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Abstract: Deduplication is an efficient data reduction technique, and it is used to mitigate the problem
of huge data volume in big data storage systems. Content defined chunking (CDC) is the most widely
used algorithm in deduplication systems. The expected chunk size is an important parameter of
CDC, and it influences the duplicate elimination ratio (DER) significantly. We collected two realistic
datasets to perform an experiment. The experimental results showed that the current approach of
setting the expected chunk size to 4 KB or 8 KB empirically cannot optimize DER. Therefore, we
present a logistic based mathematical model to reveal the hidden relationship between the expected
chunk size and the DER. This model provides a theoretical basis for optimizing DER by setting the
expected chunk size reasonably. We used the collected datasets to verify this model. The experimental
results showed that the R2 values, which describe the goodness of fit, are above 0.9, validating the
correctness of this mathematic model. Based on the DER model, we discussed how to make DER
close to the optimum by setting the expected chunk size reasonably.

Keywords: storage system; deduplication; duplication elimination ratio; content defined chunking

1. Introduction

Deduplication is an efficient data reduction technique, and it is used to mitigate the problem
of huge data volume in big data storage systems. At present, deduplication is widely used in
secondary storage systems such as backup or archival systems [1–4], and is also gradually used
in primary storage systems, such as file systems [5,6]. Content defined chunking (CDC) [7] can
achieve high duplicate elimination ratios (DERs), and therefore is the most widely used data chunking
algorithm. DER indicates the ratio of the eliminated data processed by the deduplication, and is
used as an essential indicator to evaluate the deduplication effect. Therefore, improving DER has
been an important research area for the storage community. After a deduplication process, a storage
system needs to store unique and meta data. The unique data refers to the data that is judged as new
by a deduplication process. The metadata refers to the data that saves the address information of
a data chunk that is used to rebuild a data stream. This will occur while a restoration is needed in
a backup system, or a file read is requested in a primary storage system. The expected chunk size is
an important parameter in CDC algorithms and needs to be set before the deduplication is enabled.
A smaller chunk size results in a large number of metadata and hence requires a significant amount
of storage space, but it will reduce the unique data size, and vice versa. Thus, the expected chunk
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size will influence DER significantly and is an important parameter in CDC [8]. The researcher has
pointed out that a reasonable setting of the expected chunk size could increase DER significantly [9].
To increase DER, the researcher has been focusing on improving chunking algorithms; however, few
studies have been done on how to set the expected chunk size reasonably to increase DER. Nowadays,
researchers consider 4 KB or 8 KB empirically as the reasonable expected chunk size. However, these
values lack both theoretical proof and verification with realistic datasets.

To verify whether setting the expected chunk size to 4 KB or 8 KB can improve DER, we collected
two realistic datasets to perform the experiment. The datasets are: (1) Linux kernel source codes; and
(2) multiple SQLite backup data while running the Transaction Processing Performance Council-C
(TPC-C) benchmark. The experimental results showed that setting the expected chunk size to 4 KB
or 8 KB cannot optimize DER. To study how to set the expected chunk size reasonably in order to
optimize DER, we propose a logistic based mathematical model to reveal the hidden relationship
between the expected chunk size and the DER. Two realistic datasets were used to verify this model.
The experimental results showed that the R2 values, which describe the goodness of fit, are above 0.9,
validating the correctness of this mathematic model. Based on this model, we discussed how to set the
expected chunk size to make DER close to the optimum.

Our contributions in this paper are the following:

(1) With two realistic datasets, we showed that the expected chunk size 4 KB or 8 KB that is currently
considered reasonable, cannot optimize DER.

(2) We present a logistic based mathematical model to reveal the hidden relationship between the
DER and the expected chunk size. The experimental results with two realistic datasets showed
that this mathematical model is correct.

(3) Based on the proposed model, we discussed how to set the expected chunk size to make DER
close to the optimum.

2. Related Work

DER is an essential metric to evaluate the deduplication effect. Thus, to increase DER is an
important study in the deduplication research area. At present, researchers mainly focus on improving
data chunking algorithms to increase DER. The purpose of data chunking algorithms is to divide a data
stream into a series of chunks that are used as the basic units to detect duplicated data. Currently, there
are three kinds of data chunking algorithms: (1) single instance store (SIS)— under this method, the
whole file is used as the basic unit to perform a deduplication. The representatives are SIS in Windows
2000 (NT 5.0, Microsoft, Redmond, WA, USA) [10] and DeDu [11]. The problem of the single instance
store is its low DER; (2) fixed sized partitioning (FSP)—this algorithm divides the file into fixed sized
chunks, which are used as basic units to perform a deduplication. The representatives of FSP are
Venti [4] and Oceanstore [12]. Compared with SIS, FSP improved DER significantly. However, the
effectiveness of this approach on DER is highly sensitive to the sequence of edits and modifications
performed on consecutive versions of an object. For example, an insertion of a single byte at the
beginning of a file can change the content of all chunks in the file resulting in no sharing with existing
chunking; and (3) content defined chunking (CDC). CDC employs Rabin’s fingerprints [13] to choose
partition points in the object. Using fingerprints allows CDC to “remember” the relative points at
which the object was partitioned in previous versions without maintaining any state information.
By picking the same relative points in the object to be chunk boundaries, CDC localizes the new chunks
created in every version to regions where changes have been made, keeping all other chunks the
same. CDC was first applied in LBFS (A Low-bandwidth Network File System) [7]. Moreover, lots of
chunking algorithms are developed based on CDC to improve DER [9,14–16]. Because CDC can avoid
the problem of data shifting and is widely used, and is also the basic foundation of many improved
algorithms, we study the influence of expected chunk size on DER in CDC based deduplication.

The expected chunk size is an important parameter in CDC algorithms, and will affect DER
significantly. Thus, it is important to study how to set the expected chunk size reasonably to
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improve DER. Nowadays, researchers suggest setting the expected chunk size by rule of thumb.
For example, 4 KB [17] or 8 KB [3,7,18] are considered reasonable by some researchers; Symantec
Storage Foundation 7.0 (Mountain View, CA, USA) recommends a chunk size of 16 KB or higher [19];
IBM (Armonk, NY, USA) mentioned the average chunk size for most deduplicated files is about
100 KB [20]. However, these expected chunk sizes lack either theoretical proof or experimental
evaluation. Suzaki [21] studied the effect of chunk size from 4 KB to 512 KB on Input/Output (I/O)
optimization by experiments, and showed large chunks (256 KB) were effective. However, the main
concern of Suzaki’s work is to optimize I/O rather than DER by setting chunk size, whereas, we focus
on the impact of chunk size on DER in this paper.

3. Background

3.1. The Symbol Definitions

In Table 1, we defined the symbols that will be used in this paper.

Table 1. The symbol definitions.

The Name of Symbol The Meaning of Symbol

x The mask length in binary
µ The expected chunk size
So The original data size
W The size of the sliding window
Nm The metadata number after deduplication
Sm The metadata size after deduplication
Su The unique and fingerprint index data size after deduplication
Sd The total data size after deduplication
m The single metadata size
L The upper bound of the logistic function;;
k The steepness of the logistic curve
x0 The x-value of the logistic curve’s midpoint

3.2. The Principal of CDC

In this paper, our study was based on the original implementation of CDC, which was
first proposed in LBFS [7]. The principal of the CDC algorithm is shown in Figure 1. A 48 byte window
slides continuously from the beginning of the data stream. The rabin fingerprint [13] of the current
window data is calculated and then this fingeprint is judged on whether its low-order x bits equals
a magic value. Thus, the boundary can be judged by whether the condition rabin_fp & mask==mask-1
is met. The rabin_fp represents the rabin fingerprint of the current window data; mask is a predefined
binary value and is used to obtain the low-order x bits of the fingerprint. For example, if mask is set to
1111 in binary, the low-order 4 bits will be obtained. The magic value could be set to mask-1 or any
value less than or equal to mask.

If the condition is met, the last byte of the current window is used as the boundary of the chunk.
After the window sliding finished, the formed boundaries divide the data stream into a series of
data chunks with variable lengths. To avoid the chunks being too large or too small, the maximum
and minimum value of the chunks need to be set. The window slides from a minimum chunk size
position, and if the chunk size is bigger than maximum, the last byte of the current window is set as
the boundary enforced.
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Figure 1. The principal of Content defined chunking (CDC) algorithm.

3.3. The Expected Chunk Size

The process of the CDC algorithm is to slide a window by one byte and judge whether the current
position is a boundary. Since the rabin hash function [13] generates a fingerprint with input data
uniformly, the probability that low-order x bits of a region’s fingerprint equals a chosen value is 1/2x.
This chunking process can be considered a Bernoulli trial; thus, the expected boundaries number X
obeys Binomial distribution, as

X „ bpS´W ` 1, 1{2xq (1)

In Equation (1), S is the length of the data stream; W is the size of the sliding window; and x is the
length of the mask. For example, if x = 4, then mask = 1111; if x = 3, then mask = 111.

The expectation of boundaries number is:

EpXq “
S´W ` 1

2x (2)
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The expectation of chunks number is:

ne “ EpXq ` 1 “
S´W ` 1

2x ` 1 (3)

We assume the expected chunk size µ is far less than the data stream length S. Therefore, the
expected chunk size is:

µ “
S
ne
“

S ¨ 2x

S´W ` 1` 2x «
S ¨ 2x

S` 2x «
S ¨ 2x

S
« 2x (4)

Equation (4) shows that the expected chunk size µ is decided by the mask length x, and these
two variables have an exponential relationship.

4. Modeling DER with the Expected Chunk Size

Three kinds of data need to be stored after the deduplication: (1) Unique data—this data is judged
as not existing in the storage system by the CDC algorithm; (2) Metadata—this data contains the
address information of the chunks to rebuild the data stream; (3) Fingerprint index—the Secure Hash
Algorithm-1 (SHA-1) or MD5 hash value of each unique data is used as its fingerprint. All fingerprints
are stored in a lookup index to detect whether a new chunk is duplicated with the existing chunks.

4.1. Modeling the Metadata Size

For the data that is formed after the chunking algorithm, no matter if it is duplicated or not, its
corresponding metadata needs to be stored. The metadata saves the actual address information of
the current chunk in the storage system, and it is used to retrieve its corresponding chunk if a read
behavior is needed. The total metadata number of a data stream equals the total chunks number, and
it can be computed as follows:

Nm «
So

µ
“

So

2x (5)

Supposing the size of one metadata is m, then the mathematical model of the metadata size is:

Sm “ Nm ¨m “
So ¨m

2x (6)

4.2. Modeling the Unique and Index Data Size

We use Su to denote the sum of unique and index data size. We cannot derive the relationship
between Su and expected chunk size µ theoretically. Consequently, we observed a large number of
real datasets and found that the curve of the relationship between Su and µ is S shaped. The growth
ratio is urgent first and then slow, and the curve has a upper bound. Thus, we consider the logistic
function is the appropriate model to describe the relationship between Su and µ. Figure 2 shows three
representatives of the relationship curves. Three datasets are: (1) 310 versions of Linux kernel source
codes [22]; (2) 12 dumps of Wikipedia pages [23]; and (3) 90 backups of SQLite [24] while running
TPC-C [25] benchmark. In Figure 2, the x-axis represents the expected chunk size (decided by mask
length); and the y-axis represents the data size of unique and index (MB).
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Figure 2. The curve of the relationship between the unique data size and the expected chunk size. 
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Figure 2. The curve of the relationship between the unique data size and the expected chunk size.
(a)linux kernel source codes; (b) wikipedia dumps; (c) SQLite backups.

The logistic function is defined as follows:

S “
L

1` expp´kpx´ x0qq
(7)

where L is the upper bound of the logistic function; k is the steepness of the curve; and x0 is the x-value
of the curve’s midpoint.

In Figure 2, it can be seen that the increase of mask lengths beyond 15 changes the data size
very slightly in the linux kernel dataset. This is because the files in this set are simply smaller, which
means that individual source code files with 64 KB are rare. When mask length is beyond 15, the CDC
algorithm becomes SIS, resulting in the whole file being processed for the de-duplication. Thus, the
increase of mask length has very little impact on unique data size. Anyway, the original data size So

could be considered as the upper bound of the unique data size.
When x is beyond 15, the index data size is rather small and can be ignored; therefore, the upper

bound of the unique and index data size is the original data size So before deduplication. Thus, the
mathematical model of the unique and index data size is:

Su “
So

1` expp´kpx´ x0qq
(8)

4.3. Modeling the DER

The data size that needs to be stored after deduplication equals the sum of the meta data size, the
unique data size, and the index data size. It can be computed as:
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Sd “ Su ` Sm “
So

1` expp´kpx´ x0qq
`

So ¨m
2x “ Sop

1
1` expp´kpx´ x0qq

`
m
2x q (9)

According to the definition of DER, the mathematical model of the relationship between the DER
and the expected chunk size is:

DER “
So

Sd
“

So

Sop
1

1`expp´kpx´x0qq
` m

2x q
“ p

1
1` expp´kpx´ x0qq

`
m
2x q

´1
(10)

where m is the size of one meta data, and its value depends on specific implementation of the
deduplication system, and it is a constant value. k and x0 are the parameters of logistic function and
they are described above. These two values need to be estimated.

5. Experiment

5.1. Experimental Setup

We used the open source deduplication program deduputil [26] to perform the experiment.
Deduputil supports a variety of chunking algorithms, including CDC.

The configuration of the server used for the experiment is described as follows:

(1) CPU: 2 Intel Xeon E5-2650 v2 2.6 GHz 8-core processors;
(2) RAM: 128 GB DDR3;
(3) Disk: 1.2 T MLC PCIe SSD card;
(4) Operating system: CentOS release 6.5 (Final).

5.2. Datasets

We collected two realistic datasets for the experiment, with the following information:

(1) The Linux kernel source code dataset [22]. The total size is 233.95 GB, and the total versions are
260, including version from 3.0 to 3.4.63;

(2) The SQLite [24] period backup dataset while running the TPC-C benchmark [25]. The total size is
148 GB, and the total backups are 90.

Because the data size increases in a real storage system, we simulate this characterization to
comprehensively observe the experimental results, which means that we perform the experiment by
setting the dataset size from small to large. In the Linux kernel experiment, we used the first 60 versions
to perform the first experiment. Afterwards, we performed the experiment at the interval of 50 versions.
That means we performed the first experiment with the first 60 versions, and the second experiment
with the first 110 versions until all the experiments were finished. In the SQLite experiment, we
used the first 20 backups for the first experiment, and then performed the experiment at intervals
of 20 backups. The minimum and maximum need to be set in the CDC algorithm, and we set the
minimum to 64 B and the maximum to 32 MB. Consequently, the expected chunk size range that needs
to be observed is 64 B–32 MB.

5.3. Experimental Results

The experimental results are shown in Figures 3 and 4. The x-axis represents the expected chunk
size (decided by mask length); and the y-axis represents the DER. The results show that DER is
not optimal by setting the expected chunk size to 4 KB or 8 KB in all experiments. Moreover, the
results also show that the expected chunk size that optimizes DER varies among different datasets.
Even in the same type of dataset, the expected chunk size that optimizes the DER varies as the data
volume increases. Thus, we need to set the expected chunk size according to the specific dataset to
optimize DER.



Symmetry 2016, 8, 69 8 of 12

We use R2 value to reflect the goodness of fit of the mathematical model that describes the
relationship between the DER and the expected chunk size. The range of R2 is 0~1. The closer the R2 is
to 1, the better the goodness of fit. The experimental results show that the R2 values of the experiments
are above 0.9, validating that the mathematical model can correctly reflect the relationship between the
DER and the expected chunk size.
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Figure 3. The experimental results of Linux kernel datasets. (a) 60 versions; (b) 110 versions;
(c) 160 versions; (d) 210 versions; (e) 260 versions; (f) 310 versions.
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5.4. Discussion of Optimizing DER by Setting the Expected Chunk Size

Once the expected chunk size is set, it cannot be changed. Otherwise, DER will decrease because
a lot of new coming duplicated data chunks will be detected as new due to their changed chunk size.
Thus, the expected chunk size should be set under the consideration of making the DER optimum
while the data volume grows to a large scale in the future. In Figures 3 and 4, the experimental results
show that in the same dataset, the parameters k and x0 of the DER mathematical model increase slowly,
and the increase ratio declines as the data volume grows. Based on this observed rule, in practice, we
can obtain the initial values of these two parameters of the DER model by analyzing a small amount
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of historical data in a storage system. Then, we revise the values. For example, we can add 0.3–0.5
to k and add 4–9 to x0. The revisions can be used as the predicted values of the model parameters
under the assumption that the data volume of the storage system grows to a large scale in future.
With the predicted values, we can calculate the corresponding expected chunk size and set it in the
CDC algorithm. Compared with setting the expected chunk size empirically to 4 KB or 8 KB, this
approach could make DER of a storage system much closer to the optimum.

From the experimental results, it can be seen that the higher DER is, the bigger the two parameters
k and x0 are. Thus, if we cannot obtain the initial values of the two parameters, they could be set
according to their estimated DER, which can be obtained empirically for specific datasets or by the
method proposed in [27]. For a dataset with high DER, we recommend setting the k to 0.5–0.8, and x0
to 15–20; for a dataset with low DER, we recommend setting the k less than 0.5, and x0 to less than
15. With these parameters, the expected chunk size can be calculated. Of course, this approach is not
very precise to optimize DER. Consequently, in the future, we will study the theoretical relationship
between the DER and the two parameters and then hope to propose a more precise approach to
improve DER.

6. Conclusions

In this paper, we collected two datasets: (1) Linux kernel source codes; and (2) multiple SQLite
backup data while running the TPC-C benchmark, to verify whether setting the expected chunk size to
4 KB or 8 KB can improve DER. The experimental results show that setting the expected chunk size to
4 KB or 8 KB cannot optimize DER. To reasonably set the expected chunk size, we present a logistically
based mathematical model to reveal the hidden relationship between the expected chunk size and the
DER. Two realistic datasets were used to verify this model. The experimental results show that the R2

value, which describes the goodness of fit, is above 0.9, validating the correctness of this mathematic
model. Based on this model, we discussed how to set the expected chunk size to make DER close to
the optimum.
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