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Abstract: With the trend of the increasing ageing population, more elderly people often encounter 

some problems in their daily lives. To enable these people to have more carefree lives, smart homes 

are designed to assist elderly people by recognizing their daily activities. Although different models 

and algorithms that use temporal and spatial features for activity recognition have been proposed, 

the rigid representations of these features damage the accuracy of activity recognition. In this paper, 

a two-stage approach is proposed to recognize the activities of a single resident. Firstly, in terms of 

temporal features, the approximate duration, start and end time are extracted from the activity 

records. Secondly, a set of activity records is clustered according to the records’ temporal features. 

Then, the classifiers are used to recognize the daily activities in each cluster according to the spatial 

features. Finally, two experiments are done to validate the recognition of daily activities in order to 

compare the proposed approach with a one-dimensional model. The results demonstrate that the 

proposed approach favorably outperforms the one-dimensional model. Two public datasets are 

used to evaluate the proposed approach. The experiment results show that the proposed approach 

achieves average accuracies of 80% and 89%, respectively. 

Keywords: smart homes; activity recognition; sensors 

 

1. Introduction 

With the trend of the ageing population, more elderly people must live alone and cannot receive 

care from their children or spouses. It is well known that elderly people are prone to accidents in their 

daily lives. In traditional homes, it is difficult to recognize in a timely manner that an accident has 

occurred. To help single elderly people live healthy lives, smart homes are being developed to detect 

the daily activities of elderly people. Naturally, the activity recognition is the key function in the 

smart home development. 

Over the last decade, there has been considerable research on activity recognition in smart homes. 

This research can be divided into five categories, depending on the monitoring technology [1]. The 

first monitoring technology is based on video cameras that are fixed in rooms [2,3]. Activities are 

recorded by the cameras and recognized by analyzing the video records. Although the camera-based 

approaches were criticized for privacy exposure, video-processing techniques were recently 

introduced to anonymize and record only the situations where the user is in potential danger. At 

present, the main problem of camera-based approaches is the required infrastructure for a pervasive 
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and everywhere-monitoring coverage. The second monitoring technology is based on sound 

recognition [4]. Sound recognition uses micro-phones to detect different classes of daily activity, e.g., 

the sound of doing the dishes or the fall of an object or a person. Obviously, the activity recognition 

is able to be interfered by noise. The third monitoring technology is based on body-worn sensors [5,6]. 

The residents are required to wear monitoring devices, and their activities are recorded by the devices 

in real time. Although this method protects the resident’s privacy, the wearing devices is an extra 

burden. The fourth monitoring technology is based on pressure sensors [7]. The pressure sensors are 

used to detect the presence of residents on chairs or in bed, sit-to-stand transfers and stand-to-sit 

transfers. The monitoring technology can only detect a few simple activities. The fifth monitoring 

technology is based on ambient sensors [8–14] that are placed in various rooms. Generally, the 

ambient sensors include light sensors, temperature sensors, magnetic door sensors, etc. When the 

resident moves or does something in the room, some ambient sensors are activated. The current 

activity of the resident is inferred from the sensor events. The resident’s activities activate a sequence 

of ambient sensors. For example, the “washing” activates the ambient sensors that are fixed in the 

taps. In this manner, the resident has privacy protection and is freed from wearing extra devices. The 

drawback of the ambient sensor-based solutions is the required disbursement to cover the entire 

residence. Furthermore, even if the sensors are placed in different rooms, some blind spots can remain. 

Finally, the activity recognition model cannot address the case when the user modifies his/her 

behavior patterns at certain instants. To use the ambient sensors and body-worn sensors to obtain 

better performance, the ambient sensors and body-worn sensors are jointly utilized. For example, 

Atallah et al. presented a Bayesian classification framework for activity recognition [11]. To alleviate 

the user’s load, a light-weight e-AR sensor is used to generate prior information. Ambient sensors are 

harnessed to produce more detailed activity profiling. 

Substantial effort has been expended on activity recognition [15,16]. Most researchers have 

attempted to introduce machine learning into their approaches. Some have used time series models 

to recognize activities, e.g., the hidden Markov model (HMM) or conditional random fields (CRF). 

For example, Kasteren et al. used hidden Markov models and the hierarchical hidden Markov model 

to recognize residents’ activities [17–19]. Tong et al. used the latent-dynamic conditional random 

fields and hidden state conditional random field for abnormal activities and the activities of single 

residents and multiple residents [20–22]. The commonality of these approaches is that the order of 

activities and the order of sensor events are emphasized. However, time series models usually have 

poor robustness [23]. For example, the daily order of a resident’s activities is not always identical. For 

a single activity, the order of sensor events often changes. Furthermore, the order of one resident’s 

activities is different from that of another. To improve the robustness, researchers exploit static 

classifiers for activity recognition, e.g., naive Bayesian (NB), k-nearest neighbor (kNN) or support 

vector machine (SVM) [24]. For example, Cook et al. used NB to recognize daily activities [25]. Yin et 

al. used the one-class SVM to recognize abnormal daily activities [26–28]. 

Temporal features have been interlaced with spatial features in earlier publications [29,30]. 

Krishnan et al. [31] incorporated time decay, mutual information-based weighting of sensor events 

and contextual information to perform activity recognition on streaming sensor data. Lotfi et al. [32] 

used the echo state network to predict abnormal behaviors for the elderly dementia sufferer. In their 

approach, the start time and duration were considered. In addition, temporal relations between 

sensor events were exploited as features to infer activities [33–36]. Generally, the temporal relations 

were built firstly. Then, the logical rules for activity recognition were generated. In this paper, a two-

stage approach is proposed for activity recognition. Firstly, the temporal features of an activity record, 

e.g., the approximate start time, approximate end time and approximate duration, are used to divide 

a dataset of activity records into two clusters. Then, the spatial features of the sensor events are used 

to recognize the activities in each cluster. In the proposed approach and previous approaches, the 

temporal features are used. 

In this paper, a data-driven approach is presented. Compared to the one-dimensional recognition 

model, the two-stage approach is new. For the first stage, the temporal features are used to cluster the 

training set. The activity records among different clusters are temporally sensitive, whereas the activity 
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records within the same cluster are temporally insensitive, and the temporal features are noise data. For 

the second stage, the activity records within the same cluster are spatially sensitive. Activity records are 

recognized only regarding spatial features. The contribution of this paper is as follows. Compared to the 

one-dimensional recognition model, the activity recognition of the second stage is not interfered by noise 

data and has a high performance, which is shown by the experiments. 

The remainder of this paper is organized as follows: firstly, we introduce the related work. Then, 

the approach to activity recognition is described. Next, we validate the proposed approach and 

discuss the results. Finally, the obtained findings are summarized, and the future work is declared. 

2. Related Work 

Activity recognition approaches are commonly divided into the data-driven approaches and 

knowledge-driven approaches. The knowledge-driven approaches emphasize the recognition rules. In 

most situations, the recognition rules are generated by following a heuristic strategy and are represented 

in some logical language, e.g., temporal logic or description logic. Rugnone et al. [37] used temporal logic 

to represent recognition rules to recognize abnormal activity. Yin et al. and Chen et al. [38,39] represented 

recognition rules as an ontology, and Chen et al. [40] proposed an improved ontology-based approach. 

The core of these approaches is an iterative process that begins from the so-called “seed” activity models, 

which are created by ontological engineering, deployed and subsequently evolved through incremental 

activity discovery and model updates. The knowledge-driven approaches have strong robustness because 

the recognition rules can be used in different environments. However, the raw data commonly include 

substantial noise and uncertain information, which are difficult to identify and consequently affect the 

accuracy of activity recognition. 

The data-driven approaches are classified as supervised approaches, semi-supervised 

approaches and unsupervised approaches. Early research focused on supervised approaches, where 

the activity records were first labelled in advance. Then, the labelled activity records were learned by 

a classifier, e.g., NB [25], DT [41], kNN [42], SVM [43,44], HMM [17–19] or CRF [20–22]. Although 

supervised approaches achieve high accuracy, labelling the activity records is expensive and time 

consuming. To avoid data-labelling efforts, unsupervised approaches were proposed [45,46]. 

Maekawa et al. [47] used information about the end user’s physical characteristics to recognize similar 

activities of other users according to similarities between activities. Although the labelling efforts can 

be avoided, the unsupervised approaches are typically criticized for poor accuracy. To reach a trade-

off among the accuracy, overhead and labelling efforts of the supervised and unsupervised methods, 

a growing amount of recent studies has focused on the semi-supervised approaches. For semi-

supervised approaches, training data are generally separated into labelled and unlabeled. Four tasks 

must be orderly fulfilled to generate the recognition model. Firstly, the features are extracted from 

the sensor events of both labelled data and unlabeled data. Secondly, for the labelled data, sensor 

events are segmented regarding the start and end boundaries of an entire activity record. The activity 

features are generated by regarding activity records. Thirdly, for the unlabeled data, the sensor events 

are segmented by regarding a predefined strategy, e.g., the sliding window strategy. The activity 

features are generalized by regarding segmented sensor events. The activity labels are assigned to 

segment the sensor events by calculating the feature similarity between the labelled and unlabeled 

activity records. Finally, the activity features are extended from both unlabeled activity records and 

harnessed to generate the recognition model. Some documented semi-supervised studies are as 

follows. Nef et al. [48] performed a hybrid approach of an unsupervised part and a supervised part 

to recognize eight activities of daily living. Cluster algorithms were first employed to cluster the same 

activities according to the spatial locations of the firing sensors. Secondly, three classifiers (NB, SVM 

and RF) were used for activity recognition. The experiment showed that the random forest classifier 

was superior to the naive Bayesian and support vector machine in terms of specificity, sensitivity, 

precision and F-measure. Bourobou and Yoo [23] proposed a similar pattern for activity recognition. 

Firstly, a cluster algorithm K-pattern was used to find the frequent patterns of activities [49], which 

were viewed as features of activities. Secondly, a device based on an artificial neural network (ANN) 

was used to recognize the activities according to their features. Wen and Zhong [50,51] divided 
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trained sensor events into labelled and unlabeled. The labelled sensor events were used to find the 

initial activity patterns. The unlabeled events were used to enrich the initial activity patterns if the 

similarities between the unlabeled events and the initial activity patterns satisfied a minimum 

similarity. Otherwise, they were clustered to find new activity patterns. 

3. Terminologies 

To represent the proposed approach, some terminologies are defined in advance. For clarity, a 

segment of activity records is shown in Table 1. 

Definition 1. For a sensor s, sr = (d, h, m, sn, sv, al) is a sensor event iff s is run. d is the date when s was run; 

h is the hour; and m is the minute. sn is the name of s; sv is the value of s; and al is an explanatory activity label. 

Throughout this manuscript, sr.d, sr.h, sr.m, sr.sn, sr.sv and sr.al are used to represent the tuples 

d, h, m, sn, sv and al of a sensor event sr, respectively. Ω is used to represent the set of sensor events. 

For example, “15 June 2011 00:25:01.892474 LS013 7 Sleep” denotes that sensor LS013 is activated at 

00:25:01.892474 on 15 June 2011 with the measured value of seven. At that time, the resident was sleeping. 

Table 1. A segment of activity records. 

Number Date Time Sensor Value Activity 

1 15 June 2011 00:06:32.834414 M021 ON 

Sleep 

2 15 June 2011 00:12:32.670631 BATV012 9540 

3 15 June 2011 00:15:01.957718 LS013 6 

4 15 June 2011 00:25:01.892474 LS013 7 

5 15 June 2011 01:05:01.622637 BATV013 9460 

6 15 June 2011 03:38:28.21206 M021 ON 

7 15 June 2011 03:38:44.482092 MA013 ON 

Bed_Toilet_Transition 8 15 June 2011 03:38:45.133517 M018 OFF 

9 15 June 2011 03:38:47.644521 MA013 OFF 

Definition 2. Given two sensor events sr1 and sr2, sr1 is said to be the precursor of sr2 iff sr1.d < sr2.d holds or 

(sr1.d == sr2.d AND sr1.h < sr2.h) or (sr1.d == sr2.d AND sr1.h == sr2.h AND sr1.m < sr2.m) holds. sr2 is said to 

be the successor of sr1 if sr1 is the precursor of sr2. 

Throughout this manuscript, sr1 < sr2 indicates that sr1 is the precursor of sr2. 

For example, {15 June 2011 00:25:01.892474 LS013 7 Sleep} is the precursor of {15 June 2011 

01:05:01.622637 BATV013 9460 Sleep}. {15 June 2011 01:05:01.622637 BATV013 9460 Sleep} is the 

successor of {15 June 2011 00:25:01.892474 LS013 7 Sleep}. 

Definition 3. Given two sensor events sr1 and sr2 for which sr1 < sr2 holds, sr1 is said to be the direct precursor 

of sr2 iff ¬ srΩ, sr1 < sr AND sr<sr2 holds. sr2 is said to be the direct successor of sr1 if sr1 is the direct 

precursor of sr2. 

Throughout this manuscript, sr1sr2 indicates that sr1 is the direct precursor of sr2. 

For example, {15 June 2011 00:25:01.892474 LS013 7 Sleep} is the direct precursor of {15 June 2011 

01:05:01.622637 BATV013 9460 Sleep}. {15 June 2011 01:05:01.622637 BATV013 9460 Sleep} is the direct 

successor of {15 June 2011 00:25:01.892474 LS013 7 Sleep}. 

Definition 4. Given an activity a and n sensor events sr0, sr1, sr2, …, srn, srn+1, SRs is said to be a sensor 

sequence of a iff  1 ≤ i ≤ n, sri.al == a AND sr0 ≠ a AND srn+1 ≠ a AND  2 ≤ i ≤ n − 1 sri  sri+1 holds. 

Definition 5. For an activity a and a sequence of ambient sensors sr1, sr2, …, srn of a, ar = (sr1.h, srn.h, u, SNT, 

a) is an activity record. u is the approximate duration of a. SNT is the spatial feature and is defined as a set 

{(srn, T)}, where srn  {sri.sn|1 ≤ i ≤ n} is the name of some sensor, and T = |{sri|1 ≤ i ≤ n∧sri.sn = srn}| is 

the frequency that the sensors named srn occur. u and SNT are solved using Algorithm 1. 

Algorithm 1. GenerateActivitiyRecord 
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 Input: sr1, sr2, …, srn, a sequence of sensor events 

 Output: u, SNT 

1. u(srn.d-sr1.d)*24*60 + (srn.h-sr1.h)*60 + (srn.m-sr1.m) 

2. SNT  

3. for each sr in {sr1, sr2, …, srn}  

4.  if (sr.sn, T) SNT then // T is the number of times that sensor sr.sn is run. 

5.  delete(sr.sn, T) // delete (sr.sn, T) from SNT 

6.  SNT  SNT {(sr.sn, getT (sr.sn)+1)} //getT(sr.sn) is employed to get tuple T of (sr.sn, T)  

7.  else 

8.  SNT  SNT {(sr.sn, 1)} 

9. end if 

10. return u, SNT 

For the example in Table 1, “(0, 3, 212, {(MA021, 2), (BATV012, 1), (BATV013, 1), (LS013, 2)}, 

Sleep)” is an activity record of “Sleep”. The duration u is “212” min because the approximate duration 

between the approximate start and approximate end times of “Sleep” is “212” min. The ambient 

sensors “MA021” and “LS013” are each run twice; the ambient sensors “BATV012” and “BATV013” 

are each run once. 

4. Methodology 

The entire process is composed of five tasks: Proposing, Clustering, GeneratingModel, Aligning and 

AssigningActivityLabel, which are shown in Figure 1. The first task, Proposing, generates a set of 

activity records based on the set of sensor events, which is shown in Algorithm 2. Then, the activity 

record set is divided into a training dataset and a test dataset in some proportion. In the experiment, 

the proportion is set as 9:1. The second task, Clustering, clusters the training data and test data 

according to the tuples sr1.h, srn.h and u of each activity record using K-means. The third task, 

GeneratingModel, generates a recognition model for each training cluster. Note that both training data 

and test data are involved in the Clustering task regarding temporal tuples, which include sr1.h, srn.h 

and u. Tuples al and SNT are not involved in the clustering task. The training data are only input into 

the classifier to generate a recognition model regarding tuples SNT and al, where al is the class label 

of the activity record. In contrast, the activity records in the test set are assigned to class labels by the 

recognition model regarding the tuple SNT. The fourth task Aligning is to find an optimal alignment 

between recognition models and the test cluster set, which is shown in Algorithm 3. For each potential 

alignment, an outlier detection algorithm (LOF) is used to decide whether each test activity record is 

an outlier against the training set. The alignment with the minimum outliers is optimal. The last task, 

AssigningActivityLabel, assigns an activity label to each activity record of the test set, which is shown 

in Algorithm 4. 

Note that both real-time activity recognition and off-line activity recognition are discussed in the 

smart home context [8]. In this paper, the proposed approach focuses on the recognition across pre-

segmented sensor data instead of real-time sensor data. 
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Figure 1. The entire process of activity recognition based on the proposed approach. 

Algorithm 2. GenerateActivityRecordsSet 

 Input: sr1, sr2, …, srn, a sequence of sensor events 

 Output: AR, activity records set 

1. i1 

2. k1 

3. AR  

4. while(i<=n-1)  

5.  if sri.al != sri+1.al then 

6.  argenerateActivitiyRecord(srk, srk+1, …, sri) 

7.  ARAR ar 

8.  kI + 1 

9.  else 
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10.  i++ 

11.  end if 

12. end while 

13. argenerateActivitiyRecord(srk, srk+1, …, sri) 

14. ARAR ar  

15. return AR 

 

Algorithm 3. AlignTrainSet & TestSet 

 Input: M, set of recognition models. 

 PTes, test set of activity records. 

 Output: MP, a subset of M × PTes. 

1. Let M be {m1, m2, …, mn} 

2. Let PTes be {Tes1, Tes2, …, Tesn} 

3. sm  

4. for any n elements (mx1,Tes x1), (m x2,Tes x2), …, (m xn,Tes xn) in M × PTes 

5.  oc0// oc is used to count outliers of Tes xi against Traxi 

6.  i1 

7.  while(i ≤ n) 

8.  for each ar in Tes xi  

9.  if isOutlier(mxi, ar) then // isOutlier(mxi, ar) is used to decide if ar is an outlier or not.  

10.  oc oc + 1 

11.  end if 

12.  end for 

13.  end while 

14.  if oc<sm then 

15.  smoc 

16.  MP{(mx1,Tes x1), (mx2,Tes x2), …, (mxn,Tes xn)} 

17.  end if 

18. end for  

19. return MP 

 

Algorithm 4. RecognizeActivity 

Input: {m1, m2, …, mn}, set of recognition models 

 {Tes1, Tes2, …, Tesn}, test set 

 C, classifiers including NB, kNN, C4.5 and RF 

Output: {AL1, AL2, …, ALn}, activity class set 

1. i1 

2. j1 

3. while(i<=n) 

4.  Let Tesi be {ari1, ari2, …, arim} // arij is an activity record. 

5.  j1 

6.  while(j<=m) 

7.  alijassignLabel(C, mi, arij) // mi is fed to C and C outputs an activity label. 

8.  ALi {alij} 

9.  j++ 

10.  end while 

11.  i++ 

12. end while 

13. return {AL1, AL2, …, ALn} 
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5. Results and Evaluation 

5.1. Datasets 

The two used datasets were selected from the “single-resident apartment data” provided by 

Washington State University, U.S. [52,53]. Datasets “HH102” and “HH104” were used to validate the 

recognition of daily activities by comparing the two-stage approach (“TS”) and one-dimensional (“SS”) 

model. 

The details of dataset “HH102” are displayed in Table 2. These data are obtained from healthy 

elderly people. The measurement time was 64 days. A total of ninety-seven sensors was installed in 

the apartment. The sensors included the following categories. 

(1) Identifiers starting with “BA” indicate the sensor battery levels: BATP013, BATP019, BATV001–

BATV023, BATV102–BATV105. 

(2) Identifiers starting with “D” indicate magnetic door sensors: D001, D002, D005 and D006. 

(3) Identifiers starting with “L” and “LL” indicate light switches: L001–L005, LL001 and LL005. 

(4) Identifiers starting with “LS” indicate light sensors: LS001–LS023. 

(5) Identifiers starting with “M” indicate infrared motion sensors: M001–M022. 

(6) Identifiers starting with “MA” indicate wide-area infrared motion sensors: MA003, MA009, 

MA010, MA013, MA014, MA020 and MA023. 

(7) Identifiers starting with “T” indicate temperature sensors: T101–T105. Thirty activities were 

considered in the dataset. The raw dataset included 413,142 sensor events. The activity dataset 

included 2087 activity records. In our experiment, 12 activities were selected to test the proposed 

approach: “Sleep” (“S”), “Bathe“ (“B”), “Dress“ (“D”), “Eat_Breakfast“ (“E_B”), 

“Eat_Dinner“ (“E_D”), “Groom“ (“G”), “Take_Medicine“ (“T_M”), “Toilet“ (“T”), 

“Wash_Breakfast_Dishes“ (“W_B_D”), “Wash_Dinner_Dishes“ (“W_D_D”), “Watch_TV“ (“W_T”) 

and “Work_At_Table“ (“W_A_T”). In total, 951 activity records were used. 

Table 2. Description of dataset “HH102”. 

Sensors Activity Raw Sensor Events 
Raw Activity 

Records 

Selected 

Activity 

Selected Activity 

Records 

97 30 413,142 2087 12 951 

The details of dataset “HH104” are displayed in Table 3. The measurement time was 61 days. A 

total of one hundred and thirty six sensors was installed in the apartment. The sensors included the 

following categories. 

(1) Identifiers starting with “BA” indicate the sensor battery levels: BATP001–06, BATP101–106, 

BATV001–026, and BATV101–106. 

(2) Identifiers starting with “D” indicate magnetic door sensors: D001–D006. 

(3) Identifiers starting with “L” and “LL” indicate light switches: L001–L006. 

(4) Identifiers starting with “LS” indicate light sensors: LS001–LS026. 

(5) Identifiers starting with “M” indicate infrared motion sensors: M001–M013, M016 and M020–M026. 

(6) Identifiers starting with “MA” indicate wide-area infrared motion sensors: MA014, MA015, 

MA017–MA019 and MA022. 

(7) Identifiers starting with “T” indicate temperature sensors: T101–T107. 

Twenty-eight activities were analyzed in the dataset, which included 347,102 sensor events. The 

activity dataset included 3139 activity records. In our experiment, 12 activities were selected to test 

the proposed approach: “Sleep_Out_Of_Bed” (“S_O_O_B”), “Evening_Meds“ (“E_M”), “Dress“(“D”), 

“Cook_Breakfast“ (“C_B”), “Cook_Dinner“ (“C_B”), “Phone“ (“P”), “Take_Medicine“ (“T_M”), 

“Toilet“ (“T”), “Wash_Breakfast_Dishes“ (“W_B_D”), “Wash_Dinner_Dishes“ (“W_D_D”), 

“Morning_Meds“ (“M_M”) and “Work_On_Computer“ (“W_O_C”). There were 1121 activity records. 
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Table 3. Description of dataset “HH104”. 

Sensors Activity 
Raw Sensor 

Events 

Raw Activity 

Records 

Selected 

Activity 

Selected Activity 

Records 

136 28 347,102 3139 12 1121 

5.2. Classifiers and Evaluation Metrics 

In our experiment, the recognition model is based on one of five classifiers: naive Bayesian (NB), 

k-nearest neighbor (kNN), C4.5, random forest (RF) and the hidden Markov model (HMM) [17]. The 

details of the classifiers are shown in Table 4. 

Table 4. Parameters of the classifiers. 

Classifiers Parameters 

NB  numDecimalPlaces: 2 

kNN 

 the number of neighbors to use: 1 

 distanceWeighting: No distance weight 

 nearestNeighbourSearchAlgorithm: LinearNNSearch 

C4.5 

 confidenceFactor: 0.25 

 minNumObj: 2 

 numDecimalPlaces: 2 

RF 
 numIterations: 100 

 numDecimalPlaces: 2 

HMM 

 The set of sensor events is divided into a number of windows regarding a duration of 

60 s. 

 S = {S1, S2, …, SN} is the set of states. Activities map to states. 

 V = {V1, V2, …, VM} is the set of observations. Sensors map to observations.  

 A = {aij = P(qt+1 = Sj|qt = Si), 1 ≤ i,j ≤ N} is a set of transition probabilities. Each aij represents 

the probability of transition from state Si to Sj. aij is solved by Formula (1). Cij of Formula 

(1) is the frequency of transition from state Si to Sj. States of two continuous windows 

map to a transformation. 

 B = {bjk = P(ot = Vk|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M} are emission probabilities. Each bjk 

represents the probability of observation Vk being emitted by Sj. bjk is solved by Formula 

(2). Ej(Vk) of Formula (2) is the frequency that Vk are fired for Sj. 

 π = {πi = P(qt = Si), 1 ≤ i ≤ N} is an initial state distribution. Each πi represents the 

probability that Si is a start state. πi is solved by Formula (3). Init(i) of Formula (3) is the 

frequency of Si occurring as a start state. The first state Si of each window maps to an 

initial state.  

 

Nji
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The evaluation metrics are accuracy, precision and F-measure, which are shown in Formulas 

(4)–(6), respectively. In Formulas (4)–(6), Q is the number of activity labels; TPi is the number of true 

positives; FPi is the number of false positives; FNi is the number of false negatives; TNi is the number 

of true negatives. Each validation was taken as a 10-fold cross-validation. 

1Accuracy

Q
i

i i i ii

TP

TP FP FN TN

Q


  



 

(4) 

Precision =

Q
i

i ii=1

TP

TP + FP

Q


 

(5) 

2 * Precision * Accuracy
F - Measure =

Precision + Accuracy
 (6) 

5.3. Results from HH102 

The accuracy, precision and F-measure of the activity recognition of classifiers NB, kNN, C4.5 

and RF are shown in Figures 2–4, respectively. 

“SS” had an average accuracy of 0.6 (NB), 0.66 (kNN), 0.7 (C4.5) and 0.75 (RF); an average 

precision of 0.53 (NB), 0.53 (kNN), 0.57 (C4.5) and 0.58 (RF); and an average F-measure of 0.51 (NB), 

0.53 (kNN), 0.56 (C4.5) and 0.57 (RF). “TS” had an average accuracy of 0.74 (NB), 0.73 (kNN), 0.74 

(C4.5) and 0.8 (RF); an average precision of 0.67 (NB), 0.66 (kNN), 0.68 (C4.5) and 0.78 (RF); and an 

average F-measure of 0.66 (NB), 0.65 (kNN), 0.67 (C4.5) and 0.7 (RF). “TS” had higher average 

accuracies, precisions and F-measures than “SS”. For individual activity, there were 9 (NB), 7 (kNN), 

9 (C4.5) and 8 (RF) activities, so “TS” had higher accuracies than “SS”. There were 9 (NB), 7 (kNN), 8 

(C4.5) and 11 (RF) activities, so “TS” had higher precisions than “SS”. 

In addition, we compare the proposed approach with the HMM-based approach. The HMM is 

defined as five tuples (S, V, A, B, π). The activities map to the states in HMM. Two continuous activity 

records map to a transformation from one state to another. For an activity record, (s, f) maps to an 

observation, where s is the sensor name, and f is the frequency that s occurs in the activity record. As 

shown in Figure 5, the HMM had the accuracy, precision and F-measure of 0.68, 0.64 and 0.66. “TS” 

had the average accuracy, precision and F-measure of 0.78, 0.76 and 0.77 for NB, kNN, C4.5 and RF. 

“TS” had a higher accuracy, precision and F-measure than HMM. For individual activities, there were 

nine activities for which “TS” had higher accuracies than HMM. There were seven activities for which 

“TS” had higher precisions than HMM. 

 

Figure 2. Accuracies on dataset “HH102” by using classifiers NB, kNN, C4.5 and RF. 
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Figure 3. Precisions on dataset “HH102” by using classifiers NB, kNN, C4.5 and RF. 

 

Figure 4. F-measures on dataset “HH102” by using classifiers NB, kNN, C4.5 and RF. 

 

Figure 5. Accuracies, precisions and F-measures on dataset “HH102” based on the proposed approach 
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Figure 6. Correlation between the durations and accuracies of activities recognition for dataset 

“HH102”. 
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In addition, we compare the proposed approach with the HMM-based one. As shown in  

Figure 10, HMM had an accuracy, precision and F-measure of 0.57, 0.59 and 0.62, respectively. “TS” 

had an average accuracy, precision and F-measure of 0.63, 0.72 and 0.68, respectively, for NB, kNN, 

C4.5 and RF. “TS” had a higher accuracy, precision and F-measure than HMM. For individual 

activities, there were eight activities, so “TS” had higher accuracies than HMM. Additionally, there 

were nine activities, so “TS” had higher precisions than HMM. 
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Figure 8. Precisions on dataset “HH104” by using classifiers NB, kNN, C4.5 and RF. 

 

Figure 9. F-measures on dataset “HH104” by using classifiers NB, kNN, C4.5 and RF. 

 

Figure 10. Accuracies, precisions and F-measures for dataset “HH104” based on the proposed 

approach and HMM. 
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Figure 11. Correlation between the durations and accuracies of activity recognition for dataset 

“HH104”. 

5.5. Discussion 

In this paper, we presented a new two-stage approach for activity recognition. In the first stage, 

the activity records are clustered by regarding temporal features. In the second stage, the activity 

records of each cluster are recognized by the classifier. It would be interesting to combine the 

proposed approach with current studies. The datasets were public and used in many current studies, 

and the used classifiers are common in the studies. Generally, the studies focused on feature selection 

and classifier optimization. Comparatively, the proposed approach focused on the recognition 

process. Hence, the idea of two stages can easily extend the studies to improve the feature selection, 

which was also shown with the experiment results. 

The experiments show that “TS” performs better than “SS” and the Hidden Markov Model. The 

conclusion can also be drawn by analyzing the proposed approach. For the first stage, the temporal 

features are used to cluster the training set. The activity records among different clusters are 

temporal-sensitive, whereas the activity records within the same cluster are temporal-insensitive, and 

temporal features are noise data. For the second stage, the activity records within the same cluster 

are spatially sensitive and only recognized based on spatial features. Compared to the one-

dimensional recognition model, the activity recognition of the second stage is not interfered by noise 

data and has high performance. 

However, different individual activities had a large variation in performance. The activities with 

sufficient samples obtain high performance. In contrast, activities with a few samples obtain low 

performance because it is difficult for the classifiers to learn the valid features of activity from the 

samples. In addition, the activities with a notably small number of samples are probably clustered 

into different clusters, which makes each cluster have fewer samples. For dataset “HH102”, the 

activities “Sleep”, “Dress”, ”Eat_Dinner”, ”Toilet”, “Wash_Dinner_Dishes” and “Watch_TV” had high 

performance. For dataset “HH104”, the activities “Sleep_Out_Of_Bed”, “Dress”, “Cook_Breakfast”, 

“Cook_Dinner”, ”Toilet”, “Morning_Meds” and “Work_On_Computer” had high performance. In 

contrast, few activities had poor performance. For dataset “HH102”, the activities “Bathe” and 

“Take_Medicine” had a notably small sample. “Bathe” had only 36 activity records. “Take_Medicine” 

had only 24 activity records. These are far fewer than the average number of 80. For dataset “HH104”, 

the activity “Take_Medicine” had a notably small sample. “Take_Medicine” had only 12 activity records. 

Fewer activity records imply that the features of the activities were difficult to be adequately obtained. 

Although the same sensors were used in detecting some activities, the accuracies had also a large 

variation in performance. For instance, the activity “Eat_Breakfast” (“Wash_Breakfast_Dishes”) is harder to 

detect than “Eat_Dinner” (“Wash_Dinner_Dishes”). Compared to the activity “Eat_Dinner” 

(“Wash_Dinner_Dishes”), the activity “Eat_Breakfast” (“Wash_Breakfast_Dishes”) is temporally irregular. For 

instance, the activity “Wash_Breakfast_Dishes” sometimes happened at noon or in the evening. 

TS(Average)

SS(Average)

Duration(min)

Accuracy Correlation



Symmetry 2017, 9, 212  15 of 17 

 

6. Conclusions and Future Work 

To better aid elderly people by using context-aware services, this paper proposes a two-stage 

approach for the activity recognition of a single resident. To validate the proposed model, the naive 

models were used for comparison in two experiments, each of which was performed to recognize 

twelve daily activities. The results show that the proposed approach outperforms the naive spatial 

model in terms of both accuracy of individual activities and average accuracy. 

The two-stage approach demonstrates the superiority in recognizing single-resident activities. 

In the next stage, we will attempt to apply the proposed approach to more complex data situations, 

e.g., unlabeled data and multiple-resident situations. In this paper, the cluster algorithm is used to 

partition the set of activity records into two clusters. The number of clusters is vital to the 

performance of activity recognition. A supplementary algorithm for the cluster algorithm will be 

conceived. The supplementary algorithm is expected to output a reasonable number of clusters. In 

addition, we will study deeply the topic of how the sample size affects the calculation of the accuracy 

of an activity. 
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