANN topology and the back-propagation parameter called 

ADANN (Automatic Design of Artificial Neural Networks), a SVM seasonal forecasting model and 

two hybrid ANN and SVM models based on linguistic fuzzy rules. The authors compare the four 

methods with the traditional ARIMA method, showing that the results under the four methods are 

comparable with the ones obtained using ARIMA. The best results are obtained by using the 

ADANN algorithm based on linguistic fuzzy rules but ANN-based methods are complex to manage 

and require more computational effort. 

Various fuzzy modeling approaches are proposed in literature and applied in different fields 

for data analysis and knowledge exploring (for examples, see [24–27]). 

To overcome the high computational complexity and the heavy dependence on the input 

parameters of the ANN models, a soft computing forecasting method based on fuzzy transforms [28] 

(for short, F-transforms) is presented in [29]. This method was applied to the North Atlantic Oscillation 

(NAO) data time series. The results are better than the ones obtained using the well known 

Wang–Mendel method [30] and Local Linear Wavelet Neural Network (LLWNN) techniques. 

F-transforms are a powerful flexible method to be applied in various domains such as image 

compression [31], detection of attribute dependencies in data analysis [32] and extraction of the 

trend cycle of time series [33].  

Strictly speaking, in [29], a forecasting index is calculated with respect to the data of the training 

set: if this index is smaller than or equal to an assigned threshold, the algorithm is stopped; 

otherwise, it is iterated by taking a finer fuzzy partition of the variable domain.When a fuzzy 

partition is settled, the algorithm controls that the training dataset is sufficiently dense with respect 

to the fuzzy partition; that is, each fuzzy set of the fuzzy partition has at least a non-zero 

membership degree in some point. 

Here, we give a forecasting method based on F-transforms for seasonal time series analysis 

called Time Series Seasonal F-transform (TSSF). We give a partition of the time series dataset into 

seasonal pattern components. A seasonal pattern is related to a fixed period of the time series 

fluctuations: the seasonality is set on a fixed period such as year, month, week, etc. In the TSSF 

model, we assume that the different components affect the time series. We use the best polynomial 
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fit for estimating the trend of the time series. After de-trending the data by subtracting the trend 

from the time series dataset, we find a fuzzy partition of the dataset into seasonal subsets to which 

we apply the F-transforms by checking that the chosen partition is optimal for the density of the 

training data. In [29,32], the authors have developed this process: in particular, four forecasting 

indexes are proposed for assessing the quality of the results: Mean Absolute Deviation (MAD), Mean 

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and Mean Absolute Deviation 

Mean (MADMEAN). An optimal fuzzy partition is found by calculating the corresponding RMSE 

and MADMEAN: if at least one of the two indices does not exceed a respective threshold, then the 

process stops and the given fuzzy partition is considered optimal. 

1.1 TSSF Method for Forecasting Analysis 

In the TSSF method, we essentially adopt the same procedure, but we prefer to use the 

MADMEAN index because this index is more robust than other forecasting indexes, as proven in [34]. 

We emphasize that the dimension of the optimal fuzzy partition can vary with the seasonal subset. In 

Figure 1, the TSSF method is synthetized in detail.  

In the assessment phase, the best polynomial fit is applied for determining the trend in the 

training data. After de-trending the dataset, the time series is decomposed into S seasonal subsets to 

which the F-transform forecasting iterative method is applied. Initially, a coarse grained uniform 

fuzzy partition is fixed. If the subset is not sufficiently dense with respect to the fuzzy partition, the 

F-transform sub-process applied on the seasonal subset stops, else the MADMEAN index is 

calculated and, if it is greater than an assigned threshold, the F-transform sub-process is iterated 

considering a finer uniform fuzzy partition. The output is given by the inverse F-transforms 

obtained for each seasonal subset at the end of the corresponding sub-process.  

 

Figure 1. Schema of the TSSF method. 

To forecast a value of a parameter y0 at the time t, we calculate the sth seasonal subset of 

cardinality n(s), in which the time t is inserted. Then, we consider the sth inverse F-transform  

)()( tf F

sn . The forecasted value of the parameter is given by the formula )()()( ttrendtf F

sn  , where 
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trend(t) is the value of the polynomial trend at the time t. Figure 2 illustrates the application of the TSSF 

for forecasting analysis. 

 

Figure 2. The TSSF method for forecasting analysis. 

For sake of completeness, we recall the concept of F-transform in Section 2. Section 3 contains 

the F-transform-based prediction method. In Section 4, we describe our TSSF method applied on the 

climate dataset of Naples (Italy) (www.ilmeteo.it/portale/archivio-meteo/Napoli) whose results are 

given in Section 5 that contain also comparisons with average seasonal variation, ARIMA and the 

traditional prediction F-transform methods. Section 6 reports the conclusions.  

2. Direct and Inverse F-Transform 

Following the definitions and notations of [28], let n ≥ 2 and x1, x2, …, xn be points of [a,b], called 

nodes, such that x1 = a < x2 < … < xn = b. The family of fuzzy sets A1, …, An: [a,b] → [0,1], called basic 

functions, is a fuzzy partition of [a,b] if the following hold: 

- Ai(xi) =1 for every i =1,2, …,n; 

- Ai(x) = 0 if x  ]xi−1,xi+1[ for i = 2, …,n − 1; 

- Ai(x) is a continuous function on [a,b]; 

- Ai(x) strictly increases on [xi−1, xi] for i = 2, …, n and strictly decreases on [xi,xi+1] for i = 1, …, n − 1; 

- A1(x) +…+ An(x) = 1 for every x  [a,b]. 

The fuzzy sets {A1(x),…,An(x)} form an uniform fuzzy partition if n ≥ 3 and xi = a + h∙(i − 1), 

where h = (b − a)/(n − 1) and i = 1, 2, …, n (that is the nodes are equidistant); 

- Ai(xi − x) = Ai(xi + x) for every x  [0,h] and i = 2, …, n − 1; 

- Ai+1(x) = Ai(x − h) for every x  [xi, xi+1] and i = 1,2, …, n − 1.  

Here, we are only interested in the discrete case, i.e., for functions f defined on the set P of 

points p1, ..., pm of [a,b]. If P is sufficiently dense with respect to the given partition {A1, A2, …, An}, 

i.e., for each i  {1,…,n} there exists an index j  {1,…,m} such that Ai(pj) > 0, we define {F1, F2, …, 

Fn} as the discrete direct F-transform of f with respect to {A1, A2, …, An}, where Fi is given by  
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for i = 1, …, n. Similarly we define the discrete inverse F-transform of f with respect to {A1, A2, …, An} 

by setting 
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for every j  {1, …, m}. We can extend the above concepts to functions in k (≥2) variables. In the 

discrete case, we assume that the function f(x1,x2, …, xk) is defined on m points pj = (pj1, pj2, …, pjk)  
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Now, we define the discrete inverse F-transform of f with respect to the Function (3) to be the 

following function by setting for each point pj = (pj1, pj2,…,pjk)  [a1,b1] × … × [ak,bk]: 
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for j = 1, …, m. The following theorem holds [28]: 

Theorem 1. Let f(x1,x2,…,xk) be given on the set of points P = {(p11,p12, …, p1k) ,(p21, p22, …, p2k), …,(pm1, pm2, …, 

pmk)}  [a1,b1] × [a2,b2] × … × [ak,bk]. Then, for every ε > 0, there exist k integers n1 = n1(ε), …, nk = nk(ε) and 

k related fuzzy partitions (3) of [a1,b1], …, [ak,bk], respectively, such that the set P is sufficiently dense with 

respect to them and for every pj = (pj1, pj2, …, pjk) in P, j = 1, …, m, the following inequality holds: 

     jkjk

F

nnjkj ppfppf ,...,,..., 1...1 1
. (6) 

3. F-Transform Forecasting Method 

We now describe the F-transform forecasting algorithm presented in [29]. Let M be assigned 

input–output pairs data (x(j), y(j)) in the following form: 
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for j = 1, 2, …, M. The task is to generate a fuzzy rule-set from the M pairs (x(j), y(j)) to determine a 
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(3) Calculate the discrete inverse F-transform as  
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to approximate the function f. 

(4) Calculate the forecasting index as  
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If Equation (11) is less or equal to an assigned threshold, then the process stops; otherwise, a 

finer fuzzy partition is taken and the process restarts from the step 2. 

In [29], four forecasting indices, RMSE, MAPE, MAD, MADMEAN, were proposed, but we 

prefer to use MADMEAN, which is the best one in terms of accuracy, as proven in [34].  
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respectively. The inverse F-transform (13) approximates the seasonal fluctuation at the time t. In our 

method, we start with three basic functions and verify that the subset of data is sufficiently dense with 

respect to this fuzzy partition. After calculating the directed and inverse F-transform with Equations 

(12) and (13), respectively, we calculate the (MADMEAN)s index for the sth fluctuation subset of data 

given as  
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If Equation (14) is greater than an assigned threshold, than the process is iterated considering a 

fuzzy partition of dimension n:= n + 1; otherwise, the iteration process stops. Our algorithm is 

illustrated in Figure 3.  
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For sake of completeness, we describe also the values of the above-cited indices: 

- Root Mean Square Error (RMSE) is defined as: 
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- Mean Absolute Percentage Error (MAPE) is defined as: 
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The TSSF algorithm is schematized in Appendix A. To evaluate the MADMEAN threshold, we 
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where MADMEAN(n) and RMSE(n) are the mean MADMEAN and RMSE using the fuzzy partition 

size n, respectively. 

We repeat this process using many values of n. Then, we plot in a graph the RMSE(n) by 

varying n. The threshold value is set as the mean MADMEAN obtained in correspondence of the 

value n for which there is a plateau in the RMSE graph.  

In next section, we present the results of tests in which the TSSF algorithm is applied to seasonal 

time series. In our tests, we apply the pre-processing phase described below in which we partition 

the dataset in k folds, setting k = 10. Comparisons are pointed out with respect to ARIMA, the 

F-transform methods and SVM and ADANN proposed in [23]. 

5. Experiments on Time Series Data 

In a first experiment, we use a dataset composed from climate data (mean, maximum and 

minimum temperature, pressure, speed of the wind, etc., measured every day) of Naples (Italy) 

collected at the webpage: www.ilmeteo.it/portale/archivio-meteo/Napoli. The following main 

climate parameters are measured every thirty minutes: Min temperature (°C), Mean temperature 

(°C), Max temperature (°C), Dew point (°C), Mean humidity (%), Mean view (km), Mean wind speed 

(km/h), Max wind speed (km/h), Gust of wind (km/h), Mean pressure on sea level (mb), Mean 

pressure (mb), and Millimeters of rain (mm). 

For sake of brevity, we limit the results for the parameters mean, max and min temperature. As 

training dataset, we consider these data recorded in the months July and August from 01 July 2003 to 

16 August 2015, hence for 806 days represented as abscissas (via a number ID) in Figures 4 and 5, 

respectively. The daily mean and max temperature is represented on the ordinate axis in Figures 4 

and 5, respectively. We obtain the best fit polynomial of nine degree ( i

i

i xay 


9

1

) (red color in 

Figures 4 and 5) whose coefficients are given in Appendix B. 
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Figure 4. Trend of the mean temperature in the months of July and August (from 1 July 2003 to 16 

August 2015) obtained by using a ninth-degree polynomial fitting. 

 

Figure 5. Trend of the max temperature in the months of July and August (from 1 July 2003 to 16 

August 2015) obtained by using a best fit polynomial of nine degree. 

We consider the week as seasonal period, partitioning the data set into nine seasonal subsets: 

Week 27 (July 1) to Week 36 (August 31). After applying the pre-processing phase, we set the 

threshold of the MADMEAN index to the value 5. Then, we apply the TSSF algorithm to the daily 

mean and max temperature. We also give the results of the other three methods, plotted in Figures 

6a–d and 7a–d, respectively: 

(1) Average seasonal variation method [3] (labeled as avgSV): This method calculates the mean 

seasonal variation for each seasonal period and adds the mean seasonal variation to the trend value. 

(2) Seasonal ARIMA method: In our experiments, we used the forecasting tool ForecastPro [35]. As 

highlighted in [23], this tool is well known for ensuring the best performance in the use of 

forecasting ARIMA models. 

(3) F-transform prediction method [29]: This is applied to the complete dataset (labeled as 

F-transforms). 
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Figure 6. (a) Results obtained for the mean temperature by using the avgSV method; (b) results 

obtained for the mean temperature by using the ARIMA method; (c) results obtained for the mean 

temperature by using the F-transforms method; and (d) results obtained for the mean temperature by 

using the TSSF method. 

In Table 1, we show the four indices obtained using the four methods. The best results for the 

mean temperature are obtained using the TSSF method, with a MADMEAN of 4.22. 
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Table 1. RMSE, MAPE, MAD, and MADMEAN indices for the mean temperature. 

Forecasting Method RMSE MAPE MAD MADMEAN 

avgSV 1.78 5.60% 1.42 5.50 

ARIMA 1.55 4.89% 1.24 4.80 

F-transforms 1.61 4.96% 1.28 5.05 

TSSF 1.37 4.29% 1.09 4.22 

 

 
(a) 

 
(b) 

 
(c) 
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Figure 7. (a) Results for the max temperature in the months of July and August under avgSV method; 

(b) results for the max temperature in the months of July and August under ARIMA method; (c) 

results for the max temperature in the months of July and August under the F-transforms method; 

and (d) results for the max temperature in the months of July and August under the TSSF method. 

In Table 2, we show the four indexes obtained using the four methods. The best results for the 

max temperature are obtained using TSSF, with a MADMEAN of 4.53. 

Table 2. RMSE, MAPE, MAD and MADMEAN indices for the max temperature. 

Forecasting Method RMSE MAPE MAD MADMEAN 

avgSV 2.21 5.74% 1.74 5.70 

ARIMA 1.93 5.03% 1.53 4.99 

F-transforms 1.98 5.17% 1.56 5.13 

TSSF 1.76 4.57% 1.39 4.53 

We now present the results of other experiments in which the variation of the min temperature 

is explored during the years. We assume the month as seasonal period: the training dataset is formed 

by all the measures recorded from 1 January 2003 to 31 December 2015. It is partitioned into 12 

seasonal subsets corresponding to 12 months of a year. After applying the pre-processing phase, we 

set the threshold of the MADMEAN index to the value 6. In Figure 8, we show the data and the trend 

obtained using a best fit polynomial of nine degree (see Appendix A).  

 

Figure 8. Trend of min temperature under a best fit polynomial of nine degree. 

As we can observe in Figure 8, the seasonality of the data seems to be more evident than in the 

two previous examples. In Figure 9a–d, we plot the final results using the four forecasting methods.  
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Figure 9. (a) Results obtained for the variation of the min temperature by using the avgSV method; (b) 

results obtained for the variation of the min temperature by using the ARIMA method; (c) results 

obtained for the variation of the min temperature by using the F-transforms method; and (d) results 

obtained for the variation of the min temperature by using the TSSF method. 

In Table 3, we show the indices obtained using the four methods. MAPE is not measurable 

because there are measures of min temperature equal to 0.00. The best results for the min 

temperature are obtained using the TSSF, with a MADMEAN of 5.26. 
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Table 3. RMSE, MAPE, MAD and MADMEAN indices for the min temperature. 

Forecasting Method RMSE MAPE MAD MADMEAN 

avgSV 2.97 - 2.34 18.66 

ARIMA 1.25  0.97 7.46 

F-transforms 1.56 - 1.09 8.73 

TSSF 0.87 - 0.66 5.26 

The results in Table 3 show that the TSSF is more efficient when the seasonality of the data is 

more pointed, such as the mean temperature time series. To test the reliability of the forecasting 

results obtained using the four forecasting methods, we have considered test datasets containing the 

measure of the analyzed parameter in a next time period and calculating the RMSE obtained with 

respect to the forecasted values. For the mean and max temperature parameters, we use a test 

dataset formed by the mean and max daily temperatures measured in the temporal interval 17 

August 2015–31 August 2015. For the min temperature parameter, we use a test dataset formed by 

the min daily temperatures measured in the temporal interval 1 January 2015–31 August 2015. We 

apply the test datasets, measuring the RMSE obtained using the four methods. In addition, we also 

show the RMSE calculated by applying the SVM and ADANN algorithms proposed in [23], as 

shown in Table 4  

Table 4. RMSE measured by using six different methods for the mean, max, min temperature. 

Parameter 

Training 

Dataset 

Dimension 

Test Dataset 

Dimension 

Seasonal 

Period 
RMSE 

    avgSV ARIMA F-transf. TSSF SVM ADANN 

Temp. mean 757 15 Week 1.83 1.58 1.62 1.39 0.88 0.87 

Temp. max 757 15 Week 2.20 1.92 1.99 1.68 1.31 1.26 

Temp. min 4354 212 Month 2.90 1.27 1.54 0.94 0.96 1.01 

These results confirm that the performances obtained using the TSSF algorithm are better than the 

ones obtained using the avgSV, ARIMA and F-transform methods: the most reliable results are obtained 

for the third parameter, in which the seasonality is more regular. In addition, the performance obtained 

by applying SVM and ADANN algorithms to the first two time series improve those obtained by 

adopting the TSSF algorithm, but, in the third case, where the time series has best regularity, RMSE 

obtained using the TSSF, SVM and ADANN algorithms are indeed comparable. 

We repeated these comparison tests by using other climatic datasets. For brevity, we show the 

results obtained by analyzing the trend of the daily mean temperature measured at the weather 

station Chiavari Caperana in the Italian Region Liguria; the data can be downloaded at the website 

(http://www.cartografiarl.regione.liguria.it/SiraQualMeteo/script/PubAccessoDatiMeteo.asp) of the 

webpage “Ambiente in Liguria”. 

The analyzed data concern the measures (°C) of the daily mean temperature during the period 1 

January 2006–31 December 2016. The month is considered as the seasonal period; the dataset is 

partitioned into 12 seasonal subsets corresponding to the 12 months of a year. After applying the 

pre-processing phase, we set the threshold of the MADMEAN index to the value 5.2. 

In Figure 10, we show the data and the trend obtained using a best fit polynomial of nine degree 

(see Appendix). In Figure 11a–d, the results obtained using the four methods are plotted.  
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Figure 10. Trend of mean temperature under a best fit polynomial of nine degree Chiavari-Caperana 

weather station dataset. 
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Figure 11. (a) Results obtained for the variation of the mean temperature by using the avgSV method; 

(b) results obtained for the variation of the mean temperature by using the ARIMA method; (c) 

results obtained for the variation of the mean temperature by using the F-transforms method; and (d) 

results obtained for the variation of the mean temperature by using the TSSF method. 

In Table 5, we show the four indexes obtained using the four methods. The best results for the 

mean temperature are obtained using TSSF, with a MADMEAN of 3.83. 

Table 5. RMSE, MAPE, MAD, MADMEAN indices for the mean temperature (Chiavari-Caperana 

weather station). 

Forecasting Method RMSE MAPE MAD MADMEAN 

avgSV 2.87 27.74% 2.14 16.19 

ARIMA 1.13 12.37% 0.89 5.95 

F-transforms 1.38 15.18% 1.10 7.30 

TSSF 0.73 7.96% 0.58 3.83 

The results in Table 5 confirm the ones obtained for the min temperature parameters in the 

weather dataset of Naples (Table 3): the TSSF gives better results than the ARIMA and F-transform 

algorithms, and is more efficient when the seasonality of the data is more regular. To test the 

reliability of the results obtained in Table 5, we have considered a test dataset containing the 

measure of the daily mean temperature during the period 1 January 2017–19 March 2017 and 
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calculating the RMSE obtained with respect to the forecasted values. In Table 6, we show the RMSE 

measured in the ix methods for each parameter. 

Table 6. RMSE in six methods for the mean temperature (Chiavari-Caperana weather station). 

Parameter 

Training 

Dataset 

Dimension 

Test Dataset 

Dimension 

Seasonal 

Period 
RMSE 

    avgSV ARIMA F-transf. TSSF SVM ADANN 

Temp. 

mean 
3822 78 Month 2.85 1.15 1.40 0.85 0.88 0.87 

The results in Table 6 confirm that the performances obtained using the TSSF algorithm are 

better than the ones obtained using the avgSV, ARIMA and F-transform methods. Moreover, the 

performance of the TSSF algorithm is comparable with the ones obtained using the SVM and 

ADANN algorithms, as the time series shows a regular seasonality 

In Table 7, we show the tests results obtained for the mean temperature using the seasonal 

datasets of the daily mean temperature measured by other stations in the district of Genova; the data 

were downloaded from the Liguria Region webpage “Ambiente in Liguria”. In each experiment, the 

season parameter is given by the month of the year. 

Table 7. RMSE in six methods for the mean temperature in various stations in Genova district (Italy). 

Station 
RMSE 

avgSV ARIMA F-transf. TSSF SVM ADANN 

Alpe Gorreto 2.98 1.20 1.49 0.84 0.81 0.83 

Campo Ligure 2.74 1.09 1.34 0.76 0.71 0.76 

Barbagelata 3.25 1.30 1.57 0.89 0.84 0.90 

Camogli 3.39 1.38 1.68 0.95 0.88 0.86 

Campo ligure 3.02 1.20 1.49 0.83 0.77 0.79 

Carlasco 2.91 1.15 1.42 0.80 0.77 0.76 

Chiavari 2.78 1.12 1.39 0.78 0.73 0.77 

Genova Bolzaneto 2.95 1.16 1.41 0.81 0.77 0.75 

Genova Pegli 3.34 1.29 1.64 0.94 0.89 0.88 

Panesi 3.20 1.29 1.56 0.87 0.84 0.83 

Rapallo 2.71 1.08 1.33 0.75 0.78 0.84 

Rovegno 2.94 1.18 1.45 0.82 0.82 0.80 

Tigliolo 3.06 1.24 1.52 0.85 0.80 0.85 

Viganego 3.17 1.28 1.57 0.88 0.82 0.83 

Table 7 confirms the results of Table 6. The performances of the TSSF algorithm are better than 

the ones obtained using the avgSV, ARIMA and F-trasform methods and comparable with the ones 

obtained with the SVM and ADANN algorithms: the reason for this is that none of the time series in 

Table 7 has significant irregular variations. 

6. Conclusions 

We present a new method based on F-transforms for seasonal forecasting. The goal was to 

adapt the F-transform based forecasting method in [29] for the analysis of seasonal times series, 

improving its performances with respect to other known methods. Usually, ARIMA model has 

lower performance than models based on ANN and SVM, but these models are complex to manage: 

for instance, the choice of the input parameters often affects the reliability of the final results. Our 

results show that the TFSS method improves the performances of ARIMA, avgSV and F-transform 

forecasting methods. In addition, for time series in which the seasonality of the data is more regular, 
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the performance obtained using the TFSS algorithm is comparable with the one obtained with SVM 

and ADANN models. 

In future works, we shall try to improve TSSF for the management of time series that also 

contain irregular variations, comparing it with other soft computing algorithms. 
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Appendix A 

Schema of the TSSF prediction algorithm 

(1) Calculate the trend using a polynomial fitting 

(2) Subtract to the data the trend value obtaining a new dataset 

(3) Partition the dataset into subsets: each data subset contains the measured data in a season. 

(4) FOR each seasonal subset 

(5)  n:= 3 

(6)  Set the fuzzy partition (8)  

(7)  IF the subset is sufficiently dense with respect to the fuzzy partition THEN 

(8)  Calculate the direct F-transform (15) 

(9)  Calculate the inverse F-transform (16) 

(10)  Calculate the MADMEAN index 

(11)  IF MADMEAN > Threshold THEN 

(12)  n:= n + 1 

(13)  Go to 6) 

(14)  END IF 

(15)  END IF 

(16) NEXT 

(17) STORE the direct F-transform components 

(18) END 

Appendix B 

Coefficients of the polynomial of 9th degree used for finding the best fit to training data of the mean 

temperature during the period 1 July 2003–16 August 2015. 

a9 = 1.34428E-33 

a8 = −2.82732E-28 

a7 = 2.32945E-23 

a6 = −9.06821E-19 

a5 = 1.45202E-14 

a4 = 0 

a3 = 0 

a2 = −0.066427015 

a1 = 0 

a0 = 17,699,903.37 

Coefficients of the polynomial of 9th degree used for finding the best fit to training data of the max 

temperature during the period 1 July 2003–16 August 2015. 

a9 = 1.45368E-33 

a8 = −3.06035E-28 

a7 = 2.52386E-23 
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a6 = −9.83437E-19 

a5 = 1.57619E-14 

a4 = 0 

a3 = 0 

a2 = −0.072310129 

a1 = 0 

a0 = 19,302,936.01 

Coefficients of the polynomial of 9th degree used for finding the best fit to training data of the min 

temperature during the period 1 January 2003–31 December 2015. 

a9 = 4.40678E-32 

a8 = −1.11212E-26 

a7 = 1.14529E-21 

a6 = −5.94437E-17 

a5 = 1.42772E-12 

a4 = 0 

a3 = −0.000762063 

a2 = 13.0645932 

a1 = 0 

a0 = −1160591164 

Coefficients of the polynomial of 9th degree used for finding the best fit to training data of the mean 

temperature measured at the weather station Chiavari-Caperana during the period 1 January 2006–31 December 

2016. 

a9 = 1.53589E-31 

a8 = −4.0454E-26 

a7 = 4.41907E-21 

a6 = −2.5338E-16 

a5 = 7.78147E-12 

a4 = −1.06189E-07 

a3 = 0 

a2 = 0 

a1 = 519825.0932 

a0 = −7088111243 
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