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Abstract: We review (anti)evaporation phenomena within the context of quantum gravity
and extended theories of gravity. The (anti)evaporation effect is an instability of the black hole
horizon discovered in many different scenarios: quantum dilaton-gravity, f (R)-gravity, f (T)-gravity,
string-inspired black holes, and brane-world cosmology. Evaporating and antievaporating black holes
seem to have completely different thermodynamical features compared to standard semiclassical
black holes. The purpose of this review is to provide an introduction to conceptual and technical
aspects of (anti)evaporation effects, while discussing problems that are still open.
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1. Introduction

The long-standing idea to extend the standard model of Einsteinian gravity—general
relativity (GR)—is strongly motivated by several open issues in cosmology and quantum gravity.
Despite several known successful applications of GR to astrophysics and cosmology, its UV
completion and some cosmological and astrophysical instantiations—including the inflationary
paradigm and the comprehension of the nature of dark energy and dark matter—remain puzzling.
The most popular extension of GR remains f (R)-gravity, including (R + ζR2) Starobinsky’s model
for inflation [1–5]. This theory can be conformally mapped onto scalar-tensor theories or dilaton-gravity
theories [1–4] in regular unambiguous space-time backgrounds. There are many alternatives that
have been hitherto suggested, such as f (T)-gravity [6], mimetic gravity [7–11], string-inspired black
holes, and brane-world cosmologies [12–15]—see [16,17] for reviews on brane-world cosmological
scenarios—to mention just a few of them.

We review aspects of the instabilities of a class of black hole solutions, which appear universally
in these aforementioned classes of extended theories of gravity, and are dubbed (anti)evaporation
instabilities. (Anti)evaporation phenomena consist of the exponentially (growing) decreasing radius
of the black hole horizon. These were first discovered by Bousso and Hawking within the context
of quantum dilaton-gravity (e.g., Ref. [18]), and then elaborated in Refs. [19–21]. Nojiri and Odintsov
rediscovered the same effect in f (R)-gravity at the classical level in Ref. [22,23]—see also Ref. [24] for
technical improvements. The two phenomena were further studied in several other contexts, such as
Gauss–Bonnet gravity [24], f (T)-gravity [25], mimetic gravity [26–29], Bigravity [30], string-inspired
black hole solutions [31], brane-world cosmology [32–35] and Bardeen–de Sitter black holes [36]. In all
these theories, the two metric solutions—which turned out to be unstable—are Nariai, a degenerate
Schwarzschild–de Sitter black hole, and extremal Reissner–Nördstrom solutions, in which two horizons
coincide. In Ref. [37], through the analysis of the Raychaduri equation, describing the dynamics of
Black Holes (BH) closed trapped Cauchy’s surfaces (similar techniques were used in general relativity
in Refs. [38–40]), it was argued that classical (anti)evaporation instabilities switch off the emission
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of Bekenstein–Hawking radiation [41–44]. Very recently, the (anti)evaporation was also discussed in
relation to energy conditions in extended theories of gravity [45].

Among all the possible scenarios, it is worth mentioning that there are many realistic
extensions of general relativity which are compatible with cosmological and astrophysical limits
and which predict antievaporation phenomena. Certainly the minimal and more appealing
scenarios seem to be the ones provided by f (R)-gravity models. For example, among all
possible f (R)-gravity extensions, some simple models already proposed in literature—and well
compatible with cosmological constraints—such as the Hu-Sawicki model, exponential f (R)-gravity,
and higher-derivative polynomial extensions beyond Starobinsky’s gravity universally exhibit the
(anti)evaporation phenomena (see Ref. [24] for a detailed discussion of these aspects).

The plan of the paper is the following. In Section 2, we briefly introduce the concept
of evaporation and antievaporation instabilities. In Section 3, we review the (anti)evaporation
in quantum dilaton-gravity; in Section 4, we review the classical (anti)evaporation in f (R)-gravity;
in Section 5, we review (anti)evaporation in f (T)-gravity; in Section 6, we review the classical
(anti)evaporation phenomena in the context of string-inspired black holes; in Section 7, we review
either Bekenstein-Hawking radiation in (anti)evaporating black holes; in Section 8 we review classical
(anti)evaporation of Friedman-Robertson-Walker (FRW) brane-worlds sourced by (anti)evaporating
instabilities of the higher-dimensional black hole in the bulk. In Section 9, we show our conclusions
and remarks.

2. What Is (Anti)evaporation?

Evaporation and antievaporation are related to a dynamical decreasing and increasing of the
black hole horizon radius in time. These instabilities may be provoked by several different dynamical
origins. Their possible sources can be classified into two kinds: (i) quantum anomalies; (ii) classical
instabilities sourced by extensions of general relativity. In the next sections, we will review many
possible models with (anti)evaporation instabilities, lying in (i,ii) classes.

3. (Anti)evaporation in Quantum Dilaton-Gravity

In this section we review studies and results obtained on antievaporation within the context
of quantum dilaton-gravity [18–21].

We start considering the four-dimensional action of N scalars fields coupled to gravity, which are
included in the theory in order to allow the description of black hole radiation. The action then reads:

S =
1

16πGN

∫
d4x
√
−g(4)

[
R(4) − 2λ− 1

2

N

∑
1
(∇(4)Φi)

2

]
, (1)

where GN is the Newton constant, Φi are N-scalar fields, and g(4), R(4), and ∇(4)Φi are respectively
the four-dimensional metric determinant, the covariant derivative with respect to the four-dimensional
metric, and the Ricci scalar.

We consider the spherically symmetric background ansatz:

ds2 = e2ρ(x,t)(dx2 − dt2) + e−2φ(x,t)dΩ2 , (2)

in which φ(x, t), ρ(x, t) are functions of space-time coordinates and dΩ2 is the two-dimensional angular
line-element. In the background Equation (2), the integration of the angular modes can be performed.
The 4D action reduces to a two-dimensional one, which reads:

S =
1

16π

∫
d2x
√
−ge−2φ[R + 2(∇φ)2 + 2e2φ − 2λ−

N

∑
i=1

(∇Φi)
2] . (3)
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It was shown in [46] that the amount of black hole radiation at infinity is proportional to the trace
anomaly. The trace of the energy-momentum tensor is classically vanishing, but if we consider
the quantum nature of fields, a non-vanishing expectation value of the trace can be recovered on
a curved background. The inclusion of the trace anomaly in the dynamics of the system under scrutiny
accommodates the analysis of the back reaction of the evaporation on the geometry. This is equivalent
to considering the one-loop effective action of the matter field.

Following the same strategy as in [47], two-dimensional conformal scalar fields with exponential
dilation coupling yield the the trace anomaly:

T =
1

24π

[
R− 6(∇φ)2 − 2∂2φ

]
. (4)

The trace anomaly can be obtained from using the zeta function approach and general proprieties
of the trace anomaly [47].

Equivalently, from Equation (3) the the scale-dependent part of the one-loop effective action
for dilaton-coupled scalars reads:

S1 = − 1
48π

∫
d2x
√
−g[

1
2

R
1
∂2 R]− 6(∇φ)2 1

∂2 R− 2φR] . (5)

As shown in [48], the action Equation (5) can be recast as local by introducing an auxiliary
scalar field A that mimics the trace anomaly term—in other words, the trace anomaly derived
from the effective action Equation (5).

As shown in [48], the action Equation (5) can be rewritten in the following form:

S =
1

16π

∫
d2x
√
−g
[(

e−2φ +
κ

2
(A + wφ)

)
R− κ

4
(∇A)2 + 2 + 2e−2φ(∇φ)2 − 2e−2φλ

]
, (6)

where κ = 2N/3 and w is a numerical factor. In the large N-limit, the quantum fluctuations of the metric
are dominated by the quantum fluctuations of the N scalars; thus, κ >> 1. Such a formal rewriting is
possible in the framework of the scalar auxiliary field method [48].

We can now derive the effective dynamics of the system. Variations of the effective action
with respect to ρ, φ and A lead to:

−
(

1− wκ

4
e2φ
)

∂2φ + 2(∂φ)2 +
κ

4
e2φ∂2 A + e2ρ+2φ(λe−2φ − 1) = 0 , (7)

(
1− wκ

4
e2φ
)

∂2ρ− ∂2φ + (∂φ)2 + λe2ρ = 0 , (8)

∂2 A− 2∂2ρ = 0 , (9)

with two additional constraints to be considered; i.e.,(
1− wκ

4
e2φ
)
(δ2φ− 2δφδρ)− (δφ)2 =

κ

8
e2φ[(δA)2 + 2δ2 A− 4δAδρ] , (10)

(
1− wκ

4
e2φ
)
(φ̇′ − ρ̇φ′ − ρ′φ̇)− ρ′φ̇ =

κ

8
e2φ
[
ȦA′ + 2Ȧ′ − 2(ρ̇A′ + ρ′ Ȧ)

]
, (11)

having used the conventions:

∂A∂B = −ȦḂ + f ′g′, ∂2g = −Ä + B′′ ,

δAδB = ȦḂ + A′B′, δ2 A = Ä + A′′ .

From Equation (9), one obtains:
A = 2ρ + η , (12)
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with η any harmonic function of x and t. Relation Equation (12) eliminates the dependence by A
in the other equation of motions (EoMs).

In such a formalism, we can study perturbations around the Nariai solution (see Appendix A).
The Nariai solution—which corresponds to Equation (2) with e−φ = const—is a solution
of the dilaton-gravity theory that reads:

e2ρ =
1

Λ1

1
cos2 t

, e2φ = Λ2 , (13)

where:
1

Λ1
=

1
8Λ

[
4− (w + 2)b +

√
16− 8(w− 2) + (w + 2)2b2

]
, (14)

Λ2 =
1

2wκ

[
4 + (w + 2)b−

√
16− 8(w− 2)b + (w + 2)2b2

]
. (15)

In these latter, we have defined b = κΛ, and assumed b << 1 for κ >> 1.
We may perturb this solution around the Nariai background, and obtain:

e2φ = Λ2[1 + 2εσ(t) cos x] , (16)

where ε << 1. We might also perturb e2ρ, but contributions that would arise from e2ρ would not enter
the equation of motion for σ at the first order of the ε-expansion.

Let us now consider the condition for a black hole horizon (∇φ)2 = 0. Substituting in this latter
relation Equation (16), we obtain a simple system of differential equations; i.e.,

∂φ

∂t
= εσ̇ cos x ,

∂φ

∂x
= −εσ sin x . (17)

At the first order in the ε-expansion, the black hole radius casts:

rb(t)−2 = e2φ = λ2[1 + 2εδ(t)] , (18)

δ ≡ cos xb = σ

(
1 +

σ̇2

σ2

)−1/2

. (19)

Consequently, the black hole horizon is controlled by the equation of motion for σ:

σ̈

σ
=

a
cos2 t

− 1 , (20)

where:

a =
2
√

16− 8(w− 2)b + (w + 2)2b2

4− wb
. (21)

The classical limit is obtained when we send κ → 0. In this limit, the equation of motion is exactly
solvable, and reduces to:

σ̇ = σ tan t , (22)

which yields the solution:

σ(t) =
σ0

cos t
(23)

for the initial condition σ̇0(t = 0) = 0. This leads to a perturbation δ(t) = σ0 = const, which ensures
that the Nariai solution is static at the classical level. Nonetheless, at the quantum level, for κ > 0, we
obtain an approximated solution for the perturbations:

δ(t) = σ0

[
1− 1

2
(a− 1)(a− 2)t2 + O(t4)

]
, σ0 > 0 , σ̇(t = 0) = 0 . (24)
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As a remarkable consequence, the black hole size increases; i.e., the maximal Schwarzschild–de
Sitter black hole has an antievaporation instability.

4. (Anti)evaporation in f (R)-Gravity

In this section, we review some basic aspects of evaporation and antievaporation
in f (R)-gravity [22–24], taking into account the Nariai metric and extremal Reissner–Nodrström
black holes. Let us first recall the theoretical framework.

In f (R)-gravity, the action reads [1–5]:

I =
1

16π

∫
d4x
√
−g f (R) + Sm , (25)

written in units GN = c = 1. Varying the action Equation (25) with respect to the metric tensor,
we obtain the equation of motions (EoMs) of the theory:

1
2

gµν f (R)− f ′(R)Rµν +∇µ∇ν f ′(R) = −8πTm
µν . (26)

Whenever the matter content is vanishing—namely Tm
µν = 0—and the Ricci tensor constant

(i.e., Rµν ∼ gµν), the EoM is reduced to a more manageable form:

f (R)− 1
2

R f ′(R) = 0 . (27)

4.1. The Case of the Nariai Black Hole in f (R)-Gravity

The Nariai space-time is a solution of Equation (27). It can be recast (for details, see Appendix A) as:

ds2 =
1

Λ2

(
1

cos h2x
(dx2 − dt2) + dΩ2

)
, (28)

where Λ has one mass dimension, and again dΩ2 denotes the solid angle on a 2-sphere, i.e., dΩ2 =

dθ2 + sin2 θdφ2, with θ ∈ [0, π) and φ ∈ [0, 2π). Notice also that the Ricci scalar of the Nariai space-time
is R0 = 4Λ2 = const.

The Nariai metric can be obtained from the more general expression:

ds2 = e2ρ(x,t)(dx2 − dt2) + e−2φ(x,t)dΩ2 , (29)

where φ(x, t), ρ(x, t) are functions of space-time coordinates governed by the following EoMs:

0 = − e2ρ

2
f (R)− (−ρ̈ + 2φ̈ + ρ′′ − 2φ̇2 − 2ρ′φ′ − 2ρ̇φ̇) f ′(R) +

∂2 f ′

∂t2 − ρ̇
∂ f ′

∂t
− ρ′

∂ f ′

∂x

+e2φ

{
− ∂

∂t

(
e−2φ ∂ f ′

∂t

)
+ ∂

∂x

(
e−2φ ∂ f ′

∂x

)}
,

(30)

0 =
e2ρ

2
f − (ρ̈ + 2φ′′ − ρ′′ − 2φ′2 − 2ρ′φ′ − 2ρ̇φ̇) f ′ +

∂2 f ′

∂x2

−ρ̇
∂ f ′

∂t
− ρ′ ∂ f ′

∂x − e2φ

{
− ∂

∂t

(
e−2φ ∂ f ′

∂t

)
+ ∂

∂x

(
e−2φ ∂ f ′

∂x

)}
,

(31)

0 = −(2φ̇′ − 2φ′φ̇− 2ρ′φ̇− 2ρ̇φ′) f ′ + ∂2 f ′
∂t∂x − ρ̇

∂ f ′
∂x − ρ′ ∂ f ′

∂t , (32)

0 = e−2φ

2 f − e−2(ρ+φ)(−φ̈ + φ′′ − 2φ′2 + 2φ̇2) f ′ − f ′ + e−2(ρ+φ)
(

φ̇
∂ f ′
∂t − φ′ ∂ f ′

∂x

)
−e−2ρ

{
− ∂

∂t

(
e−2φ ∂ f ′

∂t

)
+ ∂

∂

(
e−2φ ∂ f ′

∂x

)}
.

(33)
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From EoMs in the metric Equation (74), one can study the evolution of the perturbations
around the Nariai background:

ρ = −ln (Λ cosh x) + δρ , (34)

φ = ln Λ + δφ . (35)

Substituting these expressions into EoMs, one obtains a set of four equations in δρ, δφ, namely:

0 = − f ′(R0)+2Λ2 f ′′(R0)

2Λ2 cosh2 x
δR− f (R0)

Λ2 cosh2 x
δρ

− f ′(R0)(−δρ̈ + 2δφ̈ + δρ′′ + 2 tanh xδφ′) + tanh x f ′′(R0)δR′ + f ′′(R0)δR′′ ,
(36)

0 = −− f ′(R0)+2Λ2 f ′′(R0)

2Λ2 cosh2 x
δR + f (R0)

Λ2 cosh2 x
δρ

− f ′(R0)(δρ̈ + 2δφ′′ − δρ′′ + 2 tanh xδφ′) + f ′′(R0)δR̈ + tanh x f ′′(R0)δR′ ,
(37)

0 = −2(δφ̇′ + tanh xδφ̇) +
f ′′(R0)

f ′(R0)
(δṘ′ + tanh xδṘ) , (38)

0 = −− f ′(R0)+2Λ2 f ′′(R0)
2Λ2 δR− f (R0)

Λ2 δφ− cosh2 x f ′(R0)(−δφ̈ + δφ′′)− cosh2 x f ′′(R0)(−δR̈ + δR′′) , (39)

where:
δR = 4Λ2(−δρ + δφ) + Λ2 cosh2 x(2δρ̈− 2δρ′′ − 4δφ̈ + δφ′′) . (40)

(see Appendix C for more technical details).
The third equation can be integrated, leading to:

− 2δφ +
f ′′(R0)

f ′(R0)
δR = cx(x) +

ct(t)
cosh x

, (41)

where cx(x), ct(t) are arbitrary integration functions of x, t respectively. From a linear combination
of the first, second, and fourth equations, one can obtain the equations:

0 =
− f ′(R0) + 2Λ2 f ′′(R0)

2Λ2 cosh2 x
δR− f ′(R0)∂

2
(

δρ− δφ− f ′′(R0)

f ′(R0)
δR
)

, (42)

0 =
2Λ2

cosh2 x
δφ + ∂2

(
δρ +

f ′′(R0)

2 f ′(R0)
δR
)

. (43)

Once combined with Equation (41), Equations (42) and (43) allow to find the differential equation
in φ:

0 =
1

α cosh2 x

(
2(2α− 1)δφ + (α− 1)

(
cx(x) +

ct(t)
cosh x

))
+ ∂2

(
3δφ + cx(x) +

ct(t)
cosh x

)
, (44)

where:

α ≡ 2Λ2 f ′′(R0)

f ′(R0)
. (45)

We emphasize that Equation (44) can have unstable modes in specific subregions
of the parameter space.

Since in homogeneous and isotropic backgrounds δφ(t, x) ≡ φ(t), Equation (44) reduces to:

d2δφ

dt2 + tanh t
dδφ

δt
−m2δφ = 0 , (46)

where the effective mass of the mode is expressed by:

m2 =
2(2α− 1)

3α
, (47)
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having assumed the initial conditions cx = ct = 0 in Equation (44). Such an equation has tachyon-like
modes for m2 > 0 (α < 0 and α > 1/2) and for 1 + 4m2 ≥ 0 (α < 0 and α > 8/19).

The horizon is located in correspondence of the condition:

∇δφ×∇δφ = 0 , (48)

which specifies the requirement that the gradient of the two-sphere size is equal to zero. This means
that for a black hole located in x0, the radius is:

r0(t)−2 = e2φ(t,x0) .

Consequently, either an increase or a decrease of φ correspond to a dynamical displacement
of the horizon.

4.2. Extremal Reissner–Nordström Black Holes

In this section, we will review evaporation and antievaporation of the extremal Reissner–Nörstrom
(RN) black holes in f (R)-gravity [23].

The extremal RN solution is recovered in the limit in which the two possible RN radii coincide.
The extremal RN-black hole metric can then be recast as (see Appendix B for further details):

ds2 =
r2

0(
1− r2

0R0
2

)
cosh2 x

(dτ2 − dx2) + r2
0dΩ2 . (49)

This expression shares several similarities with the aforementioned Nariai metric.
Indeed, the extremal RN solution can also be reshuffled as:

ds2 =
e2ρ(x,τ)

Λ2 (dτ2 − dx2) +
e−2φ(x,τ)

Λ′2
dΩ2 . (50)

The form of ρ(x, τ) finally induces the explicit formula:

ds2 =
1

Λ2 cosh2 x
(dτ2 − dx2) +

e−2φ

Λ′2
dΩ2 , (51)

Λ =

√
1− r2

0R0
2

r0
, Λ′ =

1
r0

. (52)

Then, using the same ansatz on the metric we deployed while tackling the Nariai metric, the EoM,
written in components (τ, τ), (x, x), (τ, x) and (θ, θ) ((ψ, ψ)), cast:

0 = e2ρ

2Λ2 f (R)−
(
−ρ̈ + 2φ̈ + ρ′′ − 2φ̇2 − 2ρ′φ′ − 2ρ̇φ̇

)
f ′(R) + ∂2 f ′(R)

∂τ2 − ρ̇
∂ f ′
∂τ − ρ′ ∂ f ′

∂x

+e2φ
{
− ∂

∂τ

(
e−2φ ∂ f ′

∂τ

)
+ ∂

∂x

(
e−2φ ∂F′

∂x

)}
,

(53)

0 = e2ρ

2Λ2 f (R)− (ρ̈ + 2φ′′ − ρ′′ − 2φ′2 − 2ρ′φ′ − 2ρ̇φ̇) f ′ + ∂2 f ′

∂x2 − ρ̇
∂ f ′
∂τ − ρ′ ∂ f ′

∂x

−e2φ
{
− ∂

∂τ

(
e−2φ ∂ f ′

∂τ

)
+ ∂

∂x

(
e−2φ ∂ f ′

∂x

)}
,

(54)

0 = −(2φ̇′ − 2φ′φ̇− 2ρ′φ̇− 2ρ̇φ′) f ′ +
∂2

∂τ∂x
− ρ̇

∂ f ′

∂x
− ρ′

∂ f ′

∂τ
, (55)

0 = − e−2φ

2Λ′2 f − Λ2

Λ′2 e−2(ρ+φ)
(
−φ̈ + φ′′ − 2φ′2 + 2φ̇2) f ′ + f ′

+ Λ2

Λ′2 e−2(ρ+φ)
(

φ̇
∂ f ′
∂τ − φ′ ∂ f ′

∂x

)
− Λ2

Λ′2 e−2ρ
{
− ∂

∂τ

(
e−2φ ∂ f ′

∂τ

)
+ ∂

∂x

(
e−2φ ∂ f ′

∂x

)}
.

(56)

(see Appendix D for more technical details).
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Perturbations with respect to the extremal RN background can be considered following the same
strategy as in the previous sections. We then add a generic perturbation to the expressions:

ρ = − log cosh x + δρ, φ = δφ (57)

and then recover:

0 = f ′′(R0)

{
− 1

cosh2 x
δR + tanh x δR′ + δR′′

}
, (58)

0 = f ′′(R0)

{
1

cosh2 x
δR + tanh x δR′ + δR̈

}
, (59)

0 = f ′′(R0)
{

δṘ′ + tanh xδṘ
}

, (60)

0 = f ′′(R0)
{

δR− cosh2 x(−δR̈ + δR′′)
}

, (61)

where:
δR = −4Λ2δρ + 4Λ′2δφ−Λ2 cosh2 x{2(δρ̈− 2δρ′′)− 4(δφ̈− δφ′′)} . (62)

To study the instabilities of the system, we can adopt the parametrization:

δφ = φ0 cosh ωτ coshβ x, δρ = ρ0 cosh ωτ coshβ x , (63)

where ρ0, φ0, ω, β are constant parameters. Using the definition of the horizon gµν∇µφ∇νφ = 0,
we then end up recovering the solutions:

δφ ≡ δφH = φ0 cosh2 βt , (64)

rH =
1
Λ

e−δφH =
e−φ0 cosh2 βτ

Λ
. (65)

What is remarkable in this case is that the instabilities seem to be independent by the particular
kind of f (R)-gravity under scrutiny.

5. (Anti)evaporation in f (T)-Gravity

In this section we move to the discussion of the evaporation and antievaporation phenomena
within the context of f (T)-gravity [25]. Once again, we start reviewing the theoretical framework
of these models.

In f (T)-gravity, the action reads:

I =
1

16π

∫
d4x
√
−g f (T) + Sm, (66)

in which we again use units GN = c = 1. We then introduce internal indices in the description
of the gravitational field, and represent the gravitational degrees of freedom in terms of a frame field
that constitutes the tetrad matrix. The line element then recasts:

ds2 = gµνdxµdxν = ηijθ
iθ j , (67)

dxµ = eµ
i θi, θi = ei

µdxµ , (68)

where eµ
i ei

ν = δ
µ
ν , ηij = diag(−1, 1, 1, 1),

√−g = e = det[ei
µ].
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The Weitzenböck connection deployed in the construction of the f (T) theory is purely torsional.
Its relation to the torsion tensor can be straightforwardly determined to be:

Tα
µν = Γα

νµ − Γα
µν = eα

j (∂µei
ν − ∂νei

µ) . (69)

The Euler–Lagrange equations of the theory are then recovered by variation of the action
with respect to the tetrad field ei

µ; namely:

Sνρ
µ ∂ρT

d2 f
dT2 + e−1ei

µ∂ρ[eSνρ
α eα

i + Tα
µσSνσ

α ]
d f
dT

+
1
2

δν
µ f = 4πT(m)

µν . (70)

In Equation (70), T(m)
µν denotes the energy-momentum tensor, while Sνρ

µ is expressed by
the relation:

Sµν
α =

1
2
(δ

µ
α Tνβ

β − δ
µ
β Tνβ

α + Kµν
α ) , (71)

Kµν
α standing for the co-torsion. Finally, the scalar torsion reads:

T = Tα
µνSµν

α . (72)

General relativity with a cosmological constant can be recovered in the limit d2 f
dT2 → 0; i.e.,

f (T) = a + bT.

5.1. The Case of Nariai Black Hole in Diagonal Tetrads Gauge

For the f (T) theory, the Nariai space-time acquires the form:

ds2 =
1
Λ

[
− 1

cos2 τ
(dx2 − dτ2) + dΩ2

]
, (73)

where Λ is the cosmological constant, once again dΩ2 stands for the solid angle on a 2-sphere
dΩ2 = dθ2 + sin2 θdψ2, and 0 < τ < π/2, 0 < t < ∞, with the mutual relation cosh t = 1/ cos τ.
Notice that also in this case the Ricci scalar of the Nariai space-time is constant, since R = 4Λ.

The Nariai space-time is a solution of Equation (70) in the diagonal tetrad ansatz:

ds2 = e2ρ(x,t)(−dx2 + dτ2) + e−2φ(x,t)dΩ2 , (74)

ea
µ = [eρ, eρ, e−φ, e−φ sin θ] . (75)

The dynamical aspects of the Nariai solutions can be studied resorting to the methods
of perturbation theory. We can consider arbitrary variations of the functions:

ρ = −ln[
√

Λ cos τ] + δρ(τ, x) , (76)

φ = ln
√

Λ + δφ(τ, x) , (77)

and then find the relation:

δT = −2Λ sin(2τ)δφ̇ . (78)

Inserting Equations (77) and (78) in Equation (70), we may recover:

δφ(x, τ) = k1 sin(x− x̄) sec τ + k2 , (79)

where x̄ is the fixed initial condition and k1,2, are two integration constants.
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Consider now that the horizon is defined through the condition:(
∂δφ

∂τ

)2
=

(
∂δφ

∂x

)2
. (80)

From this, we obtain:
xh = x̄− τ + mπ − π

2
, (81)

where m = 0, 1, ..., and correspondingly we recover:

δφ(τ, xh) = k1(−1)n+1 + k2 , (82)

rh(τ)
−2 = 1 + δφ(τ, xh) . (83)

We can interpret this result by saying that the black hole radius is fixed; i.e., no evaporation
or antievaporation instabilities occur.

It is worth noting that the choice of diagonal tetrads should be handled carefully in the case
of spherically symmetric solutions. This issue was extensively studied in Refs. [49–52]. In Ref. [52],
it was shown that the rigorous way to implement the choice of tetrads consists of also taking the
connection into account. These arguments highly motivate to relax the diagonal tetrads choice, as
discussed in the following section.

5.2. Classical Evaporation and Antievaporation in Non-Diagonal Tetrads

We can now generalize the previous result, considering a non-diagonal tetrad of the form:

e0
0 = eρ, e3

3 = e1,2,3
0 = e0

1,2,3 = 0 , (84)

e1
1 = cos ψ sin θ eρ , e2

1 = cos ψ cos θ e−φ , e3
1 = − sin ψ sin θ e−φ , (85)

e1
2 = sin ψ sin θ eρ , e1

3 = cos θ eρ , e2
2 = sin ψ cos θ e−φ , (86)

e2
3 = cos ψ sin θ e−φ, e3

2 = − sin θ e−φ . (87)

Under this ansatz, we obtain:

δφ = A sec τ cos(x− x̄) + B(tan τ)3/2e
1+2 cos2 τ

4 cos4 τ , (88)

where A, B are integration constants. This entails for the horizon the expression:

xh = x̄− τ + arcsin
(

cos2 τ

A
d

dτ
ϕ(τ)

)
, (89)

where:

ϕ(τ) = B(tan τ)3/2e
1+2 cos2 τ

4 cos4 τ . (90)

Notice that Equation (88) has a divergence in τ → π/2 — this is the extreme time-like angle
excluded from the range of the Nariai solution. Depending on the integration constants, Equation (89)
represents a solution either increasing or decreasing in time. The first class of instabilities corresponds
to the classical antievaporation, while the second class to the classical evaporation.

6. (Anti)evaporation in String-Inspired Black Holes

We discuss dyonic black hole solutions in the case of f (R)-gravity coupled with a dilaton and two
gauge bosons. The study of such a model is highly motivated from string theory. Our black hole
solutions are extensions of the one first studied by Kallosh, Linde, Ortín, Peet, and Van Proeyen
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(KLOPV) in Ref. [53]. We will show that extreme solutions are unstable. In particular, these solutions
have Bousso–Hawking–Nojiri–Odintsov (anti)evaporation instabilities.

It is known that the low-energy limit of a dimensionally-reduced superstring theory dimensionally
reduced to d = 4 is N = 4 supergravity. There are two versions: SO(4) and SU(4). The first one is
invariant under a (rigid) SU(4)× SU(1, 1) symmetry. Black hole solutions of the reduced sector U(1)2

were studied by Kallosh, Linde, Ortín, Peet, and Van Proeyen (KLOPV) in Ref. [53]. In particular,
they consider U(1)2 charged dilaton black holes. These solutions are Reissner–Nordström-like black
holes, or more precisely dyonic black holes. In particular, the dilaton field is the real part of an initial
complex scalar, while the imaginary part is an axion pseudoscalar field. They assumed the axion
stabilized to a constant vacuum expectation value (VEV) . The effective bosonic action corresponds to
the Einstein–Hilbert one coupled with a dilaton field and two U(1) fields. Extreme limits of dyonic
solutions are shown to saturate N = 4 supersymmetry in d = 4. On the other hand, the presence of
non-perturbative stringy effects could modify the effective action in the low-energy limit. For instance,
higher derivative terms may be generated by euclidean D-brane or worldsheet instantons. In particular,
the Einstein–Hilbert sector coupled to the dilaton and U(1)-fields can be extended from R to an analytic
function f (R) (see Ref. [54] for a review on this subject, see Refs. [55–58] for recent investigations of
E-brane instantons in particle physics).

KLOPP solutions are particularly important in string theory. For instance, the famous derivation
of the Hawking BH entropy from Bogomolnyi-Prasad-Sommerfield states (BPS) microstates shown
by Strominger and Vafa is based on five-dimensional KLOPP solutions [59]. The Vafa–Strominger
result has inspired the so-called fuzzball proposal, which has the ambition to solve the BH information
paradox [60].

It is worth mentioning that the existence of modes’ correlations inside the Hawking radiation was
discussed in Ref. [61]. On the other hand, the unitarity time evolution of quantum black hole formation
and evaporation processes in the framework of the Bohr-like approach was studied in Ref. [62].

In this paper, we will study black hole solutions in string-inspired f (R)-gravity,
coupled with a dilaton field and two gauge bosons (it is conceivable that the analysis of branes
in higher-dimensional f (R)-gravity—see Refs. [32–34]—may be connected to these issues). We assume
that the asymptotic space-time is Minkowski’s one. Let us clarify that we will not consider
a f (R)-supergravity coupled to gauge bosons and dilatons. In fact, it was recently shown that the only
f (R)-supergravity which is not plagued by ghosts and tachyons is Starobinsky’s supergravity [63,64].
Nevertheless, one can consider the case in which higher-derivative terms are generated by exotic
instantons or fluxes after a spontaneous supersymmetry breaking mechanism. In this sense,
our model—which has a stable vacuum and is not plagued by ghosts and tachyons—is inspired
by string theory. Clearly, it is impossible to calculate instantonic corrections from a realistic stringy
model at the moment. We believe that this highly motivates our effective field theory analysis,
in which coefficients inside the f (R)-functional parametrize our ignorance about the string theory
vacua. We will show that extreme dyonic solutions have Bousso–Hawking–Nojiri–Odintsov (BHNO)
(anti)evaporation instabilities. In particular, Nojiri and Odintsov have discovered (anti)evaporation
instabilities in Reissner–Nordström black holes in f (R)-gravity [23]. A posteriori, our result is
understood as a generalization of Nojiri–Odintsov calculations in Ref. [23]. On the other hand,
the peculiar thermodynamical proprieties of antievaporating solutions were discussed in our recent
paper [37].

Let us consider the case of a f (R)-gravity with two U(1)-gauge bosons and a dilaton. In particular,
we will consider the action:

S =
∫

d4x
√
−g[− f (R) + 2∂µφ∂µφ + 2∇µφ∇νφ− e−2φ(2FµλFνδgλδ − 1

2
gµνF2)] , (91)

where:
Fµν = ∂ν Aµ − ∂µ Aν, B̃µν = ∂ν B̃µ − ∂µ B̃ν
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and Aµ, Bµ are gauge bosons of U(1) × U(1), we conveniently use unit 2κ(4) = 1, where κ(4)
is the four-dimensional gravitational coupling (coming from the Kaluza–Klein reduction
of the ten-dimensional gravitational coupling). The action Equation (1) comes from the SO(4), d = 4,
N = 4 supergravity, and it is formulated in the Einstein-frame, with an opportune and understood
redefinition of the dilaton field.

The equations of motion are:
0 = ∇µ(e−2φFµν) , (92)

0 = ∇µ(e2φG̃µν) , (93)

0 = ∇2φ− 1
2

e−2φF2 +
1
2

e2φG̃2 , (94)

0 = fR(R)Rµν +
1
2 (R fR − f (R))gµν −∇µ∇ν fR(R) + gµν∂2 fR(R)

+2∇µφ∇νφ− e−2φ(2FµλFνδgλδ − 1
2 gµνF2)− e2φ(2G̃µλG̃νδgλδ − 1

2 gµνG̃2) .
(95)

A solution of these equations is:

ds2 = e2Udt2 − e−2Udr2 − R2dΩ

e2φ = e2φ0 r+Σ
r−Σ , F = Qeφ0

(r−Σ)2 dt ∧ dr ,

G̃ = Pe−φ0

(r+Σ)2 dt ∧ dr, e2U = (r−r+)(r−r−)
R2 ,

R2 = r2 − Σ2, Σ = P2−Q2

2M , r± = M± r0 ,
r2

0 = M2 + Σ2 − P2 −Q2 = M2 + Σ2 − e−2φ0 P2
m − e−2φ0 Q2

el .

(96)

The solutions depend on independent parameters M, Q, P, φ0. M is the BH mass, φ0 is
the asymptotic value of the dilaton field. Qel = eφ0Q is the F-field electric charge, while Pm = eφ0 P is
the G-field magnetic charge (electric charge of G̃).

These equations imply the relation:

C fR(R0) = q2 ≡
√

Q2 + P2 = e−φ0

√
Q2

el + P2
m

where C is an integration constant.
In the case of an extremal dyonic black hole, the metric can be conveniently rewritten as [23]:

ds2 =
M2

cosh2x
(dτ2 − dx2) + M2dΩ2

This suggests the ansatz:

ds2 = M2e2ρ(x,τ)(dτ2 − dx2) + M2e−2ϕ(x,τ)(dτ2 − dx2)dΩ2

and the gravitational EoM can be rewritten as:

0 = −(−ρ̈ + 2ϕ̈ + ρ′′ − 2φ̇2 − 2ρ′ϕ′ − 2ρ̇ϕ̇) fR +
M2

2
e2ρ f +

∂2

∂τ2 fR

−ρ′
∂

∂x
fR + ρ̇

∂

∂τ
fR +

q2M2e2ρ

2
+ e2ϕ

[
− ∂

∂τ

(
e−2ϕ ∂ fR

∂τ

)
+

∂

∂x

(
e−2ϕ ∂ fR

∂x

)]
,

(97)

0 = −M2

2 e2ρ f −
(
ρ̈ + 2ϕ′′ − ρ′′ − 2ϕ′2 − 2ρ′ϕ′ − 2ρ̇ϕ̇

)
fR

− q2 M2e2ρ

2 + ∂2

∂x2 fR − ρ̇
∂ fR
∂τ − ρ′ ∂ fR

∂x − e2ϕ
[
− ∂

∂τ

(
e−2ϕ ∂ fR

∂τ

)
+ ∂

∂x

(
e−2ϕ ∂ fR

∂x

)] (98)

0 = −(2ϕ̇′ − 2ϕ′ ϕ̇− 2ρ′ ϕ̇− 2ρ̇ϕ′) fR +
∂2 fR
∂τ∂x

− ρ̇
∂ fR
∂x
− ρ′

∂ fR
∂τ

(99)
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0 = −2M2e−2ϕ f − e−2(ρ+ϕ)(−ϕ̈ + ϕ′′ + 2ϕ′2 + 2ϕ̇2) fR + fR + e−2(ρ+ϕ)
(

ϕ̇
∂ fR
∂t − ϕ′ ∂ fR

∂x

)
+ q2 M2e2ρ

2

−e−2ρ
[
− ∂

∂τ

(
e−2ϕ ∂ fR

∂τ

)
+ ∂

∂x

(
e−2ϕ ∂ fR

∂x

)] (100)

Now, let us consider perturbations around the background extremal solution as:

ρ = −ln(cosh x) + δρ, ϕ = δϕ . (101)

The perturbed EoM are:

0 =
fR(R0) + 2M−2 fRR(R0)

2
δR− fR(R0)M−2cosh2x(−δρ̈ + 2δϕ̈ + δρ′′ + 2tanh x δφ′)

−2 fR(R0)M−2δρ + fRR(R0)M−2cosh2x(tanh x δR′ + δR′′) (102)

0 = − fR(R0)+2M−2 fRR(R0)
2 δR + 2 fR(R0)M−2δρ− fR(R0)M−2cosh2 x (δρ̈ + 2δϕ′′ − δρ′′ + 2tanh x δϕ′)

+ fRR(R0)M−2cosh2 x (tanh x δR′ + δR̈)
(103)

0 = −2(δϕ̇′ + tanh x δϕ̇) +
fRR(R0)

fR(R0)
(δṘ′ + tanh x δṘ) (104)

0 = − fR(R0)+2M−2 fRR(R0)
2 δR− 2M−2 fR(R0)δϕ− fR(R0)M−2 cosh2 x (−δϕ̈ + δϕ′′)

− fRR(R0)M−2cosh2 x (−δR̈ + δR′′) .
(105)

A convenient parametrization of perturbations is:

δρ = ρ0cosh ωτcoshβx, δϕ = ϕ0cosh ωτcoshβx , (106)

where ρ0, φ0, β are arbitrary constants.
Solving EoM, we find conditions:

ω2 = β2 (107)

and:

β = β± =
1
2

[
1±

√
1− 4

3
M2
(

fR(R0)

fRR(R0)

)]
(108)

from:
∂2δϕ = [β2 + β(β− 1)cosh−2 x−ω2]δϕ . (109)

Let us note that β always has a Real part which is positive, implying exponential instabilities.
In particular, for φ0 < 0 the antievaporation phase is obtained while φ0 > 0 corresponds
to the evaporation. Hence, this is not enough to demonstrate that the extremal solution is unstable.
So, we show the numerical solution of the horizon radius obtained by EoM perturbed up to the second
order in δρ, δφ. Finally, we claim that a similar analysis in the case of the SU(4)-inspired model
(despite the SO(4) gauge group) leads to the same kind of instabilities, as can be easily checked (we
mention that some solutions in other extended theories of gravity also have geodetic instabilities [65]).

7. Evaporation, Antievaporation, and Hawking’s Radiation

In this section, we will discuss the suppression of Bekenstein–Hawking radiation in f (R)-gravity
and f (T)-gravity.
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7.1. Path Integral Approach in f (R)-Gravity

In general, the path integral over all euclidean metrics and matter fields φi, ψj, Aµ
k , .. is:

ZE =
∫
DgDφiDψjDAµ

k e−I[g,φi ,ψj ,A
µ
k ,...] , (110)

where g the euclidean metric tensor. In semiclassical general relativity, the leading terms
in the action are:

IE = −
∫

Σ

√
gd4x

(
Lm +

1
16π

R
)
+

1
8π

∫
∂Σ

√
hd3x(K− K0) , (111)

where Lm is the matter Lagrangian:

Lm =
Yii′

2
gµν∂φiµ∂φi′ν + ...

K the trace of the curvature induced on the boundary ∂Σ of the region Σ considered, h is the metric
induced on the boundary ∂Σ, K0 is the trace of the curvature induced imbedded in flat space. The last
term is a contribution from the boundary. We consider infinitesimal perturbations of matter and metric
as φ = φ0 + δφ, A = A0 + δA, (...) and g = g0 + δg, so that:

I[φ, A, ..., g] = I[φ0, A0, ..g0] + I2[δφ, δA, ...δg] + higher orders

I2[δφ, δA, .., δg] = I2[δφ, δA, ...] + I2[δg]

logZ = −I[φ0, A0, ..., g0] + log
∫
DδφDδA(...)Dδge−I2[δg,δφ,δA,...] (112)

In a euclidean Schwarzschild solution, the metric has a time dimension compactified on a circle
S1, with periodicity iβ, and:

β = T−1 = 8πM

where T, M are BH temperature and mass. The euclidean S. metric has the form:

ds2
E =

(
1− 2M

r

)
d2τ +

(
1− 2M

r

)
dr2 + r2dΩ2 (113)

A convenient change of coordinates:

x = 4M

√
1− 2M

r

leads to:

ds2
E =

( x
4M

)2
+

(
r2

4M2

)2

dx2 + r2dΩ2 . (114)

Equation (114) has not more a (mathematical) singularity in r = 2M. The boundary ∂Σ is
S1 × S2 with S2 with conveniently fixed radius r0. The path integral becomes a partition function
of a (canonical) ensamble, with a euclidean time related to the temperature T = β−1. The leading
contribution to the path integral is:

ZES = e−
β2

16π . (115)

Contributions to this term are only coming from surface terms in the gravitational action; i.e.,
bulk geometry does not contribute to Equation (115).

The average energy (or internal energy) is:

〈E〉 = − d
dβ

(logZ) =
β

8π
. (116)
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On the other hand, the free energy F is related to Z as:

F = −TlogZ . (117)

Finally, the entropy is:
S = β(F− 〈E〉) . (118)

As a consequence, Bekeinstein–Hawking radiation can be related to the partition function
as follows:

S = β(logZ− d
dβ

(logZ)) =
β2

16π
=

1
4

A (119)

In f (R)-gravity, we can reformulate a euclidean approach. Through a conformal transformation,
we can be more conveniently remapped f (R)-gravity to a scalar-tensor theory. The new relevant action
in the semiclassical regime has the form:

I = − 1
16π

∫
Σ

d4x
√

g
(

f (φ) + f ′(φ)(R− φ)
)
− 1

8π

∫
∂Σ

d3x
√

h f ′(φ)(K− K0) (120)

that can be remapped to the corresponding f (R)-gravity action as:

I = − 1
16π

∫
d4x
√
−g f (R)− 1

8π

∫
d4x
√

h f ′(R)(K− K0) . (121)

Let us assume a generic spherical symmetric static solution for f (R)-gravity with a euclidean
periodic time τ → τ + β where β = 8πM,

ds2
E = J(r)dτ2 + J(r)−1dr2 + r2dΩ2 . (122)

As in GR, the leading contribution is zero from the bulk geometry. However, the boundary term
has a non-zero contribution. One can evaluate the boundary integral considering suitable surface ∂Σ.
In this case, the obvious choice is a S2 × S1 surface with with radius r of S2. We obtain:

∫
∂Σ

d3x
√

h f ′(R)(K− K0) = f ′(R0)
∫

∂Σ
d3x
√

h(K− K0) = 8πβr− 12πβM− 8πβr
√

1− rS
r

, (123)

where rS = 2M and R0 is the scalar curvature of the classical black hole background.
In the limit of r → ∞, the resulting action, partition function, and entropy are:

I = f ′(R0)β2, ZE = e− f ′(R0)β2
, S = 16π f ′(R0)

A
4

. (124)

The same result was also found in [66]. This result seems in antithesis with our statements
in the Introduction: Equation (124) leads to a Bekeinstein-Hawking like radiation. In fact, as mentioned,
a Nariai solution is nothing but a Schwarzschild–de Sitter one with J(r) = 1− J(r)Schwarzschild − Λ

3 r2 ,
with a black hole radius r ' H−1 (limit of BH mass M→ 1

3 Λ−1/2), with mass scaleM = Λ. However,
result Equation (124) is based on a strong assumption on the metric Equation (122): it is assumed
that the gravitational action will not lead to a dynamical evolution. For example, in Nariai solution
obtained by Nojiri and Odintsov in f (R)-gravity, J(r, t) is also a function of time: the mass parameter
is a function of time rS(t). As a consequence, the analysis performed here is not valid.

As a consequence, the result obtained in this section must be considered with caution:
Equation (124) can be applied if and only if one has a spherically symmetric stationary and static
solution of f (R)-gravity.

Let us also comment that the same entropy in Equation (124) can be obtained by the Wald entropy
charge integral. The Wald entropy is:
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SW = −2π
∫

S2
d2x
√
−h(2)

(
δL

δRµνρσ

)
S2

ε̂µν ε̂ρσ =
A

4Ge f f
, (125)

where ε̂ is the antisymmetric binormal vector to the surface S2 and:

(2πGe f f )
−1 = −

(
δL

δRµνρσ

)
S2

ε̂µν ε̂ρσ , (126)

leading to Ge f f = G/ f ′(R0) [67].
However, again, this result can be applied if and only if the spherical symmetric solution is static.

As argument in Section 2, this is not the case of Nariai BHs in f (R)-gravity.
Let us argue on the non-applicability of these results in dynamical cases. The euclidean path

integral approach is supposing a euclidean black hole inside an ideal box, in thermal equilibrium with
it. However, thermodynamical limit can be applied only for systems in equilibrium, so a statistical
mechanics approach can be reasonably considered. However, a dynamical space-time inside a box is
generally an out-of-equilibrium system. In fact, in the next section, we will show a simple argument
leading to the conclusion that Bekenstein–Hawking evaporation is suppressed by the increasing
of Nariai’s horizon in f (R)-gravity. A thermal equilibrium at TB.H. in an external ideal box will never
be approached by a dynamical Nariai black hole.

7.2. Bekenstein–Hawking Radiation is Turned Off

Let us consider a Bekenstein–Hawking pair in a dynamical horizon. These are created nearby
BH horizon, and they become real in the external gravitational background. Now, one of this pair
can pass the horizon as a quantum tunnel effect, with a certain rate Γbh. However, the horizon
is displacing outward the previous radius because of antievaporation effect. As a consequence,
the Bekenstein–Hawking pair will be trapped in the black hole interior, in a space-like surface
Aspace−like. From such a space-like surface, a tunnel effect of one particle is impossible. As a
consequence, the only way to escape is if Γ−1

bh < ∆t, where ∆t is the minimal effective time scale
(from an external observer in a rest frame) from a Atime−like → Aspace−like transition—from a surface
on the Black Hole horizon Atime−like to a surface inside the Black Hole horizon Aspace−like. However,
∆t can also be infinitesimal, on the order of λ, where λ is the effective separation scale between the
Bekestein-Hawking pair. In fact, defining ∆r as the radius increasing with ∆t, it is sufficient that ∆r > λ

in order to “eat” the Bekenstein–Hawking pair in the space-like interior. However, for black holes with
a radius rS >> lPl , the tunneling time is expected to be Γ−1

bh >>> ∆t. As a consequence, a realistic
Bekenstein–Hawking emission is impossible for non-Planckian black holes. The same argument can be
iteratively applied during all the evolution time and the external horizon. That Bekenstein–Hawking
radiation cannot be emitted by a space-like surface was rigorously proven in [38–40], with tunneling
approach, eikonal approach, and Hawking’s original derivation with Bogoliubov coefficients.

Let us consider this situation from the energy conservation point of view. In stationary black
holes (as in Schwarzschild in GR), the BH horizon is necessary a Killing bifurcation surface. In fact,
one can define two Killing vector fields for the interior and the exterior of the BH. In the exterior
region, the Killing vector ζµ is time-like, while in the interior it is space-like. This aspect is
crucially connected with particles’ energies: the energy of a particle is E = −pµζµ, where pµ is
the 4-momentum of the particle. As a consequence, energy is always E > 0 outside the horizon, while
it is E < 0 inside the horizon. In the Killing horizon, a real particle creation is energetically possible.
On the other hand, in the dynamical case, it is not possible to define a conserved energy of a particle E
for a dynamical space-time; i.e., it is not possible to define a Killing vector field for time translation
in a dynamical space-time. As discussed above, the Bekenstein–Hawking particle–antiparticle pair
will be displaced inside the horizon in a space-like region. The creation of a real particle from a
space-like region is a violation of causality. In fact, it is an acausal exchange of energy (i.e., of classical
information). In fact, a particle inside the horizon is inside a light-cone with a space-like axis.
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As shown in [38], one can distinguish marginally outer trapped 3-surface (we will remind
at the end of this section the definition of a null trapped surface, as well as those of marginally outer
and marginally inner trapped surfaces) emitting Hawking’s pair (timelike surface), from the outer
non-emitting one (space-like). Let us consider the null or optics Raychaduri equation for null
geodesic congruences:

˙̂θ = −θ̂2 − 2σ̂abσab + ω̂cdω̂cd − Rµνkµkν , (127)

where the hats indicate that the expansion, shear, twist, and vorticity are defined for the transverse
directions. The Ricci tensor encodes the dynamical proprieties of f (R)-gravity EoM. Let us also specify
that ˙̂θ = ∂

∂λ θ̂, where λ is the affine parameter, while ka is ka = dxa

dλ , with k2 = 0, and θ̂ = ka
;a also defined

as the relative variation of the cross sectional are:

θ̂ = 2
1
A

dA
dλ

From Equation (138) one can define an emitting marginally outer 2-surface Atime−like
and the non-emitting inner 2-surface Aspace−like. Let us call the divergence of the outgoing null
geodesics θ̂+ in a S2-surface. With the increasing of the black hole gravitational field, θ̂+ is decreasing
(light is more bended). On the other hand, the divergence of ingoing null geodesics is θ̂− < 0
everywhere, while θ̂+ > 0 for r > 2m in Schwarzschild. The marginally outer trapped 2-surface
A2d

space−like is rigorously defined as a space-like 2-sphere with:

θ̂+(A2d
space−like) = 0 . (128)

As mentioned above, in a Schwarzschild BH the radius of the S2-sphereA2d
space−like is exactly equal

to the Schwarzschild radius. As a consequence, S2-spheres with radii smaller than rS = 2M will be
trapped surfaces (TSs) with θ(A2d

TS) < 0.
From the 2D definition, one can construct a generalized definition for 3D surfaces. The dynamical

horizon is a marginally outer trapped 3-Surface. It is foliated by marginally trapped 2D surfaces.
In particular, a dynamical horizon if it can be foliated by a chosen family of S2 with θ(n) of one null
normal ma vanishing while θn 6=m < 0 for each S2. In particular, one can distinguish among an emitting
marginally outer trapped 3-surface A3d

time−like and a non-emitting one A3d
time−like by their derivative

of θ̂m with respect to an ingoing null tangent vector na.

θ̂m(A3d
time−like) = 0, ∂θ̂m(A3d

time−like)/∂na > 0 , (129)

while the non-emitting one is defined as:

θ̂m(A3d
space−like) = 0, ∂θ̂m(A3d

space−like)/∂na < 0 . (130)

Now, armed with these definitions, let us demonstrate that the antievaporation will displace
the emitting marginally trapped 3-surface to a non-emitting space-like 3-surface. We can consider
the Raychaudhuri equation associated to our problem. Let us suppose an initial condition θ(λ̄) > 0
with λ̄ an initial value of the affine parameter λ. In the antievaporation phenomena, the null
Raychauduri equation is bounded as:

dθ̂

dλ
< −Rabkakb . (131)

Let us consider such an equation for an infinitesimal ∆t, so that we can expand
the Schwarzschild radius:

rS =
1
M e−φ0 − 1

M β2e−φ0 φ0t2 +
1

6M β4e−φ0 φ0(−2 + 3φ0)t4 + O(t5)
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and we can consider only the first 0th leading term. For any λ > λ̄, Rabkakb > C > 0, where C is
a constant associated to the 0th leading order of Rabkakb with time. As a consequence, θ̂ is bounded as:

θ̂(λ) < θ̂(λ) + C(λ− λ̄) , (132)

leading to θ̂(λ) < 0 for λ > λ1 + θ̂1/C, where λ1, θ̂1 are defined in a characteristic time t1.
As a consequence, even for a small ∆t, a constant 0th contribution coming from antievaporation will
cause an extra effective focusing term in the Raychauduri equation. On the other hand, the dependence
of the extra focusing term on time is exponentially growing. This formalizes the argument given above.
As a consequence, an emitting marginally trapped 3-surface will exponentially evolve to a non-emitting
marginally one. Bekenstein–Hawking emission are completely suppressed by this dynamical
evolution because of space-like surface cannot emit thermal Bekenstein–Hawking radiation, mixed
states (solutions of Raychauduri equations are strictly related to energy conditions; in f (R)-gravity,
energy conditions like null energy condition are generically not satisfied [68,69]).

Now let us consider the Raychaudhuri equation in f (T)-gravity [6]:

˙̂θ = −1
3

θ̂2 − 2σ̂µνσµν + ω̂µνω̂µν − RµνUµUν − ∇̃ã− 2UνTσ
µν

(
1
3

hµ
σ θ̃ + σ̃

µ
σ + ω̃

µ
σ −Uσ ãµ

)
, (133)

θ̂, σ̂, ω̂ are the expansion, shear, twist, vorticity, and acceleration in f (T)-gravity. In general, θ̂, σ̂, ω̂ will
be corrected by the torsion as:

θ̃ = θ(GR) − 2TρUρ , (134)

σ̃µν = σ(GR)µν + 2hρ
µhσ

ν Kλ
(ρσ)Uλ , (135)

ω̃µν = ω(GR)µν + 2hρ
µhσ

ν Kλ
[ρσ]U , (136)

ãρ = aρ(GR) + UµKσ
µρUσ , (137)

where Uµ is the four velocity and:

∇̃µUν = σ̃µν +
1
3

hµν θ̃ + ω̃µν −Uµ ãν

˙̂θ = ∂
∂λ θ̂, where λ is the affine parameter in the the optical null case, and Ua = ka is ka = dxa

dλ ,
with k2 = 0, and:

θ̂ = ka
;a = 2

1
Σ

dΣ
dλ

.

We can define an emitting marginally outer 2-surface Σtime−like and the non-emitting inner
2-surface Σspace−like.

The marginally outer trapped 2-surface Σ2d
space−like has a topology of space-like 2-sphere

with the condition:
θ̂+(Σ2d

space−like) = 0 (138)

where θ̂+ in a S2-surface is the divergence of the outgoing null geodesics.
Let us remember that θ̂+ decrease with the increasing of the gravitational field. θ̂+ > 0 for r > 2M

in the Schwarzschild case. The opposite variable is the divergence of ingoing null geodesics
θ̂−, θ̂− < 0 everywhere.

The radius of the S2-sphere Σ2d
space−like coincides with the Schwarzschild radius. S2-spheres

with radii smaller than rS = 2M will be trapped surfaces (TSs) (a trapped null surface is a set of points
individuating a closed surface on which future-oriented light rays are converging. In this respect,
the light rays are actually moving inwards. For any compact, orientable, and space-like surface,
a null trapped surface can be recovered by first finding its outward pointing normal vectors, and then
by studying whether the light rays directed along these latter are converging or diverging. We will
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say that, given a null congruence orthogonal to a space-like two-surface that has a negative expansion
rate, there exists a surface that is “trapped”. For these peculiar features, trapped null surfaces are often
deployed in the definition of apparent horizon surrounding black holes); i.e., θ(Σ2d

TS) < 0.
We can generalize these topological definitions for 3D surfaces.
The dynamical horizon is a marginally outer trapped 3D surface. It is foliated by marginally

trapped 2D surfaces. In particular, a dynamical horizon can be foliated by a chosen family of S2

with θ(n) of a null normal vector ma vanishing while θn 6=m < 0, for each S2. In particular, one can
distinguish among an emitting marginally outer trapped 3D surface Σ3d

time−like and a non-emitting one
Σ3d

time−like by their derivative of θ̂m with respect to an ingoing null tangent vector na.

θ̂m(Σ3d
time−like) = 0,

∂θ̂m(Σ3d
time−like)

∂na > 0 (139)

and the non-emitting one is defined as:

θ̂m(Σ3d
space−like) = 0,

∂θ̂m(Σ3d
space−like)

∂na < 0 (140)

Now, adopting these definitions, we demonstrate that the antievaporation will transmute
the emitting marginally trapped 3D surface to a non-emitting space-like 3D surface. We can consider
the Raychaudhuri–Landau equation associated to our problem. Let us suppose an initial condition
θ(λ̄) > 0 with λ̄ an initial value of the affine parameter λ. In the antievaporation phenomena, the null
Raychauduri–Landau equation is bounded as:

dθ̂

dλ
< −Rabkakb (141)

where Rabkakb is the effective contraction of the Ricci tensor with null 4-vectors,
corrected by torsion contributions:

Rµνkµkν = Rµνkµkν + 2
3 Tρkρ − 2hρ

µhσ
ν Kλ

(ρσ)
kλ − 2hρ

µhσ
ν Kλ

[ρσ]
kλ + kµKσ

µρkσkρ

+2kνTσ
µν

(
− 2

3 hµ
σTρkρ + 2hρ

µhσ
ν Kλ

(ρσ)
kλ + 2hρ

µhσ
ν Kλ

[ρσ]
kλ − kσkµKσ

µρkρ
)

.
(142)

Let us consider the antievaporation case: for λ > λ̄, it isRabkakb > K > 0, where K is the 0-th leading
order of the scalar functionRabkakb(t). So that

θ̂(λ) < θ̂(λ)− K(λ− λ̄) , (143)

leading to θ̂(λ) < 0 for λ > λ0 + θ̂0/K, where λ0, θ̂0 are defined at a characteristic time t0.
For a small δt, a constant 0th contribution sourced by the torsion will cause an effective focusing term
in the Raychauduri equation. This phenomena is exponentially growing in time. So, an emitting
marginally trapped 3D surface will exponentially evolve to a non-emitting marginally trapped one.

Now let us consider a Bekenstein–Hawking pair in an antievaporating solution. They are
imagined to be created in the black hole horizon as a virtual pair. Then, the external gravitational
field can promote them to be real particles. Then, a particle of this pair can quantum tunnel
outside the black hole horizon with a certain characteristic time scale τbh. With an understood
correction to the black hole entropy formula, this conclusion seems compatible with Nariai solutions
in diagonal tetrad choice. Bekenstein–Hawking’s calculations are performed in the limit of a
static horizon and a black hole in thermal equilibrium with the environment. This approximation
cannot work for antievaporating black holes. In fact, the horizon is displacing outward the
previous radius. The Bekenstein–Hawking pair will be trapped in the black hole interior, foliated in
space-like surfaces Σspace−like. However, from a space-like surface, the tunneling effect of a particle is
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impossible—otherwise, causality will be violated. As a consequence, Bekenstein–Hawking radiation
requests τbh < δt, where δt is the minimal effective time scale in the external rest frame for a
Σtime−like → Σspace−like transition. The Bekenstein–Hawking radiation is exponentially turned off
with time. In fact, Bekenstein–Hawking radiation cannot be emitted from a space-like surface in all
possible approaches, as proven in [38–40].

7.3. A New Radiation in Non-Diagonal Evaporating Solutions

Now, let us comment on what happens in the opposite case: evaporating solutions. In this case,
f (T)-gravity will source an extra anti-focalizing term in the null Raychauduri equation. This will
cause exactly the opposite transition: a null-like horizon is pushed out the black hole radius, and it
will become time-like. Defining δt as the transition time Σspace−like → Σtime−like, Bekenstein–Hawking
effect will happen if τbh << δt. However, with δt < τbh, the Bekenstein–Hawking pair is pushed-off
from the black hole horizon. In other words, they will both be emitted from the black hole. They can
annihilate outside the black hole, producing radiation. Contrary to Bekenstein–Hawking radiation,
unitarity is not violated in black hole formation during the gravitational collapse. In fact, the firewall
paradox is exactly coming by from the entanglement of the two pairs combined by the fact that one
is falling inside the interior while its twin tunnels out. In our case, both are emitted outwards
because of evaporation effects. In the Bekenstein–Hawking case, outgoing information is exactly
copied with the interior information. In our case, there is no entanglement among black hole interior
and the external environment. This radiation does not introduce any new information paradoxes.

8. Brane-Worlds Instabilities

In this section, we will study the presence of evaporation and antievaporation instabilities
in brane-world scenarios [35]. Let us consider the F(R)-gravity theory in five dimensions:

S =
1

2κ2
5

∫ √
−g
[

F(5)(R) + Sm

]
, (144)

where κ5 is the five-dimensional gravitational constant and Sm is the action of the matter. The equations
of motion in the vacuum are given by:

F(5)
R (R)

(
Rµν −

1
2

Rgµν

)
=

1
2

gµν

[
F(5)(R)− RF(5)

R (R)
]
+
[
∇µ∇ν − gµν∂2

]
F(5)

R (R) , (145)

where F(5)
R = dF(5)/dR. Especially if we assume that the metric is covariantly constant (that is,

Rµν = Kgµν with a constant K), we find:

0 = RF(5)
R (R)− 5

2
F(5)(R) . (146)

We denote the solution of Equation (146) as R = R0 and define the length parameter l
by R0 = 20/l2.

We should note that the metric of the Schwarzschild–de Sitter solution is covariantly constant
and given by,

ds2
SdS,(5) =

1
h(a)

da2 − h(a)dt2 + a2dΩ2
(3) , h(a) = 1− a2

l2 −
16πG(5)M

3a2 . (147)
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Here M corresponds to the mass of the black hole and G(5) is defined by 8πG(5) = κ2
5.

The space-time expressed by the metric Equation (147) has two horizons at:

a2 = a2
± =

l2

2

1±

√
1−

64πG(5)M
3l2

 . (148)

The two horizons degenerate in the limit,

64πG(5)M
3l2 → 1 , (149)

and we obtain the degenerate Schwarzschild–de Sitter (Nariai) solution. The metric in the Nariai
space-time is given by:

ds2 =
1
Λ

(
− sin2 χdψ2 + dχ2 + dΩ2

(3)

)
, (150)

where there are the horizons at χ = 0, π, and Λ = 2
l2 . Let us perform the coordinate transformation

χ = arccosζ,

ds2 = − 1
Λ

(
1− ζ2

)
dψ2 +

dζ2

Λ (1− ζ2)
+

1
Λ

dΩ2
(3) , (151)

which is singular at ζ = ±1. By changing the coordinate ζ = tanhξ, the metric can be rewritten as,

ds2 =
1

Λ cosh2 ξ

(
−dψ2 + dξ2

)
+

1
Λ

dΩ2
(3) . (152)

We often analytically continue the coordinates by:

ψ = ix , ζ = iτ , (153)

and we obtain the following metric:

ds2 = − 1
Λ cos2 τ

(
−dτ2 + dx2

)
+

1
Λ

dΩ2
(3) . (154)

Of course, after the analytic continuation, the obtained space is a solution of the equations
although the topology is changed. This expression of the metric was used in [18].

In order to consider the perturbation, we now consider the general metric in the following form,

ds2 = e2ρ(x,τ)
(
−dτ2 + dx2

)
+ e−2φ(x,τ)dΩ2

(3) , (155)

which generalizes the Nariai metric in Equation (154) with generic functions ρ(x, τ), φ(x, τ).
Then the equation of motion can be decomposed in components as:

0 = − e2ρ

2 F(5) −
(
−ρ̈ + 3φ̈ + ρ′′ − 3φ̇2 − 3ρ̇φ̇− 3ρ′φ′

)
F(5)

R + F̈(5)
R

−ρ̇Ḟ(5)
R − ρ′

(
F(5)

R

)′
+ e2φ

[
− ∂

∂τ

(
e−2φ Ḟ(5)

R

)
+
(

e−2φ(F(5)
R )′

)′]
,

(156)

0 = e2ρ

2 F(5) −
(
−ρ′′ + 3φ′′ + ρ̈− 3φ′2 − 3ρ′φ′ − 3ρ̇φ̇

)
F(5)

R + F(5)
R

′′
− ρ̇Ḟ(5)

R − ρ′
(

F(5)
R

)′
−e2φ

[
− ∂

∂τ

(
e−2φ Ḟ(5)

R

)
+

(
e−2φ

(
F(5)

R

)′)′]
,

(157)
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0 = −
(
3φ̇′ − 3φ′φ̇− 3ρ′φ̇− 3ρ̇φ′

)
F(5)

R +
∂2F(5)

R
∂x∂τ

− ρ̇
(

F(5)
R

)′
− ρ′ Ḟ(5)

R , (158)

0 = e−2φ

2 F(5) − e−2(ρ+φ)
(
−φ̈ + φ′′ + 3φ̇2 − 3φ′2

)
F(5)

R − F(5)
R + e−2(ρ+φ)

(
φ̇Ḟ(5)

R − φ′F(5)
RR

′
)

−e−2ρ

[
− ∂

∂τ

(
e−2φ Ḟ(5)

R

)
+

(
e−2φF(5)

RR

′
)′]

,
(159)

(see Appendix E for more technical details), where F′ = ∂F
∂x and Ḟ = ∂F

∂τ and we have used the
expressions of the curvatures Equation (A33) in Appendix A.

We consider the perturbations at the first order around the Nariai background Equation (154)
with R0 = 20

l2 ,

0 =
−F(5)

R (R0)+2ΛF(5)
RR (R0)

2Λ cos2 τ
δR− F(5)(R0)

Λ cos2 τ
δρ− F(5)

R (R0) (−δρ̈ + 3δφ̈ + δρ′′ − 3 tan τδφ̇)

− tan τF(5)
RR (R0)δṘ + F(5)

RR (R0)δR′′ ,
(160)

0 = −−F(5)
R (R0)+2ΛF(5)

RR (R0)

2Λ cos2 τ
δR + F(5)(R0)

Λ cos2 τ
δρ− F(5)

R (R0) (δρ̈ + 3δφ′′ − δρ′′ − 3 tan τδφ̇)

− tan τF(5)
RR (R0)δṘ + F(5)

RR (R0)δR′′ ,
(161)

0 = −3F(5)
R (R0)

(
δφ̇′ − tan τδφ′

)
+ F(5)

RR (R0)
(
δṘ′ − tan τδR′

)
, (162)

0 = −−F(5)
R (R0)+2ΛF(5)

RR (R0)

2Λ cos2 τ
δR− F(5)(R0)

Λ cos2 τ
δφ− F(5)

R (R0) (−δφ̈ + δφ′′)

−F(5)
RR (R0)(−δR̈ + δR′′) .

(163)

The perturbation of the scalar curvature δR is given in terms of δρ and δφ as follows,

δR = 4Λ(−δρ + δφ) + Λ cos2 τ(2δρ̈− 2δρ′′ − 6δφ̈ + 6δφ′′) . (164)

Therefore, the four equations of motion include only two δφ and δρ, which tell that only two
equations in the four equations should be independent.

One can find that Equation (162) can be easily integrated:

δR = 3
F(5)

R (R0)

F(5)
RR (R0)

δφ +
c1(x)
cos τ

+ c2(τ) . (165)

Here c1(x) and c2(τ) are arbitrary functions, but because δR should vanish when both of δρ

and δφ vanish as seen from Equation (164), we can put c1(x) = c2(τ) = 0.
Then, one can directly consider Equation (164): Substituting in it δR(δφ) obtained

in Equation (165), we find a simple equation:(
∂2 +

M2

cos2 τ

)
δφ = 0 , ∂2 ≡ − ∂2

∂τ2 +
∂2

∂x2 . (166)

Here:

M2 =
1
2

4α− 1
α

, α =
4ΛF(5)

RR (R0)

F(5)
R (R0)

=
F(R0)FRR(R0)

[FR(R0)]2
. (167)
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Equation (166) is nothing but a time-dependent Klein–Gordon equation for the δφ mode,
with an effective oscillating mass term in time. An explicit solution of Equation (166) is given by:

δφ = φ0 cos (βx) cosβ τ . (168)

Here β is given by solving the equation M2 = β (β− 1). The antievaporation corresponds
to the increasing of the radius of the apparent horizon, which is defined by the condition:

∇δφ · ∇δφ = 0 . (169)

In other words, it is imposed that the (flat) gradient of the two-sphere size is null.
By using the solution in Equation (168), we find tan βx = tan τ; that is, βx = τ.
Therefore on the apparent horizon, we find:

δφ = φ0 cosβ+1 τ . (170)

Because the horizon radius rH is given by rH = e−φ, we find:

rH =
e−φ0 cosβ+1 τ

√
Λ

. (171)

Then, if β < −1, the horizon grows up, which corresponds to the antievaporation depending
on the sign of φ0. The sign could be determined by the initial condition of the perturbation. On the other
hand, the case in which β, ω are complex parameters is also possible. In this case, solutions of perturbed
equations read:

δφ = Re
{
(C1eβt + C2e−βt)eβx

}
, (172)

where C1,2 are complex numbers. δφ always increase in time for C1 6= 0 because Reβ > 0. This means
that the Nariai solution is also unstable in this region of parameters. A particular class among possible
complex parameter solutions is:

δφ = φ0

{
e
−t+x

2

(
cos

γ(t− x)
2

+
1
γ

sin
γ(t− x)

2

)
+ e

t+x
2

(
cos

γ(t + x)
2

− 1
γ

sin
γ(t + x)

2

)}
, (173)

where β ≡ 1
2 (1 + iγ) and γ ≡ ±

√
2−9α

α .

On the horizon, the fluctuations must satisfy the condition φ2
0

2 γ2ex sin γ(t−x)
2 sin γ(t+x)

2 = 0,
which corresponds to two classes of solutions with x = ∓t + 2nπ

γ ,

δφ = φ0(−1)n
{

e
nπ
γ + e∓t+ nπ

γ

(
cos γt∓ 1

γ
sin γt

)}
, (174)

which implies an oscillating horizon radius.
Let us consider a class of F(5)(R) models:

F(5)(R) =
R

2κ2 + f2R2 + f0M5−2nRn . (175)

Here f2 andM are constants with a mass dimension and f0 is a dimensionless constant. In this
case, α is given by:

α =
4Λ
(

2 f2 + n(n− 1) f0M5−2nRn−2
0

)
1/2κ2 + 2 f2R0 + n f0M5−2nRn−1

0

. (176)
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Then β is given by:

β2 − β =
1

2α
(4α− 1) ; (177)

that is,

β± =
1
2

(
1±

√
9α− 2

α

)
. (178)

Then, the condition of the antievaporation β < −1 (for φ0 < 0) can be satisfied only by β−
and for α < 0. On the other hand, for β as a complex parameter in Equation (174), the oscillation
instabilities are obtained for 0 < α < 2/9. In this case, evaporation and antievaporation phases
are iterated.

Brane Dynamics in the Bulk

We now consider the F(d+1)(R) gravity in the d + 1 dimensional space-time M with d dimensional
boundary B, whose action is given by:

S =
1

2κ2

∫
M

dd+1x
√
−gF(d+1)(R) , (179)

which can be rewritten in the scalar-tensor form. We begin by rewriting the action Equation (179)
by introducing the auxiliary field A as follows:

S =
1

2κ2

∫
dd+1x

√
−g
{

F(d+1) ′(A) (R− A) + F(d+1)(A)
}

. (180)

By the variation of the action with respect to A, we obtain the equation A = R and by substituting
the obtained expression A = R into the action Equation (180), we find that the action in Equation (179)
is reproduced. If we rescale the metric by conformal transformation,

gµν → eσgµν , σ = − ln F(d+1) ′(A) , (181)

we obtain the action in the Einstein frame,

SE = 1
2κ2

∫
M dd+1x

√−g
(

R− (d− 1)∂2σ− (d−2)(d−1)
4 ∂µσ∂µσ−V(σ)

)
= 1

2κ2

∫
M dd+1x

√−g
(

R− (d−2)(d−1)
4 ∂µσ∂µσ−V(σ)

)
+ (d− 1)

∫
B ddx

√
−ĝnµ∂µσ ,

V(σ) = eσg (e−σ)− e2σ f (g (e−σ)) = A
F(d+1) ′(A)

− F(d+1)(A)

F(d+1) ′(A)2
.

(182)

Here g (e−σ) is given by solving the equation σ = − ln F(d+1) ′(A) as A = g (e−σ).
By the integration of the term ∂2σ, there appears the boundary term, where nµ is the unit vector
perpendicular to the boundary and the direction of the vector is inside. Furthermore, ĝµν is the metric
induced on the boundary, ĝµν = gµν − nµnν. The existence of the boundary makes the variational
principle with respect to σ ill-defined; we cancel the term by introducing the boundary action:

SB = −(d− 1)
∫

B
ddx
√
−ĝnµ∂µσ . (183)

Then, one may forget the boundary term,

SE → SE + SB =
1

2κ2

∫
M

dd+1x
√
−g
(

R− (d− 2)(d− 1)
4

∂µσ∂µσ−V(σ)

)
. (184)
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As is well-known, because the scalar curvature R includes the second derivative term,
the variational principle is still ill-defined in the space-time with boundary [70] (see also
Refs. [32,33,71,72]). Because the variation of the scalar curvature with respect to the metric is given by:

R = −δgµνRµν + gσν
(
∇µδΓµ

σν −∇σδΓµ
µν

)
, (185)

the variation of the action with respect to the metric is given by:

δSE =
1

2κ2

∫
dd+1x

√
−gQµνδgµν +

1
2κ2

∫
B

ddx
√
−ĝgσν

(
−nµδΓµ

σν + nσδΓµ
µν

)
. (186)

Here the Einstein equation in the bulk is given by Qµν = 0. Then, the variational principle
becomes well-defined if we add the following boundary term:

S̃b = − 1
2κ2

∫
B

ddx
√
−ĝgσν

(
−nµΓµ

σν + nσΓµ
µν

)
. (187)

Although the above boundary term Equation (187) is not invariant under the reparametrization,
because:

∇µnν = ∂µnν − Γλ
µνnλ , ∇µnν = ∂µnν + Γν

µλnλ , (188)

we find:
gσν

(
−nµΓµ

σν + nσΓµ
µν

)
= −∂µnµ − 2gδρ∂δnρ∇µnµ , (189)

which is just equal to ∇µnµ on the boundary [32,33,70–72] . Therefore we can replace the boundary
term Equation (187) by the Gibbons–Hawking boundary term,

SGH =
1
κ2

∫
B

ddx
√
−ĝ∇µnµ . (190)

Let the boundary be defined by a function f (xµ) as f (xµ) = 0. Then, by the analogy of the relation
between the electric field and the electric potential in the electromagnetism, we find that the vector(
∂µ f (xµ)

)
is perpendicular to the boundary because dxµ∂µ f (xµ) = 0 on the boundary, which gives

an expression for nµ as:

nµ =
∂µ f√

gρσ∂ρ f ∂σ f
. (191)

Then, with respect to the variation of the metric, the variation of nµ is given by:

δnµ =
1
2

∂µ f(
gρσ∂ρ f ∂σ f

) 3
2

∂τ f ∂η f δgτη =
1
2

nµnρnσδgρσ . (192)

By using the expression in Equation (192), one finds the variation of ∇µnµ with respect
to the metric,

δ
(
2∇µnµ

)
= −2δgµνnµnν − nµ∇νδgµν − gµνnρδΓρ

µν + nνδΓµ
µν . (193)

The last two terms in Equation (193) are necessary to make the variational principle well-defined,
but the second term nµ∇νδgµν may also violate the variational principle. However, by using the
reparametrization invariance, we can choose the gauge condition so that ∇νδgµν = 0.

We may also add the following boundary term:

SBD =
∫

B
ddx
√
−ĝLB . (194)
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The variation of the total action,

Stotal = SE + SB + SGH + SBD , (195)

is given by:

δStotal =
1

2κ2

∫
dd+1x

√
−gQµνδgµν +

∫
B

ddx
√
−ĝ
[

1
2κ2

(
1
2
Kĝµν −Kµν

)
+

1
2

Tµν
B

]
δgµν . (196)

Here we have defined the extrinsic curvature by Kµν ≡ ∇µnν and K ≡ gµνKµν. We also wrote
the variation of SBD as:

δSBD =
1
2

∫
B

ddx
√
−ĝTµν

B δgµν . (197)

Then, on the boundary, we obtain the following equation:

0 =
1
2
Kĝµν −Kµν + κ2Tµν

B , (198)

which may be called the brane equation. Especially if the boundary action SBD consists of only
the brane tension κ̃,

SB =
κ̃

κ2

∫
B

ddx
√
−ĝ , (199)

we find:
0 =

1
2
Kĝµν −Kµν + κ̃gµν , (200)

which can be rewritten as,

0 =
2

d− 2
κ̃ĝµν −Kµν . (201)

If we consider the model which is given by gluing two space-time as in the Randall–Sundrum
model [13,14], the contribution from the bulk doubles and therefore the Gibbons–Hawking term
also doubles:

0 =
2

d− 2
κ̃ĝµν − 2Kµν . (202)

Let us consider the following five-dimensional geometry:

ds2
5 = gµνdxµdxν = −e2ρdt2 + e−2ρda2 + a2dΩ2

3 . (203)

Here dΩ2
3 = g̃ijdxidxj expresses the metric of the unit sphere in two dimensions. We now

introduce a new time variable τ so that the following condition is satisfied,

− e2ρ

(
∂t
∂τ

)2
+ e−2ρ

(
∂a
∂τ

)2
= −1 . (204)

Then, we obtain the following FRW metric:

ds2
4 = g̃ijdxidxj = −dτ2 + a2dΩ2

3 . (205)

Then,

nµ =

(
−e−2ρ ∂a

∂τ
,−e2ρ ∂t

∂τ
, 0, 0, 0

)
, (206)

because:
Kij =

κ

2
e4ρag̃ij

dt
dτ

. (207)
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From Equation (200), we obtain:

e2ρ dt
dτ

= − κ̃

2
a . (208)

Using Equation (204) and defining the Hubble rate by H = 1
a

da
dτ , one finds the following FRW

equation for the brane:

H2 = −e2ρ(a)

a2 +
κ̃2

4
. (209)

Then, in the case of the Schwarzschild–de Sitter black hole,

e2ρ =
1
a2

(
−µ + a2 − a4

l2
dS

)
, (210)

we obtain:

H2 =
1

l2
dS
− 1

a2 +
µ

a4 +
κ2

4
. (211)

Here ldS is the curvature radius of the de Sitter space-time and µ is the black hole mass.
On the other hand, in the Schwarzschild–(anti-)de Sitter (AdS) black hole,

e2ρ =
1
a2

(
−µ + a2 +

a4

l2
AdS

)
, (212)

we obtain,

H2 = − 1
l2
AdS
− 1

a2 +
µ

a4 +
κ2

4
. (213)

In the Jordan frame, the metric is given by:

ds2
J4 = F(5) ′(R)ds2

4 =
(
−dτ2 + a2dΩ2

3

)
. (214)

Because the scalar curvature is a constant in the Schwarzschild–(anti-)de Sitter space-time,
F(5) ′(R) can be absorbed into the redefinition of τ and a:

dτ̃ ≡ dt
√

F(5) ′(R) , ã ≡ a
√

F(5) ′(R) . (215)

Then, the qualitative properties are not changed in the Jordan frame compared with the Einstein
frame. We should also note that the motion of the brane does not depend on the detailed structure
of F(5)(R).

In the Nariai space, the radius a is a constant and therefore H = 0. Furthermore, in the Nariai
space, we find e2ρ(a) = 0, and therefore Equation (209) shows that the brane tension κ̃ should vanish.
That is, if and only if the tension vanished, the brane can exist. The non-vanishing tension might be
cancelled with the contribution from the trace anomaly by tuning the brane tension. We should note,
however, that there should not be any (FRW) dynamics of the brane in the Nariai space.

However, the antievaporation may induce the dynamics of the brane. For the metric
Equation (155), one gets the expressions of the connection in Equation (A32). We introduce a new time
coordinate t̃ in the metric Equation (155) as follows:

dt̃2 ≡ e2ρ
(

dτ2 − dx2
)

. (216)
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Then, the metric Equation (155) reduces to the form of the FRW-like metric,

ds2 = −dτ2 + e−2φ(x,τ)dΩ2
(3) , (217)

if we identify e−φ(x,τ) with the scale factor a, a = e−φ(x,τ). Then, the unit vector perpendicular
to the brane is given by:

nµ =

(
−e−2ρ ∂x

∂t̃
,−e−2ρ ∂τ

∂t̃
, 0, 0, 0

)
, (218)

and the (i, j) (i, j = 1, 2, 3) components Equation (200) give:

− e−2ρ ∂φ

∂τ

∂x
∂t̃
− e−2ρ ∂φ

∂x
∂τ

∂t̃
= κ̃ . (219)

As we discussed, in order that the brane exists in the Nariai space-time, we find κ̃ = 0. By
using the solution in Equation (168), and analytically recontinuing the coordinates x → −iτ, τ → −ix,
if we assume:

φ = ln Λ + φ0 cosh ωτ coshβ x , (220)

with ω2 = β2, we find:

−ω sinh ωτ coshβ x
∂x
∂t̃
− β cosh ωτ coshβ−1 x sinh x

∂τ

∂t̃
= 0 ; (221)

that is,
∂x
∂t̃

= − β tanh x
ω tanh ωτ

∂τ

∂t̃
. (222)

Assuming that x and τ only depend on t̃ on the brane,

0 =
1

β tanh x
dx
dt̃

+
1

ω tanh ωτ

dτ

dt̃
=

d
dt̃

(
1
β

ln sinh x + ln tanh ωτ

)
; (223)

that is, 1
ω ln sinh x + ln sinh ωτ is a constant, which gives the trajectory of the brane,

sinh x =
C

sinhβ ωτ
. (224)

Here C is a constant. Of course, the expression in Equation (224) is valid as long as the perturbation
δφ = φ0 cosh ωτ coshβ x is small enough. We should also note that because F(5) ′(R) is not a constant
due to the perturbation, Equation (215) also gives another source of the dynamics of the brane.
However, Equation (215) gives only a small correction to Equation (224).

9. Discussions and Open Problems

In this review we have discussed the evaporation and antievaporation phenomena
within the framework of extended theories of gravity. In particular, we have identified two
particular metrics—the Nariai and the extremal Reissner–Nordström black hole solutions—that are
unstable at the first order of metric perturbations. Explicit analyses with the cases of dilaton-gravity,
f (R)-gravity, f (T)-gravity, mimetic gravity, and string-inspired gravity show up the emerging of
the evaporation and antievaporation instabilities. We have seen how these instabilities completely
change the thermodynamical behavior of black holes. The most surprising result is the suppression of
the Bekenstein–Hawking radiation.

Several further questions may naturally arise. First of all, since (anti)evaporation instabilities
seem to be so ubiquitous, we may ask whether any fundamental principle could be found,
common to extended theories of gravity, that could motivate the emergence of such a phenomena.
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Second, since evaporation and antievaporation turn off Bekenstein–Hawking radiation, we may ask
whether these phenomena can be relevant for the black hole information paradox.

Another unclear point remains the sensitivity of the evaporation/antievaporation transition
on integration constants that seems undetermined by the initial conditions of the problem. Is there
any principle to establish them? To use Hawking’s words, is there a loss of predictability behind such
a problem?

The last point is also crucially related to a possible cosmological problem. The production
of primordial black holes, described by Nariai metrics, can lead to a disastrous cosmological instability.
In fact, the antievaporation, turning off Bekenstein–Hawking emission, can lead to a catastrophic
exponential expansion of primordial black holes. This is an issue that still needs to be better understood
in the literature. We emphasize indeed that the implications of these phenomena on the information
loss paradox and on the holographic principle have not yet been discussed in the literature. In other
words, the interpretation of such instabilities of the black hole in the bulk has not a clear interpretation
on the boundary theory.

(Anti)evaporation may be related to a way out from the the Firewall paradox [73,74].
The Firewall paradox is originated from the holographic entanglement among the black hole
interior and the emitted Bekenstein–Hawking radiation [73,74]. This leads to a paradoxical violation
of unitarity in quantum mechanics as well as the equivalence principle of general relativity. However,
the (anti)evaporation instability radically changes the black hole emission, leading to a suppression of
the Bekenstein–Hawking radiation, as mentioned above. So, it is conceivable that the (anti)evaporation
carries deep consequences in our understanding of the black hole information paradox.

On the other hand, it is still unknown if exotic black hole solutions with multi-event horizons
of alternative theories of gravity in the presence of a non-linear electrodynamical field—like the one
recently found in Ref. [75]—can have (anti)evaporation in some regions of the parameter space.

In the era of gravitational waves discovery from the LIGO collaboration [76–78],
crucial information on the (anti)evaporation phenomena can be provided from information
on the gravitational waves signal, as it was redundant , searching for deviations from general relativity
predictions [79].

We can then conclude that evaporation and antievaporation instabilities are interesting new
phenomena that cannot be found in standard general relativity, but are common in many of its
extensions. Several deep issues could still be hidden behind them, and for the time being it seems that
we are still far from a complete understanding of their implications.
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Appendix A. Nariai Metric

The Nariai metric can be obtained as a particular limit of the Schwarzschild–de Sitter (SdS) black
hole. Let us start from the SdS solution in four space-time dimensions:

ds2 = −Φ(R)dt2 +
dr2

Φ(r)
+ r2dΩ2 , (A1)

where dΩ2 = sin ψ2dθ2 + dψ2 and:

Φ(r) = 1− 2M
r
− λ

3
r2 , (A2)

where M is the black hole mass and λ is a cosmological constant.
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Now, in order to smoothly perform the limit to the extremal SdS black hole, where 9M2λ → 1,
let us introduce two new coordinates ψ′, χ, as follows:

t =
1

εΛ
ψ′, r =

1
Λ

[
1− ε cos χ− 1

6ε2

]
, (A3)

where 9M2λ = 1− 3ε2, 0 ≤ ε << 1, λ =
√

Λ. The new metric in this coordinate system is:

ds2 = − 1
Λ2

(
1 +

2
3

ε cos χ

)
sin2 χdψ′2 +

1
Λ2

(
1− 2

3
ε cos χ

)
dχ2 +

1
Λ2 (1− 2ε cos χ)dΩ2 . (A4)

which, in the limit of ε→ 0, smoothly converges to the so-called Nariai space-time:

ds2 =
1

Λ2 (− sin2 χdψ′2 + dχ2) +
1

Λ2 dΩ2 . (A5)

At this point, one can introduce a series of coordinate changes. First of all, we introduce
χ = − arcsin z, such that:

ds2 = − 1
Λ2 (1− z2)dψ′2 +

dz2

Λ2(1− z2)
+

1
Λ2 dΩ2 . (A6)

Then, we can write the cosmological time variable and the comoving coordinate x as:

t = ψ′ +
1
2

log(1− z2), x =
z

(1− z)1/2 e±t , (A7)

leading to the metric:

ds2 =
1

Λ2 (−dt2 + cosh2 tdx2 + dΩ2) (A8)

as a linear combination of metrics:

ds2 =
1

Λ2 (−dt2 + e±2tdx2) +
1

Λ2 dΩ2 . (A9)

Finally, let us remark that with an analytic continuation of the time-coordinate, one can transform
the dependences on the cosh2 t to cos2 t, as done previously in the literature.

Appendix B. Extremal Reissner–Nördstrom Metric

In this section we will review the extremal Reissner–Nordström metric. Let us start from the
Reissner–Nordström metric:

ds2 = −Φ(r)dt2 + Φ(r)−1dr2 + r2dΩ2 , (A10)

where:

Φ(r) = 1− R0r2

12
− M

r
+

Q
r2 . (A11)

We can rewrite the mass and the charge in terms of the two radii:

Q = r0r1

(
1−

R0(r2
0 + r2

1 + r0r1)

12

)
(A12)

and:

Φ(r) =
(

1− r0

r

) (
1− r1

r

){
1−

R0[(r + r0)(r + r1) + r2
0 + r2

1]

12

}
. (A13)
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Now, we can smoothly perform the limit of r0 → r1; i.e., the extremal limit. We can consider
the following coordinate change:

r1 = r0 + ε, r = r0 +
ε

2
(1 + tanh x) . (A14)

For ε→ 0,

Φ→ − ε2

4r2
0

(
1−

r2
0R0

2

)
cosh2x . (A15)

By redefining t as:

t =
2r2

0

ε

(
1− r2

0R0
2

)τ , (A16)

one obtains:

ds2 =
r2

0(
1− r2

0R0
2

)
cosh2 x

(dτ2 − dx2) + r2
0dΩ2 . (A17)

Appendix C. Components of the Ricci Tensors and Ricci Scalar of 4D Nariai Black Holes
in f (R)-Gravity

Γτ
ττ = Γτ

xx = Γx
τx = ρ̇ , Γx

xx = Γx
ττ = Γτ

xτ = ρ′ , (A18)

Γτ
ψψ = Γτ

θθ sin2 θ = −φ̇e−(ρ+φ) sin2 θ , Γx
ψψ = Γx

θθ sin2 θ = φ′e−(ρ+φ) sin2 θ , (A19)

Γθ
τθ = Γτ

θτ = Γψ
ψτ = −φ̇, Γθ

xθ = Γθ
θx = Γψ

xψ = Γψ
ψx = −φ′,

Γθ
ψψ = − sin θ cos θ, Γψ

ψθ = Γψ
θψ = cot θ ,

(A20)

Rττ = −ρ̈ + 2φ̈ + ρ′′ − 2φ̇2 − 2ρ̇φ̇− 2ρ′φ′, Rxx = −ρ′′ + ρ̈ + 2φ′′ − 2φ′2 − 2ρ̇φ̇− 2ρ′φ′ , (A21)

Rxτ = Rτx = 2φ̇′ − 2φ′φ̇− 2ρ′φ̇− 2ρ̇φ′,

Rφφ = Rθθ sin2 θ =
{

1 + e−2(ρ+φ)
(
−φ̈ + φ′′ + 2φ̇2 − 2φ′2

)}
sin2 θ

(A22)

R = (2ρ̈− 2ρ′′ − 4φ̈ + 4φ′′ + 6φ̇2 − 6φ′2)e−2ρ + 2e2φ . (A23)

Appendix D. Components of the Ricci Tensors and Ricci Scalar in Extremal
Reissner-Nördstrom BH

Γτ
ττ = Γτ

xx = Γτ
τx = Γτ

xτ = ρ̇, Γx
xx = Γx

ττ = Γτ
τx = Γτ

xτ = ρ′ , (A24)

Γτ
ψψ = Γτ

θθ sin2 θ = − Λ2

Λ′2
φ̇e−(ρ+φ) sin2 θ, Γx

φφ = Γx
θθ sin2 θ =

Λ2

Λ′2
φ′e−(ρ+φ) sin2 θ , (A25)

Γθ
τθ = Γθ

θτ = Γψ
τψ = Γψ

ψτ = −φ̇, Γθ
xθ = Γθ

θx = Γψ
xψ = Γψ

ψx = −φ′ , (A26)

Γθ
ψψ = − sin θ cos θ, Γψ

ψθ = Γψ
θψ = cot θ , (A27)

Rττ = −ρ̈ + 2φ̈ + ρ′′ − 2φ̇2 − 2ρ̇φ̇− 2ρ′φ′, Rxx = −ρ′′ + ρ̈ + 2φ′′ − 2φ′2 − 2ρ̇φ̇− 2ρ′φ′ , (A28)

Rτx = Rxτ = 2φ̇′ − 2φ′φ̇− 2ρ′φ̇− 2ρ̇φ′,

Rψψ = Rθθ sin2 =
{

1 + Λ2

Λ′2 e−2(ρ+φ)(−φ̈ + φ′′ + 2φ̇2 − 2φ′2)
}

sin2 θ ,
(A29)

R = Λ2(2ρ̈− 2ρ′′ − 4φ̈ + 4φ′′ + 6φ̇2 − 6φ′2)e−2ρ + Λ′2e2φ . (A30)
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Appendix E. Components of the Ricci Tensors and Ricci Scalar in Five-Dimensional Nariai
Black Holes

For the metric Equation (155), we write ηab = diag(−1, 0), (a, b = τ, x). For the metric dΩ2
(3)

of three-dimensional unit sphere, we also write as:

dΩ2
(3) = ĝijdxidxj , (i, j = 1, 2, 3) . (A31)

Then, we obtain R̂ij = 2ĝij. Here R̂ij is the Ricci curvature given by ĝij.
Then, we find the following expression of the connections:

Γa
bc = δa

bρ,c + δa
cρ,b − ηbcρ,a , Γa

ij = e−2(ρ+φ) ĝijφ
,a , Γi

aj = Γi
ja = −δi

jφ,a , Γi
jk = Γ̂i

jk . (A32)

Here Γ̂i
jk is the connection given by ĝij. By using the expressions in Equation (A32), the curvatures

are given by:
Rab = 3φ,ab − ηab∂2ρ− 3 (φ,aρ,b + φ,bρ,a) + 3ηabφ,cρ,c − 3φ,aφ,b ,

Rij = R̂ij + ĝije−2(ρ+φ)
(
∂2φ− 3φ,aφ,a) , Ria = Rai = 0 ,

R = e2φR̂ + e−2ρ
(
6∂2φ− 2∂2ρ− 12φ,aφ,a) .

(A33)

We should note R̂ = 6 because R̂ij = 2ĝij.
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