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Abstract: We explore the dynamics and evolution of the Universe at early and late times, focusing
on both dark energy and extended gravity models and their astrophysical and cosmological
consequences. Modified theories of gravity not only provide an alternative explanation for the
recent expansion history of the universe, but they also offer a paradigm fundamentally distinct
from the simplest dark energy models of cosmic acceleration. In this review, we perform a
detailed theoretical and phenomenological analysis of different modified gravity models and
investigate their consistency. We also consider the cosmological implications of well motivated
physical models of the early universe with a particular emphasis on inflation and topological
defects. Astrophysical and cosmological tests over a wide range of scales, from the solar
system to the observable horizon, severely restrict the allowed models of the Universe. Here,
we review several observational probes—including gravitational lensing, galaxy clusters, cosmic
microwave background temperature and polarization, supernova and baryon acoustic oscillations
measurements—and their relevance in constraining our cosmological description of the Universe.
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1. Introduction

During the last few decades Cosmology has evolved from being mainly a theoretical area of
physics to become a field supported by high precision observational data. Recent experiments call
upon state of the art technology in Astronomy and Astrophysics to provide detailed information
on the contents and history of the Universe, which has led to the measurement of parameters that
describe our Universe with increasing precision. The standard model of Cosmology is remarkably
successful in accounting for the observed features of the Universe. However, a number of
fundamental open questions remains at the foundation of the standard model. In particular, we lack
a fundamental understanding of the recent acceleration of the Universe [1,2]. What is the so-called
“dark energy” that is driving the cosmic acceleration? Is it vacuum energy or a dynamical field?
Or is the acceleration due to infra-red modifications of Einstein’s theory of General Relativity (GR)?
How is structure formation affected in these alternative scenarios? What are the implications of this
acceleration for the future of the Universe?

The resolution of these fundamental questions is extremely important for theoretical cosmology.
Dark energy models are usually assumed to be responsible for the acceleration of the cosmic
expansion in most cosmological studies. However, it is clear that these questions involve not only
gravity, but also particle physics. String theory provides a synthesis of these two branches of physics
and is widely believed to be moving towards a viable quantum gravity theory. One of the key
predictions of string theory is the existence of extra spatial dimensions. In the brane-world scenario,
motivated by recent developments in string theory, the observed 3-dimensional universe is embedded
in a higher-dimensional spacetime [3]. The new degrees of freedom belong to the gravitational sector,
and can be responsible for the late-time cosmic acceleration [4,5]. On the other hand, generalizations
of the Einstein-Hilbert Lagrangian, including quadratic Lagrangians which involve second order
curvature invariants have also been extensively explored [6–10]. These modified theories of gravity
not only provide an alternative explanation for the expansion history of the Universe [11–13], but
they also offer a paradigm fundamentally distinct from the simplest dark energy models of cosmic
acceleration [14], even from those that perfectly mimic the same expansion history. Nevertheless, it
has been realized that a large number of modified gravity theories are amenable to a scalar-tensor
formulation by means of appropriate metric re-scalings and field redefinitions.

It is, therefore, not surprising that we can think of scalar-tensor gravity theories as a first
stepping stone to explore modifications of GR. They have the advantage of apparent simplicity
and of a long history of examination. First proposed in its present form by Brans and Dicke for a
single scalar field [15], they have been extensively generalised and have maintained the interest of
researchers until the present date. For instance, an extensive field of work has been developed in
the cosmological dynamics of scalar-tensor theories. This can be elegantly summarised by carrying
out a unified qualitative analysis of the dynamical system for a single scalar field. We also have
an established understanding of the observational bounds in these models, where we can use
the Parametrized Post-Newtonian formalism to constrain the model parameters. Finally, with a
conformal transformation, these theories can be recast as matter interacting scalar fields in General
Relativity. In this format, they can still play an important role in dark energy modelling, such as
in coupled quintessence models. The consideration of a multi-scalar fields scenario, which can be
perceived as the possible reflection of a multi-scalar tensor gravity theory allows for cooperative
effects between the fields yielding assisted quintessence.

Indeed, scalar fields are popular building blocks used to construct models of present-day
cosmological acceleration. They are appealing because such fields are ubiquitous in theories of high
energy physics beyond the standard model and, in particular, are present in theories which include
extra spatial dimensions, such as those derived from string theories. Recently, relative to scalar-tensor
theory, much work has been invested in the Galileon models and their generalizations [16]. The latter
models allow nonlinear derivative interactions of the scalar field in the Lagrangian and lead to second
order field equations, thus removing any ghost-like instabilities. The Lagrangian was first written
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down by Horndeski in 1974 [17], which contains four arbitrary functions of the scalar field and its
kinetic energy. The form of the Lagrangian is significantly simplified by requiring specific self-tuning
properties (though it still has four arbitrary functions), however, the screening is too effective, and will
screen curvature from other matter sources as well as from the vacuum energy [18]. An alternative
approach consists of searching for a de Sitter critical point for any kind of material content [19]. These
models might alleviate the cosmological constant problem and can deliver a background dynamics
compatible with the latest observational data.

A promising alternative to explain the late-time cosmic acceleration is to assume that at large
scales Einstein’s theory of GR breaks down, and a more general action describes the gravitational
field. Thus, one may generalize the Einstein-Hilbert action by including second order curvature
invariants such as R2, RµνRµν, RµναβRµναβ, CµναβCµναβ, etc. Some of the physical motivations for
these modifications of gravity were inspired on effective models raised in string theory, which
indeed may lead to the possibility of a more realistic representation of the gravitational fields near
curvature singularities [20]. Moreover, the quantization of fields in curved space-times tell us that
the high-energy completion of the Einstein-Hilbert Lagrangian of GR involves higher-order terms on
the curvature invariants above [21]. This is in agreement with the results provided from the point of
view of treating GR as an effective field theory [22]. Among these extensions of GR the so-called f (R)
gravity has drawn much attention over the last years, since it can reproduce late-time acceleration
and in spite of containing higher order derivatives, it is free of the Ostrogradsky instability, as can
be shown by its equivalence with scalar-tensor theories (for a review on f (R) gravity see Refs. [6–9]).
Moreover, f (R) gravities have been also proposed as solutions for the inflationary paradigm [23],
where the so-called Starobinsky model is a successful proposal, since it satisfies the latest constraints
released by Planck [24]. In addition, the equivalence of f (R) gravities to some class of scalar-tensor
theories has provided an extension of the so-called chameleon mechanism to f (R) gravity, leading
to some viable extensions of GR that pass the solar system constraints [25,26]. Other alternative
formulations for these extensions of GR have been considered in the literature, namely, the Palatini
formalism, where metric and affine connection are regarded as independent degrees of freedom,
which yields an interesting phenomenology for Cosmology [27]; and the metric-affine formalism,
where the matter part of the action now depends and is varied with respect to the connection [28].
Recently, a novel approach to modified theories of gravity was proposed that consists of adding to
the Einstein-Hilbert Lagrangian an f (R) term constructed a la Palatini [29]. It was shown that the
theory can pass the Solar System observational constraints even if the scalar field is very light. This
implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic
dynamics, but leaves the Solar System unaffected.

Note that these modified theories of gravity are focussed on extensions of the curvature-based
Einstein-Hilbert action. Nevertheless, one could equally well modify gravity starting from its
torsion-based formulation and, in particular, from the Teleparallel Equivalent of General Relativity
(TEGR) [30]. The interesting point is that although GR is completely equivalent with TEGR at the
level of equations, their modifications (for instance f (R) and f (T) gravities, where T is the torsion)
are not equivalent and they correspond to different classes of gravitational modifications. Hence,
f (T) gravity has novel and interesting cosmological implications, capable of describing inflation, the
late-time acceleration, large scale structure, bouncing solutions, non-minimal couplings to matter,
etc. [31–33].

Another gravitational modification that has recently attracted much interest is the massive
gravity paradigm, where instead of introducing new scalar degrees of freedom, such as in f (R)
gravity, it modifies the graviton itself. Massive gravity is a well-defined theoretical problem on its
own and has important cosmological motivations, namely, if gravity is massive it will be weaker at
large scales and thus one can obtain the late-time cosmic acceleration. Fierz and Pauli presented the
first linear massive gravity. However, it was shown to suffer from the van Dam-Veltman-Zakharov
(vDVZ) discontinuity [34,35], namely the massless limit of the results do not yield the massless



Symmetry 2016, 8, 70 4 of 79

theory, namely, GR. The incorporation of nonlinear terms cured the problem but introduced the
Boulware-Deser (BD) ghost. This fundamental problem puzzled physicists until recently, where a
specific nonlinear extension of massive gravity was proposed by de Rham, Gabadadze and Tolley
(dRGT), in which the BD ghost is eliminated by a Hamiltonian constraint [16]. This new nonlinear
massive gravity has interesting cosmological implications, for instance, it can give rise to inflation,
late-time acceleration [16]. However, the basic versions of this theory exhibit instabilities at the
perturbative level, and thus suitable extensions are necessary. These could be anisotropic versions,
f (R) extensions, bigravity generalizations, partially-massive constructions. The crucial issue is
whether one can construct a massive gravity and cosmology that can be consistent as an alternative
to dark energy or other models of modified gravity, and whether this theory is in agreement with
high-precision cosmological data, such as the growth-index or the tensor-to-scalar ratio, remains to
be explored in detail.

Quantum field theory predicts that the universe underwent, in its early stages, a series of
symmetry breaking phase transitions, some of which may have led to the formation of topological
defects. Different types of defects may be formed depending on the (non-trivial) topology of the
vacuum manifold or the type of symmetry being broken. For instance, Domain Walls—which are
surfaces that separate domains with different vacuum expectation values—may arise due to the
breaking of a discrete symmetry, whenever the vacuum manifold is disconnected. Line-like defects,
or Cosmic strings, are formed if the vacuum is not simply connected or, equivalently, if it contains
unshrinkable loops. This type of vacuum manifold results, in general, from the breaking of an
axial symmetry. Moreover, if the vacuum manifold contains unshrinkable surfaces, the field might
develop non-trivial configurations corresponding to point-like defects, known as Monopoles. The
spontaneous symmetry breaking of more complex symmetry groups may lead to the formation of
textures, delocalized topological defects which are unstable to collapse. The production of topological
defects networks as remnants of symmetry breaking phase transitions is thus predicted in several
grand unified scenarios and in several models of inflation. Moreover, recent developments in
the braneworld realization of string theory suggest that its fundamental objects—p-dimensional
D-branes and fundamental strings—may play the cosmological role of topological defects.

Topological defects networks, although formed in the early universe, may in most instances
survive throughout the cosmological history and leave a variety of imprints on different observational
probes. The observational consequences of topological defect networks can be very diverse,
depending both on the type of defects formed and on the evolution of the universe after they are
generated. Although the possibility of a significant contribution to the dark energy budget has
been ruled out both dynamically [36] and observationally [37], light domain walls may leave behind
interesting astrophysical and cosmological signatures. For instance, they may be associated to spatial
variations of the fundamental couplings of nature (see, e.g., [38]). On the other hand, cosmic strings
may contribute significantly to small-scale cosmological perturbations and have consequently been
suggested to have significant impact on the formation of ultracompact minihalos [39], globular
clusters [40], super-massive black holes [41] and to provide a significant contribution to the
reionization history of the Universe [42]. Both cosmic strings and domain walls may be responsible
for significant contributions to two of the most significant observational probes: the temperature
and polarization anisotropies of the cosmic microwave background and the stochastic gravitational
wave background. This fact—alongside the possibility of testing string theory through the study of
topological defects—greatly motivates the interest on the astrophysical and cosmological signatures
of topological defects.

An extremely important aspect of modern cosmology is the synergy between theory and
observations. Dark energy models and modified gravity affect the geometry of the universe and
cosmological structure formation, impacting the background expansion and leaving an imprint
on the statistical properties of the large-scale structure. There are a number of well-established
probes of cosmic evolution, such as type Ia supernovae, baryon acoustic oscillations (BAO), weak



Symmetry 2016, 8, 70 5 of 79

gravitational lensing, galaxy clustering and galaxy clusters properties [43]. Different methods
measure different observables, probing expansion and structure formation in different and often
complementary ways and have different systematic effects. In particular, joint analyses with
Cosmic Microwave Background (CMB) data are helpful in breaking degeneracies by constraining
the standard cosmological parameters. Indeed, CMB has revolutionized the way we perceive the
Universe. The information encoded in its temperature and polarization maps provides one of
the strongest evidences in favour of the hot Big-Bang theory and has enabled ways to constrain
cosmological models with unprecedented accuracy [44].

The CMB also encodes additional information about the growth of cosmological structure and
the dynamics of the Universe through the secondary CMB anisotropies. These are originated by
physical effects acting on the CMB after decoupling [45], such as the integrated Sachs-Wolfe effect
and the Sunyaev-Zel’dovich (SZ) effect, manifest respectively on the largest and arc-minute scales of
the CMB. In this review, we will discuss in some detail both a well-established acceleration probe
(weak lensing) and a few promising ones related to galaxy cluster properties and the SZ effect.
Galaxy clusters are the largest gravitationally bound objects in the Universe and are among the
latest bound structures forming in the Universe. For this reason, their number density is highly
sensitive to the details of structure formation as well as to cosmological background parameters and
cluster abundance is a well established cosmological probe. The Sunyaev-Zel’dovich effect [46,47]
is the scattering of CMB photons by electrons in hot reservoirs of ionized gas in the Universe,
such as galaxy clusters. In particular, SZ galaxy cluster counts, profiles, scaling relations, angular
power spectra and induced spectral distortions are promising probes to confront model predictions
with observations. Weak gravitational lensing [48] describes the deflection of light by gravity in
the weak regime. Its angular power spectrum is a direct measure of the statistical properties of
gravity and matter on cosmological scales. Weak lensing, together with galaxy clustering, is the
core method of the forthcoming Euclid mission to map the dark universe. Euclid [49] will provide
us with weak lensing measurements of unprecedented precision. To obtain high-precision and
high-accuracy constraints on dark energy or modified gravity properties, with both weak lensing
and SZ clusters, non-linearities on structure formation must be taken into account. While linear
covariant perturbations equations may be evolved with Boltzmann codes, non-linearities require
dedicated N-body cosmological simulations [50]. There currently exist a number of simulations for
various modified gravity and dark energy models, together with a set of formulas that fit a non-linear
power spectrum from a linear one. Hydrodynamic simulations, commonly used in cluster studies,
are increasingly needed in weak lensing applications to model various baryonic effects on lensing
observables, such as supernova and AGN feedback, star formation or radiative cooling [51].

The ΛCDM framework provides a very good fit to various datasets, but it contains some open
issues [52]. As an example, there are inconsistencies between probes, such as the tension between
CMB primary signal (Planck) and weak lensing (CFHTLenS) [53], as well as problems with the
interpretation of large-scale CMB measurements (the so-called CMB anomalies) [54]. Alternatives
to ΛCDM or deviations to General Relativity are usually confronted with data using one of two
approaches: model selection or parameterizations. In model selection a specific model is analyzed
and its parameters constrained. Such analyses have a narrower scope but may be better physically
motivated. Parameterizations are good working tools and are helpful in highlighting a particular
feature and in ruling out larger classes of models, however they must be carefully defined in a
consistent way. Parameterizations are commonly applied to the dark energy equation of state
and to deviations from General Relativity. An example of the latter is the gravitational slip,
which provides an unambiguous signature of modified gravity, and can be estimated combining
weak lensing measurements of the lensing potential with galaxy clustering measurements of the
Newtonian potential. Model parameters in both of the approaches are usually estimated with
Monte Carlo techniques, while the viability of different models may be compared using various
information criteria.
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Besides model testing, cosmological data is also useful to test foundational assumptions, such as
the (statistical) cosmological principle and the inflationary paradigm. The common understanding
is that cosmological structures are the result of primordial density fluctuations that grew under
gravitational instability collapse. These primordial density perturbations would have originated
during the inflationary phase in the early universe. Most single field slow-roll inflationary
models produce nearly Gaussian distributed perturbations, with very weak possible deviations from
Gaussianity at a level beyond detection [55–57]. However, non-Gaussianities may arise in inflationary
models in which any of the conditions leading to the slow-roll dynamics fail [58], such as the curvaton
scenario [59–61], the ekpyrotic inflacionary scenario [62,63], vector field populated inflation [64–66]
and multi-field inflation [67–70]. Tests of non-Gaussianity are thus a way to discriminate between
inflation models and to test the different proposed mechanisms for the generation of primordial
density perturbations. Likewise, the assumption of statistical homogeneity may be tested. Locally,
matter is distributed according to a pattern of alternate overdense regions and underdense regions.
Since averaging inhomogeneities in the matter density distribution yields a homogeneous description
of the Universe, then the apparent homogeneity of the cosmological parameters could also result
from the averaging of inhomogeneities in the cosmological parameters, which would reflect the
inhomogeneities in the density distribution. The theoretical setup closest to this reasoning is
that of backreaction models, where the angular variations in the parameters could also source a
repulsive force and potentially emulate cosmic acceleration. Hence the reasoning is to look for these
inhomogeneities, not in depth, but rather across the sky and then to use an adequate toy model
to compute the magnitude of the acceleration derived from angular variations of the parameters
compared to the acceleration driven by a cosmological constant [71].

This work will focus on all of the above-mentioned topics. More specifically, this article is
outlined in the following manner: In Section 2, we present scalar-tensor theories, and in Section 3,
we consider Horndeski theories and the self-tuning properties. In Section 4, f (R) modified theories
of gravity and extensions are reviewed. In Section 5, an extensive review on topological defects
is carried out. The following sections are dedicated to observational cosmology. In particular,
in Section 6, cosmological tests with galaxy clusters at CMB frequencies are presented and in
Section 7, gravitational lensing will be explored. In Section 8, the angular distribution of cosmological
parameters as a measurement of spacetime inhomogeneities will be presented. Finally, in Section 9
we conclude.

2. Scalar-tensor Theories

Scalar-tensor theories of gravity stem from the original proposal of Brans-Dicke theory (BD) [15],
although theories involving a scalar field with a gravitational role in addition to the tensor metric
fields can be traced back to the earlier Kaluza-Klein type theories upon dimensional reduction [72].
One notorious example was Jordan’s proposal for a field theory realization of Dirac’s Large Number
Hypothesis [73]. In the course of time, it has been realized that a large number of modified gravity
theories are amenable to a scalar-tensor formulation [74] by means of appropriate metric re-scalings
and field redefinitions. Interestingly, this possibility of a scalar-tensor description occurs regardless
of the field equations being derived through the metric or, alternatively, the Palatini variational
prescription [29]. For instance, it is well known that the f (R) higher-order gravity theories can be
cast as a scalar-tensor theory [74–76]. The same happens for the theories based on Lagrangeans with
non-linear kinetic terms of a scalar field dubbed k-essence [77].
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2.1. General Formalism

The general scalar-tensor class of gravity theories encompassing BD’s and a plethora of modified
theories that we just alluded to, were first examined by Bergmann [78], Wagoner [79], and
Nordvedt [80] (BWN). Their fundamental action can be cast in the following form [81]

S =
∫ √

−g d4x
[

φR− ω(φ)

φ
φ,µφ,µ − 2φλ(φ)

]
+ SM , (1)

where R is the usual Ricci curvature scalar of the spacetime, φ is a scalar field, ω(φ) is a
dimensionless function of φ which calibrates the coupling between the scalar field and gravity (in
what follows we shall refer to it as the coupling parameter), λ(φ) is another function of the scalar
field which can be interpreted both as a potential for φ and as a cosmological parameter and, finally,
SM represents the action for the matter fields. It is worth mentioning at this point that the action
should include an additional term involving the extrinsic curvature, as in GR [82], to account for a
boundary term associated with the variation of Rαβ with respect to gαβ. A discussion of this term
in the scalar-tensor theories is provided in [74]. It becomes immediately clear that the scalar field φ

plays the role which in Einstein’s GR is confined to the gravitational constant, and has dimensions
of a mass squared, φ ∼ 1/G. Since φ is now a dynamical variable, we thus see that the trademark
of these theories is the fact that they exhibit a varying gravitational “constant”. In the archetypal
Brans-Dicke theory the coupling ω(φ) is constrained to be a constant.

The consideration of couplings between a scalar field and the spacetime geometry envisaged
by this class of theories allows a generalization to multiple scalar fields so that we may consider
multi-scalar-tensor theories. The Lagrangian can then be cast as

Lg = f (φµ) R−
ωµν(φλ)

f (φµ)
gαβ∇αφµ∇βφν + V(φµ) + 16π Lm , (2)

where R is the usual Ricci curvature scalar of a space-time endowed with the metric gαβ, φµ

(µ = 1, . . . , n) represents n scalar fields, f (φµ) is a function of those scalar fields, ωµν(φβ) is the
metric of the internal space of the φµ fields, V(φµ) is the scalar potential. The Lagrangian of the
matter fields Lm does not carry any explicit dependence on φµ which guarantees that free-falling test
particles follow the geodesics of the spacetime (this amounts to keeping valid the conservation of
the energy-momentum tensor ∇βTαβ = 0). We leave aside a detailed consideration of this extended
class of theories, which have been addressed in [83,84]. However, in subsection 2.4 we shall analyse
a model of quintessence stemming from the cooperative behaviour of several scalar fields coupled to
several matter components which as it will be argued can be interpreted as a particular realisation of
the models characterised by Equation (2).

Taking the variational derivatives of the action (1) with respect to the two dynamical variables
gαβ and φ , yields the field equations

Rαβ −
1
2

gαβ R + λ(φ) gαβ =
ω(φ)

φ2

[
∇αφ∇βφ− 1

2
gαβ∇γφ∇γφ

]
+

1
φ

[
∇β∇αφ− gαβ∇γφ∇γφ

]
+ 8πGN

Tαβ

φ
, (3)

�φ− 2φ2λ′(φ)− 2φλ(φ)

2ω(φ) + 3
=

1
2ω(φ) + 3

[
8πGN T −ω′(φ)∇γφ∇γφ

]
, (4)

where T ≡ Tγ
γ is the trace of the energy-momentum tensor, Tα

β, of the matter content of spacetime,
and GN is the gravitational constant normalized to its present value (in what follows in this section,
we set GN = 1 ).
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From these equations the role of λ(φ) becomes more apparent. As pointed out in [78], this term
enters Equation (3) as a cosmological function, but intervenes in the second Equation (4) as a mass
term. A consequence of this latter feature is that the scalar waves propagate with a speed different
from the speed of the electromagnetic waves. Another interesting aspect to point out in connection
with this term is that the inverse square law for the static gravitational field is modified in the presence
of a non-vanishing λ(φ) . This manifests itself in that a Yukawa-type term arises [79,81].

It is important to notice two additional points. First, we assume that the usual relation
∇βTαβ = 0 establishing the conservation laws satisfied by the matter fields holds. This is ensured
by requiring that the matter fields Lagrangian Lm be independent of φ [78] The role of the scalar field
is then that of helping to generate the spacetime curvature associated with the metric. Matter may
create this field, but the latter cannot act back directly on the matter, which thus responds only to the
metric [85].

The second point follows from Equation (4). By allowing the coupling parameter ω(φ) to tend
to infinity, it can be seen that the right-hand side of the equation may vanish. This will be the
case when ω → ∞ dominates over ω′(φ) , λ(φ) and λ′(φ) [86]. Indeed, in the absence of λ(φ),
one requires ω′/w3 → 0 [80]. A solution with constant φ is then asymptotically admitted by the
Klein-Gordon equation, and thus GR is recovered in the ω → ∞ limit of scalar-tensor theories (see
also [83]). However, it is important, on the one hand, to separate the cases where the trace of the
energy-momentum tensor is trivially vanishing, i.e., vacuum and radiation. In the latter cases, and
again when there is no cosmological potential λ(φ), it has been argued that there are asymptotic
behaviors that differ from GR [83,86–88]. On the other hand, in the presence of the potential λ(φ),
the asymptotic behaviour is very much dependent on it. In Ref. [86], it was shown that when the
potential is of a power-law nature, in particular, when φ λ(φ) ∝ φ2, it governs the approach to GR,
superseding the mechanism due to the divergence of ω(φ). Morevover, as shown below, BD theory
can also be an attractor [89].

2.2. Conformal Picture

A convenient device to deal with modified gravity theories is to make use of an appropriate
conformal transformation [74,75,82] to bring the theory into the form of GR plus a minimally coupled
field. Consider the transformation

g̃αβ =
φ

φ0
gαβ, (5)

where φ0 is a constant with the dimensions of mass squared which we introduce to make the scaling
factor dimensionless. In order to keep the next results as simple as possible, we shall assume that
φ0 = 1 and that φ in the following expressions is dimensionless (i.e., whenever we write φ it
corresponds to φ/φ0 where φ0 is some value of reference, for instance φ0 = 1/G). Using the
transformed metric g̃αβ and redefining the scalar field as

ϕ ≡
∫ √

2ω(φ) + 3
2

dφ

φ
, (6)

we find that the action adopts the form

S̃ =
∫

d4x
√
−g̃

[
R̃− ∇̃α ϕ∇̃α ϕ− 2V(ϕ)

]
+ 16π

∫
d4x

√
−g̃ L̃m , (7)

where V(ϕ) = U (φ(ϕ)) /φ2(ϕ), and also L̃m = φ−2Lm. Thus, we realize that the action of the STT
becomes the action of GR with matter and a massive scalar field. Writing the Einstein field equations
in the transformed frame (dubbed the Einstein frame), we obtain

R̃αβ −
1
2

g̃αβR̃ = 8πT̃αβ +

[
∇̃α ϕ∇̃β ϕ− 1

2
g̃αβ ∇̃γ ϕ∇̃γ ϕ−V(ϕ) g̃αβ

]
, (8)



Symmetry 2016, 8, 70 9 of 79

�̃ϕ− d
dϕ

V(ϕ) =

√
2

2ω + 3
8π T̃, (9)

∇̃βT̃β
α = −1

2

(
φ;α

φ

)
T̃
√

2
2ω + 3

. (10)

It becomes immediately apparent that, when the trace of the energy-momentum tensor of the
matter fields in the original frame is vanishing, there is an equivalence between the two pictures
related via the conformal transformation. This happens trivially for a vacuum model, and also in the
radiation case.

In all other cases, the GR-like frame exhibits a coupling between matter and the redefined
scalar field. One is then drawn to conclude that the equivalence principle is violated. However,
since this variation is induced by the presence of the scalar field which also acts as a source of the
Einstein Equation (8) the latter conclusion seems arguable and has been much debated [90–92]. If
one considers the scalar field as a component of the total energy-momentum tensor on the right-hand
side of the field equations, then the realization that the original matter does not exhibit the geodesic
behaviour is a mere consequence of the fact that it couples to the other source component.

At this stage we should mention that the conformal transformation mixes the geometric and
matter degrees of freedom, which results in many interpretational ambiguities [93]. One may also
mention that if one only restricts attention to the Einstein frame, one may also lose sight of the original
motivations and modifications of gravity in the geometrical sector [94,95]. However, the Einstein and
Jordan frames are physically equivalent, as can be traced back to Dicke’s original paper [96], where the
conformal transformation technique was introduced. In fact, both conformal frames are equivalent,
in the spirit of Dicke’s paper, provided that in the Einstein frame the units of mass, time and space
scale as appropriate powers of the scalar field, and are thus varying. We will discuss the issues of
discriminating the geometric and matter sectors in Section 4.1.2.

2.3. Cosmological Dynamics

Here we consider the dynamics of cosmological models in general scalar-tensor gravity theories.
A number of important, exact solutions of Brans-Dicke models [97,98], and of more general class of
theories [99–101] have been derived in the literature. In what follows we resort to a unified qualitative
analysis of the major dynamical features of these scalar field cosmological models [86,89,102–105]
which has the advantage of relying on a closed, autonomous system of equations where the functional
dependence on φ of both the coupling ω(φ) and cosmological potential λ(φ) is left unspecified. The
analysis of the relevant features of the dynamics, namely, the set of possible asymptotic behaviors,
leads to a classification of the classes of couplings and potentials vis-à-vis to their cosmological
impact. Alternative dynamical system analyses that are found in the literature usually envisage
specific classes of scalar-tensor theories [106–108] or, when more general [109–112], are not so
transparent as the treatment that follows.

In order to investigate the cosmological dynamics, it is most convenient to introduce
dimensionless expansion normalized variables akin to the square roots of density parameters. This
associates to the equilibrium points of the dynamical system (also dubbed singular, critical, or fixed
points in the jargon of the theory of dynamical systems) non-static solutions of the cosmological
evolution. An alternative qualitative approach based on the bare dimensional variables of the
cosmological model, namely, on the scale factor of the universe, Hubble factor and/or on the energy
densities of the various source components is also possible, but is of more limited scope in the scrutiny
of non-static asymptotic regimes. It is however required whenever the coupling function ω(φ) or the
cosmological potential λ(φ) have vanishing minima.
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In what follows, we shall restrict to the homogeneous and isotropic universes given by the
Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)
[

dr2

1− k r2 + r2(dθ2 + sin2 θ dφ2)

]
, (11)

where k = 0,±1 distinguishes the curvature of the spatial hypersurfaces.
In the Einstein frame the field equations with a matter content given by a perfect fluid with

p = (γ− 1)ρ can be cast as [86]

3
˙̃a2

ã2 + 3
k
ã2 =

8π

Φ∗

[
ϕ̇2

2
+ V(ϕ) + ã−3γm̃(ϕ)

]
(12)

ϕ̈ +
3 ˙̃a
ã

ϕ̇ = −ã−3γ dm̃(ϕ)

dϕ
− dV(ϕ)

dϕ
, (13)

where ã =
√

Φ/Φ∗ a, the overdots stand for the derivatives with respect to the conformally
transformed time d̃t̃ =

√
Φ/Φ∗dt, V(ϕ) = U(Φ(ϕ))/(Φ(ϕ)/Φ∗)2, m̃(ϕ) = µ0 (Φ(ϕ)/Φ∗)(3γ−4)/2,

where µ0 = 8πρ0 sets the arbitrary initial condition for the energy density of the perfect fluid, and,
more importantly, ∂ϕ ln m(ϕ) ∝ (4 − 3γ)α(ϕ) where α = (

√
2Ω + 3)−1 is the PPN function that

translates the coupling between the scalar field and matter in the Einstein frame as used in Damour
and Nordtvedt [83].

These equations are those of GR with a scalar field subject both to a time-independent potential,
V(ϕ), and to a time-dependent potential m̃(ϕ) a−3γ illustrating the fact that in the Einstein frame the
masses of particles vary. (Hereafter we shall set 8π/φ∗ = 1).

Introducing the new time variable N = ln a and the dimensionless density parameters

x2 =
ϕ̇2

6H2 , y2 =
V(ϕ)

3H2 , (14)

as well as the expansion normalized curvature term K = k/(aH)2, the Einstein field equations become
a fourth order, autonomous dynamical system

x′ = −(3 + K) x−
√

3
2

(
∂ϕV

V

)
y2 +

3
2

x
[
2x2 + γ (1− x2 − y2 + K)

]
−
√

3
2

(
∂ϕm

m

)
(1− x2 − y2 + K) (15)

y′ =

√
3
2

(
∂ϕV

V

)
xy +

3
2

y
[
2x2 + γ (1− x2 − y2 + K)

]
− yK , (16)

K′ = −2K
(

1− 3
2

[
2x2 + γ (1− x2 − y2 + K)

])
− 2K2 , (17)

ϕ′ =
√

6 x , (18)

where we have used ρ/3H2 = Ωm = 1− x2 − y2 + K.
GR models correspond to the case where ∂ϕ ln m(ϕ) = 0, and Brans-Dicke models are

characterised by an exponential coupling m, i.e., by ∂ϕ ln m(ϕ) = α0 (as well as by V(ϕ) = 0
in BD original version, but we do not require it here). The crucial point regarding the qualitative
study of general models with scalar fields lies in the ϕ′-equation, since it allows the consideration of
arbitrary choices of V(ϕ) and of m(ϕ) [102]. We compactify the phase space of Equations (15)–(17) by
considering ϕ ∈ <∪ {∞}, and distinguish the fixed points arising at finite values of ϕ, which require
x = 0, from those at ϕ = ∞ (which we shall denote ϕ∞) that require either x = 0 or ψ = ϕ−1 = 0. The
K = 0 and the y = 0 subspaces are invariant manifolds.
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For K = 0 the system reduces to the Equations (15), (16) and (18) and we find the following fixed
points, namely, at finite ϕ:

• x = 0, y = 1, ϕ0 where ∂ϕV(ϕ0) = 0. This case corresponds to de Sitter solutions,
dominated by the scalar field, and arise at non-vanishing maxima or minima of the potential
V. Notice that ∂ϕm may be different from 0. These solutions are attractors at minima of V and
repellors at maxima of V.

• x = y = 0, ϕ0 where ∂ϕm = 0. The second case corresponds to matter dominated solutions
with V = 0 at maxima or minima of m. Note however that the system (15)–(18) is singular when
V = 0, translating the fact that the variables in use are not regular. In the original variables, this
second class of solutions exists provided that V has also an extremum, or is identically zero.

At ϕ∞, the finite ϕ solutions may exist also at ϕ = ∞ provided that V or m are asymptotically flat.
However, other solutions may show up at ϕ = ∞, if both V and m are asymptotically exponential.
In fact, in this case the equilibrium in ψ = 1/ϕ is trivially satisfied at ψ = 0 [102]. Defining

W =
√

3
2 limϕ→∞

∂ϕV
V and Z =

√
3
2 limϕ→∞

∂ϕm
m . The exponential asymptotic behaviour of

m(ϕ) amounts to having a late-time Brans-Dicke behaviour. One finds the following fixed points
(see Figures 1 and 2) [113]:

• xV±
∞ = ±1, yV± = 0, that lie on the intersection of the invariant lines x2 + y2 = 1 and y = 0.

These points correspond to the vacuum solutions of Brans-Dicke theory found by [98,99].
• xBM

∞ = −W/3, which lies on the invariant line x2 + y2 = 1, provided |W| < 3. These solutions
(BM) correspond to those found in [114].

• xN
∞ = −2Z/(3(2− γ)), which lies on the invariant line y = 0 and exists if |Z| < 3(2− γ)/2.

These solutions (N) correspond to the matter dominated solutions found by [97,99].
• xS

∞ = 3γ/2
Z−W , (xS

∞)2 + (yS
∞)2 = 3xS

∞+Z
Z−W , that lies in the interior of the phase space domain,

provided that

0 < (xS
∞)2 + (yS

∞)2 =
9γ/2 + Z(Z−W)

(Z−W)2 < 1.

These are scaling solutions (S) (see [89,113,115] and references therein)

V+

S

NV-

BM

X	  

Y	  

Figure 1. The figure represents the fixed points at the ϕ∞ phase-plane for V and m
asymptotically exponential.
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-2 -1 1 2

-4

-2

2

4
V-NS

SNV+

BM

BM
Z	  

W

Figure 2. The plot exhibits the regions in parameter space that correspond to the asymptotic
Brans-Dicke behaviour. The horizontal axis is the Z-axis and the vertical axis is the W-axis. The
regions S and BM are separated by the line 9γ/2−W2 + WZ = 0, and the separations between the S
and N regions is given by the line 2Z2 − 2WZ + 9γ(2− γ)/2 = 0.

For the K 6= 0 case, as K′ = 0 for K = 0, we see from the linearization of the system that

∂K′

∂K
= −2 + 2 QK=0 , QK=0 ≡

3
2

[
2x2 + γ (1− x2 − y2)

]
, (19)

which shows that the K = 0 subspace is stable whenever Q < 1 which is precisely the condition
for inflationary behaviour. Thus inflation is required to guarantee both the stability of the K = 0
asymptotic solutions and the attraction to GR, whenever the latter applies.

As previously referred, when the potential V(φ) yields vanishing minima in the Einstein frame
the expansion normalized variables adopted here are not suitable, as they yield a dynamical system
that is not defined at those minima. In such a case it is preferable to use variables such as the
scale factor, the kinetic energy of the scalar field and its potential, as done in [86], or in some of
the references in [106,109].

Summing up the qualitative analysis of the dynamical system (15)–(17) associates exact solutions
to a classification of the fixed points, and also allows the consideration of how extended gravity
theories dynamically relate to GR [89]. It reveals the interplay of the two main mechanisms that yield
general relativity as a cosmological attractor of scalar-tensor gravity theories: (i) the vanishing of
the coupling function α, and (ii) the existence of a minimum of the scalar field potential V. The latter
mechanism is shown to supersede the former one. Moreover the approach to GR is then characterized
by a de Sitter inflationary behavior. This guarantees the stability of the k = 0 GR solutions. We have
also shown that at ϕ → ∞ there is a variety of power-law solutions that correspond to Brans-Dicke
behavior and that can be attractors of the cosmological dynamics.

In what follows we will address a multifield scenario, which can be understood as a particular
case of the multi-scalar tensor gravity models of Equation (2).
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2.4. Assisted Quintessence

Assisted inflation is a model of early universe inflation where multiple scalar fields cooperate to
fuel the accelerated inflationary expansion [116–118]. Scalar potentials that are not viable to provide
inflation as a single field can be seen to work when several such fields are present in parallel. A
similar idea can be implemented for our present observed accelerated expansion [119–122].

In the usual quintessence scenario, a single scalar field, uncoupled from dark matter, is
responsible for the dark energy component in our universe [123]. In assisted quintessence, we have
a scenario where the dark energy sector is composed of multiple scalar fields, with different scalar
potentials. Since so little is known about the structure of the dark sector, there is the possibility of a
coupling between the scalar fields responsible for inflation and dark matter. Coupled quintessence,
where a scalar field interacts with dark matter was introduced in Refs. [124–126]. In [127,128] it was
further suggested that the scalar field can couple in a different way to several separate dark matter
species. To keep the model as general as possible, we assume the dark matter sector to consist of
several matter components with different couplings to the dark energy fields [129].

2.4.1. General Equations

We consider an ensemble of n scalar fields φi cross-coupled to an ensemble of m dark matter
components ρα. The cross-couplings are described by the matrix Ciα where indexes i, j identify scalar
field indexes and indexes α, β identify the dark matter components. The equation of motion for the
fields and the various dark matter components, in a spatially flat Friedmann-Robertson-Walker metric
with scale factor a(t), are then written as

φ̈i + 3Hφ̇i + V,φi = κ ∑
α

Ciαρα, (20)

ρ̇α + 3Hρα = −κ ∑
i

Ciαφ̇iρα. (21)

Notice that the ensemble of n scalar fields φi cross-coupled to m dark matter components ρα

can be perceived as a particular case of the multi-scalar-tensor models of Equation (2). Indeed, if
we set the metric of the internal space of the scalar fields to be flat, i.e., ωµν = δµν and allow for a
combination of dark matter components in the matter sector, the Ciα coupling coefficients are related
to the couplings αi = ∂ ln f /∂φi of the multi-scalar-tensor theory in the Einstein frame, and we obtain
the latter equations.

The solution for the dark matter component evolution can be given immediately in terms of the
values of the fields as

ρα = ρα0 exp

(
−3N − κ ∑

i
Ciα(φi − φi0)

)
. (22)

The rate of change of the Hubble function is

Ḣ = −κ2

2

(
∑
α

ρα + ∑
i

φ̇2
i

)
, (23)

which is subject to the Friedmann constraint

H2 =
κ2

3

(
∑
α

ρα + ∑
i

ρφ

)
, (24)

where ρφ = ∑i φ̇2
i /2 + V(φ1, ..., φn).
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It is possible to define an effective equation of state parameter for the dark sector,

weff =
pφ

ρm + ρφ
, (25)

where pφ = ∑i φ̇2
i /2− V(φ1, ..., φn) is the total dark energy pressure and ρm = ∑α ρα the total dark

matter energy density.
We are interested in looking at the critical points of the evolution to look for viable attractors

of late time evolution. For this, we will consider two possible forms for the scalar potential, both
leading to scaling solutions: a sum of exponential terms with V1(φ1, ..., φn) = M4 ∑i e−κλiφi and an
exponential of a sum of terms with V2(φ1, ..., φn) = M4e−∑i κλiφi .

2.4.2. Scalar Field Dominated Solution

We start our investigation with the case of a negligible matter contribution (ρα = 0). We can
show that the effective equation of state for the attractor is

weff = −1 +
1
3

λeff , (26)

where λeff can be interpreted as an effective logarithmic slope for an dynamically equivalent single
field exponential potential.

For the first potential, V1, we get that λeff has to obey

1
λ2

eff
= ∑

i

1
λ2

i
. (27)

In this case incre asing the number of fields has the effect of decreasing the value of λeff, so that
an accelerated expansion can be achieved even in the case of each single field having a slope too large
to fuel acceleration.

For the second potential, V2, λeff is given by

λ2
eff = ∑

i
λ2

i . (28)

Here we see that increasing the number of fields actually increases the value of λeff, making an
accelerated expansion more difficult.

Both of these results are similar to what is obtained for assisted inflation [116–118]. This was to
be expected since the matter sector is being neglected.

2.4.3. Scaling Solution

Here we will look for fixed points where all the sectors, kinetic and potential energy densities
for the scalar energy and the matter energy density, have non-vanishing contributions. We can again
define an effective scalar potential logarithmic slope, λeff. But now we also have to take into account
the coupling of the scalar fields to the matter sector. This can also be represented by an effective
coupling Ceff. In terms of these parameters, we can obtain the effective equation of state

weff =
Ceff

λeff − Ceff
, (29)

and for the dark energy sector

Ωφ =
3− λeffCeff + C2

eff
(λeff − Ceff)2 . (30)
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For the first potential, the value of λeff is again obtained from Equation (27), whereas the value
of Ceff is

Ceff = λeff

n

∑
j=1

Cjα

λj
, (31)

where α can be taken to be any of the matter species. This is because the sum is constrained to yield
the same result for all the matter species, otherwise there is no exact scaling solution. It is instructive
to consider these quantities for the simple case of all the potentials being replicas, that is, having the
same slopes and couplings. Then λi = λ1 and the couplings C are a diagonal matrix with Cii = C11.
We then get

weff =
C11

λ1 − C11
, Ωφ =

3n− λ1C11 + C2
11

(λ1 − C2
11)

, (32)

where n is the number of scalar fields. The equation of state obtained is the usual result for a single
coupled field, but in the scalar field energy we can see a mild dependence in the number of fields.

For the second potential, the effective slope λeff obtained in scalar dominance is no longer valid.
Instead it is possible to show that we can combine the fields through a rotation so that the kinetic
energy of all fields is zero except for the first field. In terms of this rotation matrix Q we get the
effective equation of state as

λeff = ∑
j

Q1jλj , (33)

and the effective coupling to be
Ceff = ∑

j
Q1jCj1 . (34)

The precise form of Q is hard to get in the general case. But the simple case of a diagonal coupling
matrix C can give us an idea of what is to be expected. In this instance, we get

Q1i =
1

Cii

√
∑j 1/C2

ll

, (35)

and so

λeff = Ceff ∑
i

λi
Cii

,
1

Ceff
= ∑

i

1
C2

ii
. (36)

Finally, if we consider again the case of n fields all with the same slope and couplings, we get
λeff =

√
n λ1 and Ceff = C11/

√
n. Here we have a strong dependence in the number of fields in the

effective equation of state and the dark energy density,

weff =
C11

nλ1 − C11
, Ωφ =

3n− C11λ1n + C2
11

(nλ1 − C11)2 . (37)

This is clearly in contrast to what we have for the first potential type.

2.4.4. Scalar Potential Independent Solutions

Finally we look for solutions where the scalar potential energy is negligible. These solutions,
therefore, are independent of the choice we make for the scalar potential. Note that the scalar field still
contributes to the overall energy density through its kinetic energy. These solutions can be grouped
into three different types:

• First, we have the kinetic dominated solutions where all the energy density for the dark sector
is due to the kinetic energy of the scalar fields. In this instance, we have weff = Ωφ = 1.
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• As a second possibility, we have a contribution from the kinetic energy and the matter energy
densities for the dark sector. In this case we have weff = Ωφ = 2

3 ∑i C2
iα. This will be true for any

matter species α since the sum is constrained to yield the same for all matter species.
• Finally, as a third possibility we have a matter dominated scenario. This has been

investigated previously in the literature for the case of a single field with two matter
components [128,130–132]. If we extend this to more than one field, we will see that there
is a consistency condition imposed on the values of the couplings to allow a flat direction in
the field space, otherwise this solution will be non existent. This is by its nature a transient
solution since the matter contribution will eventually decay away and the scaling solution or
the scalar field dominated solution will take over. However, this can be an interesting scenario
for model building since it allows the dark matter sector to have a significant contribution before
the acceleration of the Universe.

If we extend our analysis to the linear perturbations in these models we can show that there is
a term proportional to ∑i CiαCiβ that can act as a growth or damping term to the density contrast of
the matter components. This yields a strong constraint on the types of models that can be compatible
with observations [129].

3. Horndeski Theories and Self-tuning

In the previous sections we have considered the simplest scalar-tensor theories of gravity, which
are given by the action (1). Those theories can be re-written as a scalar field, which is coupled to the
geometry through a term f (φ)R in the action, with a canonical kinetic term and a potential. This is:

S =
∫ √

−g d4x
[

f (φ)R− 1
2

X + V(φ)

]
+ SM, (38)

where X = ∇µφ∇µφ. Nevertheless, there are more things in heaven and earth for scalar-tensor theories
of gravity. K-essence models [133] assume a scalar field minimally coupled to gravity ( f (φ) = 1) with
an action that is not necessarily the sum of a kinetic term and a potential but a more general function
K(φ, X). One can go further and consider interaction terms in the Lagrangian containing second
order derivatives of the scalar field, as in the kinetic braiding models [134] that have a scalar field
Lagrangian given by K(φ, X) + G(φ, X)�φ. These models can be stable because their field equations
are only second order. However, theories with Lagrangians containing second order derivatives
generically have field equations which contain higher than second order derivatives. Therefore, such
theories usually propagate an extra (ghostly) degree of freedom which means that they are affected
by the Ostrogradski instability [135]. In fact, in 1974, Horndeski found the most general scalar-tensor
action leading to second order equations of motion [17]. Nevertheless, Horndeski work passed mostly
unnoticed until Deffayet et al. [136] rediscovered his theory when generalizing the covariantized
version [137] of the galileons models [138].

The Horndeski Lagrangian can be written as [17]

LH = δ
αβγ
µνσ

[
κ1 (φ, X)∇µ∇αφ Rβγ

νσ − 4
3

κ1,X (φ, X)∇µ∇αφ∇ν∇βφ∇σ∇γφ

+ κ3 (φ, X)∇αφ∇µφ Rβγ
νσ − 4κ3,X (φ, X)∇αφ∇µφ∇ν∇βφ∇σ∇γφ

]
+δ

αβ
µν

[
F (φ, X) Rαβ

µν − 4F,X (φ, X)∇µ∇αφ∇ν∇βφ + 2κ8 (φ, X)∇αφ∇µφ∇ν∇βφ
]

−3
[
2F,φ (φ, X) + X κ8 (φ, X)

]
∇µ∇µφ + κ9 (φ, X) , (39)

where κi (φ, X) and F(φ, X) are arbitrary functions, satisfying F,X = κ1,φ − κ3− 2Xκ3,X . Brans–Dicke
theory, k-essence, kinetic braiding and many other models can be seen as particular cases of the
most general Horndeski family. Thus, although the Horndeski Lagrangian restricts the number of
stable scalar-tensor theories. Actually it has been shown that there are still stable theories beyond the
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Horndeski Lagrangian [139–141]. Those theories have second order equations of motion only when
one particular gauge is fixed.

On the other hand, the vacuum energy also gravitates in modified theories of gravity. Thus,
the cosmological constant problem [142–144] is still present if, as Weinberg suggested, the extra
degree of freedom could screen only a given value of that constant [142]. In this context, the fab
four models are based in the observation by Charmousis et al. [18,145] that Weinberg’s no-go theorem
can be avoided by relaxing one of the assumptions, that is allowing the field to have a non-trivial
temporal dependence once the cosmological constant has been screened. Their dynamical screening
is based in requiring Minkowski to be a critical point of the dynamics and, when the critical point
is an attractor, it may alleviate the cosmological constant problem. Nevertheless, these models are
forced by construction to decelerate its expansion while approaching the Minkowski final state.
Thus, a late time accelerating cosmology does not naturally arise in this scenario. When considering
the compatibility of dynamical screening the vacuum energy with a late time phase of accelerated
expansion, the concept of self-adjustment was extended to non-Minkowskian final states [19]. As we
will now show in detail, a scalar field self-tuning to de Sitter can lead to very promising scenarios
from a phenomenological point of view [146,147]. In addition, it may alleviate the cosmological
constant problem if the field is able to screen the vacuum energy before the material content in a
particular model.

3.1. Dynamical Screening

In a cosmological context, one can consider a FLRW geometry to express the Horndeski
Lagrangian in the minisuperspace. Once the dependence on higher derivatives is integrated by parts
the point-like Lagrangian takes the simple form [18]

L (a, ȧ, φ, φ̇) = a3 ∑
i=0..3

Zi (a, φ, φ̇) Hi, where L = V−1
∫

d3xLH , (40)

V is the spatial integral of the volume element, H = ȧ/a is the Hubble expansion rate, and an
over-dot represents a derivative with respect the cosmic time t. The functions Zi are given by

Zi (a, φ, φ̇) = Xi (φ, φ̇)− k
a2 Yi (φ, φ̇) , (41)

where Xi and Yi are written in terms of the Horndeski free functions [18]. Taking into account
Equation (40), the Hamiltonian density can be written as

H (a, ȧ, φ, φ̇) =
1
a3

[
∂L
∂ȧ

ȧ +
∂L
∂φ̇

φ̇− L
]
= ∑

i=0..3

[
(i− 1)Zi + Zi,φ̇φ̇

]
Hi. (42)

Assuming that the matter content, described by ρm(a), is minimally coupled with the geometry
and non-interacting with the field, the modified Friedmann equation is given by

H (a, ȧ, φ, φ̇) = −ρm(a). (43)

Now, one can follow a similar argument as that presented in reference [18] for screening to
Minkwoski, the only difference being that we require self-tuning to a more general given on-shell
solution with H2 = H2

on 6= 0 (where the subscript “on” means evaluated on-shell-in-a), as done in
reference [19]. Thus, assuming that the field is continuous in any phase transition that changes the
value of the vacuum energy and noting that the screening of any value of the vacuum energy would
lead to the screening of any material content, one has to require Hon to be approached dynamical in
order to have acceptable cosmological solutions. That is, we want Hon to be an attractor solution,
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although this particular adjustment mechanism only ensures that it is a critical point. As it is subtly
discussed in reference [18], this requirement leads to the following three conditions:

• The field equation evaluated at the critical point has to be trivially satisfied leading the value of
the field free to screen. This implies that the minisuperspace Lagrangian density at the critical
point takes the form

∑
i=0..3

Zi (aon, φ, φ̇) Hi
on = c(aon) +

1
a3

on
ζ̇ (aon, φ) . (44)

• The modified Freedman equation evaluated once screening has taken place has to depend on φ̇

to absorb possible discontinuities of the cosmological constant appearing on the r. h. s. of this
equation. Thus, taking into account Equations (43) and (44) (and its φ̇-derivative), it leads to

∑
i=1..3

i Zi,φ̇ (aon, φ, φ̇) Hi
on 6= 0. (45)

• The full scalar equation of motion must depend on ä to allow for a non-trivial cosmological
dynamics before screening. This leads to a condition equivalent to (45) if Hon 6= 0.

A particular Lagrangian which satisfies conditions can be written as

L (a, ȧ, φ, φ̇) = a3

[
c(a) + ∑

i=1..3
Zi (a, φ, φ̇)

(
Hi − Hi

on

)]
. (46)

This Lagrangian (which is a trivial generalization of that presented in reference [18]) has a critical
point at the solution Hon by construction [19]. In order to obtian some information about the Zi’s, we
note that, as it has been explicitly proven in [18] (it must be noted that such a proof is independent
of the particular Hon), two Horndeski theories which self-tune to Hon are related through a total
derivative of a function µ (a, φ). Therefore, one can consider

L (a, ȧ, φ, φ̇) = L (a, ȧ, φ, φ̇) + µ̇ (a, φ) , (47)

with L (a, ȧ, φ, φ̇) given by Equation (46). As this equation has to be valid during the whole evolution,
we can equate equal powers of H to obtain

Z0 = c(a)− ∑
i=1..3

Zi Hi
on +

φ̇

a3 µ,φ, Z1 = Z1 +
1
a2 µ,a, Z2 = Z2, Z3 = Z3, (48)

which can be combined to yield [18,19]

Zi (a, φ, φ̇) Hi
on = c(a) +

Hon

a2 µ,a (a, φ) +
φ̇

a3 µ,φ (a, φ) . (49)

3.2. Requiring the Existence of a de Sitter Critical Point: H2
on = Λ

In the first place, we consider k = 0. In this case the dependence on the scale factor a of the Zi’s
vanishes, as can be easily noted from Equation (41), and the point-like Lagrangian (40) is independent
of Yi’s. For k = 0, therefore, Equation (49) is equal to the Lon (aon) /a3

on. In the second place, we
demand H2

on = Λ, this leads to [19]

∑
i=0..3

Zi (φ, φ̇)Λi/2 = c(a) +
√

Λ
a2 µ,a +

φ̇

a3 µ,φ. (50)
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As the l. h. s. of this equation is independent of a, the r. h. s. should also be independent of a for
any value of φ̇, which allows us to obtain µ (a, φ). Thus, we have

∑
i=0..3

Xi (φ, φ̇)Λi/2 =
1

a3
on

Lon (aon) = 3
√

Λ h(φ) + φ̇ hφ(φ). (51)

Therefore, there are three different kind of terms which can appear in the Lagrangian. These
are: (i) Xi-terms linear on φ̇; (ii) Xi-terms with non-linear dependence on φ̇, which contribution has to
vanish in the on-shell point-like Lagrangian; and, (iii) terms that are not able to self-tune because they
contribute through total derivatives or terms multiplied by k in the Lagrangian. Thus, the point-like
Lagrangian takes the form [19]

L (a, ȧ, φ, φ̇) = Llinear (a, ȧ, φ, φ̇) + Lnl (a, ȧ, φ, φ̇) +
d
dt

µ(a, φ) + k G(a, ȧ, φ, φ̇), (52)

with Llinear and Lnl to be given in the following discussion.

3.2.1. Linear Terms: “The Magnificent Seven”

In order to satisfy Equation (51) considering only terms linear on φ̇, it is enough to have

Xms
i (φ, φ̇) = 3

√
Λ Ui(φ) + φ̇ Wi(φ), (53)

with the potentials Ui and Wi fulfilling the constraint

∑
i=0..3

Wi(φ)Λi/2 = ∑
i=0..3

Ui,φ(φ)Λi/2. (54)

The Lagrangian of the linear terms is

Llinear = a3 ∑
i=0..3

[
3
√

Λ Ui(φ) + φ̇ Wi(φ)
]

Hi, (55)

with the potentials satisfying condition (54). As there are a total of eight functions and only one
constraint, there are effectively only seven free functions which we coined “the magnificent seven”.
The field equation for these models is

εlinear = ∑
i=0..3

{
3
√

Λ
[

Ui,φ(φ)−
H√
Λ

Wi(φ)

]
− i

Ḣ
H

Wi(φ)

}
Hi, (56)

where we have divided all the equations by a3 for simplicity and we require that the term in the
square bracket does not vanish. On the other hand, the Hamiltonian density is

Hlinear = ∑
i=0..3

[
3(i− 1)

√
Λ Ui(φ) + i φ̇ Wi(φ)

]
Hi. (57)

When only this kind of terms are present the modified Friedmann equation isHlinear = −ρm(a).
These models are able to screen any material content dynamically as long as there is at least one
Wi 6= 0 with i 6= 0. The models with only W0 and Ui potentials and those with only Ui’s would not
spoil the screening of other models when combined with them, but they are not able to self-tune by
themselves [19]. It is worthy to note that a non-self-tuning Einstein–Hilbert term is contained in these
models and can be explicitly written redefining U2(φ) as U2(φ)− 1/(8πG

√
Λ).
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3.2.2. Non-linear Terms

We now consider terms with an arbitrary dependence on φ and φ̇. These terms have a
minisuperspace Lagrangian given by

Lnl = a3
3

∑
i=0

Xnl
i (φ, φ̇) Hi. (58)

The functions Xnl
i are, however, not arbitrary. Taking into account Equation (51), the contribution

of these terms has to vanish when Lnl is evaluated at the critical point. Therefore, they have to satisfy
the condition

3

∑
i=0

Xnl
i (φ, φ̇)Λi/2 = 0. (59)

The Hamiltonian density of this models is

Hnl =
3

∑
i=0

[
(i− 1)Xnl

i (φ, φ̇) + φ̇ Xnl
i,φ̇ (φ, φ̇)

]
Hi. (60)

Taking into account condition (59) and its derivatives, it can be seen that Hnl, os depends on φ̇;
thus, these models are always able to self-tune. If only these nonlinear terms are present, the modified
Friedmann equation isHnl = −ρm(a), andHlinear +Hnl = −ρm(a) otherwise.

On the other hand, taking into account Lagrangian (58) the field equation can be written as

εnl =
3

∑
i=0

[
Xnl

i,φ − 3Xnl
i,φ̇H − iXnl

i,φ̇
Ḣ
H
− Xnl

i,φ̇φφ̇− Xnl
i,φ̇φ̇φ̈

]
Hi, (61)

with εlinear + εnl = 0.

3.3. Cosmology of the Models

3.3.1. Example of a Linear Model

The field equation and the Friedmann equation read [146]

H′ = 3
∑i Hi

(√
Λ Ui,φ(φ)− H Wi(φ)

)
∑i i HiWi(φ)

, φ′ =
√

Λ
(1−Ω) H2 − 3 ∑i(i− 1) Hi Ui(φ)

∑i i Hi+1Wi(φ)
,

where a prime represents derivative with respect to ln a.
As an example of a linear model let us consider the three potentials U2, U3 and W2. The constraint

equation imposes U2,φΛ + U3,φΛ3/2 = W2Λ, and then

H′

H
= −3

U2,φ

W2

(
1−
√

Λ
H

)
.

For H �
√

Λ,
H′

H
= −3

2
U2,φ

W2
,

therefore we need: U2,φ/W2 = 1, during a matter domination epoch, and U2,φ/W2 = 4/3, for
a radiation domination epoch. For example, the choice of the potentials, U2 = eλφ + 4

3 eβφ, and
W2 = λeλφ + βeβφ, give us the desired behaviour, as shown in Figure 3. The de Sitter evolution is
attained when H →

√
Λ.
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Figure 3. Energy densities evolution for the models of Section 3.3.1.

Unfortunately, the contribution of the field at early times is too large to satisfy current constraints.

3.3.2. Example of a Non-Linear Model

We will restrict the analysis to the shift-symmetric cases, which means no dependence on φ, and
make use of the convenient redefinition ψ = φ̇. Under these assumptions we obtain the equations of
motion [147],

H′ =
3(1 + w)Q0P1 −Q1P0

Q1P2 −Q2P1
, ψ′ =

3(1 + w)Q0P2 −Q2P0

Q2P1 −Q1P2
,

where Q0, Q1, Q2, P0, P1, P2, are non-trivial functions of Xi and H, and the average equation of state
parameter of matter fluids is

1 + w =
∑s Ωs(1 + ws)

∑s Ωs
.

Let us consider a case involving the three potentials X0, X1 and X2 such that

X2(ψ) = αψn, X1(ψ) = −αψn +
β

ψm , X0(ψ) = −
β

ψm .

We can obtain a model with wψ = w0 + wa(1− a), such that, w0 = −0.98 and wa = 0.04, which
is compatible with current limits and moreover, has a negligible dark energy contribution at early
times. The evolution of the energy densities is illustrated in Figure 4.
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Figure 4. Energy densities evolution for the model with non-vanishing X0, X1 and X2.
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3.4. Summary

In this section we have considered a subclass of the Horndeski Lagrangian that leads to
a late-time de Sitter evolution of the Universe and that may provide a mechanism to alleviate
the cosmological constant problem. We have presented examples of a linear and a non-linear
model. In particular, the shift-symmetric non-linear models, the de Sitter critical point is indeed an
attractor. We can, thus, understand the current accelerated expansion of our Universe as the result
of the dynamical approach of the field to the critical point. The model presented satisfies current
observational bounds on the background evolution and appear very promising.

4. f (R) Modified Theories of Gravity and Extensions

Nowadays, a great multidisciplinary effort has firmly established experimentally the standard
ΛCDM model of cosmology, which is based on Einstein’s General Theory of Relativity (GR), a cold
dark matter source and a tiny cosmological constant. GR itself has been tested on scales ranging from
the submilimeter to the solar system [81]. Nonetheless, a number of conceptual issues still refuses
to naturally merge into this paradigm. Since the establishment of the theorems by Hawking and
Penrose [148–150], space-time singularities both deep inside black holes and in the early universe
have been a disturbing issue from a theoretical point of view since they represent regions where
Physics looses predictability. On the other hand, introduction of a dark sector in the model allows to
fit the data, but implies that up to 96% of the total energy-matter content of the universe is of unknown
nature. Though several candidates for the microscopic origin of the dark matter component have
been considered, like supersymmetric partners [151], this new physics has not been directly detected
at particle accelerators so far. Moreover, the accumulated data in favour of a late-time accelerated
expansion of the universe only hints at an exotic form of energy whose equation of state is nearly
equal to that of a cosmological constant.

In view of these difficulties one may wonder whether this is a signal that the conceptual and
mathematical framework represented by GR is reaching its limit of validity and that the increasing
complexity of the additional ad hoc hypothesis needed to fit the data could be removed by finding
a new framework for gravity where the difficulties (singularities and dark sources) are naturally
encompassed. At the more fundamental level, great theoretical progress has been made within the
unifying frameworks of both string theory [152] and loop quantum gravity [153] but, given the high
energy/curvature scales at which the new effects would take place, they are troubled with large
difficulties to make contact with experimental results. In this sense, many authors have focused
their attention on phenomenological models where specific issues of the ΛCDM model (singularities,
inflation, dark sources, etc) are dealt with. In the high-energy regime, these modified gravity models
including higher-order powers of the curvature invariants (see e.g., [8] for a review) are supported
by a high-energy completion of the Einstein-Hilbert Lagrangian of GR within the theory of quantized
fields in curved space-times [21,154].

4.1. f (R) Modified Theories of Gravity

4.1.1. General Formalism

Recently, f (R) modified theories of gravity have been extensively explored in the literature,
where the standard Einstein-Hilbert action is replaced by an arbitrary function of the Ricci scalar
R [155,156]. These theories can be formulated through different approaches: (i) one could use
the metric formalism, which consists in varying the action with respect to the metric gµν only;
(ii) in the Palatini formalism [28,157–163], where the metric and the affine connection are treated
as independent variables (see Section 4.3 below for more details on this formulation); (iii) and the
metric-affine formalism, where the matter part of the action now depends on and is varied with
respect to the connection [28].
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The action for the f (R) modified theories of gravity is given by

S =
1

2κ

∫
d4x
√
−g f (R) + SM(gµν, ψ) , (62)

where κ = 8πG. SM(gµν, ψ) is the matter action, defined as SM =
∫

d4x
√−g Lm(gµν, ψ), where

Lm is the matter Lagrangian density, in which matter is minimally coupled to the metric gµν and ψ

collectively denotes the matter fields.
Using the metric approach, by varying the action with respect to gµν yields the following

field equation

FRµν −
1
2

f gµν −∇µ∇νF + gµν∇α∇αF = κ T(m)
µν , (63)

where F ≡ d f /dR. The matter energy-momentum tensor, T(m)
µν , is defined as

T(m)
µν = − 2√−g

δ(
√−gLm)

δ(gµν)
. (64)

Now, considering the contraction of Equation (63), provides the following relationship

FR− 2 f + 3∇α∇αF = κ T , (65)

which shows that the Ricci scalar is a fully dynamical degree of freedom.
f (R) gravity may be written as a scalar-tensor theory, by introducing a transformation {R, f } →

{φ, V} defined as
φ ≡ F (R) , V (φ) ≡ R (φ) F− f (R (φ)) , (66)

so that the action (62) can be written as

S =
1

2κ

∫
[φR−V(φ) + Lm]

√
−g d4x. (67)

Note that action is simply a Brans-Dicke type action (1) with the parameter ω = 0. The
gravitational field equations of f (R) gravity, in the scalar-tensor representation, simply reduce to
Equations (3) and (4), with a redefinition of the potential V(φ) = 2φλ(φ).

4.1.2. Discriminating between Dark Energy and Modified Gravity Models

Due to the fact that subsets of scalar-tensor theories can be obtained from modifications to
the gravitational sector through specific mappings, it is fundamental to understand how one may
differentiate these modified theories of gravity from dark energy models. This ambiguity requires a
practical classification, which is not a trivial issue as one cannot discriminate between the dark energy
models and modified gravity, solely from the expansion rate of the Universe. However, as structure
formation behaves differently by these two classes of theories, information on the growth of structure,
at different scales and redshifts, will break the degeneracy and will serve to discriminate between
both models of dark energy and modified gravity [164]. In this context, generic modifications of the
dynamics of scalar perturbations, with respect to the ΛCDM background, can be represented by two
new degrees of freedom in the Einstein constraint equations, namely, through the functions Q(a, k)
and η(a, k), where a is the scale factor and k the perturbation scale. In modified theories of gravity,
Q(a, k) results from a mass-screening effect due to local modifications of gravity, and effectively
modifies Newton’s constant. In the context of dynamical dark energy models, the function Q(a, k)
incorporates the interaction with other fields, due to the perturbations. The function η, absent in
ΛCDM, parameterizes the effective stresses due to the modification of gravity or specific dynamical
dark energy models. Finally, the scale and time-dependence of both functions, Q and η, can be
derived in the considered model and traced on a (Q, η) plane.
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Following [164], a practical manner is to denote the term “modified gravity” if additional
contributions to the Poisson equation are presented, which induces Q 6= 1, and if extra effective
stresses arise, implying η 6= 1. In this context, “modified gravity” is related to models in
which modifications are present in the gravitational sector and in which dark energy clusters or
interacts with other fields. Following this practical classification [164], in the context of first order
perturbation theory, models with Q = η = 1 are denoted standard dark energy models, such as,
a minimally-coupled scalar field with standard kinetic energy [164]. On the other hand, models for
Q 6= 1 and η 6= 1 are denoted “modified gravity”, such as scalar-tensor theories, f (R) gravity, massive
gravity and generalized galileons, Horndeski interactions, bi-(multi-) gravity, etc. Thus, in the context
of the EUCLID mission [164], the definitions of the functions Q and η are extremely convenient, for
instance, EUCLID can distinguish between standard dynamical dark energy and modified gravity by
forecasting the errors on Q and η, and several combinations of these functions, such as Q/η.

4.1.3. Late-Time Cosmic Acceleration

In this subsection, we show that f (R) gravity may lead to an effective dark energy, without the
need to introduce a negative pressure ideal fluid. Consider the FLRW metric (11). Taking into account
the perfect fluid description for matter, we verify that the gravitational field equation, Equation (63),
provides the generalised Friedmann equations in the following form [165,166]:(

ȧ
a

)2
− 1

3F(R)

{
1
2
[ f (R)− RF(R)]− 3

(
ȧ
a

)
ṘF′(R)

}
=

κ

3
ρ , (68)(

ä
a

)
+

1
2F(R)

{
ȧ
a

ṘF′(R) + R̈F′(R) + Ṙ2F′′(R)− 1
3
[ f (R)− RF(R)]

}
= −κ

6
(ρ + 3p) . (69)

These modified Friedmann field equations may be rewritten in a more familiar form, as(
ȧ
a

)2
=

κ

3
ρtot , (70)(

ä
a

)
= −κ

6
(ρtot + 3ptot) , (71)

where ρtot = ρ + ρ(c) and ptot = p + p(c), and the curvature stress-energy components, ρ(c) and p(c),
are defined as

ρ(c) =
1

κF(R)

{
1
2
[ f (R)− RF(R)]− 3

(
ȧ
a

)
ṘF′(R)

}
, (72)

p(c) =
1

κF(R)

{
2
(

ȧ
a

)
ṘF′(R) + R̈F′(R) + Ṙ2F′′(R)− 1

2
[ f (R)− RF(R)]

}
, (73)

respectively. The late-time cosmic acceleration is achieved if the condition ρtot + 3ptot < 0 is obeyed,
which follows from Equation (71).

For simplicity, consider the absence of matter, ρ = p = 0. Now, taking into account the equation
of state ωeff = p(c)/ρ(c), with f (R) ∝ Rn and a generic power law a(t) = a0(t/t0)

α [165], the
parameters ωeff and α are given by

ωeff = −
6n2 − 7n− 1
6n2 − 9n + 3

, α =
−2n2 + 3n− 1

n− 2
, (74)

respectively, for n 6= 1. Note that a suitable choice of n can lead to the desired value of ωeff < −1/3,
achieving the late-time cosmic acceleration.

It is interesting to note that observations might slightly favour the fact that the effective dark
energy equation-of-state parameter lies in the phantom regime, i.e., ωeff < −1 [37], although the data
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are still far from being conclusive. In fact, recent fits to supernovae, CMB and weak gravitational
lensing data indicate that an evolving equation of state crossing the phantom divide, is mildly
favored, and several models have been proposed in the literature. In particular, models considering
a redshift dependent equation of state, possibly provide better fits to the most recent and reliable
SN Ia supernovae Gold dataset. In a cosmological setting, it has been shown that the transition into
the phantom regime, for a single field is probably physically implausible [167], so that a mixture of
various interacting non-ideal fluids is necessary. In this context, we refer the reader to [168] for a
recent review on specific models in modified gravity. If confirmed in the future, this behavior has
important implications for theoretical models of dark energy and modified gravity. For instance,
this implies that dark energy is dynamical and excludes the cosmological constant and the models
with a constant parameter, such as quintessence and phantom models, as possible candidates for
dark energy. All of these models present an extremely fascinating aspect for future experiments
focussing on supernovae, cosmic microwave background radiation and weak gravitational lensing
and for future theoretical research.

4.2. Curvature-Matter Couplings in f (R) Gravity

Recently, an extension of f (R) gravity was presented, by considering an explicit
curvature-matter coupling. The latter coupling induces a non-vanishing covariant derivative of
the energy-momentum tensor, ∇µTµν 6= 0, which potentially leads to a deviation from geodesic
motion, and consequently the appearance of an extra force [169]. Implications, for instance, for stellar
equilibrium have been studied in Ref. [170]. The equivalence with scalar-tensor theories with two
scalar fields has been considered in Ref. [171], and a viability stability criterion was also analyzed in
Ref. [172]. It is interesting to note that nonlinear couplings of matter with gravity were analyzed in the
context of the accelerated expansion of the Universe [173–175], and in the study of the cosmological
constant problem [176].

The action for f (R) curvature-matter coupling [169] takes the following form

S =
∫ {1

2
f1(R) + [1 + λ f2(R)]Lm

}√
−g d4x , (75)

where fi(R) (with i = 1, 2) are arbitrary functions of the curvature scalar R. For notational simplicity
we consider κ = 1 throughout this subsection.

Varying the action with respect to the metric gµν yields the field equations, given by

F1Rµν −
1
2

f1gµν −∇µ∇ν F1 + gµν∇α∇αF1 = −2λF2LmRµν

+2λ(∇µ∇ν − gµν∇α∇α)LmF2 + (1 + λ f2)T
(m)
µν , (76)

where we have denoted Fi(R) = f ′i (R), and the prime represents the derivative with respect
to the scalar curvature. We refer the reader to [177] for the curvature-matter coupling in the
Palatini formalism.

As mentioned above, an interesting feature of this theory is the non-conservation of the
energy-momentum tensor. More specifically, by taking into account the generalized Bianchi
identities [169,178,179], one deduces the following conservation equation

∇µT(m)
µν =

λF2

1 + λ f2

[
gµνLm − T(m)

µν

]
∇µR , (77)

where the coupling between the matter and the higher derivative curvature terms describes an
exchange of energy and momentum between both.

Consider the equation of state for a perfect fluid T(m)
µν = (ρ + p)UµUν + pgµν, where ρ is

the energy density and p, the pressure, respectively. The four-velocity, Uµ, satisfies the conditions
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UµUµ = −1 and UµUµ;ν = 0. Introducing the projection operator hµν = gµν + UµUν, gives
rise to non-geodesic motion governed by the following equation of motion for a fluid element:
dUµ/ds + Γµ

αβUαUβ = f µ, where the extra force, f µ, is given by

f µ =
1

ρ + p

[
λF2

1 + λ f2
(Lm − p)∇νR +∇ν p

]
hµν . (78)

Note that an intriguing feature is that a specific choice for the matter Lagrangian yields different
dynamics. For instance, in [180], it was argued that a “natural choice” for the matter Lagrangian
density for perfect fluids is Lm = p, based on Refs. [181,182], where p is the pressure. This choice has
a particularly interesting application in the analysis of the R−matter coupling for perfect fluids, which
implies in the vanishing of the extra force [169]. However, it is important to point out that despite
the fact that Lm = p does indeed reproduce the perfect fluid equation of state, it is not unique [183].
Other choices include, for instance, Lm = −ρ [182,184], where ρ is the energy density, or Lm = −na,
were n is the particle number density, and a is the physical free energy defined as a = ρ/n− Ts, with
T being the temperature and s the entropy per particle (see Ref. [182,183] for details).

Hence, it is clear that no immediate conclusion may be extracted regarding the additional force
imposed by the non-minimum coupling of curvature to matter, given the different available choices
for the Lagrangian density. One may conjecture that there is a deeper principle or symmetry that
provides a unique Lagrangian density for a perfect fluid [183]. This has not been given due attention
in the literature, as arbitrary gravitational field equations depending on the matter Lagrangian have
not always been the object of close analysis. See Ref. [183] for more details.

4.3. The Palatini Approach

The discussion outlined in the beginning of this section hints at reconsidering the foundational
aspects of gravity as a geometric phenomenon. The key point of such an approach is to make one
step back and reconsider the role that basic geometric objects play in gravitational physics. The
first such step is to recognize the different role that metric and affine connection have as geometrical
structures, and take them as independent objects (Palatini approach [27]), which implies the presence
of non-metricity (this is actually the simplest extension towards more general geometric theories of
gravitation), i.e., the failure of the independent connection to be metric, Qλµν = ∇λgµν 6= 0. Note
that whether the underlying structure of spacetime is Riemannian or not is a fundamental question
of gravity as a geometric phenomenon which has received little attention so far, and its associated
phenomenology has been scarcely studied. Indeed, a glance at the modern description of ordered
structures with defects in condensed matter physics (like Bravais crystals) teaches us that the presence
of point defects induces a continuous description in terms of a geometry with independent metric and
affine structures [185–187], which could provide important tools for gravitational physics [188,189].
In the case of GR, one finds that the Palatini approach gives exactly the same result as the standard
approach of fixing the Levi-Civita connection a priori and making variations with respect to the
metric gµν (metric approach); this result being attached to the particular functional form of the
Einstein-Hilbert Lagrangian of GR. Nonetheless, for modified gravity it turns out that it avoids many
of the problems of the metric formulation, and generically yields a set of second-order field equations
and absence of ghost-like instabilities.

To fix ideas let us consider an f (R) extension of GR, defined by the standard action

S =
1

2κ2

∫
d4x
√
−g f (R) + Sm , (79)

where κ2 = 8πG, g is the determinant of the space-time metric gµν, which is independent of
the connection Γλ

µν. The Ricci tensor, Rµν ≡ Rα
µαν = −∂µΓλ

λν + ∂λΓλ
µν + Γλ

µνΓρ
ρλ − Γλ

νρΓρ
µλ,

is an object entirely constructed out of the independent connection, while the matter sector,
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Sm =
∫

d4x
√−gLm(ψm, gµν) (where ψm denotes the matter fields) only couples to the metric gµν.

We point out that the independence between metric and connection in the Palatini approach also
allows for the presence of torsion (the antisymmetric part of the connection). However, for simplicity,
in this section, we will assume that torsion vanishes, Γ[µν] = 0, and, in addition, that the Ricci tensor
is purely symmetric, R[µν] = 0 (for a derivation of the field equations in full generality under the
presence of torsion see [190]).

Under these conditions, variation of the action (79) yields

δS =
1

2κ2

∫
d4x
√
−g
[(

fRRµν −
1
2

f gµν

)
δgµν + fRgµνδRµν(Γ)

]
+ δSm, (80)

Since we are working on the Palatini approach, the terms on the variations with respect to δgµν

and δRµν(Γ) must vanish independently. This brings two systems of equations of the form

fRRµν −
f
2

gµν = κ2Tµν, (81)

∇Γ
λ(
√
−g fRgµν) = 0, (82)

where fR ≡ d f /dR and the matter energy-momentum tensor Tµν is defined by Equation (64). Note
that in the GR case, f (R) = R, Equation (82) simply expresses the standard metric-connection
compatibility condition, while Equation (81) become the Einstein equations. In the f (R) case, tracing
with gµν in Equation (81) yields R fR − 2 f = κ2T, which is an algebraic relation whose solution,
R = R(T), generalizes the GR relation R = −κ2T. The field Equation (81) can be solved by
introducing a new rank-two tensor hµν = fRgµν in such a way that the connection Equation (82)
is rewritten as ∇Γ

λ(
√
−hhµν) = 0, i.e., the independent connection Γλ

µν becomes the Levi-Civita
connection of hµν. This tensor is connected to the physical metric gµν via the conformal
transformations given above. With this result, the remaining Equation (81) can be written as [191]

Rµ
ν(h) =

κ2

f 2
R

(
f (R)
2κ2 δµ

ν + Tµ
ν

)
. (83)

whereRµ
ν(h) is the Ricci tensor computed with the auxiliary metric hµν. This is a set of second-order

Einstein-like equations with all the objects in the right-hand-side depending only on the matter
sources (because f (R) ≡ f (R(T)) is a function of the trace of the energy-momentum tensor), which
can thus be read as a modified matter source, namely, one can write Gµν = τµν, where τµν accounts for
an effective energy-momentum tensor. This property, which results from the special way gravity and
matter couple in the Palatini approach, is in sharp contrast with the generic fourth order equations
and ghosts that one finds in the (more conventional) metric formulation of these theories (see
e.g., [192,193] for a comparison between both approaches). Note that in the absence of matter, Tµ

ν = 0,
the field equations boil down to those of GR with a cosmological constant term and thus these theories
contain no extra propagating degrees of freedom (in particular, the theory is free of ghosts). As a
consequence, the dynamics of these theories can be only excited in regions of large curvatures/short
distances or for strong fields. Solving the Equation (83) just requires to specify the matter source, Tµ

ν,
and the object f (R(T)), and to transform the solution hµν back to the physical metric gµν using the
conformal transformations above.

4.3.1. Quadratic Cosmology from Gravity-matter Coupling

This framework can be extended to include a gravity-matter coupling term g(R)Lm(ψm, gµν)

replacing the matter sector in the action (79), which yields a new set of equations [194]

Rµ
ν(h) =

κ2

Φ2

(
f (R)
2κ2 δµ

ν + g(R)Tµ
ν

)
. (84)
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where now Φ ≡ f (R) + 2κ2gRLm, hµν = Φgµν and hµν = Φ−1gµν. Again, these equations are
manifestly second-order due to the same considerations of the previous case.

In the following, we consider a FRW cosmology, in the presence of a perfect fluid. Assuming an
equation of state P = ωρ (with ω =constant), and inserting these inputs into the field Equation (84)
one gets two sets of equations [194]

H2 =
f (R) + κ2g(R)(1 + 3ω)ρ

6Φ(1− ∆)2 , (85)

Ḣ(1− ∆) +
H2

2
[1− ∆2 + 6(ρ + p)∆ρ] =

1
12Φ

[ f (R)− κ2g(R)(5ρ + 3p)] , (86)

where ∆ ≡ 3
2 (1 + ω)ρ

Φρ

Φ and a subindex means a derivative. Both the f (R) and the matter-gravity
coupling frameworks can successfully reproduce the background evolution of loop quantum
cosmology, whose chief accomplishment is the resolution of the Big Bang singularity applying
non-perturbative canonical quantization techniques [195,196]. The singularity is replaced by a
non-singular cosmic bounce at an energy of Planck’s density order ρc ≡ c5/(h̄G2) via a quadratic
cosmology model of the form

H2 =
κ2

6
ρ

(
1 + ε

ρ

ρc

)
, (87)

with ε ± 1, where ε = +1 corresponds to the solution arising in braneworld scenarios [197] and
ε = −1 in loop quantum cosmology [198]. In f (R) gravity, quadratic cosmology can be numerically
fit with a specific model [199] (which is consistent with the fact that space-time singularities can also
be avoided in spherically symmetric charged black hole scenarios of Palatini f (R) gravity [200,201]),
while in f (R) theories with gravity-matter coupling different choices of Φ ≡ Φ(ρ) yields different
models able to analytically reproduce this cosmic evolution [194]. This result can further be
extended to isotropic and anisotropic cosmologies in Palatini gravity including quadratic RµνRµν

corrections [202].

4.3.2. Bouncing Cosmologies in Born-Infeld-like Gravity Models

A somewhat different proposal for modified gravity models was introduced by Deser and
Gibbons, coined Born-Infeld gravity [203,204], where the action is given by

SBI = λ4
∫

d4x
(√

gµν + λ−2Rµν −
√
−g
)

, (88)

where λ is a small parameter, which must be suitably tuned to recover GR at low energies/curvatures.
This means that, from an experimental point of view, the action (88) represents a viable theory
of gravity, while encompassing new effects at high energies. Born-Infeld gravity has raised great
interest due to its many astrophysical and cosmological applications, including the existence of
singularity-free cosmologies.

To investigate the latter point, let us rewrite, by convenience, the first term in Born-Infeld gravity
as
√−g det M̂, where a hat denotes a matrix and M̂ =

√
ĝ−1q̂, with qµν ≡ gµν + λ−2Rµν. Therefore

we can rewrite (88) as

SBI = λ4
∫

d4x
√
−g
(
det M̂− 1

)
. (89)

Writing in this way, it is clear that Born-Infeld gravity (89) contains two of the invariant
polynomials of the matrix M̂ and, therefore, a natural extension of this model would be [205]

S = λ4
∫

d4x
√
−g

4

∑
n=0

βn(en(M̂)) , (90)
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where en are the five invariant polynomials of the matrix M̂ (see [205] for details) and βn is a set of
free dimensionless parameters. In this formulation, the original Born-Infeld gravity comes from the
contributions e0(M̂) = 1 and e4(M̂) = det M̂. When testing the non-singular character of solutions in
the Palatini approach it is important to establish its robustness, namely, that the singularity resolution
is not attached to a particular choice of the functions defining the model, or to some ad hoc procedure
to obtain a desired result, like a fine tuning of the parameters. This program has been very successful
when applied to spherically symmetric black holes replacing the point-like singularity by a wormhole
structure giving continuity to all null and time-like geodesics in a number of gravitational and matter
scenarios [206–208]. Similarly, to study bouncing solutions, let us focus on the simple extension of
Born-Infeld gravity given by

S =
1

κ2ε

∫
d4x
√
−g
[

f ((det Ω̂)1/2)− λ̃
√
−g
]
+ Sm(ψm, gµν) , (91)

where we have redefined the constants to match with GR results at low energies, ε � 1, introduced
a new matrix Ω̂ ≡ M̂1/2, for notational simplicity, and added the matter contribution. As usual, in
the Palatini formalism, we treat metric and connection as independent entities and obtain the field
equations by variation with respect to both of them. After a bit of (lengthy) algebra one gets the field
equations for the auxiliary metric tµν as [209]

Rµ
ν(t) =

κ2

2φ2(det Ω̂)3/2
(LGδµ

ν + Tµ
ν) , (92)

with the following definitions: φ ≡ d f /dA and V(φ) = A(φ) fA − f (A) are functions of the
auxiliary scalar (Brans-Dicke-like) field A, the auxiliary metric tµν (associated with a Levi-Civita
connection, ∇λ[

√
−ttµν] = 0) is related to the physical metric gµν as tµν = φ(det Ω̂)1/2gµαΩ̂α

ν ,
and LG ≡ (φ(det Ω̂)1/2 − V(φ) − λ̃)/(εκ2) is the Lagrangian density. Note that the equation
resulting from variation of Equation (91), namely, det Ω̂ = dV/dφ, establishes an algebraic relation
φ = φ(det Ω̂) for every choice of f (A). Moreover, due to the fact that the equations for the metric gµν

can be written as

φ(det Ω̂)[Ω̂−1]µν =

(
φ(det Ω̂) + V(φ) + λ̃

)
2

δµ
ν −

κ2ε

2
Tµ

ν , (93)

this implies that Ω̂ = Ω̂(Tµ
ν) and, consequently, φ = φ(Tµ

ν). Therefore, all terms appearing on the
right-hand-side of the field Equation (92) are just functions of the matter, like in the case of f (R)
theories. Thus, finding a solution of (92) for tµν immediately yields a solution for gµν.

Let us assume a perfect fluid energy-momentum tensor with N species of non-interacting fluids,
namely, ρ = ∑N

i=1 ρi and p = ∑N
i=1 pi, with equations of state pi = ωi(ρi)ρi, in a flat FRW spacetime.

The Hubble function then reads [209]

εH2 =
1

6
(

1 + ∆̇
2∆H

)2

[
εκ2(ρ + 3p) + 2(φ(det Ω̂)−V − λ̃)

φ(det Ω̂) + V + λ̃ + εκ2ρ

]
, (94)

where ∆ = 2φ2(det Ω̂)3/2

φ(det Ω̂)+V+λ̃−εκ2P
and

∆̇
2∆H

= − 3
2∆

N

∑
i=1

[
∂∆

∂(det Ω̂)

∂(det Ω̂)

∂ρi
+

∂∆
∂ρi

]
(1 + ωi)ρi . (95)

To obtain explicit solutions one needs to further specify the family of Born-Infeld gravity
extensions. Let us consider the power-law family f (det Ω̂) = (det Ω̂)n where the case n = 1/2
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corresponds to the original Born-Infeld gravity. Expanding in series of ε � 1, the corresponding
Lagrangian yields the result

lim
ε�1

S =
∫

d4x
√
−g
[
(1− λ̃)

εκ2 +
n
κ2 R + O(ε)

]
+ Sm , (96)

which, via a redefinition of constants, is just GR plus a cosmological constant term. Therefore, this
kind of theories is in agreement with observational data in the low energy/curvature regime, but
provides new physics regarding the early universe. In this sense, at high energies two kinds of
solutions are found (see [209] for details): (i) those with ερ > 0 and ω > 0 have a vanishing
Hubble parameter for some finite energy density ρB characterized by H2 ∝ (ρB − ρ) ∝ (a − aB)

2,
and represent unstable solutions with a minimum value at past infinity, where a(−∞) = aB;
(ii) those with ερ < 0 represent genuine non-singular bouncing solutions (as long as ω > −1) with
H2 ∝ (ρB − ρ) ∝ (a − aB) ∝ (t − tB)

2. This is in agreement with the fact that the avoidance of
spacetime singularities in black holes within Born-Infeld gravity is achieved when ε < 0.

As the short discussion above shows, high-energy modifications of GR within the Palatini
approach ( f (R), quadratic, Born-Infeld-type, and other generalizations) are able to avoid the big
bang singularity via a cosmic bounce followed by a period of de Sitter expansion in a generic and
robust manner. At the same time, Palatini theories generically produce an effective cosmological
constant at low energies (see Equation (96)). The specific sign and value of this constant depends
both on the gravitational action and on the specific choices of parameters. This suggests to consider
the combination of these two properties to achieve a model in which a sufficient small cosmological
constant compatible with cosmological observations arises at late times as a result of high-energy
or low-energy modifications of the theory. This could provide a unified and consistent scenario
accommodating the two known de Sitter phases of the cosmic expansion without invoking dark
sources of energy. On the other hand, as first suggested by Hawking [210], the existence of electrically
charged microscopic black holes originated by large density fluctuations during the early universe
(primordial black holes) could have a substantial impact in accounting for the matter density of
the hypothesized dark matter particles. The prediction of some Palatini models of the existence of
singularity-free, horizonless massive objects below a certain charge/mass scale [211], could offer new
avenues for the consideration of black hole remnants [212] as a reasonable source of dark matter.
Obtaining precise estimates on the abundance of such objects, as resulting from their production in
the early universe, could allow to make detailed cosmological predictions according to this viewpoint.

4.4. Hybrid Metric-Palatini Gravity

The hybrid metric-Palatini gravitational theory is a novel approach to modified theories of
gravity that consists of adding to the Einstein-Hilbert Lagrangian an f (R) term constructed a la
Palatini [29]. Using the respective dynamically equivalent scalar-tensor representation, it was shown
that the theory can pass the Solar System observational constraints even if the scalar field is very
light. This implies the existence of a long-range scalar field, which is able to modify the cosmological
and galactic dynamics, but leaves the Solar System unaffected. The absence of instabilities in
perturbations was also verified and the theory provides explicit models which are consistent with
local tests and lead to the late-time cosmic acceleration.

4.4.1. General Formalism

The hybrid metric-Palatini gravity theory proposed in [29], is given by the following action

S =
∫

d4x
√
−g
[

R + f (R) + 2κ2Lm

]
. (97)
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can be recast into a scalar-tensor representation [29,213,214] given by the action

S =
1

2κ2

∫
d4x
√
−g
[
(1 + φ)R +

3
2φ
∇µφ∇µφ−V(φ)

]
+ Sm , (98)

where Sm is the matter action, κ2 = 8πG/c3, and V(φ) is the scalar field potential. Note that the
gravitational theory given by Equation (98) is similar to a Brans-Dicke scalar-tensor action with
parameter w = −3/2, but differs in the coupling to curvature.

The variation of this action with respect to the metric tensor provides the field equations

(1 + φ)Gµν = κ2Tµν +∇µ∇νφ−∇α∇αφgµν −
3

2φ
∇µφ∇νφ +

3
4φ
∇λφ∇λφgµν −

1
2

Vgµν, (99)

where Tµν is the matter energy-momentum tensor. The scalar field φ is governed by the second-order
evolution equation

−∇α∇αφ +
1

2φ
∇µφ∇µφ +

1
3

φ

[
2V − (1 + φ)

dV
dφ

]
=

φκ2

3
T , (100)

which is an effective Klein-Gordon equation [29,213].

4.4.2. Unifying Local Tests and the Late-Time Cosmic Acceleration

In the weak field limit and far from the sources, the scalar field behaves as φ(r) ≈ φ0 +

(2Gφ0M/3r)e−mϕr; the effective mass is defined as m2
ϕ ≡ (2V −Vφ − φ(1 + φ)Vφφ)/3

∣∣
φ=φ0

, where
φ0 is the amplitude of the background value. The metric perturbations yield

h(2)00 (r) =
2GeffM

r
+

V0

1 + φ0

r2

6
, h(2)ij (r) =

(
2γGeffM

r
− V0

1 + φ0

r2

6

)
δij , (101)

where the effective Newton constant Geff and the post-Newtonian parameter γ are defined as

Geff ≡
G

1 + φ0

[
1− (φ0/3) e−mϕr] , γ ≡ 1 + (φ0/3) e−mϕr

1− (φ0/3) e−mϕr . (102)

As it is clear from the above expressions, the coupling of the scalar field to the local system
depends on φ0. If φ0 � 1, then Geff ≈ G and γ ≈ 1 regardless of the value of m2

ϕ. This contrasts
with the result obtained in the metric version of f (R) theories, and, as long as φ0 is sufficiently small,
allows to pass the Solar System tests, even if the scalar field is very light.

In the modified cosmological dynamics, consider the spatially flat Friedman-Robertson-Walker
(FRW) metric ds2 = −dt2 + a2(t)dx2, where a(t) is the scale factor. Thus, the modified Friedmann
equations take the form

3H2 =
1

1 + φ

[
κ2ρ +

V
2
− 3φ̇

(
H +

φ̇

4φ

)]
, (103)

2Ḣ =
1

1 + φ

[
−κ2(ρ + P) + Hφ̇ +

3
2

φ̇2

φ
− φ̈

]
(104)

respectively. The scalar field Equation (100) becomes

φ̈ + 3Hφ̇− φ̇2

2φ
+

φ

3
[2V − (1 + φ)Vφ] = −

φκ2

3
(ρ− 3P). (105)
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As a first approach, consider a model that arises by demanding that matter and curvature satisfy
the same relation as in GR. Taking

V(φ) = V0 + V1φ2 , (106)

the trace equation automatically implies R = −κ2T + 2V0 [29,213]. As T → 0 with the cosmic
expansion, this model naturally evolves into a de Sitter phase, which requires V0 ∼ Λ for consistency
with observations. If V1 is positive, the de Sitter regime represents the minimum of the potential.
The effective mass for local experiments, m2

ϕ = 2(V0 − 2V1φ)/3, is then positive and small as long
as φ < V0/V1. For sufficiently large V1 one can make the field amplitude small enough to be in
agreement with Solar System tests. It is interesting that the exact de Sitter solution is compatible with
dynamics of the scalar field in this model.

Relative to the galactic dynamics, a generalized virial theorem, in the hybrid metric-Palatini
gravity, was extensively analyzed [215]. More specifically, taking into account the relativistic
collisionless Boltzmann equation, it was shown that the supplementary geometric terms in the
gravitational field equations provide an effective contribution to the gravitational potential energy.
The total virial mass is proportional to the effective mass associated with the new terms generated
by the effective scalar field, and the baryonic mass. This shows that the geometric origin in the
generalized virial theorem may account for the well-known virial mass discrepancy in clusters of
galaxies. In addition to this, astrophysical applications of the model where explored, and it was
shown that the model predicts that the effective mass associated to the scalar field, and its effects,
extend beyond the virial radius of the clusters of galaxies. In the context of the galaxy cluster velocity
dispersion profiles predicted by the hybrid metric-Palatini model, the generalized virial theorem can
be an efficient tool in observationally testing the viability of this class of generalized gravity models.
Thus, hybrid metric-Palatini gravity provides an effective alternative to the dark matter paradigm of
present day cosmology and astrophysics.

In a monistic view of physics, one would expect Nature to make somehow a choice between the
two distinct possibilities offered by metric and Palatini formalisms. We have shown, however, that
a theory consistent with observations and combining elements of these two standards is possible.
Hence gravity admits a diffuse formulation where mixed features of both formalisms allow one to
successfully address large classes of phenomena.

4.4.3. Future Outlook: More gEneral Hybrid Metric-Palatini Theories

The “hybrid” theory space is a priori large. In addition to the metric and its Levi-Civita
connection, one has also an additional independent connection as a building block to construct
curvature invariants from [216]. Thus one can consider various new terms such as

RµνRµν , RµνRµν , RµναβRµναβ , RµναβRµναβ , RR , etc . (107)

Though an exhaustive analysis of such hybrid theories has not been performed, there is some
evidence that the so called hybrid class of theories we are exclusively focusing our attention upon
here is a unique class of viable higher order hybrid gravity theories. In the more restricted framework
of purely metric theories, it is well known that the f (R) class of theories is exceptional by avoiding
the otherwise generic Ostrogradski instabilities by allowing for a separation of the additional degrees
of freedom in a harmless scalar degree of freedom: as we have already seen, such a separation is
possible also for the hybrid theories. Furthermore, it turns out that this feature is a similar exception
in the larger space of metric-affine theories, since a generic theory there is inhabited by ghosts,
superluminalities or other unphysical degrees of freedom.

4.5. Slow-Roll Inflation in f (R) Gravity

Cosmological inflation has been a great success over the last decades as it solves in an elegant
way the problems raised in the Big Bang model: the so-called horizon and flatness problems,
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basically initial conditions problems. Inflation consists of initial super accelerated phase, during
which the above-mentioned problems are solved by requiring a sufficient duration of such a phase
(see Ref. [217–219] and references therein). After the end of inflation, the universe reheats and the
original hot state of the Big Bang model is recovered. The original idea was proposed by Alan Guth
in 1981, which was later improved by Andrei Linde in 1982. Over the years inflation has become a
predictable theory, since it provides the seeds, coming from quantum fluctuations, that form the basis
of the formation of large scale structures as well as the anisotropies observed in the CMB. Here, we
review the essentials of the inflationary paradigm and we focus on the inflationary models within
the context of extended theories of gravity, particularly the so-called f (R) gravity. Furthermore, the
usual observables predicted by inflation are obtained and compared with the latest data released by
the Plank mission [220].

4.5.1. Inflationary Parameters

Slow-roll inflation has been widely studied in the literature, particularly within the framework
of scalar fields, since by the appropriate scalar potential, inflation can be easily reproduced and its
exit achieved at the corresponding number of e-folds (see Ref. [221] and references therein). This is
probably the simplest model for slow-roll inflation, whose general Lagrangian is given by a single
minimally coupled scalar field,

Sφ =
∫

d4x
√
−g
(
−1

2
∂µφ∂µφ−V(φ)

)
, (108)

Then, by assuming a flat FLRW metric, the FLRW equations are obtained

3
κ2 H2 =

1
2

φ̇2 + V(φ) , − 1
κ2

(
3H2 + 2Ḣ

)
=

1
2

φ̇2 −V(φ) . (109)

Whereas the scalar field equation is given by

φ̈ + 3Hφ̇ +
∂V(φ)

∂φ
= 0 . (110)

Inflation occurs basically when the scalar field behaves approximately as an effective
cosmological constant, and the friction term in (110) dominates Hφ̇ � φ̈ while V � φ̇2. Inflation
ends when the kinetic term of the scalar field increases and dominates over the potential, oscillating
about the minimum of the potential and reheating the universe. A useful way of describing slow-roll
inflation is to define the so-called slow-roll parameters:

ε =
1

2κ2

(
V′(φ)
V(φ)

)2

, η =
1
κ2

V′′(φ)
V(φ)

, λ2 =
1
κ4

V′(φ)V′′′(φ)

(V(φ))2 , (111)

where the primes denote derivatives with respect to the scalar field φ. The magnitude of the quantities
in (111) have to be small enough during inflation in order to attain the sufficient number of e-folds,
or in other words ε � 1 and η < 1. When inflation is ending, ε ≥ 1 is required. Thus, for the
above model the spectral index ns of the curvature perturbations, the tensor-to-scalar ratio r of the
density perturbations, and the running of the spectral index αs can be written in terms of the slow-roll
parameters as follows

ns − 1 = −6ε + 2η , r = 16ε , αs =
dns

d ln k
∼ 16εη − 24ε2 − 2ξ2 . (112)

The values of the above parameters can be compared then with the values provided by the latest
Planck results (see [220]). Note that the aim here is to provide the above expressions (112) in terms of
a particular underlying model, capable of reproducing slow-roll inflation, in order to compare with
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the observational data. For the simple model (108), the slow-roll parameters are already expressed in
terms of the scalar potential in (111), while the reconstruction of the scalar field Lagrangian (108) given
a particular inflationary model H(N), is provided by the FLRW equations (109), which yield [222]

ω(φ) = − 2H′(φ)
κ2H(φ)

, (113)

V(φ) =
1
κ2

[
3 (H(φ))2 + H(φ)H′(φ)

]
,

where ω(φ) is the kinetic term and we have redefined the scalar field as φ = N, where N is the number
of e-folds N = log(a/ai). Hence, by assuming a particular Hubble parameter, the corresponding
Lagrangian is easily obtained. Note also that the slow-roll parameters (111) can be expressed in terms
of the Hubble parameter by using (113), leading to [223–225]

ε = − H(N)

4H′(N)

[
6

H′(N)

H(N)
+

H′′(N)

H(N)
+

(
H′(N)

H(N)

)2
]2 (

3 +
H′(N)

H(N)

)−2

, (114)

η = −1
2

(
3 +

H′(N)

H(N)

)−1
[

9
H′(N)

H(N)
+ 3

H′′(N)

H(N)
+

1
2

(
H′(N)

H(N)

)2

(115)

−1
2

(
H′′(N)

H′(N)

)2

+ 3
H′′(N)

H′(N)
+

H′′′(N)

H′(N)

]
,

ξ2 =
1
4

(
3 +

H′(N)

H(N)

)−2
[

6
H′(N)

H(N)
+

H′′(N)

H(N)
+

(
H′(N)

H(N)

)2
] [

3
H(N)H′′′(N)

H′(N)2

+9
H′(N)

H(N)
− 2

H(N)H′′(N)H′′′(N)

(H′(N))3 + 4
H′′(N)

H(N)
+

H(N) (H′′(N))3

(H′(N))4 (116)

+5
H′′′(N)

H′(N)
− 3

H(N) (H′′(N))2

(H′(N))3 −
(

H′′(N)

H′(N)

)2

+ 15
H′′(N)

H′(N)
+

H(N)H′′′′(N)

(H′(N))2

]
,

respectively. By assuming a particular Hubble parameter, the slow-roll conditions are straightforward
calculated, while the corresponding Lagrangian for the scalar field is also obtained through the
expressions (113). In the next section, we review previous works where instead of considering a
scalar field, inflation is driven by modifications of the Hilbert-Einstein action.

4.5.2. Inflation in f (R) Gravity

Over the last years, f (R) gravity has been widely analyzed, since it can reproduce late-time
acceleration as well as inflation with no need of an extra field and/or cosmological constant (for a
review see [9]). Particularly, the reconstruction of the corresponding f (R) action that leads to the
appropriate cosmological evolution has drawn much attention (see Ref. [226,227]). Here we review
some aspects of f (R) gravities and specifically its roll within the inflationary paradigm.

Let us start with the general action for f (R) gravity, given in the action (62). The field equations
are obtained by varying the above action with respect to the metric tensor, yielding Equation (63).
Then, by assuming a spatially flat FLRW metric, the modified FLRW equations are obtained for
f (R) gravity:

0 = − f (R)
2

+ 3
(

H2 + Ḣ
)

f ′(R)− 18
(

4H2Ḣ + HḦ
)

f ′′(R), (117)

0 =
f (R)

2
−
(

Ḣ + 3H2
)

f ′(R) + 6
(

8H2Ḣ + 4Ḣ2 + 6HḦ +
...
H
)

f ′′(R)

+36
(
4HḢ + Ḧ

)2 f ′′′(R) . (118)
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As shown in Ref. [228,229], the corresponding slow-roll parameters (117) can be expressed in
terms of the f (R) action as well. Nevertheless, here we are interested in reviewing slow-roll inflation
in f (R) gravity by using the scalar-tensor equivalence of f (R) gravity and expressing the action (62)
in the Einstein frame.

Firstly, note that the action (62) in the Jordan frame, can be rewritten by action (67), so that by
applying the conformal transformation

g̃µν = Ω2gµν where Ω2 = φ , (119)

the action (67) is transformed as follows

S̃ =
∫

d4x
√
−g̃
[

R̃
2κ2 −

1
2

∂µφ̃∂µφ̃− Ṽ(φ̃)

]
, (120)

where

φ = eκ
√

2
3 φ̃ , Ṽ =

e−2κ
√

2
3 φ̃

2κ2 V . (121)

Hence, the Lagrangian is now written in the form of (108), such that slow-roll inflation occurs
when the conditions described above are satisfied. In addition, the slow-roll parameters (111) can be
expressed in terms of the original f (R) action by using the correspondence expressions (66) and (121),
leading to

ε =
1
3
(−2 f + fRR)2

f 4
R ( f − R fR)

2 , (122)

η = −2
3

f 2
R − 4 fRR + R f fR fRR

fRR f 2
R ( f − R fR)

.

Then, given a particular form of the f (R) action, the corresponding slow-roll parameters can
be calculated in terms of the Hubble parameter, which is obtained eventually by solving the FLRW
equations. In addition, the corresponding spectral index and scalar-to-tensor ratio are obtained
and for a particular number of e-folds, (most of inflationary models require Ne ∼ 55 − 65), both
magnitudes can be compared with the constraints from the Planck results [220].

Let us now consider the so-called Starobinsky inflation [230], which has been a very successful
inflationary model, taking into account the observational constraints of the Planck satellite. The
model has also been analysed from the quantum point of view, where it was shown to provide a
correct behaviour and a successful inflationary period [231]. The model corresponds to a particular
form of the f (R) function consisting of the Einstein–Hilbert term and a quadratic correction, given by

f (R) = R +
R2

6m2 . (123)

The parameter m2 in the Starobinsky model is a free parameter which is constrained by the
observations, and it is in fact related to the mass of the new, dynamical scalar degree of freedom
present in the model, usually denoted as the “scalaron”. Although the inflationary dynamics of the
model can be analysed either in the Jordan or in the Einstein frame, here we will focus our discussion
on the Einstein-frame action, applying the procedure described earlier. Notice that according to the
previous discussion, the requirement of the positivity of the second derivative of f , fRR > 0, translates
into the requirement that the squared mass m2 remains positive, i.e., m2 > 0.
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In order to re-express the model in the Einstein frame, we note that for the Starobinsky model
the Einstein-frame scalar is given by

φ̃ =

√
3
2

κ−1 log
(

1 +
φ

3m2

)
. (124)

Given the last relation, and using Equation (121), it is straightforward to derive the Einstein
frame potential as

Ṽ(φ̃) =
3

4κ2 m2
(

1− e−
√

2/3κφ̃
)2

. (125)

Therefore, the Einstein-frame action will be described by the action (120), with the potential
defined through Equation (125).

During inflation, the background spacetime is described by a FRW spacetime, which after the
conformal transformation (119) is expressed as follows

ds2 = −dt2 + ã(t)2dx2, (126)

where ã(t) denotes the scale factor in the Einstein frame. Similarly to Equation (109), the Friedmann
equation in this spacetime is described by

H̃2 ≡
( ˙̃a

ã

)2

=
κ2

3

(
˙̃φ2

2
+ Ṽ(φ̃)

)
, (127)

while the equation of motion for the scalar φ takes the form

¨̃φ + 3H̃ ˙̃φ + Ṽ′(φ̃) = 0, (128)

where Ṽ′(φ̃) ≡ dṼ(φ̃)/dφ̃. The first and second term on the right hand side of the Friedmann
equation (127) describe the kinetic and potential energy of the inflaton. Recall that slow–roll inflation
occurs in the regime where κφ � 1, i.e., as long as the field φ̃ rolls down the flat part of the
potential (125) sufficiently slowly, and the kinetic energy of the inflaton is much smaller than its
potential energy, ˙̃φ2 � Ṽ(φ̃). Then the Friedmann and the scalar field equation, Equations (127)
and (128), respectively, become approximately H̃2 ' κ2

6 Ṽ(φ̃), and 3H̃ ˙̃φ ' −Ṽ′(φ̃).
The Hubble function H̃ is approximately constant during inflation, and its time variation is

described by the slow–roll parameter ε defined as

ε ≡ −
˙̃H

H̃2 . (129)

In the slow-roll approximation it is required that ε is small, ε� 1. We can approximate it as

ε ' 1
2κ2

(
Ṽ′(φ̃)
Ṽ(φ̃)

)2

' 4
3

(
e
√

2
3 κφ̃ − 1

)−2

' 4
3

e−2
√

2
3 κφ̃ , (130)

η ' 1
κ2

Ṽ′′(φ̃)
Ṽ(φ̃)

' 4
3

2− e
√

2
3 κφ̃(

−1 + e
√

2
3 κφ̃
)2 ' −

4
3

e−
√

2
3 κφ̃.

The last step in the above relation assumed that κφ̃ � 1. Inflation ends as long as ε ' 1, which
corresponds to the inflaton’s kinetic energy becoming important.
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The amount of inflation is measured by the number of e-foldings N which is defined as

N ≡
∫ tend

tstart
H̃dt , (131)

and for agreement with observations one usually requires that N ' 55− 65. Now, under the slow-roll
approximation, the above relation takes the following approximate form

N ' −κ2
∫ φ̃end

φ̃start

Ṽ(φ̃)

Ṽ′(φ̃)
dφ ' 3

4
e
√

2/3κ φ̃start . (132)

In the last step, we used the fact that in the slow-roll approximation, κφ̃� 1, and we performed
the integration with respect to φ̃. Notice that the number of e-foldings is related to the slow-roll
parameters as

ε ' 3
4

1
N2 , η ' − 1

N
. (133)

The scalar and tensor fluctuations produced during inflation have a characteristic amplitude and
scale dependence, which in the Einstein frame, under the slow-roll approximation, are given by the
standard relations for GR minimally coupled to a scalar field [217–219],

PR '
1

4π2
H̃4

˙̃φ2
' N2

3π

m2

m2
p

, (134)

PGW '
16
π

H̃2

m2
p
' 4

π

m2

m2
p

, (135)

while the tensor to scalar ratio follows from the above relations as r ≡ PGW/PR ' (48/π)N−2 '
16ε. Notice that in the final approximate equalities of the above relations we restricted ourselves
to the Starobinsky potential for κφ̃ � 1, under the slow-roll approximation. The spectral indices
corresponding to the scalar and tensor fluctuations, respectively, under the slow-roll regime are given
by the relations (112).

Note that Planck provides a value for the spectral index ns = 0.968± 0.006 and an upper bound
for the scalar-to-tensor ratio r < 0.07 coming from a joint analysis of the BICEP2/Keck Array and
Planck data [220]. In order to illustrate the power of Starobinsky inflation, let us assume a number of
e-folds Ne = 65, which leads to the following values of the inflationary observables:

ns = 0.968 , r = 0.00284 . (136)

Hence, Starobinsky inflation satisfies quite well the constraints coming from Planck data.

Let us consider now a slight modification of Starobinsky inflation to show the uniqueness of the
above model,

f (R) = R +

(
R

6m

)2+λ

, (137)

where λ is a positive parameter that accounts for the deviation from Starobinsky inflation. In this
case, and following the same steps as above, the scalar potential in the Einstein frame yields,

Ṽ(φ̃) = A
[

Beκ
√

2
3 φ̃ − 1

] 2+λ
1+λ

e−2κ
√

2
3 φ̃ , (138)
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Here A = λ
2κ2(6m)2+λ and B = (6m)2+λ

2+λ . This actually does not lead to an effective cosmological

constant when κφ̃� 1 since at that limit, the scalar potential becomes

Ṽ(φ̃) ' AB
2+λ
1+λ e−κ

√
2
3 (

λ
1+λ )φ̃ . (139)

Since λ is positive, the potential is an exponential potential at large values of the scalar field
which only mimics an effective cosmological constant in the case of λ = 0 when Starobinsky inflation
is recovered. Otherwise, for κφ̃ � 1, the scalar potential is exponentially suppressed, and inflation
does not occur. In the case of λ < 0, the scalar field will roll fast, invalidating the slow-roll conditions.
Hence, deviations from λ = 0 will not reproduce slow-roll inflation, what may lead to other kinds
of inflationary models as chaotic inflation which present deviations from the values of the spectral
index and the scalar-to-tensor ratio as pointed by Planck Collaboration [220]).

Other extensions of f (R) gravity can also generate slow-roll inflation. In this sense, the
inflationary paradigm has been recently explored within the so-called f (R,Lφ) gravities, where
Lφ = − 1

2 ∂µφ∂µφ − V(φ) (see [232]). Such kind of theories extends f (R) gravities by including
a nonminimally coupling scalar field. As shown in Ref. [232], this model is equivalent to
multifield inflationary scenarios, where isocurvature modes may become important, while adiabatic
perturbations can be analytically calculated (see [233]). However, following [232] the adiabatic
perturbations can be obtained and the isocurvature modes may be ignored under certain conditions
on the action.

5. Topological Defects

The Standard Model of Particle Physics describes three of the fundamental interactions between
particles — the electromagnetic, weak and strong forces — in a unified quantum field theory.
According to this model, the universe underwent, in its early stages, a series of symmetry breaking
phase transitions, some of which may have led to the formation of topological defects.

5.1. Spontaneous Symmetry Breaking and Topological Defects

To illustrate the process of topological defect formation as a result of spontaneous symmetry
breaking, let us consider the simplest model that admits topological defect solutions: the Goldstone
model with a single scalar field, φ. In this model, the Lagrangian density is given by

L =
1
2

φ,µφ,µ − λ

4

(
φ2 − η2

)2
, (140)

where λ is a coupling constant. Although this Lagrangian is invariant under transformations of the
form φ → −φ — thus having a Z2 symmetry — the Goldstone potential has two degenerate minima
at φ = ±η. Hence, once φ acquires a vacuum expectation value (VEV),

φ± = 〈0| φ |0〉 = ±η , (141)

the Z2 symmetry is spontaneously broken, leading to the formation of a kink separating regions where
the scalar field has different VEVs (here, |0〉 is the ground state of the model).

In a 1 + 1 dimensional Minkowski spacetime, the equation of motion of the scalar field,

∂2φ

∂t2 −
∂2φ

∂x2 = −dV
dφ

, (142)

admits the following solution

φ(x) = η tanh
[
η(λ/2)1/2γ(x− x0 − vt)

]
, (143)
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with γ = (1− v2)−1/2, that corresponds to a kink moving with velocity v in the positive x-direction.
Since φ interpolates between φ = −η at x = −∞ and φ = η at x = ∞, there is a region
(the domain wall) centred at x = x0 + vt which has non-vanishing energy. This configuration
has a conserved topological charge, Q =

∫
dxj0 = φ(+∞) − φ(−∞) = 2η (where jµ = εµνφ,ν

is the topological current), and, for this reason, it is stable. The constant vacuum state has
Q = 0, and, as a result, this configuration is unable to relax into the vacuum while conserving its
topological charge. In N + 1 dimensions, the solution in Equation (143) remains valid and represents
a (N − 1)-dimensional planar surface. These surfaces also separate two domains with different VEVs
and, for this reason, they are commonly denominated Domain Walls.

Domain walls arise due to the breaking of a discrete symmetry, whenever the vacuum manifold
is disconnected. However, different types of defects may be formed depending on the (non-trivial)
topology of the vacuum manifold (or the type of symmetry being broken). Line-like defects, or Cosmic
strings, are formed if the vacuum is not simply connected or, equivalently, if it contains unshrinkable
loops. This type of vacuum manifold results, in general, from the breaking of an axial symmetry.
Moreover, if the vacuum manifold contains unshrinkable surfaces, the field might develop non-trivial
configurations corresponding to point-like defects, known as Monopoles. The spontaneous symmetry
breaking of more complex symmetry groups may lead to the formation of textures, delocalized
topological defects which are unstable to collapse.

5.2. A VOS Model for Topological Defect Networks of Arbitrary Dimensionality

The production of topological defects is predicted in several grand unified scenarios. In most
instances, these topological defects may survive throughout cosmological history until late
cosmological times, and leave a variety of imprints on different observational probes. A unified
phenomenological framework for the description of the cosmological evolution of topological defects
of arbitrary dimensionality was developed in [234–236]. This model—which is a generalization
of the Velocity-dependent One-Scale (VOS) model for cosmic strings [237]—provides a statistical
description of the large-scale dynamics of these networks. This generalized VOS model characterizes
quantitatively the macroscopic dynamics of the p-dimensional topological defect network in
(N + 1)-dimensional Friedmann-Robertson-Walker backgrounds by describing the evolution of the
characteristic length of the network, L, and of its root-mean-squared velocity (RMS), v̄.

The characteristic length of a statistically homogeneous defect network may be defined as

ρ̄ =
σp

LN−p , (144)

where ρ̄ is the average defect energy density, and σp is the defect mass per unit p-dimensional
area. For infinitely thin and featureless topological defects, the following equations describing the
evolution of the characteristic length and velocity of the network (L and v̄, respectively) may be
obtained directly from the generalized Nambu-Goto action [236]

dv̄
dt

=
(

1− v̄2
) [ k

L
− v̄

`d

]
, (145)

dL
dt

= HL +
L

D`d
v̄2 +

c̃
D

v̄ , (146)

where D = N − p, and `−1
d = (p + 1)H + `−1

f is a damping length scale that includes, not only the
effects of cosmological expansion, but also the effect of the frictional forces caused by the scattering
of particles off the defects (which is encoded in the friction length scale, ` f ). Here, k and c̃ are
phenomenological parameters that account, respectively, for the effect of defect curvature and the
energy loss associated to defect reconnection on the macroscopic dynamics of the network. The main
advantage of this phenomenological model lies precisely on these two parameters. They may
either be calibrated using numerical simulations—as was done for cosmic strings [238] and domain
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walls [239]—to accurately describe the large scale dynamics of standard networks, or be used in a
phenomenological description of a large variety of alternative defect scenarios.

This simplest version of the VOS model has been extended in order to allow for the description
of non-standard defect scenarios, with additional energy-momentum decay channels (e.g., direct
energy loss through gravitational radiation [238]) or additional degrees of freedom (e.g., the existence
of conserved currents [240]). Other extensions allow for the description of more complex defect
scenarios—such as multi-tension cosmic (super-)string networks with junctions [241], semi-local
cosmic string networks [242], or hybrid defect networks [243]—by including terms to account for
the energy-momentum transfer between different network components.

5.3. Observational Signatures of Topological Defects

The observational consequences of topological defect networks can be very diverse, depending
both on the type of defects formed and on the evolution of the universe after they are generated. For
instance, the average domain wall density grows more rapidly than the background density in the
radiation and matter eras and, consequently, domain walls must necessarily be very light in order
not to completely dominate the energy density of the universe at late times. Although the possibility
of a significant contribution to the dark energy budget has been ruled out both dynamically [36] and
observationally [37], it is possible for light domain walls to leave behind interesting astrophysical and
cosmological signatures.

Other topological defects, such as cosmic strings in a linear scaling regime, have an average
density that is roughly proportional to the background density. Hence, standard cosmic string
networks do not tend to dominate the energy density of the universe and they naturally generate
a roughly scale-invariant spectrum of density perturbations on cosmological scales. Although recent
cosmological data, in particular the cosmic microwave background anisotropies, rules out cosmic
strings as the main source of large-scale cosmological perturbations (see, however, [244]), it remains
plausible that they may play an important role on small scales. In fact, it has been shown that the
power spectrum of a string-induced density perturbation component is expected to dominate over
a primordial inflationary component on small enough scales [245]. In this context, cosmic strings
have been suggested to have significant impact on the formation of ultracompact minihalos [39],
globular clusters [40], super-massive black holes [41] and to provide a significant contribution to the
reionization history of the Universe [42]. The dynamics of cosmic defects, in particular of domain
walls, has also been associated to possible variations of the fundamental couplings of nature (see,
e.g., [38]).

In this section, we shall focus on the contribution of both cosmic strings and domain walls to
two of the most significant observational probes: the temperature and polarization anisotropies of
the cosmic microwave background and the stochastic gravitational wave background.

5.3.1. CMB Anisotropies

The presence of a topological defect network at late cosmological times would necessarily leave
imprints on the Cosmic Microwave Background (CMB). Although current CMB observations seem to
be consistent with the inflationary paradigm (in which the fluctuations are seeded in the very early
universe) they also allow for a subdominant topological defect contribution [246]. Topological defects
source metric perturbations actively throughout the cosmological history. For this reason, their CMB
signatures are expected to be fundamentally different from those due to primordial fluctuations. In
particular, cosmic defects are expected to generate a significant vector component that would not
be present in inflation-seeded scenarios, because vector modes decay rapidly in the absence of a
source [247]. The B-mode polarization signal originated by topological defects has then contributions
from both tensor and vector modes, and may, for this reason, produce an observationally relevant
signal in this channel, despite providing only subdominant contributions to the temperature and
E-mode power spectra. The B-mode polarization channel thus offers a relevant observational
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window for the detection of topological defects. With several CMB experiments planned for the near
future—e.g., LITEBIRD, PRISM and CoRE+ (see [248] for a recent overview)—there is the prospect
either for the detection of topological defects or for the tightening of current observational constraints
in this scenario.

Cosmic string and domain wall networks produce temperature anisotropies characterized by
significantly different angular power spectra. Domain walls only become cosmologically relevant at
late times, when the characteristic length scale of the network is large. For this reason, these networks
contribute mostly to the TT angular power spectrum at large scales (or small multipole modes `).
Since low-` observational data is highly affected by cosmic variance and has thus large associated
uncertainties, current data allows for a significant contribution of standard domain wall networks to
the temperature power spectrum. In Ref. [249], the authors have derived a conservative constraint on
the domain wall mass per unit area of σ < 3.52× 10−5 kg m−2 allowed by current observational data
(which corresponds to a constraint on the wall-forming symmetry breaking scale of η < 0.92 MeV).
Cosmic strings, on the other hand, generate a TT angular power spectrum that has a broad peak at
` ∼ 300, and therefore contribute dominantly to the angular power spectrum at higher multipoles
(which have small observational uncertainties). For this reason, observational data allow for a
significantly larger contribution of domain walls to the temperature power spectrum on large
angular scales than it does of cosmic strings. Current CMB observational data constrain the
cosmic string tension to be Gµ < 1.3 (2.4) × 10−7 for Nambu-Goto (Abelian-Higgs) strings [37]
(which is significantly smaller than the corresponding constraint on domain wall mass per unit area
GσL0 = 5.6× 10−6). Theses differences in the shape and amplitude of the temperature power spectra
generated by domain wall and cosmic string networks are clearly illustrated in the left panel of
Figure 5, where the TT power spectra generated by cosmic string and domain wall networks with the
maximum tensions allowed by current observational data are plotted. We chose GσL0 = 5.6× 10−6

for the domain wall networks, and the weakest constraint on cosmic string tension obtained using
Planck data [37], Gµ = 2.4× 10−7 (which corresponds to the constraint on Abelian-Higgs strings).

Figure 5. The total temperature (left panel) and B-mode (right panel) angular power spectra generated
by cosmic string and domain networks with the maximum tension allowed by current observational
data: GσL0 = 5.6× 10−6 and Gµ = 2.4× 10−7 for domain walls and cosmic string, respectively. The
spectra were obtained using, respectively, the CMBACT code [250,251], and the extension introduced
in [249]. These plots have been adapted from [249].

Although cosmic defect contributions to the temperature power spectrum are necessarily
subdominant when compared to the primordial inflationary contribution, they may produce a
significant B-mode polarization signal. As for primary temperature anisotropies, cosmic strings
and domain walls contribute to the BB angular power spectrum at different scales: domain
walls contribute dominantly at low-`, while strings have a significant contribution at small scales.
Moreover, the B-mode signal generated by domain wall networks has, in general, smaller amplitude
than that of cosmic strings. In the right panel of Figure 5, we plot the total BB power spectrum
generated by domain wall networks and cosmic string networks that have the maximum fractional
contribution to the TT power spectrum allowed by current observational data. This figure shows
that, since the observational constraints on Gµ are more stringent than those on GσL0, the domain
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wall contribution may dominate over that of cosmic strings for low multipole modes (particularly
if their energy density is close to the maximum allowed by current data). Moreover, the fact that
domain walls and cosmic strings have spectra with different shapes and that these defects contribute
mostly at different scales should, in principle, allow one to distinguish between their contributions if
a signal is detected.

5.3.2. The Stochastic Gravitational Wave Background

Cosmic string interactions often result in the formation of loops that detach from the long string
network (for instance, in self-intersections or when kinky strings collide). After formation, these
loops oscillate relativistically under the effect of their tension, and lose their energy in the form of
gravitational waves. These loops, thus, have a finite life span and, as a consequence, the cosmic
string network loses energy through this channel. The dynamical effects caused by this energy loss
are taken into account in the VOS model through the inclusion of the last (phenomenological) term
in Equation (146).

The VOS model may be used to estimate the rate of loop production (per comoving volume) as
a result of cosmic string interactions

dnc

dt
=

c̃
α

v̄
L4 , (147)

where α is a parameter that characterizes the size of loops, lc = αL(tc), at the moment of creation,
tc. This rate of loop production is strongly dependent on the large-scale properties of the network
(through its dependence on v̄ and L) and, therefore, its accurate characterisation requires an accurate
description of cosmic string network dynamics.

The production of cosmic string loops is expected to occur copiously throughout the evolution
of cosmic string networks. At any given time, there are several loops emitting gravitational waves in
different directions. The superimposition of these emissions generates a stochastic gravitational wave
background (SGWB) that spans a wide range of frequencies [252–255]. The SGWB is often quantified
using the spectral density of gravitational waves per logarithmic frequency ( f ) interval, in units of
critical density,

ΩGW =
1
ρc

dρGW

d log f
, (148)

where ρGW is the gravitational radiation energy density. This quantity is strongly dependent on the
rate of loop production as a function of time, and, consequently, on the large-scale cosmic string
parameters.

This spectrum has a characteristic shape: it has a flat portion in the high frequency range,
generated by the emissions of loops created during the radiation era, and a pronounced peak at low
frequencies that is produced during the matter era. Note however that the amplitude of the spectrum
and the characteristics of the peak (its slope, broadness, location and height) vary greatly: they are
not only dependent on the cosmic string tension and the large scale properties of the network, but
also on the small-scale properties of the loops that generate it. For instance, the size of loops and
their emission spectrum dramatically affects the overall shape of the spectrum. The dependence of
the SGWB spectrum on these parameters is illustrated in Figure 6, where SGWB spectra generated by
cosmic string networks are plotted, for a wide range of values of these macroscopic and microscopic
parameters. There is the prospect of probing different parts of the SGWB spectra using current and
upcoming gravitational wave detectors in the near future—most notably (Advanced) LIGO [256],
(Advanced) VIRGO [257], eLISA [258] and pulsar timing arrays [259,260]. Understanding the shape
of the spectrum generated by cosmic strings and its dependence on macroscopic and microscopic
parameters is, therefore, crucial.
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Figure 6. Clockwise, from the top-left Panel: The stochastic gravitational wave background generated
by cosmic string networks: 1) For different loop sizes, in the large loop regime (where α is larger
than the gravitational back-reaction scale, ΓGµ). Here, cosmic string tension is fixed to Gµ = 10−7,
and we have only considered one harmonic mode of emission (ns). 2) For different values of α in the
small-loop regime (α < ΓGµ). Here, Gµ = 10−7 and ns = 1. 3) For different value of cosmic string
tension, Gµ. Here, the loop size parameter is set to α = 10−7, and ns = 1. 4) For an increasing number
of harmonic modes of emission, ns. For larger values of ns, the shape of the spectrum saturates and
is identical to that of the spectrum with ns = 104. Here, α = 10−8, Gµ = 10−7, and we have only
considered loops with cusps. These plots were adapted from [255].

As in the case of cosmic strings, as domain wall networks evolve and interact, a fraction of their
energy is released in the form of gravitational waves. In fact, in [261,262], it has been shown using
field theory simulations that domain wall networks produce a spectrum of gravitational waves that
peaks at the scale corresponding to the size of the Hubble radius at the time of their decay. Studies of
the gravitational wave spectrum generated by domain wall networks are, however, preliminary and
limited to the case of metastable networks.

6. Cosmological Tests with Galaxy Clusters at CMB Frequencies

The Cosmic Microwave Background (CMB) has revolutionized the way we perceive the
Universe. The information encoded in the temperature and polarization of the CMB provides one
of the strongest evidences in favour of the hot Big-Bang theory and has enabled ways to constrain
cosmological models with unprecedented accuracy [44]. The CMB also provides a unique way to
study the formation and evolution of cosmic structure. Physical effects acting on the CMB after
decoupling originate secondary CMB anisotropies that encode additional information about the growth
of cosmological structure and the dynamics of the Universe [45]. The Sunyaev-Zeldovich (SZ)
effect [46,47] is the scatter of CMB photons by plasma in galaxy clusters and filamentary structures. It
is among the strongest and most studied sources of secondary anisotropies. Whereas the primordial
CMB signal has been widely used to constrain cosmological parameters, the SZ effect is only now
giving the first solid steps into adulthood as a probe of Cosmology and structure formation. Largely
contributing to this state of affairs are ground-based and satellite observations such as those by
SPT [263] and Planck [264] and proposals for future experiments such as in [265].

In this section we review some of the key features of the SZ effect and its application to test
cosmological models and the physics of galaxy clusters, in light of Planck cluster observations. We
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end with an example of the application of cluster data to the study alternative cosmological scenarios
involving primordial non-Gaussianities.

6.1. Galaxy Clusters

Galaxy clusters are the largest gravitationally bound objects in the Universe. They are formed by
gravitational accretion of infalling material at the intersection of filamentary structures. Their typical
masses range from 1014 − 1015 h−1 M� and contain hundreds to several thousand galaxies within
radii of the order of 1− 1.5 h−1 Mpc. The intra-cluster medium (ICM) is filled with hot ionized gas,
typically at temperatures 1–15 keV, which produces strong X-ray emission and microwave spectral
distortions via the SZ effect, see Figure 7.

Figure 7. Images of a Galaxy cluster in a hydrodynamic N-Body simulation. The main panel shows a
column density map, in logarithmic scale, of a region centered in the cluster. The smaller maps inside
the zoomed box show the intensity and polarization of the CMB radiation that emerges from the
cluster. The mapped quantities are the cluster thermal SZ effect (top left); kinetic SZ effect (top right);
CMB quadrupole induced polarization (bottom left); and tangential velocity polarization (bottom
right), [266], due to the interaction of the CMB with the hot gas in the cluster.

Because clusters are among the latest bound structures forming in the Universe their number
density is highly sensitive to the growth rate and power spectrum of density perturbations as well as
to cosmological background parameters like the Universe’s matter density and the Hubble parameter.
The central quantity that goes into the computation of the expected abundance of clusters for a
given cosmological scenario is the mass function, n(M, z). It gives the comoving number density
of virialized halos forming at the redshift z with mass M. As introduced by [267], this can be
expressed as:

f (σ, z) ≡ M
ρ̄

dn(M, z)
d ln σ−1 , (149)

where f (σ, z) is the so called multiplicity function, ρ̄ is the mean background density and σ(M, z) is
the variance of the linear density field at redshift z, smoothed on a scale R, enclosing the mass M,

σ2(M, z) =
D2(z)
2π2

∫ ∞

0
k2P(k)W2(k, M)dk. (150)
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Here, D(z) is the growth factor of linear perturbations, P(k) is the linear density power spectrum
extrapolated to redshift zero, and W(k, M) is the Fourier transform of the smoothing kernel in real
space. The multiplicity function can be computed analytically or by assessing the number of halos
forming in numerical N-body simulations. The following formulae give the multiplicity function for
the popular Press–Schecter, fPS, [268] and Jenkins, fJ, [267] mass functions:

fPS =

√
2
π

δc

σ
exp

[
− δ2

c
2σ2

]
, fJ = 0.315 exp(−| ln σ−1 + 0.61|3.8) . (151)

Here δc is the extrapolated linear overdensity of a spherical perturbation at the time of collapse.
The Press–Schecter mass function was the first being derived using analytical arguments, but it
overpredicts/underpredicts the abundance of low/high mass halos in simulations. The Jenkins mass
function was established using simulations. Several other simulation based mass functions have been
proposed to improve the functional form of the multiplicity function, see e.g., [269] for a summary
with other multiplicity function expressions. Most of these studies have been focusing on improving
systematic uncertainties related to the halo mass definition and quantifying deviations from the
universality of f for different cosmologies. This includes extensive mass function studies using
primordial non-Gaussian N-body simulations, see e.g., [270], and f (R) modified gravity simulations,
see e.g., [271].

The redshift distribution of observed galaxy cluster abundances can be compared against model
predictions using the expression:

d2N
dz dΩ

=
d2V

dzdΩ

∫ ∞

0

dn(M, z)
dM

fsurvey(M, z) dM . (152)

Here d2N/dzdΩ is the number of clusters per unit redshift per unit solid angle, d2V/dzdΩ is the
volume element of the underlying model, and fsurvey(M, z) is the cluster survey selection function.
Setting fsurvey = 1 and assuming that its possible to observe all cluster masses, Equation (152) gives
the full redshift distribution of halos in the Universe, see e.g., [272] for an application to dark energy
cluster counts. The fsurvey function depends on survey parameters such as sky coverage and noise
distribution of the observed quantity Sν, which is usually a cluster flux or band luminosity. In a best
case scenario, where the sky noise is uniform and the survey is complete above a given flux limit, Slim,
Equation (152) can be computed as an integral over the observed flux,

∫
(dn/dM) (dM/dSν) dSν,

with Sν ≥ Sν,lim. Here dM/dSν is the derivative of a scaling relation between M and Sν. Galaxy
cluster number counts are therefore a powerful probe of cosmology provided the relation between
total mass and the observed survey flux are known. Poor knowledge about the later may imply
large uncertainties in the determination of cosmological parameters, as well as leaving a number of
unanswered questions regarding the underlying cluster formation mechanism.

If gravity is the dominating force driving the formation and evolution of collapsed structures,
virialized clusters should have their thermodynamic properties related to the total mass (through the
viral theorem). The simplest model describing cluster scaling relations was presented by [273]. This
assumes, among other things, that gravitational collapse is scale-free, i.e., clusters of different masses
are self-similar replicas of each-other. If non-gravitational effects, such as radiative gas physics and
energy feedback, influence the thermodynamic state of clusters one should expect modified scalings.
These are usually parameterized as power laws of the form [269],

Y = A E(z)βss (X/X0)
α , (153)

where Y, X are cluster properties, A is a normalization parameter giving the amplitude of Y at
X = X0, E(z) = H(z)/H0, α is the power law index of the (independent) property X, and βss is a
parameter giving the self-similar evolution of the normalization. In general, the amplitude parameter
A may itself be a function of redshift. In this case, A evolves in a non self-similar way, usually
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parameterized by a power-law of redshift, A(z) = A0 (1 + z)β. The parameters α and βss can be
computed analytically within an extended self-similar modelling that also assumes that the baryon
gas component in clusters is in hydrostatic equilibrium [269]. For example, under these conditions,
the scaling between the SZ integrated flux and mass, Y − M, is given by Equation (153) with the
indexes α = 5/3, and βss = 2/3. Hydrodynamic N-body simulations are the appropriate method to
study galaxy cluster scaling relations as they allow us to model the baryon physics throughout the
full non-linear evolution of the ICM gas and determine the parameters α, βss, β and A0. We refer the
reader to references [274–277] for examples of simulations studies showing the impact of various gas
physical models, dark energy and primordial non-Gaussianities on several galaxy cluster scalings.

Numerical N-body simulations have also been intensively used to study the internal structure of
galaxy clusters. These studies demonstrate that galaxy clusters profiles can be used as a sensitive
probe of cosmology, cluster physics and structure formation mechanisms. One of the most well
known results from simulations, in the context of hierarchical CDM models, is that the radial
distribution of dark (collissionless) matter in clusters follows a simple expression known as the
Navarro-Frenk-White (NFW) density profile [278]

ρNFW(r) =
4ρs

x(1 + x)2 , (154)

where x ≡ r/rs, rs is a scale radius, and ρs is the characteristic density at r = rs. Subsequent
numerical simulations allowed one to improve this result and to study the impact on cluster profiles
of alternative cosmological models such as modified gravity, see [269] for a review. Gas profiles
have also been extensively investigated with hydrodynamic N-body simulations. For example, [279]
found that the radial pressure profile, P(r), in SZ observations of resolved clusters follows a
universal profile,

P(r)
P500

=
P0

xγ(1 + xα)(β−γ)/α
, (155)

where x = r/rs, rs is the scale radius, and P0, α, β, γ are fitting parameters to derive from observations.
P500 is the integrated pressure at r500 (the radius at which the cluster density exceeds 500 times the
universe mean background density). Equation (155) is known as the generalized NFW (GNFW)
profile of the SZ signal in clusters.

6.2. The SZ Effect: Temperature and Polarization Signal

The Sunyaev-Zel’dovich effect is the scattering of CMB photons by electrons in hot reservoirs
of ionized gas in the Universe. A particularly effective scattering medium is the ICM where the gas
is at temperatures of the order of 108 Kelvin. When the much colder and isotropic CMB radiation
propagates through these plasma regions, a fraction of the original CMB photons scatter off the
moving electrons and suffer frequency Doppler shifts towards higher energies (inverse Compton
scattering) causing a spectral distortion in the CMB spectrum. In the process the total number of
photons is conserved. In fact, the SZ effect can be regarded as a composition of two effects: the thermal
and kinetic SZ effects. The thermal effect is due to the thermal (random) motion of the electrons in the
gas cloud. If the gas has also a bulk peculiar velocity in the CMB radiation frame, there is a kinematic
Doppler effect in addition to the thermal effect. The spectral distortions caused by the thermal, ∆Ith,
and kinetic, ∆Ik, SZ effects are given by simple formulae [47]:

∆Ith = I0 g(x) y , y =
kBσT

mec2

∫
Tene dl , (156)

∆Ik = −I0h(x)
vr

c
τ , τ =

∫
σT ne(l) dl , (157)
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where I0 = 2k3
BT3/h2c2, T is the CMB temperature, y is the line-of-sight Compton SZ parameter,

τ is the optical depth, vr is the line-of-sight velocity of the center of mass of the gas cloud
(positive/negative when the cloud is receding/approaching), Te is the electron density, ne is the
electron number density, and g(x), h(x) are functions giving the frequency dependence of the effects.
Figure 8 shows maps of the thermal and kinetic SZ distortions imprinted on the CMB by cosmic
structures in hydrodynamic N-body simulations. The mapped quantities are the y parameter and the
temperature fluctuations of the kinetic SZ effect, (∆T/T)k = ∆Ik/(I0h(x)) = −vr/c τ, see e.g., [280].

Figure 8. Images of the thermal y-comptonization parameter (left panel) and kinetic temperature
fluctuations (∆T/T)k = −vr/c τ (right panel) of the SZ effect from hydrodynamic N-body
simulations of large scale structure. Maps show the same sky patch, with an angular size of 5 degrees2.
The bright objects in the y map are galaxy clusters.

For typical cluster velocities and optical depths, the thermal SZ effect is the dominant effect.
Therefore the total SZ signal integrated over the sky angular size of a cluster is well approximate by

Y ≡
∫

y dΩ = d−2
A

∫
y dA =

kBσT

mc2 d−2
A

∫
V

Tene dV , (158)

where dA is the angular diameter distance from the observer to the cluster. This is known as the
volume integrated SZ Y-flux or Y-luminosity and is a measure of the total thermal energy density of
the cluster.

The scattering of CMB photons by hot gas in clusters also generates new (secondary) polarization
signatures in the CMB that carry information about the intra-cluster medium. The dominant CMB
secondary polarization effect in clusters is due to the existence of an intrinsic quadrupole component
from the CMB temperature anisotropy around the scattering media. This effect is known as the CMB
quadrupole induced polarization. In addition, the bulk motion of the gas cloud may also induce
CMB polarization proportional to the square of the sky transverse velocity of the cloud. This effect is
often referred to as induced kinetic polarization. Finally, double scattering events inside the cluster
gas cloud also originate polarization, known as double scattering induced polarization. The bottom
panels in Figure 7 are detailed simulations of the linear polarization degree and polarization angle of
the CMB quadrupole and kinetic induced polarizations in a cluster. These simulations are an essential
tool to assess the degree of contamination of the primordial CMB signal by secondary polarization
effects and allow to prepare observational strategies to use CMB cluster polarization as an additional
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probe of cosmology and structure formation, see [266] for a detailed description of cluster polarization
simulations and their use as a new observing tool.

6.3. Cosmological Tests Using SZ Cluster Surveys

SZ galaxy cluster surveys are recognized as having a great potential to test a wide range of
cosmological and astrophysical scenarios. SZ galaxy cluster counts, profiles, scaling relations and SZ
angular power spectra are most promising probes to confront model predictions with observations.
In this section we will briefly review the current state of cosmological constraints from observations
with the Planck satellite.

6.3.1. SZ Cluster Counts

The Planck SZ cluster survey is the largest and deepest all-sky cluster survey yet produced at
CMB frequencies. Its latest galaxy cluster catalogue (PSZ2, [281]) contains 1653 detections, of which
1203 are confirmed clusters with identified counterparts in other observing bands (X-rays, optical,
near infra-red and other SZ experiments). More than a thousand of these clusters possess redshift
information. From this catalogue, the authors in [264] selected a sample of 439 clusters with high
signal to noise (q = S/N > 6) to infer constraints on cosmological parameters using SZ galaxy
cluster number counts.

For a given cosmological model, the redshift distribution of clusters abundances detected by
Planck above a given noise level, q > qcat can be computed from Equation (152) as:

dN
dz

(q > qcat) =
∫ d2V

dzdΩ
dΩ

∫ dn(M, z)
dM

χ̂(M, z, l, b, qcat) dM , (159)

see [264]. Here M is the mass contained within a cluster radius, R500, where the cluster
density exceeds by 500 times the mean background density of the Universe, χ̂(M, z, l, b, qcat) =∫ ∞

qcat
P[q|q̄m(M, z, l, b)] dq is the Planck selection function, (i.e., χ̂ = fsurvey in Equation (152)) and

P[q|q̄m(M, z, l, b)] is the distribution of q given the mean signal-to-noise value, q̄m(M, z, l, b), predicted
by the model for a cluster of mass M and redshift z located at Galactic coordinates (l, b). This
expression reflects the fact that the survey noise level is not uniform on the sky and that clusters
are detected above a given noise level, qcat. The distribution P[q|q̄m] incorporates noise fluctuations
and intrinsic scatter in the actual cluster SZ Y signal, (158), computed within R500, around the mean
value, Ȳ(M, z), predicted from a Y−M scaling relation calibrated using Planck cluster data.

This method was used in [264] to impose constraints on cosmological and cluster parameters,
such as the variance of the density fluctuations smoothed on a scale of R = 8 h−1Mpc, σ8, see
Equation (150), the matter density parameter, Ωm0, the Hubble constant, H0, and the slope of the
Y − M scaling relation, α. Assuming a ΛCDM concordance (base) model their analysis show that
Planck SZ cluster constraints on the σ8 −Ωm0 plane are in tension with those obtained from Planck
primary CMB anisotropies, unless priors on the hydrostatic mass bias parameter, 1− b, (which relates
the observed baryon mass with the total mass of the cluster) and the effect of gas physics on the
growth of structure are changed to values that are in conflict with constraints from other cosmological
probes and the predictions from numerical simulations, [264,282]. A way to try to alleviate the tension
is to combine cluster and primary CMB data to explore constraints on extensions to the base flat CDM
model. This was carried out in [264] by allowing an extra varying parameter (to the base model),
namely, the neutrino mass scale, the Thomson optical depth to reionization, the dark energy equation
of state, and the Universe curvature parameter. The analysis seems to favor non-minimal neutrino
masses (see Figures 11 and 14 in [264]), but this “solution” also implies a decrease on the Hubble
constant to values that further deviate from most constraints by astrophysical determinations of H0.

The present Planck analysis also puts in evidence the importance of improving the precision of
the cluster mass bias parameter, which in fact may depend on cluster mass and redshift. In the future,
large lensing surveys, such as Euclid, WFIRST and LSST, are expected to determine mass biases with
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one percent level accuracy. With this level of precision on 1− b, the present cluster combined analysis
of Planck data could by itself provide a stringent test of the ΛCDM concordance model, see Figure 13
in [264].

6.3.2. SZ Power Spectra

An important statistic to derive from sky maps of the SZ effect is the angular power spectrum of
the thermal and kinetic SZ temperature fluctuations. The theoretical computation of these spectra is
straightforward from simulations, such as those in Figure 8, but the computational resources involved
to run simulations limit their use if one is required to compute the SZ power spectra for many model
realizations. Analytical methods are much faster and allow to explore many model realizations, but
they are much less capable of modelling the cluster gas physics and the contribution from the diffuse
gas in filamentary structures.

Analytically, the angular power spectrum of the thermal SZ signal can be computed as a sum
of two terms Ctotal

` = CPoisson
` + Cclustering

` , where CPoisson
` is the power spectrum resulting from a

Poisson distribution of objects (clusters) and Cclustering
` is a “2-halo” or clustering term giving the

power arising from object (cluster two-point) correlations. These terms are given by (see [45] and
references therein):

CPoisson
` =

∫ zmax

0

dV
dzdΩ

∫ Mmax

Mmin

dn(M, z)
dM

|y`(M, z)|2 dM dz, (160)

Cclustering
` =

∫ zmax

0

dV
dzdΩ

P(k)×
[∫ Mmax

Mmin

dn(M, z)
dM

b(M, z)y`(M, z) dM
]2

dz , (161)

where y` is the 2D Fourier transform of the projected 3D Compton y-parameter radial profile of
individual cluster, P(k, z) is the 3D matter power spectrum at redshift z, and b(M, z) is the linear
bias factor that relates the matter power spectrum, P(k, z), to the cluster correlation power spectrum
Pcluster(k, M1, M2, z) = b(M1, z)b(M2, z)D2(z)P(k, z = 0). The mass and redshift range of the
integrations are chosen so as to cover all relevant SZ source contributions up to high enough redshift.

Observationally, the SZ all sky anisotropies can be separated from the overall CMB signal by
applying component separation techniques that make use of the spectral signature and scale of the SZ
effect. The first all-sky maps of the thermal SZ effect were produced from Planck observations [283,284].
These studies allowed to investigate the distribution of the y signal and characterize its higher order
statistics, including the power spectrum and bi-spectrum. The observed thermal SZ power spectrum
confirmed to be very sensitive to cosmological parameters, especially σ8 and Ωm0, but these are
strongly degenerate with the mass bias parameter b (they found that σ8(Ωm0/0.28)3/8 = 0.80+0.01

−0.03 if
b = 0.2 and σ8(Ωm0/0.28)3/8 = 0.90+0.01

−0.03 if b = 0.4). These results are consistent with the constraints
on σ8(Ωm0/0.28)3/8 from cluster number counts but are again in “soft tension” with the constraints
obtained from primary CMB data assuming a ΛCDM concordance base model, see Figure 17 in [284].

6.3.3. Probing New Physics with the SZ Clusters

The present best CMB spectral observations by COBE/FIRAS are unable to determine if the
CMB spectrum preserved its planckian shape at all redshifts and if the CMB temperature-redshift
scaling is the one predicted by the standard Big-Bang model, T = T0(1 + z), where T0 is the CMB
temperature observed at z = 0. However it is possible to consider alternative models where the CMB
has a planckian spectrum at z = 0, but a different temperature-redshift scaling. Observational tests of
this scaling require measurements of the CMB temperature at high z, i.e., throughout the Universe’s
history. The SZ effect has long been recognized as a most promising method to measure the CMB
temperature at the redshift and location of clusters, allowing to test the CMB temperature-redshift
relation at high redshifts, see e.g., [285] and references therein. Recent observations by Planck allowed
to impose constraints on a simple deviation of the standard scaling, T = T0(1 + z)1−β, using CMB
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primary data [44] and SZ effect cluster data, see e.g., [286]. The emerging view is that Planck data
impose tight constraints on the T(z) that are consistent with the standard CMB temperature scaling
predicted by the standard Big-Bang model (i.e., β = 0).

6.4. Probing Primordial Non-Gaussianities with Galaxy Clusters

The formation of the structures observed at large scales in the Universes is one of the most
challenging and complex problems still open in modern cosmology. The widespread understanding
is that these structures are the result of tiny primordial density fluctuations that might have existed
at early times and that eventually grew under gravitational instability collapse. The origin of these
tiny primordial density density perturbations is a cause of great debate, yet the inflationary paradigm
remains the consensus framework for their generation.

The statistical properties of the primordial density perturbations predicted by most standard
single-field-slow roll inflationary models are nearly Gaussian in nature, and thus the level of
non-Gaussianity is not strong enough to be observationally detected [55–57]. Although recent CMB
anisotropies and LSS data seem to support such prediction, more complex models may lead to
the generation of larger a non-Gaussianity amplitude, which substantially increases the chances
of detection with future high precision observational experiments. For example, under certain
conditions, some multi-field inflation models where slow-roll holds, can lead to larger departure
from Gaussianity. However, non-Gaussianities may arise in inflationary models in which any of the
conditions leading to the slow-roll dynamics fail [58]. The spectrum of models capable of generating
larger non-Gaussianities amplitudes include the curvaton scenario [59–61], the ekpyrotic inflacionary
scenario [62,63], vector field populated inflation [64–66] and multi-field inflation [67–70]. The current
efforts that are being done to detect and constrain primordial non-Gaussianities (hereafter PNG)
using a variety of cosmological observables is of the tremendous importance. A positive detection of
non-Gaussianity signal would allow to asses the different proposed mechanisms for the generation of
primordial density perturbations and in particular, it would make possible to discriminate between
different inflation models and rule out some of them. Moreover, our understanding of the key
physical processes at the early Universe would benefit greatly from such outcome.

There is a wide range of observables to which we can resort to, in order to search for primordial
non-Gaussianities. The traditional way to proceed is to measure three-point statistics of the CMB
temperature anisotropies maps. Using this observable, there have been in the past reports of a positive
detection of non-Gaussianity at a significant level [287]. However, although some contradicting
analysis exist (see [288,289] and more recently [290,291]), the interest in testing deviations from
Gaussian initial conditions has gained momentum ever since. Nevertheless, the possible existence
of primordial non-Gaussianities could also be tested using other cosmological probes such as the
characterization of the statistical properties of the structures at large scales. These probes include
the the bispectrum and/trispectrum of distributions of galaxies and galaxy clusters (e.g., [292–294]),
weak-lensing observations, (e.g., [295,296]) and CMB-LSS [297] as well as CMB-21cm line [298]
cross-correlations. Another set of cosmological of probes very discussed in the literature to contain
PNG, is the time evolution of the numerical abundances both of massive collapsed objects such as
galaxy clusters, and its counterparts, large voids (see e.g [299,300] and [301–304]).

6.4.1. Parametrizing Primordial Non-Gaussianity

The cosmological information contained in the power spectrum (or equivalently the two-point
correlation function) of the primordial density perturbations is not enough if one wants to look for
deviations from Gaussian initial conditions. Therefore we must resort to higher order correlation
functions in order to gain further insight on nature of non-Gaussianities. Thus, the bispectrum, BΦ is
the lowest order statistics sensible to primordial non-Gaussianities and it is defined as

〈Φ (k1)Φ (k2)Φ (k2)〉 = (2π)3 δ
(3)
D (k1 + k2 + k3) BΦ (k1, k2, k3) , (162)
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where Φ is the Bardeen’s potential and δ
(3)
D is the three dimensional Dirac delta. The bispectrum can

be be written in the alternative form [305],

BΦ (k1, k2, k3) = fNL (k1k2k3)
−2A (k1, k2, k3) , (163)

where the dimensionless parameter fNL accounts for the amplitude and the shape function A stores
the information on the shape of the bispectrum.

Due to the large number of inflationary models capable of generating primordial
non-Gaussianities, it is common practice to group them according to their resulting bispectrum shape.
There are generically four classes of bispectrum shapes frequently studied in the literature: Local,
Equilateral, Folded and Orthogonal. However, from these shapes, the most studied in the literature is
the Local one, which can be written in terms of Bardeen’s potential and performing a Taylor expansion
around an auxiliary Gaussian random field Φ, (see eg. [57])

Φ (x) = φ (x) + f local
NL

(
φ2 (x)− 〈φ2 (x)〉

)
. (164)

The corresponding bispectrum of the Local shapes is given by,

Bloc
φ =2 f local

NL
[
Pφ (k1) Pφ (k2) + Pφ (k1) Pφ (k3) + Pφ (k2) Pφ (k3)

]
(165)

To date, the strongest constraints on primordial non-Gaussianities of the Local type were
obtained by the Planck collaboration [291] (see also [290] for previous constraint PNG by Planck
collaboration), f local

NL = 2.5 ± 5.7 from temperature alone and f local
NL = 0.8 ± 5 combining

temperature and polarization data. Note however, that although these constraints are consistent
with Gaussian initial conditions, they were obtained assuming that the non-linear parameter fNL
is scale-independent. Nevertheless, some inflationary models may lead to a scale dependent fNL
(see [306] and references therein).

6.4.2. The Non-Gaussian Mass Function

There is no unique prescription to incorporate the effects induces by primordial
non-Gaussianities in the mass function (see [300,307–312]). The majority of the of the non-Gaussian
mass functions are obtained resorting to some expansion of the probability density distribution (PDF)
of the primordial density field and either using an extension of the Press-Schecter formalism [268] or
the excursion set theory [313,314]. Generically, the modified mass function can be written in the form

dnNG (z, M)

dM
=

dnG (z, M)

dM
×RNG, (166)

whereRNG encodes the correction to the Gaussian mass function due to PNG. In (166), the Gaussian
mass function can be simply the one of the PS formalism or any other motivated by N-body numerical
simulation with gaussian initial conditions (references of fitting formulas), such as Equation (151).
Two of the most discussed and used expression for the RNG correction in the literature are the
MVJ [300] and the LV [306]. Both rely on the extension of the PS formalism to non-Gaussian initial
conditions. The respective functional forms are,

RNG = exp

[
δ3

c
S3,M

6σ2
M

]
×
[

1
6

δ2
c

δ∗

dS3,M

d ln σM
+

δ∗
δc

]
, (167)

RNG = 1 +
1
6

σ2
M

δec

[
S3,M

(
δ4

c

σ4
M
− 2

δ2
c

σ2
M
− 1

)
+

dS3,M

d ln σM

(
δ2

c

σ2
M
− 1

)]
(168)
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where δc (z) is the collapse threshold at the redshift z, S3 is the reduced skewness and
δ∗ (z) = δc (z)

√
1− S3δc (z) /3.

Figure 9 show the dependence of the non-Gaussian corrective term to the mass function, RNG,
the mass and as a function of redshift, for the Equations (167) (blue line) and (168) (red dashed line).
In both cases fNL = ±100 was used. It is clear that a higher positive/negative fNL value increases
the number of predicted dark matter halos with higher mass. The effects are stronger at high redshift.
The MJV prescription seems to predict a higher number of halos than LV for positive values of fNL.
The opposite occurs when negative fNL values are considered.
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Figure 9. The non-Gaussian correction to the mass function due to primordial non-Gaussianities as
a function of mass and for two refshifts: on the left panel z = 0 and on the right panel z = 1. Blue
line corresponds to the prescription of MVJ (Equation (167)), while red dashed line corresponds to LV
formula (Equation (168)). The level of non-Gaussianity of the Local type used was fNL ± 100.

6.4.3. Biased Cosmological Parameter Estimation with Cluster Counts

The statistical properties of the primodial density perturbations has a great deal of influence
on the redshift distribution of the number of galaxy clusters. Thus, these objects can be used as
cosmological probes to search for deviations from Gaussian initial conditions. However, neglecting
erroneously the existence of primordial non-Gaussianities, can lead to biases in the estimation of
the cosmological parameters using clusters number counts. In [315], the authors investigated how
primordial non-Gaussianities influence the estimations of the effective dark energy equation of state
parameter, when the information contained in the abundance of galaxy clusters is used to explore
different cosmological scenarios. In their work, they computed the effective dark energy equation
of state per redshift bin, assuming Gaussian initial conditions, that would allow them to recover
the galaxy clusters counts in different non-Gaussian models. From their findings, there resulted a
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new diagnostic feature for the presence of PNG, in the form of an apparent evolution with time
of the effective dark energy equation of state, characterized by the appearance of a discontinuity
(more details see [315]). The same authors also estimated the magnitude of the biases that may
arise in the determination of a larger set of cosmological parameters with galaxy clusters number
counts, again ignoring that PNG may exist (see [316]). Their results indicate that, although the
estimation of the present-day dark energy density and respective equation of state parameter do
not seem to be sensible to non-Gaussian initial conditions in the primordial matter density field,
the biases can be much larger in the case of the amplitude of the primordial density perturbations.
Furthermore, the authors also argue that the conflicting constrains on the amplitude of the primordial
perturbations obtained by the Planck collaboration using galaxy cluster number counts from the
Planck Sunyaev-Zel’dovich Catalog and the primary Cosmic Microwave Background temperature
anisotropies, could be alleviated, if a significant non-Gaussianity level at clusters scales exists
(see [316] for more details).

6.4.4. The Impact of pRimordial Non-Gaussianities on Galaxy Clusters Scaling Relations

In order to use galaxy clusters as cosmological probes, it is essential to have an accurate estimate
of their mass. However, this task is not easy, since it is not possible to directly estimate the mass of
a galaxy cluster from observational data, and thus one must rely on indirect methods, such as the
scaling properties of clusters, to obtain a reliable estimate. The effect of PNG on galaxy clusters
scaling relations was investigated for the first time in [277]. The authors resorted to a series of
hydrodynamical N-body numerical simulations featuring adiabatic gas physics and allowing for
different levels of non-Gaussian initial conditions within the fiducial ΛCDM model. In particular
they studied the T − M, S − M, Y − M and YX − M scalings relating the total cluster mass with
temperature, entropy and SZ cluster integrated pressure that reflect the thermodynamical state of
the intra-cluster medium. Figure 10 shows as an example, the distribution of galaxy clusters for the
Y −M, for three different levels of PNG, i.e., fNG ± 500, 0 obtained by [277], while Figure 11 shows
the result of fitting Equation (153) for the Y−M scaling to the corresponding distribution of clusters,
using the procedure suggested by [276,317]. The main findings of [277], indicate that PNG do have an
impact on clusters scaling laws, in particular on the amplitude and redshift evolution of the scalings
normalization. In the case of Y − M, the redshift evolution of the its normalization can change as
much as 22% when fNL varies from −500 to 500. If fNL is a scale independent parameter and has
a small value, as suggested by the current Planck constraints [290,291], then the impact of PNG on
clusters scaling laws is negligible when compared with the effect of additional gas physics and other
cosmological effects, such as dark energy. On the other hand, if fNL is instead a scale dependent
parameter, as suggested by some inflationary models, then PNG could have larger positive/negative
amplitude at clusters scales. In this case, the effects of PNG must be taken into account when galaxy
cluster data are used to assess the constraining power of future cluster surveys or to estimate the
cosmological parameters from observational cluster counts data.
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Figure 10. The Y−M cluster scaling relation at redshift zero for values of fNL of −500 (blue squares),
0 (black circles) and 500 (red pentagons).
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Figure 11. The power-law index α of mass, normalization parameter log10 (A) (note that here A is the
A0 defined in Section 6.1), and power-law index of redshift β for the Y −M scaling, as a function of
fNL, for a mass cut of 5× 1013 M�h−1, and respective 1σ error bars. The blue solid line and shaded
area are respectively, the linear fit to the data points and estimated 95% C.L. confidence interval.
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7. Testing Gravity with Weak Lensing

Gravitational lensing is the name commonly given to the phenomenon of deflection of light
by gravitational fields. A lensing system consists of three parts: the source of light, the lens
(a inhomogeneous distribution of mass, or a spacetime geometry) and the observer. Gravitational
lensing of a point source by intervening matter produces image displacement, or even multiple
images of the source. On extended sources, tidal gravitational fields lead to differential deflection,
producing shape distortion and size magnification. Gravitational lensing on cosmological scales is
a direct probe of Poisson-like constraint equations and probes structure formation independently of
mass-to-light properties. It is thus a promising powerful way of testing gravity on cosmological scales
and it is a core probe in the Euclid space mission (http://www.euclid-ec.org).

7.1. Gravitational Lensing

Gravitational lensing [318–321] involve different types of astrophysical objects that spread in a
broad range of mass, mass density and length scale. Various types of systems have been studied,
both theoretically and observationally, with the aim of investigating the source, the lens, or the
geometrical properties of the spacetime, from the observed images. Sources may range from stars,
galaxies, to the last scattering surface, while lenses may be stars, galaxies, galaxy clusters or the
large scale structure. The lensing properties are the same in all cases: the effect depends only on the
projected two-dimensional mass density distribution of the lens and is independent of the luminosity
or composition of the lens; gravitational lenses do not have a well-defined focal point; the effect is
achromatic; there is no emission or absorption of photons; the surface brightness is conserved. The
conservation of brightness implies that a change in size changes the flux, as if the source was closer to
the observer, creating thus a zooming effect without loss of resolution, the so-called natural telescope.

The lens equation is a mapping between source (β) and image (θ) planes,

~β = ~θ −~α. (169)

The deflection field ~α(θ) is a gradient of the gravitational potential and it is a central quantity
of gravitational lensing. It is determined by the lensing potential, i.e., the gravitational potential
integrated along the line-of-sight, and it depends thus on the geometry of the system (or the spacetime
metric in cosmological-size systems). It is useful to Taylor-expand the lens equation, a procedure
valid for small sources in angular size and small deflections (implying small angular size images).
To linear order, the lens equation will thus be described by a Jacobian mapping, known as the
amplification matrix:

Aij(θ) =
∂βi
∂ θj

=

(
δij −

∂ αi
∂ θj

)
. (170)

When applied to a light ray bundle emitted from an extended source, the symmetrical traceless
part of the matrix produces a sheared image, the trace is responsible for an isotropically convergence
(or divergence) and the antisymmetrical component introduces a rotation. This decomposition
defines the optical components fields in the image plane: the scalar convergence field κ(~θ) and the
shear field γ(θ). The convergence is given by the Laplacian of the lensing potential,

κ =
1
2
(ψ,11 +ψ,22 ) , (171)

and it corresponds thus, through the Poisson equation, to the surface mass density in the effective
two-dimensional plane where ψ is defined. The shear is a spin-2 quantity and is given by,

γ1 =
1
2
(ψ,11−ψ,22 ) , γ2 = ψ,12 . (172)
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The rotational field is not present, since the deflection field is a gradient and the amplification
matrix is thus curl-free.

Lensing effects are classified as strong or weak. Strong lensing effects occur at positions of the
image plane where the convergence and shear fields take large values (> 1). In these cases multiple
images may be formed, as well as strongly deformed multiple images that may merge forming giant
arcs or even a full ring, the Einstein ring. The magnification of the images µ(θ) is given by the inverse
of the determinant of the amplification matrix. Images are magnified or demagnified depending
on µ being greater or smaller than 1. The sign of the determinant defines the parity of the images,
images in regions of det A < 0 are inverted with respect to the source. The points in the image
plane where det A = 0 form closed curves named critical curves. The observed giant arcs form
near critical curves. Strong lensing occurs at various scales: a quasar (source) - galaxy (lens) system
produces multiple images of the quasar with a typical separation of arcsec, while a background
star - foreground star system produces multiple images with a typical separation of miliarcsec, which
is known as microlensing. If κ . 1 everywhere, multiple images do not form. An example in this
intermediate regime are the arclets formed in the images of galaxy clusters, by lensing of background
galaxies. The separation of the lensing regimes in an image depends mainly on the position with
respect to the source-lens-observer alignment, as illustrated in Figure 12 (see also [322]).

OBSERVERS

Strong Lensing regime
(non-linear)

Intermediate regime
(quasilinear)

Weak Lensing regime
(linear)

LENS SOURCE
(Galaxy Cluster)

Figure 12. Illustration of the 3 regimes of lensing.

In the linear regime (weak lensing), when κ � 1, the distortion on one source is not noticeable.
However, the lensing effect can still be detected statistically when there is a large enough sample of
sources suffering a coherent lensing effect. This is the case with images of dense populations of faint
galaxies present in deep optical and near-infrared observations. The images of these background
galaxies are coherently sheared by a large-scale inhomogeneous matter distribution: the large scale
structure of the universe. The shear field of such images is known as cosmic shear and shows angular
correlations up to degree scales for sources at z ∼ 1. Cosmic shear correlations are a direct measure
of the statistical properties of the lensing potential, which depend on the statistical properties of
the cosmological density field and the geometrical properties of spacetime. For this reason cosmic
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shear is a probe of both geometry and structure formation and it is the lensing effect we deal with in
this contribution.

7.2. Cosmic Shear

Observationally, a pioneering attempt to measure a cosmological weak lensing signal was
made in [323], having produced an upper limit for the signal. A decade later, [324] measured
shear correlations with error bars of order 100% and verified the existence of instrumental and
atmospheric anisotropical contaminations. A first significant detection, cosmic variance dominated,
was made in [325] on a very small field (4 sqarcmin). Finally in 2000, the first definitive detection
of the cosmological shear field signal was reported almost simultaneously by four independent
teams [326–329]. A large number of surveys from various ground-based observatories was
soon undertaken, confirming the detections and using two-point cosmic shear correlations to
constrain Ωm and σ8 parameters (see [330] for a compilation). Those surveys culminated on
the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS), a dedicated cosmic shear survey
covering 170 deg2 that successfully detected a signal on degree scales [331]. In the past 5 years
the focus of cosmic shear observations moved from the detection itself to the robust estimate of
residual systematics. Currently, the state-of-the-art cosmic shear survey is the Canada-France-Hawaii
Telescope Lensing Survey (CFHTLenS) [332], a reanalysis of CFHTLS where new methods have been
applied to measure the galaxy distortions [333], verify the source redshift distributions [334] and
remove intrinsic alignment correlations [335]. These robust data were used in various cosmological
applications, including testing GR on cosmological scales, both alone and in combination with other
probes, both for specific gravity theories and parametrized deviations to GR [336–338].

Cosmic shear studies deal with the light from background galaxies that propagates in the
perturbed FRW spacetime [48,339,340]. In the Newtonian gauge, considering scalar perturbations
and a flat universe, this spacetime is described by the metric

ds2 = − (1 + 2Ψ(x, t)) dt2 + a2(t) (1− 2Φ(x, t)) δijdxidxj , (173)

where Ψ and Φ are the Newtonian gauge potentials. The lens equation is the solution of the equation
of movement for the comoving transverse separation between the perturbed null geodesic and a
reference unperturbed one. The deflection at a given point in the image may be seen as the integral
of multiple local deflections over cosmological distances. The local deflection of a null geodesic at
a given redshift depends on the traveling time of a light ray, and thus on the sum of the metric
perturbations, (Ψ + Φ) . The resulting lens equation has a simple form in the Born approximation,
i.e., when the line-of-sight integral is performed along the unperturbed geodesic, which is a good
approximation for small deflections. In that case the lens equation is

βi(~θ, χ) = θi −
∫ χ

0
dχ′

(χ− χ′) χ′

χ
(Ψ + Φ),i (χθ, χ′) , (174)

where χ is the comoving radial coordinate. From here we can read off the local deflections as~α = ψ,i,
defining the lensing potential as

ψ(~θ, χ) =
∫ χ

0
dχ′

(χ− χ′) χ′

χ

(
Ψ(χθ, χ′) + Φ(χθ, χ′)

)
. (175)

Note that the dependence on the sum of the two potentials, which is a relativistic feature, is
responsible for the well-known factor of 2 discrepancy between General Relativity and Newtonian
physics predictions for the deflection of light. The convergence and shear fields may then be
computed from the second-order derivatives of the lensing potential, according to Equations (171)
and (172), with the following caveat. The convergence and shear fields at an image location θ have
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contributions from all light rays that may reach that point from a population of galaxies and not
necessarily from only a single source at radial coordinate w. The converge then writes

κ(~θ) =
1
2

∫ χH

0
dχ p(χ)

(
ψ,11 (~θ, χ) + ψ,22 (~θ, χ)

)
, (176)

where the integration is made over the sources, which are distributed over redshift as
p(χ) dχ = p(z) dz.

Cosmic shear can only be detected statistically and the most used observables are two-point
correlation functions and power spectra. Considering the angular correlation function of the
convergence field in the Limber approximation (i.e., neglecting contributions from pairs at large radial
separation) and assuming no source clustering (i.e., assuming two independent source distributions),
the convergence power spectrum may be written as

Pκ(`) =
1
4

∫
dχ q1(χ) q2(χ)

(
l
χ

)4
PΨ+Φ

(
|~̀ |
χ

, χ

)
. (177)

The lensing power spectrum on an angular multipole scale ` has contributions from the power
spectra of the Laplacian of the lensing potential at various redshifts z(χ) on a redshift-dependent scale
k = l/χ. The functions q include the dependences on the sources distances and distributions. Notice
also that the statistical properties of the convergence and shear fields are related and in particular
their power spectra are identical: Pκ(`) = Pγ(`).

7.3. Testing Deviations from General Relativity

In order to test a cosmological model with cosmic shear data, we need to be able to compute
the evolution of the lensing potential. In General Relativity, Einstein equations at perturbation level
provide a set of evolution equations for the metric and a set of constraint equations that relate the
metric perturbations (the potentials Ψ, Φ) to the perturbations of the cosmological fluid (matter
density contrast δ, pressure perturbation δp, fluid velocity v, and anisotropic pressure σ).

A combination of the 00 and 0i Einstein equations relates Φ with the comoving matter density
perturbation: it is a generalized Poisson equation [341]. In Fourier space, with k2 being the spatial
Laplacian, it writes

k2Φ = −4π G a2ρ∆ , (178)

where ∆ is the comoving density perturbation ∆ = δ + 3H(1 + w)v/k2 and w is the equation-of-state
parameter w = p/ρ. The ij Einstein equation gives a second constraint, relating the difference Φ−Ψ
with the stress σ: it is the anisotropy equation [341],

k2(Φ−Ψ) = 12π G a2ρ (1 + w)σ. (179)

The lensing convergence is determined by the Laplacian of the lensing potential, and thus by,

k2(Φ + Ψ) = −8π G a2ρ∆. (180)

Inserting this in Equation (177), the dependence of the convergence power spectrum on the
matter power spectrum becomes explicit. The latter needs then to be worked out from the evolution
equations, possibly with the help of Boltzmann codes and N-body simulations.

Now, if we consider gravity theories that are modifications of General Relativity, the above
equations are modified. Similar to the PPN formalism used in solar systems tests, it is useful
to encapsulate the modifications in a set of parameters that can be computed in the various
theories and can be easily constrained by experiments [342]. Various simplified versions of this
so-called Parameterised Post-Friedmannian formalism have been proposed [343–346], where the
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modifications are described with two independent parameters. These are the gravitational screening
Q = Geff/G, which parametrizes a change in the local gravitational force on cosmological scales, and
the gravitational slip η = Ψ/Φ − 1, which parametrizes an anisotropy responsible for a difference
between the two potentials. The 2 parameters may be functions of scale and redshift and their values
in GR are Q = 1 and η = 0. This simple relations are valid for a large number of theories of gravity.
Inserting these parameters in the constraint equations Equations (178) and (179), we can combine
them to get

k2(Φ + Ψ) = −8π G Q
(

1 +
η

2

)
a2ρ∆. (181)

Inserting this in Equation (177), the convergence power spectrum may be written as,

Pij
γ (`) =

9
4

Ω2
m H4

0

∫ wh

0
dw

gi(w)gj(w)

a2(w)
Σ2(k, a)Pδ

(
`

w
, w
)

. (182)

Here it was assumed that ∆ ∼ δ and the Ωm factor comes from the matter density in
Equation (180). The parameter Σ(a) = Q(a)(1+ η(a)/2) is the combination of PPF parameters cosmic
shear is sensitive to [346] . The amplitude of the power spectrum depends thus on a degenerate
combination of: modified gravity via constraint equations (Σ); distances to the sources (functions g,
which depend both on the knowledge of the source redshifts and on the cosmological background);
matter density (Ωmh2); amplitude of the matter power spectrum (σ8 and structure formation in
modified gravity); and external systematic effects.

We applied cosmic shear data from the COSMOS survey to constrain the Σ parameter [347]. The
COSMOS cosmic shear survey covers an area of 1.64 deg2 where cosmic shear angular correlations
were measured on a narrow scale range going up to 20 arcmin [348]. It is however deep, with a
limiting magnitude i = 26.7 and a high density of 76 galaxies/arcmin2, allowing one to cross-correlate
populations at different redshifts and perform a tomographic analysis [349]. We assume Σ is
scale-independent in the narrow range of scales probed. Following [344], we also assume that the
departure from GR originates an effective smooth dark energy Λ with constant w = −1, which
implies the background evolution is identical to ΛCDM and the PPF parameters deviate from GR
proportionally to ρDE(a)/ρm(a). This implies that

Q(a) = 1 + Qa a3 , η(a) = ηa a3 . (183)

Assuming the PPF parameters remain small, the evolution of Σ also scales as Σ(a) ≈ 1 + Σa a3 .
The last item needed for the evaluation of Equation (182) is the evolution of the matter

overdensities, i.e., the growth function. We consider the system of the evolution equations and
constraint equations for the case of sub-horizon scales, assuming time derivatives of the perturbations
are negligible compared to the spatial derivatives, and ∆ ≈ δ. The evolution equation of the cold dark
matter perturbation greatly simplifies, containing only a Hubble drag term and a term on k2Ψ [350].
In this regime, the growth parameter approximation [351] applies, where

d ln(δ/a)
d ln(a)

= Ωm(a)γ − 1 . (184)

The growth parameter γ has the value γ = 6/11 in GR and

γ =
6
11

[
1− Qa + ηa

2
Ωm

1−Ωm

]
, (185)

in PPF-parameterized modified gravity models [352].
With these assumptions, we attempt to constrain the parameters using only the cosmic shear data

in a Bayesian analysis. The cosmic shear data consists of 15 two-point cross-correlation functions,
between 6 galaxy redshift bins. All 15 functions have similar shapes but different amplitudes
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depending on their redshifts. Notice that our parametrization only affects the amplitude of the cosmic
shear functions, since we work in the ansatz that Σ and γ are scale-independent. This implies that
our constraint will necessarily be a degenerate combination of the 2 modified gravity parameters, the
redshift and the standard cosmological parameters affecting the amplitude of the power spectrum.
For this reason, we need to use either additional data to constrain the standard cosmology or to
introduce strong priors. We introduce a prior in the form of importance sampling [353]. In particular,
we take WMAP7 ΛCDM Monte Carlo Markov Chains [354] and evaluate a cube of models in a
(Qa, ηa, fz) space for each point of the MCMC chain. In this way, the ΛCDM MCMC weights will be
changed as a function of the cosmic shear likelihoods in the cubes of models. The (Qa, ηa) likelihoods
are marginalized over the redshift-calibration nuisance parameter fz that accounts for the source
redshift uncertainty. The shear correlation functions are computed using the transfer function of
Eisenstein & Hu [355] with the modified linear growth γ and the non-linear halofit prescription [356].
Besides addressing the degeneracies with the standard cosmological parameters and the redshift
uncertainties, we also minimise contamination from intrinsic alignments by not using cosmic shear
auto-correlation functions in the analysis.

The result obtained in this analysis is compatible with GR. We find the following 1-σ constraint
for the following combination of the 2 parameters:

Σ + 2.3 (γ− 0.55) = 0.99± 0.31 . (186)

7.4. Testing Gravity with Future Cosmic Shear Data

To take full advantage of future high-precision cosmic shear data, accurate modelling is needed
at several levels, and the analyses become much more complex than the one described above.
When studying specific modified gravity theories, structure formation needs to be worked out for
those models, including non-linear scales, which calls for model-specific perturbative analytical
approaches [357] or N-body simulations [50]. Numerical simulations are also required for other
purposes. Lensing simulations are needed to estimate the covariance of lensing observables,
including cosmic variance. Hydrodynamical simulations are increasingly needed to model various
baryonic effects on lensing observables, such as supernova and AGN feedback, star formation or
radiative cooling [51].

Working in a model-independent approach requires detailed modelling of the deviations in
Einstein equations. Besides applying the PPF parameters, it is also interesting to parametrize the
deviations at the observables level. [358] parametrizes deviations of the lensing power spectrum
from the non-linear GR matter power spectrum. The latter can be computed from the linear one with
a fitting formula [359] or from templates [360]. Scale and time dependencies of the parametrized
deviations may also be probed in bins by performing a principal components analysis [361].

Cosmic shear probes deviations from GR through the integrated effect of Ψ and Φ on null
geodesics. It has a high signal-to-noise on the scales where the deviations are maximal and is thus
more promising than other probes of Φ+Ψ, such as the integrated Sachs-Wolfe effect [362]. However,
to be able to break the degeneracy between the two potentials in the modified gravitational effects,
cosmic shear needs to be combined with a local probe of matter overdensities, which are sensitive
to Ψ alone. One possible combination of cosmic shear and redshift-space distortions is the so-called
EG test [363,364], which has the additional advantage of being independent of galaxy bias. A first
detection of the EG signal was made in [365]. The combination of weak lensing and galaxy clustering
observables is an important asset of the forthcoming Euclid space mission to be launched in 2020,
which combines a weak lensing and galaxy clustering wide survey and aims at measuring the rate of
cosmic structure growth to a 2% precision [49].
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8. Angular Distribution of Cosmological Parameters as a Measurement of
Spacetime Inhomogeneities

On large scales, the matter distribution is statistically homogeneous. Locally however, matter is
distributed according to a pattern of alternate overdensed regions and underdensed regions. Since
averaging inhomogeneities in the matter density distribution yields a homogeneous description
of the Universe, then the apparent homogeneity of the cosmological parameters could also result
from the averaging of inhomogeneities in the cosmological parameters, which would reflect the
inhomogeneities in the density distribution. In the context of backreaction models, angular variations
in the parameters could also source a repulsive force and potentially emulate cosmic acceleration.
Hence the reasoning was to look for these inhomogeneities across the sky and then to use an adequate
toy model to compute the magnitude of the acceleration derived from angular variations of the
parameters compared to the acceleration driven by a cosmological constant.

Recently, a method was proposed to search for inhomogeneities based on a local estimation of
cosmological parameters [71]. We demonstrated the method with supernovae (SNe), since they are a
sensitive probe of the late–time expansion history of the Universe by means of the dependence of the
luminosity distance on both the geometry and the growth of structure. Hence the parameters to be
estimated are those that affect the luminosity distance, namely, {ΩM, ΩΛ, H0}.

Supernovae have previously been used to constrain inhomogeneities in the cosmic expansion,
namely, by measuring the hemispherical anisotropy of H0 [366], by assessing the dependence of H0

with the position on the cosmic web [367] and by mapping {H0, q0} in the sky [368]. Supernovae
have also been used to constrain inhomogeneities in the dark energy, namely by constraining
fluctuations of a dynamical dark energy [369] and by constraining radial inhomogeneity for a
Lemaître–Tolman–Bondi metric with a cosmological constant [370].

We used the type Ia supernova sample compiled by the SNLS–SDSS collaborative
effort Joint Light–curve Analysis (JLA) [371] , totalling NSNe = 740 SNe with redshift
0.01 ≤ z ≤ 1.30 and distributed on the sky according to Figure 13. The sample was obtained from
http://supernovae.in2p3.fr/sdss_snls_jla/ReadMe.html.

SN in JLA Catalogue

1514 957

38038 7026

106 673

Number of SNe per pixel

6 380

Figure 13. Left panel: Angular distribution of the JLA type Ia SN sample. The sample consists of type

Ia SNe compiled from different surveys as described in Ref. [371] and plotted in Celestial coordinates.

Right panel: Angular distribution of the number of type Ia SNe per pixel. The total SN sample is

divided into subsamples grouped by pixels in the HEALPix pixelation scheme. The number of SNe

in each pixel is printed in the centre of the pixel. The pixel indices {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
correspond to the SN counts {15, 14, 95, 7, 380, 38, 70, 26, 10, 6, 6, 73}, as indicated by the colour bar in

logarithmic scale. In both panels, the dashed line represents the Galactic equator.

8.1. Method of Local Parameter Estimation

Our method consists in dividing the SNe over a pixelated map of the sky, with pixels of equal
surface area according to the HEALPix pixelation scheme [372]. The SNe subsample that falls in
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each pixel k is used to estimate the cosmological parameters in that pixel, thus the designation
of local estimation. For each cosmological parameter being estimated, there results a map with
the same pixelation as that of the SNe subsamples. Each pixel is assumed to be described by a
Friedmann–Lemaître–Roberston–Walker metric so that the full sky is an inhomogeneous ensemble
of disjoint, locally homogeneous regions. In each pixel, we estimated the cosmological parameters
that minimise the chi–square of the fit of the theoretical distance modulus

µtheo(z; ΩM, ΩΛ, H0) = 5 log[dL(z; ΩM, ΩΛ, H0)] + 25 , (187)

(dL in units of Mpc) computed for the trial values of {ΩM, ΩΛ, H0}, to the measured distance modulus

µdata(z) = mB(z)− (MB − αx1 + βc) , (188)

computed for the estimated light–curve parameters {mB, x1, c} for each SN. From the local estimation
there resulted the maps xik = {ΩM, ΩΛ, H0}k. From the estimation using the complete SN sample,
designated as the global estimation, we obtained the values xfid

i = {Ωfid
M , Ωfid

Λ , Hfid
0 }, which we

adopt as fiducial values for the parameters. The fiducial values for the estimated parameters are:
{Ωfid

M , Ωfid
Λ , Hfid

0 } = {0.256, 0.715, 71.17}. For the derived parameters Ωκ = 1 − ΩM − ΩΛ and
q0 = ΩM/2−ΩΛ, the fiducial values are Ωfid

κ = 0.029 and qfid
0 = −0.586. For better visualization, we

compare the local estimation with the fiducial values by defining the difference maps ∆xik = xik− xfid
i .

Since the SN sample used is a collection from different SN surveys, the SN subsampling in pixels
is highly inhomogeneous. As a result, well sampled pixels return robust estimations, whereas poorly
sampled pixels return weak constraints. This generates a noise bias. We hypothesised that the noise
bias due to the inhomogeneity in the SN subsampling is modelled by the local estimation obtained
from randomizing the dependence of redshift with position and then averaging over the different
randomizations. For each randomization in z, the SN positions in the sky remain the same as in the
original sample. Subtracting the noise bias off the maps previously estimated we obtained unbiased
maps xunbias

ik ≡ xik − x̄bias
ik + xfid

i , where x̄bias
ik ≡

〈
xbias

ij′k

〉
j′ is the average over j′ randomizations in z. For

better visualization, we define the unbiased difference maps as ∆xunbias
ik ≡ xunbias

ik − xfid
i = xik − x̄bias

ik .
In Figure 14 we show the values of the difference maps at each pixel, before (left panel) and

after (right panel) the noise bias subtraction. We also show the corresponding errors. We observe a
negative correlation of the number of SNe in each pixel both with the fluctuations about the fiducial
values, and with the corresponding errors. These results reflect the poor sampling derived from
an inhomogeneous coverage of the sky, both in angular and redshift space, by the SN surveys. A
poor sampling into pixels implies a poor sampling in redshift, which limits the constraint of the
degeneracies among the parameters and hence compromises the parameters estimation.

We also observe that, after the bias subtraction, the fluctuations about the fiducial values are
reduced, albeit the errors increase. Consequently, for the correlation of the number of SNe per
pixel, the unbiased maps in comparison with the original maps show a smaller correlation with
the difference values and a larger correlation with the errors, as expected. These results indicate
the validity of x̄bias

ik as a measure of the noise bias due to the inhomogeneity of the SN sampling.
Comparing the unbiased difference maps with the fiducial values, we measure fluctuations of order
5%–95% for ΩM, 1%–25% for ΩΛ and up to 5% for H0.
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Figure 14. Correlation of the number of SNe per pixel with the estimated parameters’ fluctuations

about the fiducial values, before (left panel) and after (right panel) the noise bias removal. At each

pixel we plot: a) in the first panel, the number of SNe; b) in the second panel, the value of the

parameters difference {∆ΩM, ∆ΩΛ} respectively as the solid red and solid blue lines, with the dashed

black line marking the zero difference; c) in the third panel, the standard deviation {σ∆ΩM , σ∆ΩΛ}
respectively as solid red and solid blue lines; d) in the fourth plot, the value of ∆H0 as the solid

black line, with the dashed black line marking the zero difference; e) in the fifth panel, the standard

deviation σ∆H0 as the solid black line.

8.2. Average over the Local Parameter Estimation

When averaging over the homogeneous regions, angular fluctuations in the expansion
factor (and consequently in H0) induce a backreaction term in the form of an extra positive
acceleration [373]. We derived the analytical extra positive acceleration for a toy model of an
arbitrary number of disjoint, homogeneous regions and computed the overall deceleration parameter
assuming a) no backreaction and b) backreaction for the measured angular distribution of H0.
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In the absence of backreaction, the averaging consists in taking the mean weighted by the
variance’s inverse wk = 1/Var[x̄ik] of parameter xi in each pixel k,

x̄i =
〈

x̄ik
〉

k =
∑

Npixel
k wk x̄ik

∑
Npixel
k wk

. (189)

For the estimated parameters, we find {ΩM, ΩΛ, H0} = {0.242, 0.607, 71.06} ± {0.099, 0.115, 0.87}.
These values are consistent with, but systematically smaller than, the fiducial values. After the noise
bias removal, we find {ΩM, ΩΛ, H0}unbias = {0.294, 0.679, 71.37} ± {0.115, 0.120, 0.94}. These values
are consistent with the fiducial values. For the derived parameters, we find Ωκ = 0.078 ± 0.131
and q̄0 = −0.451 ± 0.159, and after the noise bias removal we find Ωκ,unbias = 0.002 ± 0.135 and
q̄0,unbias = −0.526± 0.172. After the noise bias removal, the pixel average values of both Ωκ and q0

become closer to the corresponding values estimated using the complete sample.
In the presence of backreaction, the averaging consists in taking the mean weighted by the

3–volume Vk of each pixel k,

x̄i =
〈

x̄ik
〉

Vk
=

∑
Npixel
k Vk x̄ik

∑
Npixel
k Vk

. (190)

Since all pixels have the same surface area and hence the angular directions expand the same
way today, we can assume that the radial direction also expands the same way today, which implies
that the 3–volume is the same today for all pixels. This amounts to identifying a volume as a pixel.
Defining vk = Vk/ ∑k Vk, then for Npixel disjoint regions, the average of the Hubble parameter is
given by

〈H0〉Vk
=

Npixel

∑
k

vk H0,k. (191)

Taking the derivative, it follows that

〈
ä
a

〉
Vk

=

Npixel

∑
k

vk
ä
a
+ 2

Npixel

∑
k

Npixel

∑
l>k

vkvl (H0,k − H0,l)
2 , (192)

which decomposes into a linear term in the pixel average of (ä/a) and a quadratic term in differences
of H0 between pairs of pixels. The quadratic (backreaction) term generates an acceleration that is due
not to regions speeding up locally, but instead to the slower regions becoming less represented in the
average. Note that, in the absence of the quadratic term, the volume average reduces to the pixel
average above. Then the volume average of q0 becomes

〈q0〉Vk
=

Npixel

∑
k

vkq0,k −
2(

∑
Npixel
k vk H0,k

)2

Npixel

∑
k

Npixel

∑
l>k

vkvl (H0,k − H0,l)
2 . (193)

Using the fluctuations in H0 measured in the local parameter estimation, we find
q̄0 = −0.452± 0.159 and after the noise bias removal we find q̄0,unbias = −0.527± 0.173. The volume
average of the other parameters is the same as the pixel average. After the noise bias removal, the
volume average values become closer to the value for the deceleration estimated from the complete
sample. The results from both averaging methods strengthen the validity of x̄bias

ik as a measure of the
noise bias due to the inhomogeneity of the SN sampling.

The quadratic term is of order 10−3 (or lower) times the linear term, which means that the error
of the difference is below the standard deviation. Hence for the angular fluctuations in H0 measured
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with this SN sample, the contribution of the quadratic term in Equation (192) is insignificant, which
renders the volume averaging equivalent to the pixel averaging. Hence in the context of this toy
model of an inhomogeneous spacetime, backreaction is not a viable dynamical mechanism to emulate
cosmic acceleration. A subsequent study using a kinematic parametrisation of the luminosity distance
expressed in terms of time derivatives of the scale factor yielded concordant results [374].

9. Summary and Conclusion

In this work, we have explored the dynamics and evolution of the Universe at early and late
times, focusing on both dark energy and extended gravity models and their astrophysical and
cosmological consequences. More specifically, we presented scalar-tensor theories, focussing on
a brief review of the general formalism, the conformal picture, discussed the experimental and
observational status of the theory, presented a detailed dynamical system analysis of the cosmological
dynamics, and concluded with a quintessence scenario where a multi-scalar-tensor theory is
responsible for the present accelerated expansion of the Universe. Furthermore, we considered
Horndeski theories and the self-tuning properties, and explored realistic cosmologies that can be
constructed, by studying the properties of this intriguing theory. We also reviewed f (R) modified
theories of gravity and extensions, where the foundational questions and astrophysical/cosmological
issues of the Palatini approach were extensively explored; we also focussed on recently proposed
theories such as on curvature-matter couplings and the hybrid metric-Palatini theory. The inflationary
epoch was also presented in f (R) gravity, where the so-called Starobinsky inflation is known as
one of the more reliable candidates for explaining the inflationary paradigm as provided by the
recent Planck/Bicep2 constraints. Moreover, we have reviewed the evolution and cosmological
consequences of topological defect networks that may be formed in the early universe. In particular,
we focused on two of the most significant signatures of these networks: the cosmic microwave
background anisotropies and the stochastic gravitational wave background.

As mentioned in the Introduction, due to the extremely important aspect of the synergy
between theory and observations, the second part of this review was dedicated to observational
cosmology. In particular, cosmological tests with galaxy clusters at CMB frequencies were presented.
More specifically, galaxy clusters and the thermal and kinetic Sunyaev-Zel’dovich (SZ) effects were
reviewed, and the cosmological tests using SZ cluster surveys were presented, focussing on SZ cluster
counts, SZ power spectra and the possibility of probing new physics with the SZ clusters; a review
on probing primordial non-gausianities with galaxy clusters was also presented, with an emphasis
on the parametrization of primordial non-Gaussianities, the non-Gaussian mass function, biased
cosmological parameter estimation with cluster counts, the impact of primordial non-Gaussianities
on galaxy clusters scaling relations. Furthermore, gravitational lensing was also explored, with a
focus on cosmological scales, with the possibility of testing deviations from General Relativity, in
particular, with future cosmic shear data. In conclusion, the angular distribution of cosmological
parameters as a measurement of spacetime inhomogeneities was presented, using a method of
averaging over the local parameter estimation. Thus, cosmological tests were discussed, and their
relevance in constraining our cosmological description of the Universe.
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