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Abstract: Normal intuitionistic fuzzy numbers (NIFNs), which combine the normal fuzzy number 

(NFN) with intuitionistic number, can easily express the stochastic fuzzy information existing in 

real decision making, and power-average (PA) operator can consider the relationships of different 

attributes by assigned weighting vectors which depend upon the input arguments. In this paper, 

we extended PA operator to process the NIFNs. Firstly, we defined some basic operational rules of 

NIFNs by considering the interaction operations of intuitionistic fuzzy sets (IFSs), established the 

distance between two NIFNs, and introduced the comparison method of NIFNs. Then, we proposed 

some new aggregation operators, including normal intuitionistic fuzzy weighted interaction 

averaging (NIFWIA) operator, normal intuitionistic fuzzy power interaction averaging (NIFPIA) 

operator, normal intuitionistic fuzzy weighted power interaction averaging (NIFWPIA) operator, 

normal intuitionistic fuzzy generalized power interaction averaging (NIFGPIA) operator, and 

normal intuitionistic fuzzy generalized weighted power interaction averaging (NIFGWPIA) 

operator, and studied some properties and some special cases of them. Based on these operators, 

we developed a decision approach for multiple attribute decision-making (MADM) problems with 

NIFNs. The significant characteristics of the proposed method are that: (1) it is easier to describe the 

uncertain information than the existing fuzzy sets and stochastic variables; (2) it used the interaction 

operations in part of IFSs which could overcome the existing weaknesses in operational rules of 

NIFNs; (3) it adopted PA operator which could relieve the influence of unreasonable data given by 

biased decision makers; and (4) it made the decision-making results more flexible and reliable 

because it was with generalized parameter which could be regard as the risk attitude value of 

decision makers. Finally, an illustrative example is given to verify its feasibility, and to compare 

with the existing methods. 

Keywords: power average (PA); normal intuitionistic fuzzy number (NIFN); normal intuitionistic 

fuzzy power interaction averaging (NIFPIA) operator; interaction operations; multiple attribute 

decision-making (MADM) 

 

1. Introduction 

Since Zadeh [1] proposed fuzzy set (FS), the research and applications based on FS have made 

many achievements, especially the interval numbers, triangular fuzzy numbers (TFNs) and 

trapezoidal fuzzy numbers (TrFNs) have become the important tools for expressing the fuzzy 

information. However, the fuzzy set can only characterize the fuzziness by membership degree (MD), 

and cannot describe the incomplete information. Atanassov [2] proposed the intuitionistic fuzzy set 

(IFS) by adding a non-membership degree (NMD). Obviously, IFS is easier to characterize the 

fuzziness than FS, and it has received more and more concerns. Biswas and Kumar De [3] proposed 

a new ranking method for IFSs. Later, Atanassov and Gargov [4] extended IFS to the interval-valued 
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IFS (IVIFS) by extending the MD and NMD to interval numbers. Zhang and Liu [5] proposed 

triangular intuitionistic fuzzy numbers by extending MD and NMD to TFNs. Obviously, these 

extended forms of IFS mainly solve the problems in which MD and NMD only are crisp numbers in 

IFS. Further, Shu et al. [6] defined the intuitionistic TFNs which combined TFNs with intuitionistic 

fuzzy numbers (IFNs), whose MD and NMD were expressed the degrees of belonging or non-

belonging to TFNs. Similarly, by combining some fuzzy numbers with IFNs, Wang [7] defined 

intuitionistic TrFNs, Wang and Li [8] proposed intuitionistic linguistic sets, Liu and Jin [9] and Liu et 

al. [10] proposed intuitionistic uncertain linguistic variables (IULVs), and Liu [11] proposed interval 

IULVs. Obviously, these extensions can more conveniently describe the complex information. 

However, the operational rules in intuitionistic fuzzy part adopted the operations of IFS proposed by 

Atanassov [12]. However, there exist some shortcomings in the operational laws for addition and 

multiplication. For example, let  ,a aa u v  and  ,
b b

b u v  be two IFNs, according to addition rule 

 ,a a ab b b
a b u u u u v v     proposed by Atanassov [12], when 0av  , regardless of the value of 

b
v , 

the NFD of the addition operation a b  is also zero. Similarly, according to multiplication rule 

 ,a a ab b b
a b u u v v v v    , when 0au  , regardless of the value of 

b
u , the MD of the multiplication 

operation a b  is also zero. Obviously, this is counterintuitive. Further, He et al. [13] proposed some 

interaction operational laws for IFNs, the advantages of them are that the weaknesses of the existing 

operations were overcome, and the interactions between MD and NMD were considered. Now, the 

applications about interaction operational laws of for IFNs are still less. 

Recently, Wang and Li [14,15] proposed another extension of IFS, called the normal IFNs (NIFNs), 

in which the MD and NMD are expressed in normal fuzzy numbers (NFNs) proposed by Yang and Ko 

[16]. Of course, we can also regard NIFNs as the results produced by combining NFNs with IFNs. 

Stochastic phenomena widely exist in social, economic and management activities [17–21], and many 

of them follow the normal distribution, for example, the using lifetime of production, the pass rate of 

production, etc. With respect to the stochastic phenomena, when the average and the variance of the 

using lifetime of production are 1000 and 2, respectively, which are expressed as a NFN (10,000,2) , 

sometime we are not 100% sure for this value, if we have 80% certainty degree and 10% negation degree, 

we can use the NIFNs to describe this kind of information, i.e., (10,000,2),0.8,0.1 . Thus, NIFNs can 

express the stochastic phenomena better than NFNs by adding MD and NMD. Further, Li and Liu [22] 

also think normal membership function has the property of higher derivative continuity, and the other 

fuzzy numbers do not have this nature, at the same time, they pointed out the fuzzy concepts described 

by normal membership function are much closer to human being mind. Therefore, NIFNs are better 

than the extensions of IFNs. Now research and applications on NIFNs are rare. Wang and Li [14] 

proposed some operational laws, the score function and comparison method for NIFNs, then 

developed some induced intuitionistic normal fuzzy related aggregation operators and applied them 

to multiple attribute decision making (MADM). Wang and Li [15] proposed normal intuitionistic fuzzy 

weighted arithmetic averaging operator and normal intuitionistic fuzzy weighted geometric averaging 

operator, and developed a method to solve the MADM problems in which the attribute values take the 

form of NIFNs and attribute weight is incomplete, especially, an optimal attribute weight model is 

constructed based on the minimum of the sum of the distance between every two alternatives. Wang et 

al. [23] proposed some normal intuitionistic fuzzy aggregation operators and applied them to solve the 

MADM problems. 

The information aggregation operators are widely applied in decision making and pattern 

recognition, etc. and the study on them has always been a hot and important topic. One of these 

aggregation operators is power average (PA) operator proposed by Yager [24], which considers the 

relationship between the fused values by assigning the weighting vectors according to support 

degrees between the aggregated arguments. Now, research on PA operator has made some 

achievements. Xu and Yager [25] developed an uncertain geometric PA operator and an uncertain 

power OWG (UPOWG) operator. Xu [26] developed a series of PA operators for the IFNs. Zhou and 

Chen [27] developed some generalized PAs for linguistic information, and used them in MADM 

problems. Zhang [28] proposed some hesitant fuzzy PA operators. Liu and Yu [29] and Liu and Wang 
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[30] proposed some generalized PA operators for two-dimensional ULVs and intuitionistic linguistic 

variables, respectively. Liu and Liu [31] proposed intuitionistic trapezoidal fuzzy generalized PA 

operators. Obviously, PA operator has attracted wide attentions. However, there are not the 

researches on applications of PA operator in NIFNs. 

In real managements, especially for MADM, the attributes are often uncertain information, 

which is typically characterized by fuzzy information or stochastic information [32–35]. Of course, 

the most complex situation is with fuzzy information and stochastic information, simultaneously. In 

addition, in MADM, there is the relationship among the attributes; especially there exist some 

unreasonable data given by biased decision makers. Thus, to how to describe the uncertain attribute 

values and how to relieve the influence of unreasonable data and to give a reasonable decision 

making result are important. 

As mentioned above, NIFNs can better express the stochastic and fuzzy information, and PA 

operator can better deal with the relationship between the fused values which can relieve the influence of 

unreasonable data given by biased decision makers, at the same time, the interaction operational laws for 

IFNs can take into the interactions between MD and NMD account and overcome the weaknesses in 

existing operational rules. Thus, the goal and motivation of this paper are: (1) to propose some novel 

operational rules of NIFNs based on the interaction operations of IFNs; (2) to develop some new power 

interaction aggregation operators for NIFNs, and explore some properties of these operators; and (3) to 

propose a decision method for MADM problems with the formation of NIFNs. 

To realize the above purpose, the rest of this paper is organized as follows. In Section 2, we 

briefly introduce some basic concepts of NIFNs, interaction operational laws for IFNs, and PA 

operator. In Section 3, we propose the operational rules of NIFNs based on interaction operations, 

and introduce the comparison method of NIFNs. In Section 4, we develop some normal intuitionistic 

fuzzy power interaction aggregation operators, and study some properties and some special cases of 

them. In Section 5, we apply the new operator to develop a decision approach for MADM problems 

with the formation of NIFNs. Section 6 gives an example to illustrate the validity of the new approach. 

Section 7 ends this paper by some conclusions. 

2. Preliminaries 

In this section, we will introduce some basic concepts and theory to easily understand the 

contents of this paper. 

2.1. The NIFN 

Definition 1 [16]. Let R be a real number set and ( , )A a   be a NFN if its MD satisfies: 

 

2

( ) 0

x a

A x e  

 
 
    (1) 

Here, we can define N as the set of all NFNs. 

Definition 2 [15,36]. Suppose ( , )A a   and ( , )B b   are any two NFNs, and then the operations 

between A  and B  can be given as follows: 

 ( , ) ( , ) 0kA k a ka k k      (2) 

( , ) ( , ) ( , )A B a b a b           (3) 

Definition 3 [14,15]. Suppose ( , )A a   and ( , )B b   are any two NFNs, and then the distance between 

them is defined as: 

  2 21
, ( ) ( )

2
d A B a b        (4) 



Symmetry 2017, 9, 261  4 of 30 

 

Definition 4 [2]. Let  1 2, , , nX x x x  be an ordinary finite non-empty set, an IFS A  in X  is given by: 

{ , ( ), ( ) }A AA x u x v x x X     (5) 

where : [0,1]Au X   and : [0,1]Av X  , with the condition 0 ( ) 1A Au x v x  （ ） , x X  . The numbers 

( )Au x  and ( )Av x  denote the MD and NMD of the element x  to the set A , respectively, and 

( ) 1 ( ) ( )A Ax u x v x     indicates the degree of indeterminacy of x  to the set A . 

For convenience, we can regard  ,a aa u v  as an IFN, and the set of all the IFNs as IFNs(X). 

Definition 5 [12]. Let    , , ,a a b b
a u v b u v IFNs   , then the basic operational rules were defined as 

follows: 

 ,a a ab b b
a b u u u u v v     (6) 

 ,a a ab b b
a b u u v v v v   

 
(7) 

 1 (1 ) , , 0a aa u v       (8) 

 ,1 (1 ) , 0a aa u v        (9) 

He et al. [13] think there are some weaknesses in the operations, for example, when 0av  , 

regardless of the value of 
b

v , the NMD of the addition operation a b  in Equation (6) is also zero. 

Obviously, this is counterintuitive. He et al. [13] proposed some interaction operational laws to 

overcome the weaknesses, which are shown as follows. 

Definition 6 [13]. Let    , , ,a a b b
a u v b u v IFNs   , then the interaction operational rules were defined as 

follows: 

              1 1 1 , 1 1 1 1a a a ab b b b
a b u u u u u v u v                (10) 

            1 1 1 1 ,1 1 1a a a ab b b b
a b v v u v u v v v             (11) 

       1 1 , 1 1 , 0a a a aa u u u v
 

          (12) 

       1 1 ,1 1 , 0a a a aa v u v v
           (13) 

Definition 7 [14,15]. Let X  be an ordinary finite non-empty set and ( , ), ,A Aa a u v  is a NIFN if its 

MD satisfies: 

2

( ) ,

x a

a au x u e x X

 
 
     (14) 

and its NMD satisfies: 

2

( ) 1 (1 ) ,

x a

a av x v e x X

 
 
       (15) 

where ( , )a N  , [0,1]a au v ，  and 0 1a au v   . Obviously, when 1au   and 0av  , the NIFN will be 

an NFN. NIFNs are a generalization of the NFNs by adding the NMD. Further, let ( ) 1 ( ) ( )a ax u x v x    , 

x X , and we call ( )x  the indeterminacy degree or hesitance degree. 

The set of NIFNs is denoted by NIFNS. 
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2.2. The PA 

Definition 8 [24]. Let ( 1,2, , )ia i n  be a collection of real numbers, the PA operator, which was proposed 

by Yager [24], is defined as follows: 

1

1 2

1

(1 ( ))

( , , , )

(1 ( ))

n

i i

i

n n

i

i

T a a

PA a a a

T a














 (16) 

where  

1

( ) ( , )
n

i i j

j
j i

T a Sup a a



  (17) 

and ( , )Sup a b  is the support degree for a  from b , which meets the properties. (1) ( , ) [0,1]Sup a b  ; (2) 

( , ) ( , )Sup a b Sup b a ; (3) ( , ) ( , )Sup a b Sup x y , if a b x y   . 

3. Operations of NIFNs  

In this section, we will define the operational rules of NIFNs based on the normal fuzzy 

operations and intuitionistic fuzzy interaction operations, and give the distance and comparison 

method between two NIFNs. 

3.1. The Operational Rules of NIFNs  

Wang and Li [14,15] proposed some operational laws of NIFNs; however, they did not consider 

the interaction between MD and NMD in the operations in intuitionistic fuzzy part of NIFNs. Thus, 

based on the normal fuzzy operations and intuitionistic fuzzy interaction operations, we can establish 

some new operational rules of NIFNs. 

Let 1 1 1 1 1( , ), ,a a u v  and 2 2 2 2 2( , ), ,a a u v  be two NIFNs, and 0n  , then the 

interactional operational rules of NIFNs are defined as follows: 

           1 2 1 2 1 2 1 2 1 2 1 1 2 2( , ),1 1 1 , 1 1 1 1a a a a u u u u u v u v                 (18) 

           
2 2

1 2

1 2 1 2 1 2 1 2 1 1 2 2 1 22 2

1 2

, , 1 1 1 1 ,1 1 1a a a a a a v v u v u v v v
a a

  
             
 
 

 (19) 

      1 1 1 1 1 1 1( , ),1 1 , 1 1
nn n

na na n u u u v        (20) 

        
1
2 1

1 1 1 1 1 1 1 1, , 1 1 ,1 1
nn nn n na a n a v u v v        (21) 

Moreover, all results of these operations are still a NIFN. 

Theorem 1. Let 1 1 1 1 1( , ), ,a a u v , 2 2 2 2 2( , ), ,a a u v  and 3 3 3 3 3( , ), ,a a u v  be three NIFNs, and 

1, 0n n  , then: 

1 2 2 1a a a a    (22) 

1 2 2 1a a a a    (23) 

1 2 3 1 2 3( ) ( )a a a a a a      (24) 

1 2 3 1 2 3( ) ( )a a a a a a      (25) 

1 2 1 2( )n a a na na    (26) 
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1 1 1 1 1( )na n a n n a    (27) 

1 1

1 1 1( )
n n nna a a 

   (28) 

1 2 1 2( )n n na a a a    (29) 

Proof. 

(1) According to the interaction operation rules of NIFNs, obviously, Equations (22) and (23) are 

right. 

(2) For the left of Equation (24), we have: 

  

        

   

            

1 2 3 1 2 1 2 1 2

1 2 1 1 2 2 3 3 3 3

1 2 3 1 2 3 1 2 3

1 2 3 1 1 2 2 3 3

3 3

1 1

( ) ( , ),1 1 1 ,

1 1 1 1 ( , ), ,

( , ) ,1 1 1 1 ,

1 1 1 1 1 1

, ,1 1i i

i i

a a a a a u u

u u u v u v a u v

a a a u u u

u u u u v u v u v

a

 



  


 

       

        

        

          

 
  

 
        

3 3 3

1 1 1

, 1 1i i i i

i i i

u u u v
  

      

 
 

For right of Equation (24), we have: 

    

        

   

            

1 2 3 1 1 1 1 2 3 2 3 2 3

3 3 2 2 3 3

1 2 3 1 2 3 1 2 3

1 2 3 1 1 2 2 3 3

3 3

1 1

( , ), , ( , ),1 1 1 ,

1 1 1 1

( , ) ,1 1 1 1 ,

1 1 1 1 1 1

, ,1 1i i

i i

a a a a u v a a u u

u u u v u v

a a a u u u

u u u u v u v u v

a u

  

  


 

        

       

        

          

 
   

 
        

3 3 3

1 1 1

, 1 1i i i i

i i i

u u v
  

     

 
 

Thus, Equation (24) is right. 

(3) The proof of Equation (25) is similar to Equation (24), thus it is omitted here. 

(4) For the left of Equation (26), we have: 

           

                  

1 2 1 2 1 2 1 2 1 2 1 1 2 2

1 2 1 2 1 2 1 2 1 1 2 2

( ) ( , ),1 1 1 , 1 1 1 1

, ,1 1 1 , 1 1 1 1
n nn n n n

n a a n a a u u u u u v u v

n a a n u u u u u v u v

 

 

             

            
  

For right of Equation (26), we have: 

      

      

             

1 2 1 1 1 1 1 1

2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 1 2 2

( , ),1 1 , 1 1

( , ),1 1 , 1 1

( ( ), ( )),1 1 1 , 1 1 1 1

nn n

nn n

n nn n n n

na na a n u u u v

na n u u u v

n a a n u u u u u v u v





 

       

      

            

  

Thus, Equation (26) is right. 

(5) The proof of Equation (27) is similar to Equation (26), thus is omitted here. 

(6) For Equation (28), we have: 
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1
1 2

1
11 11 2 1

1
11 11 1

1

1

1

1 1 1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1

2 22 2 2 2

1 1 1 1 1
1 1 1 1 1 122

1 1

1 1

, , 1 1 ,1 1

, , 1 1 ,1 1

, , 1 1 ,1 1

,

nn nnn n n

nn nn n

nn
n nn n n nn n n n

nn

n n

a a a n a v u v v

a n a v u v v

na n a
a a v u v v

a a

a a





 






  



       

      

 
        

 
 

         

        

11 11

1
11 11 2 1 1

2 2

1 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1

( ) , 1 1 ,1 1

,( ) , 1 1 ,1 1

n nn n n nn n

n nn n n nn n n n n n

n n a v u v v

a n n a v u v v a





  

    

      

        

 
 

Thus, Equation (28) is right. 

(7) For the left of Equation (29), we have: 

        

        

             

1
2

1
2

1

1

1 2 1 1 1 1 1 1 1

1

2 2 2 2 2 2 2

2 2 2 2 2 2

1 1 2 2

1 2 1 2 1 2 1 1 2 2 1 22 2

1 2

1 2

, , 1 1 ,1 1

, , 1 1 ,1 1

, , 1 1 1 1 ,1 1 1

,

nn nn n n n

nn nn n

n n
n nn n n nn n n n

n n

n n

a a a n a v u v v

a n a v u v v

na na
a a a a v v u v u v v v

a a

a a n





 





 

       

      

 
            
 
 

              2

2 2

1 2

1 2 1 2 1 1 2 2 1 22 2

1 2

, 1 1 1 1 ,1 1 1
n nn n n nn na a v v u v u v v v

a a

  
           
 
 

 
 

For right of Equation (29), we have: 

           

             
1
2

2 2

1 2

1 2 1 2 1 2 1 2 1 1 2 2 1 22 2

1 2

2 2

1 2

1 2 1 2 1 2 1 1 2 2 1 22 2

1 2

( ) , , 1 1 1 1 ,1 1 1

, , 1 1 1 1 ,1 1 1

nn

n nn n n nn n n n

a a a a a a v v u v u v v v
a a

a a n a a v v u v u v v v
a a

 

 

 
             
 
 

 
            
 
 

  

Thus, Equation (29) is right. 

3.2. The Distance and Comparison Method for NIFNs  

Firstly, we will define the distance between two NIFNs based the distance between NFNs in 

Definition 3. 

Definition 9. Let 1 1 1 1 1( , ), ,a a u v  and 2 2 2 2 2( , ), ,a a u v  be two NIFNs, then the distance between 

NIFNs is defined as follows. 

 
2 2

1 1 2 2 1 1 2 2

1 1

(1 ) (1 ) (1 ) (1 )1
,

2 2 2

u v a u v b u v u v
d a b

             
     

   
 (30) 

Definition 10 [14,15]. Let 1 1 1 1 1( , ), ,a a u v  be a NIFN, and then its score function is 

   1 1 1 1 1s a a u v  ,    2 1 1 1 1s a u v   (31) 

and its accuracy function is: 

   1 1 1 1 1h a a u v  ,    2 1 1 1 1h a u v   (32) 
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Definition 11 [14,15]. Let 1 1 1 1 1( , ), ,a a u v  and 2 2 2 2 2( , ), ,a a u v  be two NIFNs, and their score 

functions be  1 1s a ,  2 1s a  and  1 2s a ,  2 2s a , and the accuracy functions be  1 1h a ,  2 1h a  and 

 1 2h a ,  2 2h a , respectively. Then we have: 

(1) If    1 1 1 2s a s a  then 1 2a a ; 

(2) If    1 1 1 2s a s a  and    1 1 1 2h a h a  then 1 2a a ; and 

(3) If    1 1 1 2s a s a  and    1 1 1 2h a h a  

(a) when    2 1 2 2s a s a , 1 2a a ; (b) when    2 1 2 2s a s a  and    2 1 2 2h a h a , 1 2a a ; and (c) 

when    2 1 2 2s a s a  and    2 1 2 2h a h a , 1 2a a . 

4. Some Normal Intuitionistic Fuzzy Power Interaction Aggregation Operators 

In this section, we will define some power interaction operators for NIFNs, including power 

interaction averaging (NIFPIA) operator for NIFNs, weighted power interaction averaging (NIFWPIA) 

operator for NIFNs and generalized weighted power interaction averaging (NIFGWPIA) operator for 

NIFNs. These operators can consider the advantages of PA operator and the interaction operations. 

4.1. The NIFWIA Operator 

Definition 12. Suppose ( , ), , ( 1, , )j j j j ja a u v j n   are a collection of the NIFNs, and 

: nNIFWIA   , if: 

1 2
1

( , , , )
n

n j j
j

NIFWIA a a a w a


   (33) 

where,   is the set of all NIFNs, and  1 2, , ,
T

nW w w w  is the weight vector of ( 1,2, , )ja j n , 

1

[0,1], 1
n

j j

j

w w


  . Then NIFWIA  is called the normal intuitionistic fuzzy weighted interaction averaging 

operator. 

Theorem 2. Let ( , ), , ( 1, , )j j j j ja a u v j n   be a collection of the NIFNs, then the aggregated result 

from Definition 12 can be expressed by: 

     1 2

1 1 1 1 1

( , , , ) , ,1 1 , 1 1 ( )
j j j

n n nn n
w w w

n j j j j j j j j

j j j j j

NIFWIA a a a w a w u u u v
    

 
       

 
      (34) 

Moreover, 1 2( , , , )nNIFWIA a a a  is also a NIFN. 

We can use the mathematical induction method to prove Theorem 2, and the steps are shown as 

follows. 

(1) When ( ), ( )
i ii B BB u x v x ,  

For left hand of Equation (34), we have: 

       11 1
1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

( ) ( , ), , ( , ),1 1 , 1 1
ww w

j j
j

NIFWIA a w a w a w a u v w a w u u u v 


             

and for right hand of Equation (34), we have: 

 
11 1

1 1 1

, ,1 1 ,
jw

j j j j j

j j j

w a w u
  

 
  

 
      

1 1

1 1

1 1 ( )
j jw w

j j j

j j

u u v
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       11 1

1 1 1 1 1 1 1 1( , ),1 1 , 1 1
ww w

w a w u u u v        

Thus, when ( ), ( )
i ii B BB u x v x , Equation (34) holds. 

(2) Suppose when Equation (34) is right for n k , i.e.,  

 1 2

1 1 1

( , , , ) , ,1 1 ,
j

kk k
w

k j j j j j

j j j

NIFWIA a a a w a w u
  

 
   

 
      

1 1

1 1 ( )
j j

k k
w w

j j j

j j

u u v
 

       

then when 1n k  , we have: 

     

       11 1

1 2 1 1 2 1 1

1 1 1 1 1

1 1 1 1 1 1 1 1

1

1

( , , , ) ( , , , )

, ,1 1 , 1 1 ( )

( , ),1 1 , 1 1

,

j j j

kk k

k k k k

k k kk k
w w w

j j j j j j j j

j j j j j

ww w

k k k k k k k k

k

j j

j

NIFWIA a a a NIFWIA a a a w a

w a w u u u v

w a w u u u v

w a




 

  

    

       





 

 
       

 

      



    

      
1 1 11

1 1 1 1

,1 1 , 1 1 ( )
j j j

k k kk
w w w

j j j j j j

j j j j

w u u u v
  

   

 
      

 
   

  

Thus, Equation (34) is also right when 1n k  . 

Therefore, according to the mathematic induction on n, Equation (34) is right for all n. 

In the following, we will prove that 1 2( , , , )nNIFWIA a a a  is also a NIFN. 

In the aggregated result of 1 2( , , , )nNIFWIA a a a , there are two parts, one is NFN 

1 1

,
n n

j j j j

j j

w a w 
 

 
 
 
  , and the other is IFN      

1 1 1

1 1 , 1 1 ( )
j j j

n n n
w w w

j j j j

j j j

u u u v
  

 
      

 
   . 

For the part of NFN, the aggregated result 
1 1

,
n n

j j j j

j j

w a w 
 

 
 
 
   is still a NFN, and it has no 

restrictions. 

For the part of IFN, it need meet the following three conditions  

(1)  
1

0 1 1 1
j

n
w

j

j

u


    ;  

(2)    
1 1

0 1 1 ( ) 1
j j

n n
w w

j j j

j j

u u v
 

       ; 

(3)      
1 1 1

0 1 1 1 1 ( ) 1
j j j

n n n
w w w

j j j j

j j j

u u u v
  

   
           
   
    

Otherwise, it will not be a fuzzy number. 

Since 
 ,j ju v

, 1,2, ,j n  are IFNs. Thus, we have 
0 , 1j ju v 

 and 
0 1j ju v  

. 

About Condition 1 

Since 
0 1ju 

, then 
0 1 1ju  

, 
 0 1 1

jw

ju  
, 

 
1

0 1 1
j

n
w

j

j

u


  
 

Thus, we have 
 

1

0 1 1 1
j

n
w

j

j

u


   
, i.e., it can meet Condition 1. 

(1) About Condition 2 

Since 
0 1ju 

 and 
0 1j ju v  

, we can get: 
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1

0 1 1
j

n
w

j

j

u


   ,  
1

0 1 ( ) 1
j

n
w

j j

j

u v


     and    
1 1

1 1 ( )
j j

n n
w w

j j j

j j

u u v
 

       

Thus, we have    
1 1

0 1 1 ( ) 1
j j

n n
w w

j j j

j j

u u v
 

       . i.e., it can meet Condition 2. 

(2) About Condition 3 

Since        
1 1 1 1

1 1 1 1 ( ) 1 1 ( )
j j j j

n n n n
w w w w

j j j j j j

j j j j

u u u v u v
   

   
             

   
     

and  
1

0 1 ( ) 1
j

n
w

j j

j

u v


     

Thus, we have      
1 1 1

0 1 1 1 1 ( ) 1
j j j

n n n
w w w

j j j j

j j j

u u u v
  

   
           
   
   . i.e., it can meet 

Condition 3. 

Thus, the aggregated result of 1 2( , , , )nNIFWIA a a a is also a NIFN. 

4.2. The NIFPIA Operator 

Definition 13. Let ( , ), , ( 1, , )j j j j ja a u v j n   be a collection of the NIFNs, and : nNIFPIA   , 

if:  

  

  

1

1 2

1

1
( , , , )

1

n

j j
j

n n

j

j

T a a
NIFPIA a a a

T a





 



 (35) 

where 

1

( ) ( , )
n

j j i

i
i j

T a Sup a a



  (36) 

denotes the support of the j th NIFN by all the other NIFNs, ( , )j iSupp a a  is the support degree for 
ja  from 

ia  which meets the characteristics defined in Definition 8.   is the set of all NIFNs. Then NIFPIA  is called 

the normal intuitionistic fuzzy power interaction averaging operator. 

Theorem 3. Let ( , ), , ( 1, , )j j j j ja a u v j n   be a collection of the NIFNs, then the aggregated result 

from Definition 13 can be expressed by: 

  

  

  

  
 

     
1

1 11 1

1 2

1

1 1

1 1

( , , , ) , ,1 1 ,

1 1

n

j i

i

n n

j j j j n
T a T aj j

n jn n
j

j j

j j

T a a T a

NIFPIA a a a u

T a T a





  



 

 
  

   
 

  
 

 


 

 

 
     

 
     

1 1

1 1 1 1

1 1

1 1 ( )

n n

j i j i

i i

n n
T a T a T a T a

j j j

j j

u u v 

   

 

 
      

(37) 

Moreover, it is also a NIFN. 

Proof: 

In Equation (34), when 
  

  
1

1

1

j

j n

j

j

T a
w

T a






, we can get:  
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1

1 11 1

1 2

1

1 1

1 1

( , , , ) , ,1 1 ,

1 1

n

j i

i

n n

j j j j n
T a T aj j

n jn n
j

j j

j j

T a a T a

NIFPIA a a a u

T a T a





  



 

 
  

   
 

  
 

 


 

  

 
     

 
     

1 1

1 1 1 1

1 1

1 1 ( )

n n

j i j i

i i

n n
T a T a T a T a

j j j

j j

u u v 

   

 

 
       

Similar to the proof of Theorem 2, 1 2( , , , )nNIFPIA a a a  is also a NIFN. 

Obviously, NIFPIA operator is a special case of the NIFWIA operator. 

Then, we will investigate some desired properties of the NIFPIA operator. 

Theorem 4 (Idempotency). Let 0 0 0 0 0( , ), ,ja a a u v   for all j , then 1 2 0( , , , )nNIFPIA a a a a . 

Proof.  

  

  

  

  
       

1

0 0
1 11 1

0 0 0 0

1

1 1

1 1

( , , , ) , ,1 1 ,

1 1

n

j i

i

n n

j j n
T a T aj j

n n
j

j j

j j

T a a T a

NIFPIA a a a u

T a T a





  



 

 
  

   
 

  
 

 


 
 

       
       

1 1

1 1 1 1

0 0 0

1 1

1 1 ( )

n n

j i j i

i i

n n
T a T a T a T a

j j

u u v 

   

 

       

  

  

  

  
       

1 1

0 0
1 11 1

0

1 1

1 1

, ,1 1 ,

1 1

n n

j i

j i

n n

j j
T a T aj j

n n

j j

j j

a T a T a

u

T a T a



 

  

 

 
  

    
 

  
 

 

 
 

       
       

1 1 1 1

1 1 1 1

0 0 01 1 ( )

n n n n

j i j i

j i j i

T a T a T a T a
u u v   

           

       0 0 0 0 0 0 0 0 0 0, ,1 1 , 1 1 ( ) ( , ), ,a u u u v a u v          

 

Theorem 5 (Boundedness). The NIFWIA and NIFPIA operators lie between 1 2min( , , , )na a a  and 

1 2max( , , , )na a a , i.e., 

1 2 1 2 1 2min( , , , ) ( , , , ) max( , , , )n n na a a NIFPIA a a a a a a    

where, 
    1 2min( , , , ) min ,max ,min( ),max( ) min( )n i i i i i i

i i ii i
a a a a u u v u  

, 

    1 2max( , , , ) max ,min ,max( ),max(0,min( ) max( ))n i i i i i i
i ii i i i

a a a a u u v u   . 

Proof. 

For convenience, we will divide the result of 1 2( , , , )nNIFPIA a a a  into four parts. Suppose 

1 2( , , , ) ( , ), ,nNIFPIA a a a a u v , then the first part is the mean, the second is variance, the third is 

the MD and the fourth is the NMD. 

(1) For the first part of 1 2( , , , )nNIFPIA a a a , we have: 
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1 1 1

1 1 1

1 min 1 1 max

1 1 1

n n n

j i j j j i
i i

j j j

n n n

j j j

j j j

T a a T a a T a a

T a T a T a

  

  

  

 

  

  

  
  

i.e.,  
  

  
 

1

1

1

min max

1

n

j j

j

i ini i

j

j

T a a

a a

T a







 






  

(2) For the second part of 1 2( , , , )nNIFPIA a a a , we have: 

    

  

  

  

    

  

1 1 1

1 1 1

1 min 1 1 max

1 1 1

n n n

j i j j j i
i i

j j j

n n n

j j j

j j j

T a T a T a

T a T a T a

  
  

  

  

 

  

  

  

  

i.e.,  
  

  
 

1

1

1

min max

1

n

j j

j

i ini i

j

j

T a

T a



 






 






  

(3) For the third part of 1 2( , , , )nNIFPIA a a a , we have: 

  
     

 
     

  
     

11
1

1 11 1 1 1

1 1
1 1 1

1 1 min 1 1 1 1 max

nn
n

j ij i
j i

ii
i

n n n T a T aT a T a T a T a

i j i
i n i n

j j j

u u u 


    

   
  

 
            

i.e.,    
     

 1

1 1

1 1
1

min 1 1 max

n

j i

i

n
T a T a

i j i
i n i n

j

u u u

 

   



      

(4) For the fourth part of 1 2( , , , )nNIFPIA a a a , we have: 

 
     

 
     

 
     

 
     

 
     

 
     

1 1

1 1

11

1 1 1 1

1 1

1 1 1 1

1 1

1 11 1

1 1

1 max( ) 1 min( )

1 1 ( )

1 min( ) 1 m ( )

n n

j i j i

i i

n n

j i j i

i i

nn

j ij i

ii

n nT a T a T a T a

i i i
ii

j j

n n
T a T a T a T a

j j j

j j

n n T a T aT a T a

i i i
i i

j j

u u v

u u v

u am u v

 

 



   

 

   

 

  

 

 
   

 
    


    

 

 

 

  

i.e., 
 

     
 

     
1 1

1 1 1 1

1 1

min( ) max( )

1 1 ( ) max( ) min( )

n n

j i j i

i i

i i i
i i

n n
T a T a T a T a

j j j i i i
ii

j j

u v u

u u v u v u 

   

 

 

 
        

  

Because  

 
     

 
     

1 1

1 1 1 1

1 1

1 1 ( ) 0

n n

j i j i

i i

n n
T a T a T a T a

j j j

j j

u u v 

   

 

 
        

Thus, 

 
     

 
     

1 1

1 1 1 1

1 1

max(0,min( ) max( ))

1 1 ( ) max( ) min( )

n n

j i j i

i i

i i i
i i

n n
T a T a T a T a

j j j i i i
ii

j j

u v u

u u v u v u 

   

 

 

 
        

  

According to Steps (1)–(4) and Definition 11, we have:  
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1 2 1 2 1 2min( , , , ) ( , , , ) max( , , , )n n na a a NIFPIA a a a a a a  .  

4.3. The NIFWPIA Operator 

In NIFPIA operator defined in Definition 13, we do not consider the weight of the aggregated 

objects 1 2( , , , )na a a . However, in many cases, the weight of the aggregated objects is very 

important, and it can directly affect the choice of alternatives. In the following, we shall define the 

NIFWPIA operator by considering the different weights of the objects. 

Definition 14. Suppose ( , ), , ( 1, , )j j j j ja a u v j n   are a collection of the NIFNs, and

: nNIFWPIA   , if:  

  

  

1

1 2

1

1
( , , , )

1

n

j j j
j

n n

j j

j

w T a a
NIFWPIA a a a

w T a





 




 
(38) 

where,   is the set of all NIFNs and  1 2, , ,
T

nW w w w  is the weight vector of ( 1,2, , )ja j n  

satisfying 0jw   and 
1

1
n

j

j

w


 . 
1

( ) ( , )
n

j j i

i
i j

T a Sup a a



 , and ( , )j iSup a a  is the support degree for 
ja  

from ia  which meets the characteristics defined in Definition 8, then NIFWPIA  is called the normal 

intuitionistic fuzzy weighted power interaction averaging operator. 

Specially, if 
1 1 1

, , ,

T

w
n n n

 
  
 

, the NIFWPIA  operator should be the NIFPIA  operator. 

Theorem 6. Let ( , ), , ( 1, , )j j j j ja a u v j n   be a collection of the NIFNs, then the aggregated result 

from Definition 14 can be expressed by: 

  

  

  

  
 

     
1

1 2

1 11 1

1

1 1

( , , , )

1 1

, ,1 1 ,

1 1

n

j j i i

i

n

n n

j j j j j j n
w T a w T aj j

jn n
j

j j j j

j j

NIFWPIA a a a

w T a a w T a

u

w T a w T a





  



 

 
  

   
 

  
 

 


 

 

 
     

 
     

1 1

1 1 1 1

1 1

1 1 ( )

n n

j j i i j j i i

i i

n n
w T a w T a w T a w T a

j j j

j j

u u v 

   

 

 
      

(39) 

Moreover, 1 2( , , , )nNIFWPIA a a a  is also a NIFN. 

Proof. The proof is similar to Theorems 2 and 3, so they are omitted here. 

Theorem 7 (Idempotency). Let 0 0 0 0 0( , ), ,ja a a u v   for all j , then:  

1 2 0( , , , )nNIFWPIA a a a a .  

Proof. The proof is omitted because it is similar to Theorem 4. 

Theorem 8 (Boundedness). The NIFPIA operator lies between 1 2min( , , , )na a a  and 1 2max( , , , )na a a , 

i.e., 

1 2 1 2 1 2min( , , , ) ( , , , ) max( , , , )n n na a a NIFWPIA a a a a a a    
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where, 
    1 2min( , , , ) min ,max ,min( ),max( ) min( )n i i i i i i

i i ii i
a a a a u u v u  

,  

    1 2max( , , , ) max ,min ,max( ),max(0,min( ) max( ))n i i i i i i
i ii i i i

a a a a u u v u   .  

Proof. The proof is omitted because it is similar to Theorem 5. 

4.4. The NIFGPIA Operator 

The generalized aggregation operators provide a more general way to aggregate information. In 

this subsection, we will combine generalized operator and power interaction averaging operator to 

the NIFNs, and propose a NIFGPIA operator. 

Definition 15. Suppose ( , ), , ( 1, , )j j j j ja a u v j n   are a collection of the NIFNs, and

: nNIFGPIA   , if:  

  

  

1

1

1 2

1

1
( , , , )

1

n

j j
j

n n

j

j

T a a
NIFGPIA a a a

T a









 
  
 
 

 
 


 (40) 

where   is the set of all NIFNs, 
1

( ) ( , )
n

j j i

i
i j

T a Sup a a



 , and ( , )j iSup a a  is the support degree for 
ja  from 

ia  which meets the characteristics defined in Definition 8,   is a parameter such that (0, )   , then 

NIFGPIA  is called the normal intuitionistic fuzzy generalized power interaction averaging operator. 

Theorem 9. Let ( , ), , ( 1, , )j j j j ja a u v j n   be a collection of the NIFNs, then the aggregated result 

from Definition 15 can be expressed by:  

  

  

  

  

  

  

1 1

1

1 1 1

1 2

1 1 1

1 1 1

( , , , ) , ,

1 1 1

n n n

j j j j j j j

j j j

n n n n

j j j j

j j j

T a a T a a T a a

NIFGPIA a a a

T a T a T a a

 
  





  

  

    
      
         
      
     

  

  
 

     
  

      
  

     
  

  
1 1

1

1
1 1 1

1 1 1

1 1 1

1 1 1 1 1 1 ,

j j
j

n n
n

j j
j

j j
j

T a T a T a
n n n

T a T a T aj j j j j j j

j j j

v u v u v u v



 

 


  

  

  

   
                       

  

     
  

      
  

  
1 1

1
1 1

1 1

1 1

1 1 1 1 1 1

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

v u v u v



 

 

 

 

 

 
 

           
 
 

   

(41) 

Moreover, 1 2( , , , )nNIFGPIA a a a  is also a NIFN. 

Proof. 

Let         
1
2 1, , 1 1 ,1 1j j j j j j j j jb a a a v u v v

             

Since jb  is still a NIFN, we can use jb  to replace the ja  in NIFPIA  operators, and get: 

  

  
1 2

1

1
( , , , )

1

j

j nn

j

j

T a
a NIFPIA b b b

T a
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1
2

1

1

1 1
1 1

1

1 1

1 1

, ,1 1 1 1 ,

1 1

n

j i

i

n n

j j j j j T a T an
j j

j j jn n
j

j j

j j

T a a T a a

v u v

T a T a
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1 1

1

1 1 1

n

j i

i
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j j j

j

v u v




 




 
      

 
  

        
     

1

1 1

1

1 1 1 1 1

n

j i

i

T a T an

j j j j

j

v u v v
 



 




  
         
  

  

  

  

  

  
     

  

  
1
2

1
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1

1 1 1
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1 1
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1 1

j

n

j

j

T a
nn n

j j j j j
T a

j j jn n
j j j

j j

j j
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v u v
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1 1 1 1

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

v u v u v
 

 

 

 

 

           

Thus, according to the exponential operation rule of the NIFNs defined in Equation (21), we can 

get: 

  

  
 

1

1
1

1 2 1 2

1

1
( , , , ) ( , , , )

1

n

j j
j
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j

j

T a a
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  , 
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j j j
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T a T a T a
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v u v u v



 

 

 

 

 

  
  

            
  
  

   

  

  

  

  

  

  

1 1

1

1 1 1

1 1 1

1 1 1

, ,
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Next, we will prove 1 2( , , , )nNIFGPIA a a a  is also a NIFN. 

According to the exponential operational rule of the NIFNs defined in Equation (21), all 

        
1
2 1, , 1 1 ,1 1j j j j j j j j jb a a a v u v v

              1,2, ,j n  are the NIFNs. 

Then the aggregated result from NIFPIA operator is also a NIFN according to Theorem 3, so,

  

  
1 2

1

1
( , , , )

1

j

j nn

j

j

T a
a NIFPIA b b b
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 is also a NIFN.  

Further,   
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NIFGPIA a a a NIFPIA b b b
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 is also a NIFN. 

Then, we will investigate some properties. 

Theorem 10 (Idempotency). Let 0 0 0 0 0( , ), ,ja a a u v  for all j , then:  

1 2 0( , , , )nNIFGPIA a a a a .  

Proof.  
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11 1

0 0

0 0

0

, ,
a

a a
a


  



 
  

 
            

1

0 0 0 0 0 0 01 1 1 1 1 1 ,v u v u v u v
 

             

          
1

0 0 0 0 01 1 1 1 1 1v u v u v
 

           

 0 0, ,a        0 0 0 01 1 ,1 1v u v v       0 0 0 0, , ,a u v  

 

Theorem 11 (Boundedness). The NIFGPIA  operator lies between 1 2min( , , , )na a a  and 

1 2max( , , , )na a a , i.e.,  

1 2 1 2 1 2min( , , , ) ( , , , ) max( , , , )n n na a a NIFGPIA a a a a a a    
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Proof. 

(1) For the first part of 1 2( , , , )nNIFGPIA a a a , we can get: 
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(2) For the second part of 1 2( , , , )nNIFGPIA a a a , we can get: 
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(3) For the third part of 1 2( , , , )nNIFGPIA a a a , we can get: 
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At the same time, 

     
  

      
  

     
  

  
1 1

1

1
1 1 1

1 1 1

1 1 1

1 1 1 1 1 1 0

j j
j

n n
n

j j
j

j j
j

T a T a T a
n n n

T a T a T aj j j j j j j

j j j

v u v u v u v



 

 


  

  

  

   
                        

  

 

 

Thus, 

     
  

      
  

     
  

  
1 1

1

1
1 1 1

1 1 1

1 1 1

1 1 1 1 1 1

j j
j

n n
n

j j
j

j j
j

T a T a T a
n n n

T a T a T aj j j j j j j

j j j

v u v u v u v



 

 


  

  

  

   
                       

  
 

           
1

max 0, 1 max 1 min 1 max 1 minj j j j j j jv u v u v u v
   

            
 

 

 

Similarly, we have: 
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(4) For the fourth part of 1 2( , , , )nNIFGPIA a a a , we can get: 

     
  

      
  

  

     
  

      
  

  

 

1 1

1 1

1
1 1

1 1

1 1

1
1 1

1 1

1 1

1 1 1 1 1 1

1 1 1 1 min 1 max 1 min

1 1 1 1 min 1 ma

j j

n n

j j

j j

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

T a T a
n n

T a T a
j j j j j

j j

j

v u v u v

v u v u v

v



 



 



 

 

 

 

 

 

 

 

 
 

           
 
 

 
 

            
 
 

      

 

 

      x 1 minj j j ju v u v
  

    
 

 

        1 1 min 1 max 1 minj j j j jv u v u v
 

        
 

 

At the same time, 
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Similarly, we have: 



Symmetry 2017, 9, 261  20 of 30 

 

     
  

      
  

  
1 1

1
1 1

1 1

1 1

1 1 1 1 1 1

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

v u v u v



 

 

 

 

 

 
 

           
 
 

   

     
  

      
  

  

        

        

1 1

1
1 1

1 1

1 1

1 1 1 1 max 1 min 1 max

1 1 1 1 max 1 min 1 max

1 1 max 1 min 1 max

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

j j j j j

j j j j j

v u v u v

v u v u v

v u v u v



 

 

 

 

 

 

 

 
 

            
 
 

 
           

 

        

 

 

 

At the same time, 

     
  

      
  

  
1 1

1
1 1

1 1

1 1

1 1 1 1 1 1 1

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

v u v u v



 

 

 

 

 

 
 

            
 
 

    

Thus, 

     
  

      
  

  

        

1 1

1
1 1

1 1

1 1

1 1 1 1 1 1

min 1,1 1 max 1 min 1 max

j j

n n

j j

j j

T a T a
n n

T a T a
j j j j j

j j

j j j j j

v u v u v

v u v u v



 

 

 

 

 

 

 
 

           
 
 

 
         

 

 
  

(5) Further, we need prove the sums of MD and NMD in in 1 2min( , , , )na a a  and 1 2max( , , , )na a a  

are less than or equal to 1. 

For 1 2min( , , , )na a a , we have: 
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and for 1 2max( , , , )na a a , we have: 
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According to steps (1)–(5), we can get:  

1 2 1 2 1 2min( , , , ) ( , , , ) max( , , , )n n na a a NIFGPIA a a a a a a  .  

In the following, some special cases of the NIFGPIA  operator will be investigated.  

(1) When 1  , the NIFGPIA  operator will be reduced to the NIFPIA operator. 
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(2) When 0  , the NIFGPIA  operator will be reduced to the following form. 
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4.5. The NIFGWPIA Operator 

The NIFGPIA  operator provides a more flexible way to aggregate the NIFNs by considering 

the relationships between the attributes and the interactions between MD and NMD. However, it 

does not consider the weight of the aggregated objects 1 2( , , , )na a a . In this subsection, we will 

define the NIFGWPIA operator based on NIFGPIAoperator by considering the weights of them. 

Definition 16. Suppose ( , ), , ( 1, , )j j j j ja a u v j n   are a collection of the NIFNs, and

: nNIFGWPIA   , if: 

  

  

1

1

1 2

1

1
( , , , )

1

n

j j j
j

n n

j j

j

w T a a
NIFGWPIA a a a

w T a









 
  
 
 

 
 


 (42) 

where,   is the set of all NIFNs, 
1

( ) ( , )
n

j j i

i
i j

T a Sup a a



 , and ( , )j iSup a a  is the support degree for 
ja  from 

ia  which meets the characteristics defined in Definition 8,   is a parameter such that (0, )   , then 

NIFGWPIA  is called the normal intuitionistic fuzzy generalized weighted power interaction averaging operator. 

Theorem 12. Let ( , ), , ( 1, , )j j j j ja a u v j n   be a collection of the NIFNs, then the aggregated result 

from Definition 16 can be expressed by:  
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Moreover, 1 2( , , , )nNIFGWPIA a a a  is also a NIFN. 

Theorem 13 (Idempotency). Let 0 0 0 0 0( , ), ,ja a a u v   for all j , then  

1 2 0( , , , )nNIFGWPIA a a a a .  

Then, we will investigate some special cases of the NIFGWPIA  operator.  

(1) When 1  , the NIFGWPIA  operator will be reduced to the NIFWPIA  operator defined in 

Equation (43), i.e., 
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(2) When 0  , the NIFGWPIA  operator will be reduced to the following form. 
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5. Some Approaches to MADM Based on the Developed Operators 

There are many MADM problems in real decision applications, and NIFNs can easily express 

the stochastic fuzzy information. It is important and meaningful to establish the decision making 

methods for MADM problems with NIFNs, in this part, we propose some new methods based on 

new developed operators. 

Consider a MADM with information of NIFNs. Let  1 2, , , mA A A A  be the set of alternatives, and 

 1 2, , , nC C C C  be the set of attributes, 
1 2( , , , )T

nW w w w  is the weighting vector of the attribute 

( 1,2, , )jC j n  satisfying [0,1]jw   and 
1

1
n

j

j

w


 . Suppose that ij m n
X x


     is the decision matrix, 

where  , , ,ij ij ij ij ijx a u v , which is attribute value of attribute 
jC  with respect to alternative iA , 

takes the form of the NIFN with the conditions 0 1,0 1, 1ij ij ij iju v u v      , and  ,ij ija   is a NFN. 

Then, the ranking of alternatives is required. 

Then we will utilize the proposed operators to the above decision problem. If attribute weight 

vector is unknown, we can use the NIFPIA  operator and NIFGPIA  operator, however, when 

attribute weight vector is known, the NIFGWPIA  operator and the NIFWPIA  operator can be used. 

Because the NIFPIA  and NIFGPIA  operators are the special cases of the NIFWPIA  operator and 

the NIFGWPIA  operator, without loss of generality, we can only use the NIFGWPIA  operator and 

NIFWPIA  operator to deal with this decision making problem. 

The methods involve the following steps: 

Step 1. The normalization for decision information 

In real decision, there are two types in attribute values in general: benefit attribute (the bigger 

the attribute value is, the better it is) and cost attribute (the smaller the attribute value is, the better it 

is). In addition, there are the different dimensions and different order of magnitude in attributes, so 

it is necessary to standardize the decision matrix. Suppose ij m n
R r


     is the standardized decision 

matrix of X , where  , , ,ij ij ij ij ijr a u v , then we have: 

(1) For benefit attribute,  

, ,
max( ) max( )

,

ij ij ij

ij ij

ij ij ij
i i

ij ij ij ij

a
a

a a

u u v v

 



 

 

 (44) 

(2) For cost attribute, 

min( )
, ,

max( )

,

ij ij iji

ij ij

ij ij ij
i

ij ij ij ij

a
a

a a

u v v u

 



 

 

 (45) 

Step 2. Calculate the supports, and we have: 

( , ) 1 ( , ) 1,2, , ; , 1, 2, ,ij il ij ilSup r r d r r i m j l n      (46) 

which satisfies the support Conditions 1–3 in Definition 8, where ( , )ij ild r r  is a normalized distance, 

and it can be calculated as follow: 

( , )
( , )

( , )

ij il

ij il

d r r
d r r

d r r 
  (47) 
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where ( , )ij ild r r  is the distance between NIFNs k

ijr  and l

ijr , and ( , )d r r   is the distance between 

r   and r  , which are defined by Formula (30).  
,

1,min( ) ,1,0ij
i j
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i j i j

r a   . 

Step 3. Calculate ( )ijT r , and we have: 
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Step 4. Calculate the weights ( 1,2, , )ij j n   associated with the NIFN ijr , and we have: 
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Step 5. Obtain the comprehensive value of each alternative by NIFGWPIA operator, i.e., 
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or 

1 2
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( , , , ) , ,
n n

i i i in ij ij ij ij
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z NIFWPIA r r r a  
 

 
   

 
   

     
1 1 1

1 1 , 1 1 ( )
ij ij ij

n n n

ij ij ij ij

j j j

u u u v
  

  

         

 

Step 6. Calculate the score functions  1 is z ,  2 is z  and the accuracy functions  1 ih z  2 ih z  

by Definition 10 in Equations (31) and (32). 

Step 7. Rank ( 1,2, , )iz i m  in descending order by using the comparison method described 

in Definition 11. 

Step 8. Select the best one(s) by the ranking of ( 1,2, , )iz i m . 

Step 9. End. 

6. Illustrative Example 

In this section, we will give an example to illustrate the application of these methods. Let us take 

the method based on NIFGWPIA  operator to solve the following example (cited from Reference [23]). 

A manufacturing enterprise wants to select a parts’ supplier, and there are four candidate 

suppliers (as alternatives) denoted by 1e , 2e , 3e  and 4e . The suppliers can be evaluated by the 

following four criteria which are all benefit types: (1) supply capacity ( 1c ); (2) delivery capability ( 2c

); (3) service quality ( 3c ); and (4) research and development strength ( 4c ), with weight vector 
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 0.15,0.25,0.32,0.28
T

w  . The evaluation value for criterion
jc with respect to alternative ie  can be 

expressed by the NIFN  , , ,ij ij ij ij ijx a u v , for example, the evaluation value 11x of the candidate 

1e  with respect to supply capacity 1c  is (3.0,0.4),0.7,0.2 , which means that the average and the 

variance of supply capacity are 3 and 0.4 respectively, the certainty degree for this result (3.0,0.4)  is 

0.7 and the negation degree is 0.2. Then, the evaluation matrix 
4 4ijX x


     is constructed and shown 

in Table 1. 

Step 1. The normalization of decision information 

According to Equation (44), we can get the standardized decision matrix ij m n
R r


     which is 

listed in Table 2, where  , , ,ij ij ij ij ijr a u v . 

Table 1. The evaluation matrix X . 

Suppliers 1
c  

2
c  

3
c  

4
c  

1e  
(3.0,0.4),0.7,0.2

 
(7.0,0.6),0.6,0.3

 
(5.0,0.4),0.6,0.2

 
(7.0,0.6),0.6,0.3

 

2e
 

(4.0,0.2),0.6,0.3
 

(8.0,0.4),0.8,0.1
 

(6.0,0.7),0.8,0.2
 

(5.0,0.3),0.7,0.3
 

3e
 

(3.5,0.3),0.6,0.4
 

(6.0,0.2),0.6,0.3
 

(5.5,0.6),0.5,0.5
 

(6.0,0.4),0.8,0.1
 

4e
 

(5.0,0.5),0.8,0.2
 

(7.0,0.5),0.6,0.2
 

(4.5,0.5),0.8,0.2
 

(7.0,0.2),0.7,0.1
 

Table 2. The standardized decision matrix R . 

Suppliers 1
c  

2
c  

3
c  

4
c  

1e  
(0.600,0.107),0.7,0.2

 
(0.875,0.086),0.6,0.3

 
(0.833,0.046),0.6,0.2

 
(1.000,0.086),0.6,0.3

 

2e
 

(0.800,0.020),0.6,0.3
 

(1.000,0.033),0.8,0.1
 

(1.000,0.117),0.8,0.2
 

(0.714,0.030),0.7,0.3
 

3e
 

(0.700,0.051),0.6,0.4
 

(0.750,0.011),0.6,0.3
 

(0.917,0.094),0.5,0.5
 

(0.857,0.044),0.8,0.1
 

4e
 

(1.000,0.100),0.8,0.2
 

(0.875,0.060),0.6,0.2
 

(0.750,0.079),0.8,0.2
 

(1.000,0.010),0.7,0.1
 

Step 2. Calculate the supports ( , )ij ilSup r r  

According to Equations (46) and (47), we have: 

(1) Calculate r   and r  , and the distance between r   and r  , we can get: 

(1.000,0.010),1,0r   , (0.600,0.117),0,1r   , ( , ) 1.000023d r r     

(2) Calculate ( , )ij ild r r , we can get ( 1,2,3,4; 1,2,3,4)i l   

1

0.0000 0.1200 0.1376 0.2007

0.0000 0.3302 0.2857 0.0208
( , )

0.0000 0.0695 0.0399 0.3086

0.0000 0.1894 0.2003 0.0512

ij il jd r r 

 
 
 
 
 
 

, 
2

0.1200 0.0000 0.0222 0.0813

0.3302 0.0000 0.0679 0.3500
( , )

0.0695 0.0000 0.0404 0.2420

0.1894 0.0000 0.0199 0.1890

ij il jd r r 

 
 
 
 
 
 

 

3

0.1376 0.0222 0.0000 0.0687

0.2857 0.0679 0.0000 0.3043
( , )

0.0399 0.0404 0.0000 0.2703

0.2003 0.0199 0.0000 0.2039

ij il jd r r 

 
 
 
 
 
 

, 
4

0.2007 0.0813 0.0687 0.0000

0.0208 0.3500 0.3043 0.0000
( , )

0.3086 0.2420 0.2703 0.0000

0.0512 0.1890 0.2039 0.0000

ij il jd r r 

 
 
 
 
 
 

 

(51) 

(3) Calculate the supports ( , )ij ilSup r r , we can get ( 1,2,3,4; 1,2,3,4)i l   
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1

1.0000 0.8800 0.8624 0.7993

1.0000 0.6698 0.7143 0.9792
( , )

1.0000 0.9305 0.9601 0.6914

1.0000 0.8106 0.7997 0.9488

ij il jSup r r 

 
 
 
 
 
 

,
2

0.8800 1.0000 0.9778 0.9188

0.6698 1.0000 0.9321 0.6500
( , )

0.9305 1.0000 0.9596 0.7580

0.8106 1.0000 0.9801 0.8110

ij il jSup r r 

 
 
 
 
 
 

 

3

0.8624 0.9778 1.0000 0.9313

0.7143 0.9321 1.0000 0.6957
( , )

0.9601 0.9596 1.0000 0.7297

0.7997 0.9801 1.0000 0.7961

ij il jSup r r 

 
 
 
 
 
 

,
4

0.7993 0.9188 0.9313 1.0000

0.9792 0.6500 0.6957 1.0000
( , )

0.6914 0.7580 0.7297 1.0000

0.9488 0.8110 0.7961 1.0000

ij il jSup r r 

 
 
 
 
 
 

 

(52) 

Step 3. Calculate ( )ijT r  

According to Equation (48), we have: 

4 4

2.5417 2.7765 2.7715 2.6493

2.3633 2.2519 2.3421 2.3249
( )

2.5819 2.6480 2.6493 2.1791

2.5590 2.6017 2.5759 2.5559

ijT r 

 
 
 
 
 
 

  

Step 4. Calculate the weights ( 1,2, , )ij j n    

According to Equation (49), we have: 

4 4

0.1434 0.2549 0.3258 0.2759

0.1521 0.2450 0.3223 0.2806

0.1532 0.2600 0.3330 0.2538

0.1494 0.2519 0.3202 0.2786

ij


 
 
      
 
 

  

Step 5. Calculate the comprehensive value iz  of each alternative ie  

According to Equation (50) and suppose 1  , we have: 

1

2

3

4

(0.8565,0.0757), 0.6162, 0.2585

(0.8894,0.0572), 0.7510, 0.2490

(0.8250,0.0532), 0.6387, 0.3613

(0.8885,0.0580), 0.7334, 0.2666

z

z

z

z

   
   
   
   
    

  

  

Step 6. Calculate the score function  1 is z  

According to Equation (31), we have: 

 1 1  0.3063s z  ,  1 2   0.4465s z  ,  1 3  0.2288s z  ,  1 4  0.414s z    

Step 7. Rank ( 1,2, , )iz i m   

Obviously, we have        1 2 1 4 1 1 1 3s z s z s z s z    

Step 8. Select the best one(s)  

Because        1 2 1 4 1 1 1 3s z s z s z s z   , we have 2 4 1 3e e e e . 

Thus, the best alternative is 2e . 

To observe the influence of the parameter value  for this example, we can adopt the different value 

  in Step (5) to obtain the rankings of the alternatives, which are shown in Table 3 and Figure 1. 

In Table 3, we can see the best alternative is different for the different value   in NIFGWPIA 

operator. Further, we can give the following analysis. 
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Table 3. Ranking sensitivity analysis based on different parameter   in NIFGWPIA operator.  

  Comprehensive Evaluation Value iz  Score Functions 1( )is z  Ranking 

0.01   

1

2

3

4

(0.8470,0.0777), 0.6195, 0.2552

0.8801,0.0541), 0.2221, 0.7779

0.8210,0.0512), 0.0212, 0.9788

0.8822,0.0604), 0.0843, 0.9157

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3086

0.4892

0.7861

0.7334

s z

s z

s z

s z



 

 

 

 
1 2 4 3e e e e

 

0.1   

1

2

3

4

(0.8475,0.0776),0.6190,0.2556

(0.8806,0.0543),0.3288,0.6712

(0.8212,0.0513),0.0719,0.9281

(0.8825,0.0602),0.1862,0.8138

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3080

0.3015

0.7031

0.5539

s z

s z

s z

s z



 

 

 
 

1 2 4 3e e e e
 

0.5   

1

2

3

4

(0.8516,0.0767), 0.6158, 0.2588

(0.8845,0.0556), 0.6338, 0.3662

(0.8229,0.0521), 0.4371, 0.5629

(0.8852,0.0592), 0.5672, 0.4328

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3040

0.2366

0.1035

0.1190

s z

s z

s z

s z





 


 

1 2 4 3e e e e
 

1.0   

1

2

3

4

(0.8565, 0.0757), 0.6162, 0.2585

(0.8894,0.0572), 0.7510, 0.2490

(0.8250, 0.0532), 0.6387, 0.3613

(0.8885,0.0580), 0.7334, 0.2666

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3063

0.4465

0.2288

0.4147

s z

s z

s z

s z








 

2 4 1 3e e e e
 

1.2   

1

2

3

4

(0.8583,0.0754), 0.6176, 0.2571

(0.8913,0.0579), 0.7708, 0.2292

(0.8259,0.0536), 0.6734, 0.3266

(0.8898,0.0575), 0.7659, 0.2341

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3094

0.4828

0.2864

0.4733

s z

s z

s z

s z








 

2 4 1 3e e e e
 

1.5   

1

2

3

4

(0.8611,0.0749), 0.6201, 0.2546

(0.8942,0.0588), 0.7871, 0.2129

(0.8271,0.0543), 0.7027, 0.2973

(0.8917,0.0568), 0.7965, 0.2035

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3147

0.5135

0.3353

0.5288

s z

s z

s z

s z








 

4 2 3 1e e e e
 

2.0   

1

2

3

4

(0.8654,0.0744), 0.6237, 0.2510

(0.8988,0.0603), 0.7978, 0.2022

(0.8292,0.0553), 0.7240, 0.2760

(0.8949,0.0556), 0.8208, 0.1792

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3226

0.5354

0.3715

0.5742

s z

s z

s z

s z








 

4 2 3 1e e e e
 

5.0   

1

2

3

4

(0.8869,0.0737), 0.6308, 0.2439

(0.9228,0.0678), 0.8093, 0.1907

(0.8409,0.0618), 0.7622, 0.2378

(0.9126,0.0496), 0.8384, 0.1616

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3431

0.5708

0.4410

0.6176

s z

s z

s z

s z








 

4 2 3 1e e e e
 

10.0   

1

2

3

4

(0.9116,0.0765), 0.6369, 0.2378

(0.9491,0.0745), 0.8231, 0.1769

(0.8566,0.0708), 0.8026, 0.1974

(0.9353,0.0438), 0.8435, 0.1565

z

z

z

z








 

 

 

 

 

1 1

1 2

1 3

1 4

0.3639

0.6134

0.5184

0.6426

s z

s z

s z

s z








 

4 2 3 1e e e e
 

When parameter   increases ( 0.5  ), the MD in comprehensive value iz  will increase, and 

the NMD will decrease. Thus, we can regard parameter   as a risk attitude value. When decision 

maker is the type of risk aversion (or called the conservative type), a little value of   can be adopted; 

when decision maker is the type of risk seeking (or called the aggressive type), a big value of   can 

be used. In general, when 1  , we can think it is neutral. Thus, in this example, we can select the 

best is 4e  when 1.5  ; or best is 2e  when   is approximately one; or the best is 1e  when 

0.5  . 
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Figure 1. Ranking sensitivity analysis based on different parameter   in NIFGWPIA operator. 

Comparing with the method proposed by Wang et al. [23], there are the same ranking results 4e  

and 2e . However, we also give another ranking result, i.e., the best may be 1e  when 0.5  . The 

advantages of the developed method in this paper are that it considers the relationships of different 

attribute values by PA operator and the interaction between the MD and NMD, and the advantages of the 

developed method by Wang et al. [23] are that it considers the OWA and the induced variables. 

Comparing with the method proposed by Wang and Li [15], the advantages of the developed 

method in this paper are that it can give the comprehensive value of each alternative based on the 

power interaction averaging operators of NIFNs by considering the relationships of different 

attributes and the interaction between the MD and NMD, and the advantages of the method 

proposed by Wang and Li [15] are that it can solve the MADM problems with incomplete weight 

information, however, it can only give the ranking result by TOPSIS, and not comprehensive value. 

Comparing with the method proposed by Wang and Li [14], Wang and Li [14] also proposed some 

aggregation operators, especially some intuitionistic normal fuzzy related weighted averaging operators. 

However, we think that, if there exists relationships between attributes, the operational laws in NFNs may 

be incorrect because these operational laws need the condition that the attributes are independent. The 

aggregation operators and method propose in this paper can only consider the relations of attribute values 

by PA operator, and still keep the condition that the attributes are independent. 

7. Conclusions 

In this paper, we firstly defined some basic operational rules of NIFNs by the interaction 

operations of IFNs, and then we proposed some new aggregation operators for NIFNs. Further, we 

studied their properties and some special cases, and proposed a MADM approach for the decision 

information in NIFNs based on the NIFGWPIA operator. The significant characteristics of the 

proposed method are that: (1) it is easier to describe the uncertain information than the existing fuzzy 

sets and stochastic variables; (2) it used the interaction operations in part of IFSs which could 

overcome the existing weaknesses in operational rules of NIFNs; (3) it adopted PA operator which 

could relieve the influence of unreasonable data given by biased decision makers; and (4) it made the 

decision-making results more flexible and reliable because it was with generalized parameter that 

could be regarded as the risk attitude value of decision makers. In the future, we will study the 

applications of the proposed operators and method for the MADM problems with normal 

distribution stochastic information [37,38], especially for supply chain managements [39] and 

inventory models [40,41], or study the fuzzy graphs or trees based on NIFNs [42–45]. 
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