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Abstract: An overview is given of effective gravitational field theories with fixed background fields
that break spacetime symmetry. The behavior of the background fields and the types of excitations that
can occur depend on whether the symmetry breaking is explicit or spontaneous. For example, when
the breaking is spontaneous, the background field is dynamical and massless Nambu–Goldstone
and massive Higgs excitations can appear. However, if the breaking is explicit, the background is
nondynamical, and in this case additional metric or vierbein excitations occur due to the loss of
local symmetry, or these excitations can be replaced by dynamical scalar fields using a Stückelberg
approach. The interpretation of Noether identities that must hold in each case differs, depending on
the type of symmetry breaking, and this affects the nature of the consistency conditions that must
hold. The Noether identities also shed light on why the Stückelberg approach works, and how it is
able to restore the broken spacetime symmetry in a theory with explicit breaking.
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1. Introduction

Some of the most important open questions in physics concern gravity. These include the question
of how General Relativity (GR) merges with the Standard Model (SM) of particle interactions in a
quantum theory. Additional open questions concern the nature of dark energy and dark matter in
gravity theories and cosmology. In many cases, investigations of these questions involve looking at
modified gravitational and particle interactions, many of which are described by effective field theories
that include fixed background fields. These background fields break spacetime symmetries, such as
local Lorentz invariance and diffeomorphism invariance. These breakings can occur spontaneously,
where dynamical tensor fields acquire a nonzero vacuum value, or explicitly, when nondynamical
background tensors are included directly in the Lagrangian [1].

Examples of effective theories involving background fields in the context of gravity include the
Standard-Model Extension (SME) [2–6], Bumblebee models [7–16] or Einstein–Aether models [17,18],
Cardinal models [19,20], models with an antisymmetric two-tensor [21,22], Chern–Simons gravity
[23,24], massive gravity [25,26], and theories with spacetime-varying couplings [27–31]. In some of
these examples, the spacetime symmetry breaking is spontaneous, while in others it is explicit. In
certain cases, either type of breaking or even a combination of both types of symmetry breaking can
occur [32].

Despite the presence of background fields that break spacetime symmetries, a meaningful physical
theory must still be observer independent [2,3]. This means that the choice of spacetime coordinates or
local Lorentz bases cannot influence the underlying physics. In the context of a gravity theory, this
requires that general coordinate invariance and the passive form of local Lorentz invariance must
still hold.

A useful distinction can therefore be made between what are called particle and observer
spacetime transformations. Particle transformations act (in an active sense) on physical fields but not
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background fields, while observer transformations act (in a passive sense) on all fields including the
background fields. It is the particle symmetries consisting of diffeomorphism invariance and local
Lorentz invariance that are broken either spontaneously or explicitly by the presence of background
fields, while the mathematical observer symmetries must continue to hold.

If the symmetry breaking is spontaneous, the action describing the theory remains invariant under
both the particle and observer transformations when all of the Nambu–Goldstone (NG) and massive
Higgs-like excitations are included. However, with explicit breaking, the particle symmetries do not
hold. Nonetheless, the observer symmetries must remain mathematical symmetries of the action in
order to maintain observer independence. This then sets up a potential conflict between the broken
particle symmetries and the unbroken observer symmetries when the symmetry breaking is explicit.
However, theories with spontaneous spacetime symmetry breaking do not encounter such conflicts [5].

In the context of a gravitational theory, which must respect geometrical identities such as the
Bianchi identities, the conflicts that arise with explicit breaking can lead to theoretical inconsistency
unless certain conditions hold. One approach for obtaining useful consistency conditions is to look
at the mathematical Noether identities associated with the observer invariances [33]. Using these
identities, the question of whether a particular theory is consistent or not can then be examined.

In this overview, a general treatment is used to examine different features and behaviors that can
arise in gravity theories that contain background fields, including their dependence on whether the
spacetime symmetry breaking is spontaneous or explicit. First, in the next section, the properties of
the background fields are examined for the two types of symmetry breaking. Next, in Section 3, the
different types of excitations that can occur in conjunction with the symmetry breaking are investigated
and discussed. These include massless Nambu–Goldstone (NG) and massive Higgs-like modes in the
case of spontaneous breaking, or additional metric modes or Stückelberg fields in the case of explicit
breaking. Section 4 looks at the Noether identities that hold and how their interpretation depends on
the form of the symmetry breaking. A summary and conclusions are given in Section 5.

It is important to keep in mind that a major component of the research effort devoted to testing
spacetime symmetries consists of experimental tests of local Lorentz symmetry and GR [34–51].
The SME is widely used as the phenomenological framework for these tests, and the sensitivities to
Lorentz violation are expressed as experimental bounds on the SME coefficients [52]. This overview
will not discuss experimental tests of Lorentz symmetry. However, the question of how background
fields are interpreted depending on the type of symmetry breaking is relevant to the SME. For example,
in the SME restricted to Minkowski spacetime, the coefficients for Lorentz violation can be treated as
fixed nondynamical background fields that explicitly break Lorentz symmetry. However, in the gravity
sector of the SME [53–63] more caution is usually used in the case of explicit breaking. Typically,
the pure-gravity sector of the SME assumes the background SME coefficients are dynamical vacuum
solutions and that the NG and Higgs modes must be accounted for in order to avoid potential
inconsistency issues.

2. Background Fields

A variety of background fields are considered in effective gravitational field theories. These
include fixed nondynamical background scalar or tensor fields, which explicitly break diffeomorphism
invariance and local Lorentz invariance. Alternatively, dynamical background fields can arise as
vacuum expectation values if the symmetry breaking is spontaneous.

To consider these types of models in a general way, and to examine the differences between
explicit and spontaneous spacetime symmetry breaking, let k̄λµν··· denote a generic background field.
Consider it as a fixed scalar or tensor with an unspecified number of components. An effective
gravitational theory containing such a background also includes interactions with other fields that
are fully dynamical, including the metric, gµν, and conventional matter fields. The latter are denoted
generically as f ψ, where ψ is a collective label for the all of the matter-field tensor indices. Assuming
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an Einstein–Hilbert form for the pure-gravity sector, and using units with 8πG = 1, the Lagrangian for
a theory of this form can be written as

S =
∫

d4x
√
−g
[

1
2

R + L(gµν, f ψ, k̄λµν···)

]
. (1)

The equations of motion are obtained by varying S with respect to the dynamical fields. This
yields the Einstein equations, Gµν = Tµν, when variations with respect to gµν are performed. Variations
with respect to the matter fields f ψ yield the Euler–Lagrange equations for f ψ, which can be denoted
generically as δL

δ f ψ = 0. These equations typically include partial derivative contributions. For example,

if L depends on both f ψ and Dµ f ψ, then the Euler–Lagrange expression is

δL
δ f ψ ≡ −Dµ

(
∂L

∂Dµ f ψ

)
+

∂L
∂ f ψ , (2)

where Dµ is a covariant derivative.
The question of whether the background field obeys Euler–Lagrange equations or not depends on

the type of symmetry breaking. With explicit breaking, the background is nondynamical, and therefore
Euler–Lagrange equations need not hold. Thus, in general

δL
δk̄λµν···

6= 0. (3)

However, if the symmetry breaking is spontaneous, then the background k̄λµν··· arises as a vacuum
solution for a dynamical field kλµν···, which allows it to be written as k̄λµν··· = 〈k̄λµν···〉. In this case,
k̄λµν··· is a solution of the vacuum Euler–Lagrange equations,(

δL
δk̄λµν···

)
vacuum

= 0. (4)

Away from the vacuum solution, the dynamical field kλµν··· has excitations in the form of
massless NG and massive Higgs-like modes. When these are included in the effective theory,
particle diffeomorphism and local Lorentz invariance still hold, and kλµν··· is a solution of its
Euler–Lagrange equations.

2.1. Diffeomorphism Breaking

Since the metric and conventional matter fields are fully dynamical, they transform under particle
diffeomorphisms in the usual way, with infinitesimal changes given by Lie derivatives defined with
respect to a spacetime vector ξµ. For example, the metric transforms as

gµν → gµν + Lξ gµν = gµν + Dµξν + Dνξµ, (5)

while the matter fields transform as
f ψ → f ψ + Lξ f ψ. (6)

However, the background field breaks particle diffeomorphisms and remains fixed under these
transformations, obeying

k̄λµν···
particle−→ k̄λµν···. (7)

At the same time, to be physically viable, the theory must be observer independent. This
requires that the action remains invariant under general coordinate transformations. For infinitesimal
coordinate transformations, xµ → xµ − ξµ, defined using vectors, −ξµ, in the inverse direction, all of
the tensor fields in the theory transform mathematically with changes given by Lie derivatives. For this
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reason, these transformations are referred to as observer diffeomorphisms. The metric and conventional
matter fields transform the same way under these infinitesimal coordinate transformations as they
do under particle diffeomorphisms. Note, however, that under these observer transformations, the
background field also transforms, obeying

k̄λµν···
observer−→ k̄λµν··· + Lξ k̄λµν···. (8)

If the diffeomorphism breaking is explicit, then the action is not invariant, and δS 6= 0 under
particle diffeomorphisms. Nonetheless, the action is still required to obey δS = 0 mathematically
under the observer diffeomorphisms in order to maintain observer independence. It is in this way
that the explicit breaking of diffeomorphisms while maintaining observer independence can lead to a
potential conflict. To be fully consistent, a theory must resolve or evade this conflict.

With explicit diffeomorphism breaking, four local gauge invariances associated with the local
vectors ξµ do not occur. As a result, there are up to four additional degrees of freedom in the metric
compared to GR, which can therefore modify gravitational interactions. These extra metric modes
can also give rise to ghosts, which is therefore an important consideration in theories with explicit
diffeomorphism breaking.

In many theories with explicit diffeomorphism breaking, a Stückelberg approach is used [64]. In
this approach, the background k̄λµν··· is rewritten in terms of four dynamical scalars, φA, labeled with
an index A = 0, 1, 2, 3. The replacement is given as

k̄λµν···(x) = ∂λφA∂µφB∂νφC · · · k̄ABC···(φ). (9)

The four scalars transform under particle diffeomorphisms, and the substitution of (9) into the
action S is sufficient to restore particle diffeomorphism invariance. As a result, four degrees of freedom
in the metric can again be treated as gauge degrees of freedom. However, the theory still has up to
four additional degrees of freedom, in comparison to GR, due to the added Stückelberg fields.

With spontaneous diffeomorphism breaking, the number of degrees of freedom in the metric
is similar to GR. This is because particle diffeomorphism invariance still holds when the NG modes
are included in the action. Thus, there are four local gauge degrees of freedom that can be used to
eliminate four degrees of freedom in the metric.

2.2. Local Lorentz Symmetry Breaking

To reveal the local Lorentz invariance, a vierbein formalism can be used. In this case, the metric is
replaced by a vierbein e µ

a , where the defining relation is

gµν = e a
µ e b

ν ηab. (10)

Here, Greek indices are used for components defined on the spacetime manifold, while Latin indices
denote components defined with respect to a local Lorentz frame.

Again, a distinction can be made between particle and observer transformations. Under particle
local Lorentz transformations, which depend on six antisymmetric parameters εab, the vierbein
transforms as a local vector,

e a
µ → e a

µ + εa
be b

µ . (11)

The matter fields f ψ have components with respect to the local basis, which can be denoted
generically as f y. These transform as irreducible representations of the local Lorentz group, which
have the form

f y → f y +
1
2

εab(X[ab])
y

x f x. (12)

Since the background field is fixed, both the components k̄λµν··· defined with respect to the
spacetime coordinate frame and k̄abc··· defined with respect to the local Lorentz frame remain
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unchanged under particle spacetime transformations. Since the frames themselves do not change
either under particle transformations, the background components are therefore connected by a fixed
background vierbein, denoted as ē µ

a . The defining relation for the background vierbein is

k̄λµν··· = ē a
λ ē b

µ ē c
ν · · · k̄abc···, (13)

where each quantity in this expression remains fixed under both particle diffeomorphisms and local
Lorentz transformations.

In a vierbein formalism, the action replacing (1) can then be written as

S =
∫

d4xe
[

1
2

R + L(e a
µ , ē a

µ , f y, k̄abc···)

]
, (14)

where e is the determinant of the vierbein. The action in this case depends on the dynamical vierbein
and conventional matter fields as well as the background k̄abc··· and fixed vierbein ē a

µ .
If the symmetry breaking is explicit, the background field and the background vierbein are

nondynamical, and the action is not invariant under particle diffeomorphisms and local Lorentz
transformations. However, in order to maintain observer independence, the action must be
mathematically invariant under observer local Lorentz transformations, consisting of changes of
the local Lorentz bases, as well as observer diffeomorphisms. In this case, all of the fields, including
k̄abc··· and ē µ

a , transform so as to keep S unchanged. The combination of broken particle local Lorentz
invariance with unbroken observer local Lorentz symmetry can lead to potential conflicts similar to
those that occur with explicit diffeomorphism breaking. Theoretical consistency requires that these
conflicts must be avoided as well.

However, if the symmetry breaking is spontaneous, then both the background k̄abc··· and the
background vierbein ē µ

a arise dynamically as vacuum expectation values. When the NG modes for
both the broken diffeomorphism invariance and local Lorentz invariance are included in the action,
the symmetry of S under both sets of transformations is restored.

3. Excitations

Effective gravitational field theories with background fields have excitations that depend on the
form of the symmetry breaking.

A theory with spontaneous diffeomorphism and local Lorentz violation has excitations that
occur as massless NG and massive Higgs excitations. The question of whether a gravitational Higgs
mechanism can occur becomes relevant as well.

In contrast, in a theory with explicit diffeomorphism and local Lorentz breaking, the background
field is nondynamical and does not have excitations. The fact that the background is not able to have
backreactions and provides a structure with “prior geometry” is very different from GR and theories
with spontaneous spacetime symmetry breaking. However, the loss of local symmetry in theories with
explicit breaking does give rise to additional degrees of freedom in the metric, and these additional
excitations lead to modified gravitational interactions.

In theories with explicit breaking, a Stückelberg approach is often used. In this case, the
multi-component background is replaced by a function, including derivatives, of four dynamical
scalar fields, and the local spacetime symmetry is restored. Excitations of the Stückelberg fields
have the form of NG excitations. Thus, the question of how these excitations compare with the NG
excitations in a theory with spontaneous breaking is pertinent.

3.1. NG Modes

Typically, a potential term V(gµν, kλµν···) in the Lagrangian induces spontaneous spacetime
symmetry breaking, where the potential is formed from scalar combinations of gµν and kλµν··· and
possibly their derivatives and other fields as well. The spontaneous diffeomorphism breaking occurs
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when a nonzero solution k̄λµν··· and 〈gµν〉 causes the potential to be at a minimum obeying V′ = 0.
Massless NG modes then occur as excitations about the vacuum solution that stay in the minimum
(still obeying V′ = 0), while massive Higgs excitations are solutions that do not stay in the minimum
(with V′ 6= 0).

The NG modes are generated by the broken symmetry transformations. With broken
diffeomorphims, they have the form of infinitesimal Lie derivatives, where the four parameters
ξµ become the NG degrees of freedom. The excitations can then be written at leading order as

kλµν··· ' k̄λµν··· + (Dλξα)k̄αµν··· + (Dµξα)k̄µαν··· + · · ·+ ξαDα k̄αµν··· + (δkλµν···)massive, (15)

where (δkλµν···)massive denotes the massive Higgs modes. While there are only four NG modes
associated with diffeomorphism breaking, the number of massive modes depends on the type of tensor,
the potential V, and the kinetic terms for kλµν···. The question of whether ghost modes exist depends
on these features as well.

To generate the NG modes for the broken local Lorentz transformations, infinitesimal excitations
having the form of broken Lorentz transformations around the vacuum solution in a vierbein formalism
can be used. In this case, there are six NG excitations, which can be written in terms of εab as

kabc··· ' k̄abc··· + ε
j

a k̄ jbc··· + ε
j

b k̄ajc··· + · · ·+ (δkabc···)massive, (16)

where (δkabc···)massive are the components of the massive excitations defined with respect to the local
Lorentz frame.

In theories with spontaneous spacetime symmetry breaking, the NG modes can be interpreted
in some cases as known gauge fields, such as photons or gravitons [10,11,19,20,65,66]. Alternatively,
the NG modes can be gauged into the vierbein, which modifies the gravitational interactions. If a
Riemann–Cartan geometry is considered, theories with a Higgs mechanism that gives rise to mass
terms for the spin connection become possible [10,11]. However, finding models that are free of ghosts
remains elusive.

3.2. Stückelberg Fields

If a Stückelberg approach is used in a theory with explicit diffeomorphism breaking, the
nondynamical background is replaced by four dynamical scalars as shown in (9), which restores
the local diffeomorphism invariance. The Stückelberg version is dynamically equivalent to the original
explicit-breaking form, since imposing gauge-fixing conditions on the scalars, φA = δA

µ xµ, reduces
the expression on the right-hand side in (9) back to k̄λµν··· and leaves the metric with four additional
degrees of freedom.

To restore diffeomorphism invariance, the excitations in the Stückelberg scalars have the form of
NG modes. Writing the excitations as

φA = δA
µ (xµ + ξµ) (17)

and substituting them into the expression in (9) gives the leading order that

∂λφA∂µφB∂νφC · · · k̄ABC···(φ) ' k̄λµν··· + (Dλξα)k̄αµν··· + (Dµξα)k̄µαν··· + · · ·+ ξαDα k̄αµν···. (18)

This has the same form as the NG excitations about the background k̄λµν··· in a corresponding
theory with spontaneous breaking, as given in (15), but where there are no massive excitations.

An explicit-breaking theory in a Stückelberg description can be viewed as a theory with
spontaneous diffeomorphism breaking, but where it is the scalar fields that acquire vacuum values
of the form φA = δA

µ xµ. While these vacuum values replicate the original background k̄λµν··· as it
appears in the Lagrangian, there are still only four degrees of freedom in the explicit-breaking case.
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This is, in general, not sufficient to provide a vacuum solution for the multi-component background
tensor k̄λµν···, which must satisfy Euler–Lagrange equations for all of its components if it is to be fully
dynamical. Thus, instead, (3) continues to hold for the explicit-breaking theory, and k̄λµν··· remains
nondynamical.

4. Noether Identities

Field theories with local symmetries obey Noether’s second theorem [67,68], which states that
off-shell identities relating the Euler–Lagrange expressions for the dynamical fields must hold.
The main consequence of the Noether identities is that not all of the equations of motion are
independent when there are local symmetries.

For example, in GR with matter fields f ψ, the Noether identities that result from diffeomorphism
invariance have the form

Dµ(Gµν − Tµν) +
δL
δ f ψ γψν + Dµ(

δL
δ f ψ γψµν) = 0, (19)

The coefficients γψν and γψµν denote functions of the field components, where their specific form
depends on the theory, while (Gµν − Tµν) and δL

δ f ψ are the Euler–Lagrange expressions for the metric
and matter fields, respectively. What this identity says is that four of the dynamical equations of
motion are not independent when there is local diffeomorphism invariance. Alternatively, when this
identity is combined with the contracted Bianchi identity, which states that DµGµν = 0, it shows that
covariant energy-momentum conservation, DµTµν = 0, must automatically hold when the dynamical
matter fields are on-shell obeying δL

δ f ψ = 0.
In a vierbein description, Noether identities resulting from local Lorentz invariance hold as well.

Using a vierbein description in GR with matter fields f ψ, the resulting Noether identities are

(Gµν − Tµν)(eµaeνb − eµbeνa) +
1
2

δL
δ f y (X[ab])

y
x f x = 0. (20)

In this case, since Gµν = Gνµ holds for the Einstein tensor, the result of this identity is that the
energy-momentum tensor in the vierbein description must also be symmetric when the matter fields
are on shell.

While effective gravitational theories with background fields break diffeomorphism and local
Lorentz invariance either explicitly or spontaneously, it may seem that there are no Noether identities
that apply in these theories. However, if the theory is to remain observer independent, the action
must still be mathematically invariant under the observer spacetime transformations. Applying the
observer spacetime transformations and imposing δS = 0 therefore results in Noether identities that
must hold even when there is a background field. Under the observer transformations, the background
field transforms along with the metric and matter fields, which can yield Noether identities for both
observer diffeomorphisms and local Lorentz transformations [33].

For example, performing observer diffeomorphisms on the action in (1) and requiring that it be
observer independent results in Noether identities of the form

Dµ(Gµν − Tµν) +
δL
δ f ψ γψν + Dµ(

δL
δ f ψ γψµν) +

δL
δk̄αβγ···

λν
αβγ··· + Dµ(

δL
δk̄αβγ···

λ
µν
αβγ···) = 0. (21)

In this case, γψν, γψµν, λν
αβγ··· and λ

µν
αβγ··· all denote coefficients that are functions of the field

components. Notice in this case that Euler–Lagrange expressions for the background, δL
δk̄αβγ···

, appear in

this identity. As a result of this, the interpretation of the Noether identies when there is a background
field present depends on whether the symmetry breaking is explicit or spontaneous.
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For the case of explicit breaking, the background k̄λµν··· is nondynamical and the Euler–Lagrange
equation for it need not vanish, as indicated in (3). Thus, when the metric and conventional matter
fields are on shell, theoretical consistency requires that the following equation must hold:

δL
δk̄αβγ···

λν
αβγ··· + Dµ(

δL
δk̄αβγ···

λ
µν
αβγ···) = 0. (22)

This results in a different interpretation from GR, since it is no longer an option to set the
Euler–Lagrange expressions for k̄λµν··· to zero. Instead, it is the four additional metric modes that exist
as a result of the symmetry breaking that must satisfy this equation. In some theories, the couplings
between the additional metric modes and the background are insufficient to allow the conditions
in (22) to hold. For example, if a particular ansatz form of the metric is chosen that does not include
any of the needed additional modes, then some backgrounds can become incompatible with the
Noether identities.

However, if the symmetry breaking is spontaneous, then k̄λµν··· is a dynamical vacuum solution
and Euler–Lagrange equations hold, as in (4). If excitations are included as in (15), then the
Euler–Lagrange equations for the tensor kλµν··· (including the NG and massive excitations) hold.
Thus, with spontaneous diffeomorphism breaking, the interpretation of the Noether identities is the
same as in GR. Four of the equations of motion are not dynamically independent, and covariant
energy-momentum conservation holds when all of the dynamical fields are on shell.

If a vierbein formalism is used, the Noether identities resulting from observer local Lorentz
invariance can be obtained. In this case, the action is given in (14), which depends on both the
background field and a background vierbein. Requiring that S be unchanged under observer local
Lorentz transformations gives six Noether identities, which have the form

(Gµν − Tµν)(eµaeνb − eµbeνa) +
1
2

δL
δ f y (X[ab])

y
x f x +

(
δL

δē a
µ

ēµb − δL
δē b

µ

ēµa

)
+ δL

δk̄cde···

[
(ηac k̄bde··· − ηbc k̄ade···) + (ηad k̄cbe··· − ηbd k̄cae···)

+ (ηac k̄cdb··· − ηbc k̄cda···) + · · ·
]
= 0.

(23)

Again, the interpretation of these identities depends on the type of symmetry breaking.
With explicit breaking of local Lorentz invariance, the background field and the background

vierbein are nondynamical and therefore in general obey the relations

δL
δē a

µ

6= 0,
δL

δk̄abc···
6= 0. (24)

Thus, when the matter fields are on shell and the symmetry of the Einstein tensor is used, it follows
that the energy-momentum tensor in the vierbein description is symmetric only if the remaining terms
in (23) combine to give zero. With explicit Lorentz breaking, the vierbein has six additional degrees
of freedom due to the loss of the local symmetry. It is these degrees of freedom that must make the
remaining terms in (23) vanish in order for Tµν to be symmetric.

On the other hand, if the breaking of local Lorentz invariance is spontaneous, then both ē a
µ and

k̄abc··· are dynamical vacuum solutions. Therefore, the Euler–Lagrange equations for the vacuum hold,
and these equations continue to hold when excitations are included. The result in this case is the same
as in GR. When the all the dynamical equations of motion hold, Tµν is automatically symmetric.

As described above, the Stückelberg formalism allows an explicit-breaking theory with a
nondynamical background k̄λµν··· to be reinterpreted as a dynamical theory with four additional
scalars φA. The Stückelberg approach is often referred to as a trick, since it restores the symmetry in a
theory where it is initially explicitly broken, and it makes the theory dynamical. Some insight into why
this trick works can be obtained by examining the Noether identities that hold with scalar fields.
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If the Stückelberg substitution (9) is made in the action in (1), the result is a new action that depends
on the fields gµν, f ψ, and φA. The Noether identities stemming from diffeomorphism transformations
in this case are

Dµ(Gµν − Tµν) +
δL
δ f ψ γψν + Dµ(

δL
δ f ψ γψµν) +

(
−Dµ

∂L
∂∂µφA +

∂L
∂φA

)
∂νφA = 0. (25)

When the metric and matter fields are put on shell, and assuming the derivatives ∂νφA are linearly
independent, the resulting conditions that must hold are

− Dµ
∂L

∂∂µφA +
∂L

∂φA = 0. (26)

These have the form of the Euler–Lagrange equations of motion for the scalars φA.
It is important to realize that the Noether identities in (25) and the conditions in (26) that follow

from them can be obtained in two different ways. In the first, the scalars φA are treated as fixed
nondynamical background fields that explicitly break diffeomorphism invariance. The substitution (9)
in this case replaces the nondynamical background k̄λµν··· by derivatives of nondynamical scalars
φA. The Noether identities in (25) follow, in this case, from imposing the requirement of observer
independence and using observer diffeomorphism transformations. However, the same identities
in (25) follow using the Stückelberg trick, where the scalars φA in this case are treated as dynamical
fields. It is unbroken diffeomorphism invariance that gives rise to the Noether identities in (25) in
this approach.

Thus, using either nondynamical or dynamical scalars φA, the result of the Noether identities
is that the Euler–Lagrange equations in (26) must hold. It is this fact that enables the Stückelberg
approach to work. Starting with a theory with explicit breaking and a nondynamical background, the
replacement in (9) is made using fixed nondynamical scalars. The consistency of the explicit-breaking
theory requires that the conditions stemming from the Noether identities must hold. However, these
have the form of the Euler-L-agrange equations for the scalars. Letting the scalars be dynamical and
restoring diffeomorphism invariance is then possible because the Euler–Lagrange equations for the
dynamical scalars are already imposed.

It is important to note as well that in the first case where the scalars φA are nondynamical,
the Euler–Lagrange equations in (26) must be satisfied by the additional metric modes that occur
due to the lose of local symmetry. In contrast, in the Stückelberg approach, where the scalars are
dynamical and the metric can be gauge fixed, it is then the scalars themselves that must satisfy their
own Euler–Lagrange equations, as expected for fields that are dynamical.

5. Summary and Conclusions

Effective gravitational field theories with background fields are used in a variety of investigations
looking at possible modifications of gravity, quantum gravity effects, and phenomenological effects
of spacetime symmetry breaking. The presence of a background field breaks diffeomorphism and
local Lorentz invariance either explicitly or spontaneously, and the behavior and interpretation of the
background field depends on which type of breaking occurs.

With explicit breaking, the background is nondynamical, and it does not obey Euler–Lagrange
equations of motion. Noether identities in this case are obtained by imposing observer independence.
It is the additional metric modes that result from the absence of local symmetry that must satisfy the
Noether identities.

In contrast, with spontaneous breaking, the background is dynamical and it obeys Euler–Lagrange
equations either as a vacuum solution or when the NG and massive Higgs modes are included. Noether
identities follow in this case from the unbroken local symmetry, and their interpretation is similar
to GR.
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A Stückelberg approach can be used to turn a theory with explicit breaking and a nondynamical
background into an equivalent theory with four dynamical scalars where the symmetry is restored.
The Stückelberg excitations are NG modes about vacuum solutions for the four scalars. The original
fixed background k̄λµν··· remains nondynamical and does not satisfy its Euler–Lagrange equations.
Instead, it is the scalar field Euler–Lagrange equations that hold. The fact that these equations hold
regardless of whether the scalars are dynamical or nondynamical is a key feature that permits the
Stückelberg approach to work.
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