
  

Symmetry 2017, 9, 275; doi:10.3390/sym9110275  www.mdpi.com/journal/symmetry 

Article 

Neutrosophic Duplet Semi-Group and Cancellable 
Neutrosophic Triplet Groups 

Xiaohong Zhang 1,2,*, Florentin Smarandache 3 and Xingliang Liang 1 

1 Department of Mathematics, Shaanxi University of Science &Technology, Xi’an 710021, China; 

liangxingl@sust.edu.cn 
2 Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China 
3 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA; smarand@unm.edu 

* Correspondence: zhangxiaohong@sust.edu.cn or zhangxh@shmtu.edu.cn; Tel.: +86-021-3828-2231 

Received: 14 October 2017; Accepted: 10 November 2017; Published: 14 November 2017 

Abstract: The notions of the neutrosophic triplet and neutrosophic duplet were introduced by 

Florentin Smarandache. From the existing research results, the neutrosophic triplets and 

neutrosophic duplets are completely different from the classical algebra structures. In this paper, 

we further study neutrosophic duplet sets, neutrosophic duplet semi-groups, and cancellable 

neutrosophic triplet groups. First, some new properties of neutrosophic duplet semi-groups are 

funded, and the following important result is proven: there is no finite neutrosophic duplet semi-

group. Second, the new concepts of weak neutrosophic duplet, weak neutrosophic duplet set, and 

weak neutrosophic duplet semi-group are introduced, some examples are given by using the 

mathematical software MATLAB (MathWorks, Inc., Natick, MA, USA), and the characterizations of 

cancellable weak neutrosophic duplet semi-groups are established. Third, the cancellable 

neutrosophic triplet groups are investigated, and the following important result is proven: the 

concept of cancellable neutrosophic triplet group and group coincide. Finally, the neutrosophic 

triplets and weak neutrosophic duplets in BCI-algebras are discussed. 

Keywords: neutrosophic duplet; neutrosophic triplet; weak neutrosophic duplet; semi-group; BCI-

algebra 

 

1. Introduction 

Florentin Smarandache introduced the concept of a neutrosophic set from a philosophical point 

of view (see [1–3]). The neutrosophic set theory is applied to many scientific fields and also applied 

to algebraic structures (see [4–10]). Recently, Florentin Smarandache and Mumtaz Ali in [11], for the 

first time, introduced the notions of a neutrosophic triplet and neutrosophic triplet group. The 

neutrosophic triplet is agroup of three elements that satisfy certain properties with some binary 

operation; it is completely different from the classical group in the structural properties. In 2017, 

Florentin Smarandache wrote the monograph [12] that is present the latest developments in 

neutrodophic theories, including the neutrosophic triplet, neutrosophic triplet group, neutrosophic 

duplet, and neutrosophic duplet set. 

In this paper, we focus on the neutrosophic duplet, neutrosophic duplet set, and neutrosophic 

duplet semi-group. We discuss some new properties of the neutrosophic duplet semi-group and 

investigate the idempotent element in the neutrosophic duplet semi-group. Moreover, we introduce 

some new concepts to generalize the notion of neutrosophic duplet sets and discuss weak 

neutrosophic duplets in BCI-algebras (for BCI-algebra and related generalized logical algebra 

systems, please see [13–26]). 
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2. Basic Concepts 

2.1. Neutrosophic Triplet and Neutrosophic Duplet 

Definition 1. ([11,12]) Let N be a set together with a binary operation *. Then, N is called a neutrosophic 

triplet set if for any a ∈ N, there exist a neutralof “a” called neut(a),different from the classical algebraic unitary 

element, and an opposite of “a” called anti(a), with neut(a) and anti(a) belonging to N, such that: 

a * neut(a) = neut(a) * a = a;  

a * anti(a) = anti(a) * a = neut(a).  

The elements a, neut(a), and anti(a) are collectively called as a neutrosophic triplet, and we denote 

it by (a, neut(a), anti(a)). By neut(a), we mean neutral of a and, apparently, a is just the first coordinate 

of a neutrosophic triplet and nota neutrosophic triplet. For the same element “a” in N, there may be 

more neutrals to it neut(a) and more opposites of it anti(a). 

Definition 2. ([11,12]) The element b in (N, *) is the second component, denoted as neut(·), of a neutrosophic 

triplet, if there exists other elements a and c in N such that a * b = b * a = a and a * c = c * a = b. The formed 

neutrosophic triplet is (a, b, c). 

Definition 3. ([11,12]) The element c in (N, *) is the third component, denoted as anti(·), of a neutrosophic 

triplet, if there exists other elements a and b in N such that a * b = b * a = a and a * c = c * a = b. The formed 

neutrosophic triplet is (a, b, c). 

Definition 4. ([11,12]) Let (N, *) be a neutrosophic triplet set. Then, N is called a neutrosophic triplet group, 

if the following conditions are satisfied: 

(1) If (N, *) is well-defined, i.e., for any a, b ∈ N, onehas a * b ∈ N. 

(2) If (N, *) is associative, i.e., (a * b) * c = a * (b * c) for all a, b, c ∈ N. 

The neutrosophic triplet group, in general, is not a group in the classical algebraic way. 

Definition 5. ([11,12]) Let (N, *) be a neutrosophic triplet group. Then, N is called a commutative 

neutrosophic triplet group if for all a, b ∈ N, we have a * b = b * a. 

Definition 6. ([12]) Let U be a universe of discourse, and a set A ⊆ U, endowed with a well-defined law *.We 

say that 〈a, neut(a)〉, where a, neut(a) ∈ A, is a neutrosophic duplet in A if: 

(1) neut(a) is different from the unit element of A with respect to the law * (if any); 

(2) a * neut(a) = neut(a) * a = a; 

(3) there is no anti(a) ∈ A such that a * anti(a) = anti(a) * a = neut(a). 

Remark 1. In the above definition, we have A ⊆ U. When A = U, “neutrosophic duplet in A” is simplified as 

“neutrosophic duplet”, without causing confusion. 

Definition 7. ([12]) A neutrosophic duplet set, (D, *), is a set D, endowed with a well-defined binary law *, 

such that ∀a ∈ D, ∃ a neutrosophic duplet〈a, neut(a)〉 such that neut(a) ∈ D. If associative law holds in 

neutrosophic duplet set (D, *), then call it neutrosophic duplet semi-group. 

Remark 2. The above definition is different from the original definition of a neutrosophic duplet set in [12]. In 

fact, the meaning of Theorem IX.2.1 in [12] is not consistent with the original definition of a neutrosophic 

duplet set. The original definition is modified to ensure that Theorem IX.2.1 in [12] is still correct. 
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Remark 3. In order to include richer structure, the original concept of a neutrosophic triplet is generalized to 

neutrosophic extended triplet by Florentin Smarandache. For a neutrosophic extended triplet that is a 

neutrosophic triplet, the neutral of x (called “extended neutral”) is allowed to also be equal to the classical 

algebraic unitary element (if any). Therefore, the restriction “different from the classical algebraic unitary 

element, if any” is released. As a consequence, the “extended opposite” of x is also allowed to be equal to the 

classical inverse element from a classical group. Thus, a neutrosophic extended triplet is an object of the form 

(x, neut(x), anti(x)), for x ∈ N, where neut(x) ∈ N is the extended neutral of x, which can be equal or different 

from the classical algebraic unitary element, if any, such that: x * neut(x) = neut(x) * x = x, and anti(x) ∈ N is 

the extended opposite of x, such that: x * anti(x) = anti(x) * x = neut(x). In this paper, “neutrosophic triplet” 

means “neutrosophic extended triplet”, and “neutrosophic duplet” means “neutrosophic extended duplet”. 

2.2. BCI-Algebras 

Definition 8. ([15,22]) A BCI-algebra is an algebra (X; →, 1) of type (2,0) in which the following axioms are 

satisfied: 

(i) (x → y) →((y → z) → (x → z)) = 1, 

(ii) x → x = 1, 

(iii) 1 → x = x, 

(iv) if x → y = y → x = 1, then x = y. 

In any BCI-algebra (X; →, 1) one can define a relation ≤ by putting x ≤ y if and only if x →  y = 1, 

then ≤ is a partial order on X. 

Definition 9. ([16,20]) Let (X; →, 1) be a BCI-algebra. The set {x|x ≤ 1} is called the p-radical (or BCK-part) 

of X. A BCI-algebra X is called p-semisimple if its p-radical is equal to {1}. 

Definition 10. ([16,20]) A BCI-algebra (X; →, 1) is called associative if 

(x → y) → z = x→ (y → z), ∀x,y,z ∈ X.  

Proposition 1. ([16]) Let (X; →, 1) be a BCI-algebra. Then the following are equivalent: 

(i) X is associative; 

(ii) x → 1 = x, ∀x ∈ X; 

(iii) x → y = y → x, ∀x,y ∈ X. 

Proposition 2. ([16,24]) Let (X; +, −, 1) be anAbel group. Define (X; ≤, →, 1), where 

x → y = −x + y, x ≤ y if and only if –x + y = 1,∀x,y ∈ X.  

Then, (X; ≤, →, 1) is a BCI-algebra. 

3. New Properties of Neutrosophic Duplet Semi-Group 

For a neutrosophic duplet set (D, *), if a ∈ D, then neut(a) may not be unique. Thus, the symbolic 

neut(a) sometimes means one and sometimes more than one, which is ambiguous. To this end, this 

paper introduces the following notations to distinguish: 

neut(a): denote any certain one of neutral of a; 

{neut(a)}: denote the set of all neutral of a. 

Remark 4. In order not to cause confusion, we always assume that: for the same a, when multiple neut(a) are 

present in the same expression, they are always are consistent. Of course, if they are neutral of different 

elements, they refer to different objects (for example, in general, neut(a) is different from neut(b)). 
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Proposition 3. Let (D, *) be a neutrosophic duplet semi-group with respect to * and a ∈ D. Then, for any x, y 

∈ {neut(a)}, x * y ∈ {neut(a)}. That is, 

{neut(a)} * {neut(a)} ⊆ {neut(a)}.  

Proof. For any a ∈ D, by Definition 7, we have 

a * neut(a) = a, neut(a) * a = a.  

Assume x, y ∈ {neut(a)}, then 

a * x = x * a = a; a * y = y * a = a.  

From this, using associative law, we can get 

a * (x * y) = (x * y) * a = a.  

It follows that x * y is a neutral of a. That is, x * y ∈ {neut(a)}. This means that {neut(a)} * {neut(a)}⊆ 

{neut(a)}. □ 

Remark 5. If neut(a) is unique, then 

neut(a) * neut(a) = neut(a).  

But, if neut(a) is not unique, for example, assume {neut(a)} = {s, t} ∈ D, then neut(a) denote any 

one of s, t. Thus neut(a) * neut(a)represents one of s * s, and t * t; and {neut(a)} * {neut(a)} = {s * s, s * t, t* 

s, t * t}. Proposition 3 means that s * s, s * t, t * s, t * t ∈ {neut(a)} = {s, t}, that is,  

s * s = s, or s * s = t; s * t = s, or s * t = t.  

t * s = s, or t * s = t; t * t = s, or t * t = t.  

In this case, the equation neut(a) * neut(a) = neut(a) may not hold. 

Proposition 4. Let (D, *) be a neutrosophic duplet semi-group with respect to * and let a, b, c ∈ D. Then 

(1) neut(a) * b = neut(a) * c ⇒ a * b = a * c. 

(2) b * neut(a) = c * neut(a) ⇒ b *a = c * a. 

Proof. (1) Assume neut(a) * b = neut(a) * c. Then  

a * (neut(a) * b) = a * (neut(a) * c).  

By associative law, we have  

(a *neut(a)) * b = (a *neut(a)) * c.  

Thus, a * b = a * c. That is, (1) holds. 

Similarly, we can prove that (2) holds. □ 

Theorem 1. Let (D, *) be a commutative neutrosophic duplet semi-group with respect to * and a, b ∈ D. Then 

neut(a) * neut(b) ∈ {neut(a * b)}.  

Proof. For any a, b ∈ D, we have 

a * neut(a) * neut(b) * b = (a * neut(a)) * (neut(b) * b) = a * b.  

From this and applying the commutativity and associativity of operation * we get 

(neut(a) * neut(b)) *(a * b) = (a * b) * (neut(a) * neut(b)) = a * b.  

This means thatneut(a) * neut(b) ∈ {neut(a * b)}. □ 
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Theorem 2. Let (D, *) be a neutrosophic duplet set with respect to *. Then there is no idempotent element in 

D, that is, 

∀a ∈ D, a * a ≠ a.  

Proof. Assume that there is a ∈ D such that a * a = a. Then a ∈ {neut(a)}, and a ∈ {anti(a)}, This is a 

contraction with Definition 6 (3). □ 

Since the classical algebraic unitary element is idempotent, we have 

Corollary 1. Let (D, *) be a neutrosophic duplet set with respect to *. Then there is no classical unitary element 

in D, that is, there is no e ∈  D such that ∀a ∈  D, a * e = e * a = a. 

Theorem 3. Let (D, *) be a neutrosophic duplet semi-group with respect to *. Then D is infinite. That is, there 

is no finite neutrosophic duplet semi-group. 

Proof. Assume that D is a finite neutrosophic duplet semi-group with respect to *. Then, for any a ∈ D, 

a, a * a = a2, a * a * a = a3, …, an,… ∈ D.  

Since D is finite, so there exists natural number m, k such that 

am = am+k.  

Case 1: if k = m, then am = a2m, that is, am = am * am, am is an idempotent element in D, this is a 

contraction with Theorem 2. 

Case 2: if k > m, then from am = am+k we can get 

ak = am * ak−m = am+k * akm = a2k = ak * ak.  

This means that ak is an idempotent element in D, this is a contraction with Theorem 2. 

Case 3: if k <m, then from am = am+kwe can get 

am = am+k = am * ak = am+k * ak = am+2k;  

am = am+2k = am * a2k = am+k * a2k = am+3k;  

……  

am = am+mk.  

Since m and k are natural numbers, then mk ≥ m. Therefore, from am = am+mk, applying Case 1 or 

Case 2, we know that there exists an idempotent element in D, this is a contraction with Theorem 2. 

□ 

Theorem 4. Let (D, *) be a neutrosophic duplet semi-group with respect to *and a ∈  D. Then 

neut(neut(a)) ∈ {neut(a)}.  

Proof. For any a ∈ D, by the definition of neut(·), we have 

neut(a) * neut(neu(a)) = neut(a);  

neut(neut(a)) * neut(a) = neut(a).  

Then 

a * (neut(a) * neut(neut(a))) = a * neut(a);  

(neut(neut(a)) * neut(a)) * a = neut(a) * a.  
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By associative law, we have 

a * neut(neut(a)) = a; neut(neut(a)) * a = a.  

From this, by the definition of neut(·), we get neut(neut(a)) ∈ {neut(a)}. □ 

Theorem 5. Let (D, *) be a neutrosophic duplet semi-group with respect to *. Then 

(1) ∀a ∈ D, ({neut(a)}, *) is a neutrosophic duplet semi-group with respect to *. 

(2) ∀a ∈ D, {neut(a)} is infinite.  

Proof. (1) For any x, y ∈ {neut(a)}, by Proposition 3, x * y ∈ {neut(a)}. Thus, ({neut(a)}, *) is a semi-group. 

Moreover, applying Theorem 4, neut(neut(a)) ∈ {neut(a)}, that is, for any x ∈ {neut(a)}, denote y = 

neut(neut(a)) ∈ {neut(a)}, 

x * y = y * x = x.  

Since (D, *) is a neutrosophic duplet set, then, for any x ∈ {neut(a)}, there is no unit(x)∈ D such that 

x * unit(x) = unit(x) * x = neut(x).  

Thus, there is no unit(x) ∈ {neut(a)} such that 

x * unit(x) = unit(x) * x = neut(x).  

This means that there is no opposite of “x” for any x ∈ {neut(a)}. Hence, ({neut(a)}, *) is a 

neutrosophic duplet semi-group with respect to *. 

(2) Applying (1) and Theorem 3 we know that {neut(a)} is infinite for any x ∈ D. □ 

Remark 6. In the monograph [12] (p. 112), given an example of neutrosophic duplet semi-group. In fact, it is 

wrong, because the associative law does not hold: 

(b * a) *c = a * c = c, but b * (a * c) = b * c = b.  

4. Weak Neutrosophic Duplet Set (and Semi-Group) 

From Theorems 3 and 5, we can see that the structure of the neutrosophic duplet semi-group is very 

scarce. What are the reasons for that? The key reason is that under the original definition of neutrosophic 

duplet, the idempotent element is not allowed (since it has a corresponding opposite element). In fact, for 

any idempotent element a, we have a ∈ {neut(a)} and a ∈ {anti(a)}, that is, (a, a, a) is a neutrosophic triplet. 

Therefore, in order for us to study it more widely, we slightly relaxed the condition that allowed such (a, 

a, a) to exist in a neutrosophic duplet set and introduced a new concept as follows. 

Definition 11. A weak neutrosophic duplet set, (D, *), is a set D, endowed with a well-defined binary law *, 

such that ∀a ∈  D, if a ∉ {neut(a)}, then ∃a neutrosophic duplet〈a, neut(a)〉 such that neut(a) ∈ D. If the 

associative law holds in weak neutrosophic duplet set (D, *), then call it a weak neutrosophic duplet semi-group. 

The situation is quite different from that of the neutrosophic duplet semi-group, as there are 

many finite weak neutrosophic duplet semi-groups. See the following examples. 

Example 1. Let D = {1, 2, 3}. The operation * on D is defined as Table 1. Then, (D, *) is a commutative 

neutrosophic duplet semi-group.  
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Table 1. Weak neutrosophic duplet semi-group (1). 

* 1 2 3 

1 1 2 3 

2 2 2 2 

3 3 2 2 

In fact, we can verify that (D, *) is a neutrosophic duplet semi-group by MATLAB programming, 

as shown in Figure 1. 

In this example, “1” and “2” are idempotent elements in D, and neut(1) = 1, neut(2) = 2. Moreover, 

neut(3) = 1, but {anti(3)} = ∅. 

 

Figure 1. Verity weak neutrosophic duplet semi-group by MATLAB. 

Example 2. Let D = {1, 2, 3}. The operation * on D is defined as Table 2. Then, (D, *) is a non-commutative 

neutrosophic duplet semi-group.  
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Table 2. Weak neutrosophic duplet semi-group (2). 

* 1 2 3 

1 1 1 1 

2 1 2 3 

3 3 3 3 

In this example, “1”, “2”, and “3” are idempotent elements in D, and {neut(1)} = {1, 2},neut(2) = 2, 

{neut(3)} = {2, 3}. 

Example 3. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 3. Then, (D, *) is a commutative 

neutrosophic duplet semi-group. 

Table 3. Weak neutrosophic duplet semi-group (3). 

* 1 2 3 4 

1 3 1 4 4 

2 1 2 3 4 

3 4 3 4 4 

4 4 4 4 4 

In this example, “2” and “4” are idempotent elements in D, and neut(2) = 2,{neut(4)} = {1, 2, 3, 4}. 

neut(1) = 2, {anti(1)} = ∅; neut(3) = 2, {anti(3)} = ∅. 

Example 4. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 4. Then, (D, *) is a non-commutative 

neutrosophic duplet semi-group. 

Table 4. Weak neutrosophic duplet semi-group (4). 

* 1 2 3 4 

1 2 2 3 1 

2 2 2 3 2 

3 2 2 3 3 

4 1 2 3 4 

In this example, “2”, “3”, and “4” are idempotent elements in D, and neut(1) = 4,{anti(1)} = ∅. 

Now, we explain all of the neutrosophic duplet semi-groups with three elements. In total, we 

can obtain 50 neutrosophic duplet semi-groups with three elements, some of which may be 

isomorphic. They are funded by MATLAB programming, as shown in Figure 2. 

Definition 12. A weak neutrosophic duplet semi-group (D, *) is called to be cancellable, if it satisfies 

∀a, b, c ∈ D, a *b = a * c ⇒ b = c;  

∀a, b, c ∈ D, b * a = c * a ⇒ b = c.  

The weak neutrosophic duplet semi-groups in Examples 1–4 are not cancellable. We give a 

cancellable example as follows. 
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Figure 2. Find weak neutrosophic duplet semi-group by MATLAB. 

Example 5. Let D = {1, 2, 3, …}. The operation * on D is the multiplication of natural number. Then, (D, *) is 

a cancellable weak neutrosophic duplet semi-group. 

In this example, for any element a in D, and neut(a) = 1. 

Example 6. Let D = {0, 1, 2, 3, …}. The operation * on D is the addition of natural number. Then, (D, *) is a 

cancellable weak neutrosophic duplet semi-group. 

In this example, for any element a in D, and neut(a) = 0. 
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Theorem 6. Let (D, *) be a cancellable weak neutrosophic duplet semi-group with respect to *. Then 

(1) ∀a ∈ D, neut(a) is unique. 

(2) ∀a ∈ D, neut(a) * neut(a) = neut(a). 

(3) ∀a ∈ D, neut(a) * neut(a) = neut(a * a). 

(4) ∀a, b ∈ D, neut(a) = neut(b). 

Proof. (1) For any a ∈ D, we have 

Case 1: if a ∈ {neut(a)}, then a * a = a. Thus 

a * a = a = a * neut(a).  

By Definition 12, we have a = neut(a). This means that {neut(a)} = {a}, that is, neut(a) is unique. 

Case 2: if a ∉ {neut(a)}, assume x, y ∈ {neut(a)}, then 

a * x = a = a * y.  

By Definition 12, we havex = y. This means that |{neut(a)}| = 1, that is, neut(a) is unique. 

(2) If a ∈ {neut(a)}, then a * a = a, by (1) we get a = neut(a), so neut(a) * neut(a) = neut(a). 

If a ∉ {neut(a)}, by the same way with Proposition 3, we can prove that 

{neut(a)} * {neut(a)} ⊆ {neut(a)}.  

Using (1) we have neut(a) * neut(a) = neut(a). 

(3) For any a ∈ D, since (by associative law) 

(neut(a) * neut(a)) * (a * a) = a * a;  

(a * a) * (neut(a) * neut(a)) = a * a.  

This means that neut(a) * neut(a) ∈ {neut(a * a)}, but by (1) |{neut(a)}| = 1, thus 

neut(a) * neut(a) = neut(a * a).  

(4) For any a, b ∈ D, since (by associative law) 

a * neut(a) * neut(b) *b = a * b.  

From this, applying Definition 12, 

neut(a) * neut(b) * b = b.  

neut(a) * neut(b) * b = b = neut(b) * b.  

Applying Definition 12 again, 

neut(a) * neut(b) = neut(b).  

Similarly, we can get 

neut(a) * neut(b) = neut(a).  

Hence, neut(a) = neut(b). □ 

Theorem 7. Let (D,) be a cancellable weak neutrosophic duplet semi-group with respect to *. If D is a finite 

set, then D is a single point set, that is, |D| = 1. 

Proof. By Theorem 6, we know that {neut(a) | a ∈ D} is a single point set. Denote neut(a) = e (∀a ∈ D). 

Assume that D is a finite set, if |D| ≠ 1, then there exists x ∈ D such that x ≠ e. Denote |D| = n, D 

= {a1, a2, …, an}. In the table of operation *, consider the line in which the x is located: 

x * a1, x * a2, …, x * an  
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Since D is cancellable, then x * a1, x * a2, …, x * anare different from each other. Thus, ∃ai such that 

x * ai = e. It follows that 〈x, neut(x) = e〉 is not a neutrosophic duplet. Applying Definition 11, x ∈ 

{neut(x)} = {e}. That is, x ≠ e. This is a contraction with the hypothesis x ≠ e. Hence |D| = 1. 

Applying Theorems 2 and 6, we can get the following theorem. □ 

Theorem 8. Let (D, *) be a neutrosophic duplet semi-group with respect to *. Then D is not cancellable. That 

is, there is no cancellable neutrosophic duplet semi-group. 

5. On Cancellable Neutrosophic Tripet Groups 

Definition 13. A neutrosophic triplet group (D, *) is called to be cancellable, if it satisfies 

∀a, b, c ∈ D, a * b = a * c ⇒ b = c;  

∀a, b, c ∈ D, b * a = c * a ⇒ b = c.  

Example 7. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 5. Then, (D, *) is a cancellable 

neutrosophic triplet group. 

Table 5. Cancellable neutrosophic triplet group. 

* 1 2 3 4 

1 1 2 3 4 

2 2 1 4 3 

3 3 4 1 2 

4 4 3 2 1 

In this example, neut(1) = neut(2) = neut(3) = neut(4) = 1, and anti(1) = 1, anti(2) = 2, anti(3) = 3, 

anti(4) = 4. 

Theorem 9. Let (D, *) be a cancellable neutrosophic triplet group with respect to *. Then 

(1) ∀a ∈ D, neut(a) is unique. 

(2) ∀a ∈ D, anti(a) is unique. 

(3) ∀a, b ∈ D, neut(a) = neut(b). 

(4) (D, *) is a group, the unit is neut(a),∀a ∈ D. 

Proof. (1) For any a ∈ D, assume x, y ∈ {neut(a)}, then 

A * x = a = a * y.  

By Definition 13, we have x = y. This means that |{neut(a)}| = 1, that is, neut(a) is unique. 

(2) For any a ∈ D, using (1), neut(a) is unique. Assume x, y ∈ {anti(a)}, then 

a * x = neut(a) = a * y.  

By Definition 13, we have x = y. This means that |{anti(a)}| = 1, that is, anti(a) is unique. 

(3) For any a, b ∈ D, since (by associative law) 

neut(a) * b = neut(a) * neut(b) * b.  

From this, applying Definition 13,  

neut(a) = neut(a) * neut(b).  

On the other hand, since (by associative law) 

a * neut(b) = a * (neut(a) * neut(b)).  

From this, applying Definition 13 again, 
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neut(b) = neut(a) * neut(b).  

Thus, neut(a) = neut(b). 

(4) It follows from (1)~(3). □ 

Since any group is a cancellable neutrosophic triplet group, by Theorem 9 (3), we have 

Theorem 10. The concepts of neutrosophic triplet group and group coincide. 

The following example shows that there exists a non-cancellable neutrosophic triplet group, in 

which (∀a ∈ D) neut(a) is unique and anti(a) is unique. 

Example 8. Let D = {1, 2, 3, 4}. The operation * on D is defined as Table 6. Then, (D, *) is a non-cancellable 

neutrosophic triplet group, but (∀a ∈ D) neut(a) is unique and anti(a) is unique. 

Table 6. Non-cancellable neutrosophic triplet group. 

* 1 2 3 4 

1 1 2 3 4 

2 1 2 3 4 

3 1 2 3 4 

4 1 2 3 4 

In this example, neut(1) = anti(1) = 1, neut(2) = anti(2) = 2, neut(3) = anti(3) = 3, neut(4) = anti(4) = 4. 

Definition 14. A neutrosophic triplet group (D, *) is called to be weak cancellable, if it satisfies 

∀a, b, c ∈ D, (a * b = a * c and b * a = c * a) ⇒ b = c. 
 

Obviously, acancellable neutrosophic triplet group is weak cancellable, but a weak cancellable 

neutrosophic triplet group may not be cancellable. In fact, the (D, *) in Example 8 is weak cancellable, 

but is not cancellable. 

Theorem 11. Let (D, *) be a weak cancellable neutrosophic triplet group with respect to *. Then 

(1) ∀a ∈ D, neut(a) is unique. 

(2) ∀a ∈ D, anti(a)is unique. 

Proof. (1) For any a ∈ D, assume x, y ∈ {neut(a)}, then 

a * x = a = a * y.  

x* a = a = y * a.  

By Definition 14, we have x = y. This means that |{neut(a)}| = 1, that is, neut(a) is unique. 

(2) For any a ∈ D, using (1), neut(a) is unique. Assume x, y ∈ {anti(a)}, then 

a * x = neut(a) = a * y.  

x * a = neut(a) = y * a.  

By Definition 14, we have x = y. This means that |{anti(a)}| = 1, that is, anti(a) is unique. 

The following example shows that there exists a neutrosophic triplet group in which (∀a ∈ D) 

neut(a) is unique and anti(a) is unique, but it is not weak cancellable. □ 

Example 9. Let D = {1, 2, 3}. The operation * on D is defined as Table 7. Then, (D, *) is a neutrosophic triplet 

group, and (∀a ∈ D) neut(a) is unique and anti(a) is unique. However, it is not weak cancellable, since 
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2 * 1 = 2 * 2, 1 * 2 = 2 * 2, 1 ≠ 2.  

Table 7. Not weak cancellable neutrosophic triplet group. 

* 1 2 3 

1 1 2 3 

2 2 2 3 

3 3 3 2 

In this example, we have 

neut(1) = anti(1) = 1, neut(2) = anti(2) = 2, neut(3) = anti(3) = 2.  

The following example shows that there exists a commutative neutrosophic triplet group which 

(∃a ∈ D) anti(a) is not unique. 

Example 10. Consider (Z6, *), where * is classical multiplication. Then, (Z6, *) is a commutative neutrosophic 

triplet group, the binary operation * is defined in Table 8. For each a ∈ Z6, we have neut(a) in Z6. That is, 

neut([0]) = [0], neut([1]) = [1], neut([2]) = [4],  

neut([3]) = [3], neut([4]) = [4],neut([5]) = [1];  

{anti([0])} = {[0], [1], [2], [3], [4], [5]},  

{anti([1])} = {[1]},  

{anti([2])} = {[2], [5]},  

{anti([3])} = {[1], [3], [5]},  

{anti([4])} = {[1], [4]},  

{anti([5])} = {[5]}.  

Table 8. Cayley table of (Z6, *). 

* [0] [1] [2] [3] [4] [5] 

[0] [0] [0] [0] [0] [0] [0] 

[1] [0] [1] [2] [3] [4] [5] 

[2] [0] [2] [4] [0] [2] [4] 

[3] [0] [3] [0] [3] [0] [3] 

[4] [0] [4] [2] [0] [4] [2] 

[5] [0] [5] [4] [3] [2] [1] 

6. Neutrosophic Triplets and Weak Neutrosophic Duplets in BCI-Algebras 

Now, we discuss BCI-algebra (X; →, 1). 

Theorem 12. Let (X; →, 1) be a BCI-algebra. Then 

(1) ∀x ∈ X, if {neut(x)} ≠ ∅ and y ∈ {neut(x)}, then x → 1 = x, y → 1 = 1. 

(2) ∀x ∈ X, if {neut(x)} ≠ ∅ and {anti(x)} ≠ ∅, then z → 1 = x for any z ∈ {anti(x)}. 
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Proof. (1) Assume y ∈ {neut(x)}, then 

X → y = y → x = x.  

Using the properties of BCI-algebras, we have 

x → 1 = x → (y → y) = y →(x → y) = y → x = x.  

y → 1 = y →(x → x) = x →(y → x) = x → x = 1.  

(2) Assume z ∈ {anti(x)}, then 

Z → x = x → z = neut(x).  

Using (1) and the properties of BCI-algebras, we have 

1 = neut(x) → 1 = (z → x) → 1 = (z → 1) → (x → 1) = (z → 1) → x.  

1 = neut(x) → 1 = (x → z) → 1 = (x → 1) → (z → 1) = x→(z → 1).  

Hence, z → 1 = x. □ 

Example 11. Let D = {a, b, c, 1}. The operation → on D is defined as Table 9. Then, (D, →) is a BCI-algebra 

(it is a dual form of I4-2-2 in [16]), and 〈c, 1, c〉 is a neutrosophic triplet in (D, →). 

Table 9. Neutrosophic triplet in BCI-algebra. 

→ a b c 1 

a 1 c c 1 

b c 1 1 c 

c b a 1 c 

1 a b c 1 

Theorem 13. Let (X; →, 1) be a BCI-algebra. Then (X, →) is a neutrosophic triplet group if and only if (X; 

→, 1) is an associative BCI-algebra. 

Proof. Suppose that (X; →) is a neutrosophic triplet group. Then ∀x ∈ X, {neut(x)} ≠ ∅. By Theorem 

12, x → 1 = x. Using Proposition 1, (X; →, 1) is an associative BCI-algebra.  

Conversely, suppose that (X; →, 1) is an associative BCI-algebra. Then (X; →, 1) is a group. 

Hence, (X; →) is a neutrosophic triplet group. □ 

Example 12. Let D = {a, b, c, 1}. The operation → on D is defined as Table 10. Then, (D; →, 1) is a BCI-algebra 

(it is a dual form of I4-1-1 in [16]), and (D, →) is a neutrosophic triplet group.  

Table 10. Neutrosophic triplet group and BCI-algebra. 

→ a b c 1 

a 1 c c 1 

b c 1 1 c 

c b a 1 c 

1 a b c 1 

Theorem 14. Let (X; →, 1) be a BCI-algebra. Then (X, →) is not a neutrosophic duplet semi-group. 

Proof. Since 1 = 1 → 1, so, applying Theorem 2, we get that (X, →) is not a neutrosophic duplet semi-group. 

□ 

Theorem 15. Let (X; →, 1) be a BCI-algebra. If (X, →) is a weak neutrosophic duplet semi-group, then X = {1}. 
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Proof. Assume that∃x ∈ X − {1}. Since x → x = 1, so x∉ {neut(x)}. Applying Definition 11, {neut(x)} ≠ ∅, 

from this and using Theorem 12 (1), x →  1 = x. Thus 

x → 1 = 1 → x = x.  

x → (x → 1) = (x → 1) → x = 1.  

This means that 1 ∈ {neut(x)}, x → 1 ∈ {anti(x)}, this is a contraction with Definition 11. □ 

7. Conclusions 

This paper is focused on the neutrosophic duplet semi-group. We proved some new properties 

of the neutrosophic duplet semi-group, and proved that there is no finite neutrosophic duplet semi-

group. We introduced the new concept of weak neutrosophic duplet semi-groups and gave some 

examples by MATLAB. Moreover, we investigated cancellable neutrosophic triplet groups and 

proved that the concept of cancellable neutrosophic triplet group and group coincide. Finally, we 

discussed neutrosophic triplets and weak neutrosophic duplets in BCI-algebras. 
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