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1. Introduction

The purpose of this paper is to extend the results of [1,2], where cubature formulas for numerical
integration connected with three types of multivariate Chebyshev-like polynomials arising from Weyl
group orbit functions are developed. The specific goal of this article is to derive the cubature rules
and corresponding approximation methods for the family of the polynomials arising from symmetric
exponential Weyl group orbit sums [3,4] and detail specializations of the general results for the
two-variable polynomials.

The family of polynomials induced by the symmetric Weyl group orbit functions (C-functions)
forms one of the most natural generalizations of the classical Chebyshev polynomials of one
variable—indeed, the lowest symmetric orbit function arising from the Weyl group of A1 coincides with
the common cosine function of one variable and thus induces the family of Chebyshev polynomials of
the first kind [5]. The continuous and discrete orthogonality of the sets of cosine functions cos(nx)
generalize to the families of multivariate C-functions [4,6,7]. This generalization serves as an essential
starting point for deriving the cubature formulas and approximation methods.

Cubature formulas for numerical integration constitute multivariate generalizations of classical
quadrature formulas for functions of one variable. A weighted integral over some domain inside Rn of
any given function is estimated by a finite weighted sum of values of the same function on a specific
set of points (nodes). A standard requirement is imposed: the cubature formula has to hold as an exact
equality for polynomials up to a certain degree. Numerous types of cubature formulas with diverse
shapes of the integration domains and various efficiencies exist [8]. The efficiency of a given cubature
formula reflects how the achieved maximal degree of the polynomials relates to the number of the
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necessary nodes. Optimal cubature formulas of the highest possible efficiency (Gaussian formulas) are
for multivariate functions obtained for instance in [1,2,9,10].

The sequence of Gaussian cubature formulas derived in [9] arises from the antisymmetric orbit
functions (S-functions) of the Weyl groups of type An, n ∈ N. Generalization of these cubature formulas
from [9] to polynomials of the S-functions of Weyl groups of any type and rank is achieved in [2].
A crucial concept, which allows the generalization of the An formulas, is a novel definition of a degree
of the underlying polynomials. This generalized degree (m-degree) is based on invariants of the Weyl
groups and their corresponding root systems. Besides the polynomials corresponding to the C- and
S-functions, two additional families of multivariate polynomials arise from Weyl group orbit functions
of mixed symmetries [1]. These hybrid orbit functions (Ss- and Sl-functions) exist only for root systems
of Weyl groups with two different lengths of roots—Bn, Cn, F4 and G2. The cubature formulas related
to the polynomials of these Ss- and Sl-functions are developed in [1]. Deduction of the remaining
cubature formulas, which correspond to the polynomials of the C-functions, completes in this paper
the results of [1,2,9]. The integration domains and nodes of these cubature formulas are constructed in
a similar way as one-dimensional Gauss-Chebyshev formulas and their Chebyshev nodes.

Instead of a classical one-dimensional interval, the multivariate C-functions are considered in
the fundamental domain of the affine Weyl group—a simplex F ⊂ Rn. The discrete orthogonality
relations of C-functions are performed over a finite fragment of a grid FM ⊂ F, with the parameter
M ∈ N controlling the density of FM inside F. The simplex F together with the set of points FM have to
be transformed via a transform which induces the corresponding family of polynomials (X-transform).
This process results in the integration domain Ω of non-standard shape and the set of nodes ΩM,
with specifically distributed points inside Ω. The last ingredient, needed for successful practical
implementation, is the explicit form of the weight polynomial K. For practical purposes, the explicit
construction of all two-variable cases is presented.

Except for direct numerical integration, one of the most immediate applications of the developed
cubature formulas is related multivariate polynomial approximation [11]. The Hilbert basis of the
orthogonal multivariate polynomials induced by the C-functions guarantees that any function from the
corresponding Hilbert space is expressed as a series involving these polynomials. A specific truncated
sum of this expansion provides the best approximation of the function by the polynomials. Among
other potential applications of the developed cubature formulas are calculations in fluid flows [12], laser
optics [13], stochastic dynamics [14], magnetostatic modelling [15], micromagnetic simulations [16],
electromagnetic wave propagation [17], liquid crystal colloids [18] and quantum dynamics [19].

The paper is organized as follows. In Section 2, notation and pertinent properties of Weyl groups,
affine Weyl groups and C-functions are reviewed. In Section 3, the cubature formulas related to
C-functions are deduced. In Section 4, the explicit cubature formulas of the rank two cases A2, C2, G2

are constructed. In Section 5, polynomial approximation methods are developed.

2. Root Systems and Polynomials

2.1. Pertinent Properties of Root Systems and Weight Lattices

The notation, established in [7], is used. Recall that, to the Lie algebra of the compact,
connected, simply connected simple Lie group G of rank n, corresponds the set of simple roots
∆ = (α1, . . . ,αn) [3,20–22]. The set ∆ spans the Euclidean space Rn, with the scalar product denoted by
〈 , 〉. The following standard objects related to the set of simple roots ∆ are used.

• The marks m1, . . . , mn of the highest root ξ ≡ −α0 = m1α1 + · · ·+ mnαn.
• The Coxeter number m = 1 + m1 + · · ·+ mn of G.
• The Cartan matrix C and its determinant.

c = det C. (1)

• The root lattice Q = Zα1 + · · ·+Zαn.
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• The Z-dual lattice to Q,

P∨ =
{
ω∨ ∈ Rn

| 〈ω∨, α〉 ∈ Z, ∀α ∈ ∆
}
= Zω∨1 + · · ·+Zω∨n

with the vectors ω∨i given by
〈ω∨i , α j〉 = δi j.

• The dual root lattice Q∨ = Zα∨1 + · · ·+Zα∨n , where α∨i = 2αi/〈αi, αi〉.
• The dual marks m∨1 , . . . , m∨n of the highest dual root η ≡ −α∨0 = m∨1 α

∨

1 + · · ·+m∨nα∨n . The marks and
the dual marks are summarized in Table 1 in [7]. The highest dual root η satisfies for all i = 1, . . . , n

〈η, αi〉 ≥ 0. (2)

• The Z-dual weight lattice to Q∨

P =
{
ω ∈ Rn

| 〈ω, α∨〉 ∈ Z, ∀α∨ ∈ Q∨
}
= Zω1 + · · ·+Zωn

with the vectors ωi given by 〈ωi, α∨j 〉 = δi j. For λ ∈ P the following notation is used,

λ = λ1ω1 + · · ·+ λnωn = (λ1, . . . ,λn). (3)

• The partial ordering on P is given: for λ, ν ∈ P it holds that ν ≤ λ if and only if
λ− ν = k1α1 + · · ·+ knαn with ki ∈ Z≥0 for all i ∈ {1, . . . , n}.

• The half of the sum of the positive roots

ρ = ω1 + · · ·+ωn.

• The cone of positive weights P+ and the cone of strictly positive weights P++ = ρ+ P+

P+ = Z≥0ω1 + · · ·+Z≥0ωn, P++ = Nω1 + · · ·+Nωn.

• n reflections rα, α ∈ ∆ in (n− 1)-dimensional “mirrors” orthogonal to simple roots intersecting at
the origin denoted by

r1 ≡ rα1 , . . . , rn ≡ rαn .

Following [2], we define so called m-degree of λ ∈ P+ as the scalar product of λ with the highest
dual root η, i.e., by the relation

|λ|m = 〈λ, η〉 = λ1m∨1 + · · ·+ λnm∨n .

Let us denote a finite subset of the cone of the positive weights P+ consisting of the weights of the
m-degree not exceeding M by P+

M, i.e.,

P+
M =

{
λ ∈ P+

| |λ|m ≤M
}

.

Recall also the separation lemma which asserts for λ ∈ P+, λ , 0 and any M ∈ N that

|λ|m < 2M ⇒ λ < MQ. (4)

Note that this lemma is proved in [2] for M > m only—the proof, however, can be repeated
verbatim with any M ∈ N.

For two dominant weights λ, ν ∈ P+ for which ν ≤ λ we have for their m−degrees

|λ|m − |ν|m = 〈λ− ν, η〉 =
n∑

i=1

ki〈αi, η〉, ki ≥ 0. (5)
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Taking into account Equation (2), we have the following proposition.

Proposition 1. For two dominant weights λ, ν ∈ P+ with ν ≤ λ it holds that |ν|m ≤ |λ|m.

2.2. Affine Weyl Groups

The Weyl group W is generated by n reflections r1, . . . , rn and its order |W| can be calculated using
the formula

|W| = n! m1 . . .mn c. (6)

The affine Weyl group Waff is the semidirect product of the Abelian group of translations Q∨ and
of the Weyl group W,

Waff = Q∨ o W. (7)

The fundamental domain F of Waff , which consists of precisely one point of each Waff-orbit, is the

convex hull of the points
{
0,
ω∨1
m1

, . . . , ω
∨
n

mn

}
. Considering n + 1 real parameters y0, . . . , yn ≥ 0, we have

F =
{
y1ω

∨

1 + · · ·+ ynω
∨
n | y0 + y1m1 + · · ·+ ynmn = 1

}
. (8)

The volumes vol(F) ≡ |F| of the simplices F are calculated in [7].
Considering the standard action of W on Rn, we denote for λ ∈ Rn the isotropy group and its

order by
Stab(λ) = {w ∈W |wλ = λ} , hλ ≡ |Stab(λ)|,

and denote the orbit by
Wλ =

{
wλ ∈ Rn

|w ∈W
}

.

Then the orbit-stabilizer theorem gives for the orders

|Wλ| =
|W|
hλ

. (9)

Considering the standard action of W on the torus Rn/Q∨, we denote for x ∈ Rn/Q∨ the order of
its orbit by ε(x), i.e.,

ε(x) =
∣∣∣∣{wx ∈ Rn/Q∨ |w ∈W

}∣∣∣∣ . (10)

For an arbitrary M ∈ N, the grid FM is given as cosets from the W-invariant group 1
M P∨/Q∨ with

a representative element in the fundamental domain F

FM ≡
1
M

P∨/Q∨ ∩ F.

The representative points of FM can be explicitly written as

FM =
{u1

M
ω∨1 + · · ·+

un

M
ω∨n | u0, u1, . . . , un ∈ Z≥0, u0 + u1m1 + · · ·+ unmn = M

}
. (11)

The numbers of elements of FM, denoted by |FM|, are also calculated in [7] for all simple Lie algebras.

2.3. Orbit Functions

Symmetric orbit functions [4] are defined as complex functions Cλ : Rn
→ C with the labels λ ∈ P+,

Cλ(x) =
∑
ν∈Wλ

e2πi〈ν, x〉, x ∈ Rn. (12)
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Note that in [7] the results for C-functions are formulated for the normalized C-functions Φλ

which are related to the orbit sums (12) as

Φλ = hλ Cλ.

Due to the symmetries with respect to the Weyl group W as well as with respect to the shifts
from Q∨

Cλ(wx) = Cλ(x), Cλ(x + q∨) = Cλ(x), w ∈W, q∨ ∈ Q∨, (13)

it is sufficient to consider C-functions restricted to the fundamental domain of the affine Weyl group F.
Moreover, the C-functions are continuously orthogonal on F,∫

F
Cλ(x)Cλ′(x) dx =

|F||W|
hλ

δλ,λ′ . (14)

and form a Hilbert basis of the space L2(F) [4], i.e., any function f̃ ∈ L2(F) can be expanded into the
series of C-functions

f̃ =
∑
λ∈P+

cλCλ, cλ =
hλ
|F||W|

∫
F

f̃ (x)Cλ(x) dx. (15)

Special case of the orthogonality relations (14) is when one of the weights is equal to zero,∫
F

Cλ(x) dx = |F| δλ,0 . (16)

For any M ∈ N, the C-functions from a certain subset of P+ are also discretely orthogonal on FM

and form a basis of the space of discretized functions CFM of dimension |FM| [7]; special case of these
orthogonality relations is when one of the weights is equal to zero modulo the lattice MQ,

∑
x∈FM

ε(x)Cλ(x) =

cMn λ ∈MQ,

0 λ < MQ.
(17)

The key point in developing the cubature formulas is comparison of Formulas (16) and (17) in the
following proposition.

Proposition 2. For any M ∈ N and λ ∈ P+
2M−1 it holds that

1
|F|

∫
F

Cλ(x) dx =
1

cMn

∑
x∈FM

ε(x)Cλ(x). (18)

Proof. Suppose first that λ = 0. Then from (16) and (17) we obtain

1
|F|

∫
F

C0(x) dx = 1 =
1

cMn

∑
x∈FM

ε(x)C0(x).

Secondly let λ , 0 and |λ|m < 2M. Then from the separation lemma (4) we have that λ < MQ
and thus

1
|F|

∫
F

Cλ(x) dx = 0 =
1

cMn

∑
x∈FM

ε(x)Cλ(x).

�

Let us denote for convenience the C-functions corresponding to the basic dominant weights ω j by
Z j, i.e.,

Z j ≡ Cω j .
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Recall from [3], Ch. VI, §4 that any W-invariant sum of the exponential functions e2πi〈ν, a〉 can be
expressed as a linear combination of some functions Cλ with λ ∈ P+. Also for any λ ∈ P+ a function of
the monomial type Zλ1

1 Zλ2
2 . . .Zλn

n can be expressed as the sum of C-functions labeled by less or equal
dominant weights than λ, i.e.,

Zλ1
1 Zλ2

2 . . .Zλn
n =

∑
ν≤λ, ν∈P+

cνCν, cν ∈ C, cλ = 1. (19)

Conversely, any function Cλ, λ ∈ P+ can be expressed as a polynomial in variables Z1, . . . , Zn,
i.e., there exist multivariate polynomials p̃λ ∈ C[y1, . . . , yn] such that

Cλ = p̃λ(Z1, . . . , Zn) =
∑

ν≤λ, ν∈P+

dνZ
ν1
1 Zν2

2 . . .Zνn
n , dν ∈ C, dλ = 1. (20)

Antisymmetric orbit functions [23] are defined as complex functions Sλ : Rn
→ C with the

labels λ ∈ P++,
Sλ(x) =

∑
w∈W

det(w) e2πi〈wλ, x〉, x ∈ Rn. (21)

The antisymmetry with respect to the Weyl group W and the symmetry with respect to the shifts
from Q∨ holds

Sλ(wx) = (det w) Sλ(x), Sλ(x + q∨) = Sλ(x), w ∈W, q∨ ∈ Q∨.

Recall that Proposition 9 in [23] states that for the lowest S-function Sρ it holds that

Sρ(x) = 0, x ∈ F \ F◦, (22)

Sρ(x) , 0, x ∈ F◦, (23)

where F◦ denotes the interior of F. Since the square of the absolute value |Sρ|2 = SρSρ is a W-invariant
sum of exponentials it can be expressed as a linear combination of C-functions. Each C-function in
this combination is moreover a polynomial of the form (20). Thus there exists a unique polynomial
K̃ ∈ C[y1, . . . , yn] such that

|Sρ|2 = K̃(Z1, . . . , Zn). (24)

3. Cubature Formulas

3.1. The X-Transform

The key component in the development of the cubature formulas is the integration by substitution.
The X-transform transforms the fundamental domain F ⊂ Rn to the domain Ω ⊂ Rn on which are the
cubature rules defined. In order to obtain a real valued transform we first need to examine the values
of the C-functions.

The C-functions of the algebras

A1, Bn(n ≥ 3), Cn(n ≥ 2), D2k(k ≥ 2), E7, E8, F4, G2 (25)

are real-valued [4]. Using the notation (3), for the remaining cases it holds that

An(n ≥ 2) : C(λ1,λ2,...,λn)(x) = C(λn,λn−1,...,λ1)(x) ,

D2k+1(k ≥ 2) : C(λ1,λ2,...,λ2k−1,λ2k,λ2k+1)
(x) = C(λ1,λ2,...,λ2k−1,λ2k+1,λ2k)

(x) , (26)

E6 : C(λ1,λ2,λ3,λ4,λ5,λ6)(x) = C(λ5,λ4,λ3,λ2,λ1,λ6)(x) .
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Specializing the relations (26) for the C-functions corresponding to the basic dominant weights Z j,
we obtain that the functions Z j are real valued, except for the following cases for which it holds that

A2k(k ≥ 1) : Z j = Z2k− j+1, j = 1, . . . , k,

A2k+1(k ≥ 1) : Z j = Z2k− j+2, j = 1, . . . , k,

D2k+1(k ≥ 2) : Z2k = Z2k+1, (27)

E6 : Z2 = Z4, Z1 = Z5.

Taking into account (27), we introduce the real-valued functions X j, j ∈ {1, . . . , n} as follows.
For the cases (25), we set

X j ≡ Z j, (28)

and for the remaining cases (27), we define

A2k : X j =
Z j + Z2k− j+1

2
, X2k− j+1 =

Z j −Z2k− j+1

2i
, j = 1, . . . , k ,

A2k+1 : X j =
Z j + Z2k− j+2

2
, Xk+1 = Zk+1 , X2k− j+2 =

Z j −Z2k− j+2

2i
, j = 1, . . . , k,

D2k+1 : X j = Z j , X2k =
Z2k + Z2k+1

2
, X2k+1 =

Z2k −Z2k+1

2i
, j = 1, . . . , 2k− 1 ,

E6 : X1 =
Z1 + Z5

2
, X2 =

Z2 + Z4

2
, X3 = Z3 , X4 =

Z2 −Z4

2i
, X5 =

Z1 −Z5

2i
, X6 = Z6.

(29)

Thus, we obtain a crucial mapping X : Rn
→ Rn given by

X(x) ≡ (X1(x), . . . , Xn(x)). (30)

The image Ω ⊂ Rn of the fundamental domain F under the mapping X forms the integration
domain on which the cubature rules will be formulated, i.e.,

Ω ≡ X(F). (31)

In order to use the mapping X for an integration by substitution we need to know that it is
one-to-one except for possibly some set of zero measure. Since the image ΩM ⊂ Rn of the set of points
FM under the mapping X forms the set of nodes for the cubature rules, i.e.,

ΩM ≡ X(FM), (32)

a discretized version of the one-to-one correspondence of the restricted mapping XM of X to FM, i.e.,

XM ≡ X �FM (33)

is also essential. Note that due to the periodicity of C-functions (13), the restriction (33) is well-defined
for the cosets from FM.

Proposition 3. The mapping X : F → Ω, given by (30), is a one-to-one correspondence except for some set
of zero measure. For any M ∈ N is the restriction mapping XM : FM → ΩM, given by (33), a one-to-one
correspondence and thus it holds that

|ΩM| = |FM|. (34)

Proof. Let us assume that there exists a set F′ ⊂ F of non-zero measure such that X(x) = X(y) with
x, y ∈ F′. Since the transforms (28) and (29) are as regular linear mappings one-to-one correspondences,
this fact implies that Z1(x) = Z1(y), . . . , Zn(x) = Zn(y) with x, y ∈ F′. Then from the polynomial
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expression (20) we obtain for all λ ∈ P+ that it holds that Cλ(x) = Cλ(y). Since the C-functions
Cλ, λ ∈ P+ form a Hilbert basis of the space L2(F) we conclude that for any f ∈ L2(F) is valid that
f (x) = f (y), x, y ∈ F′ which is a contradiction.

Retracing the steps of the continuous case above, let us assume that there exist two distinct points
x, y ∈ FM, x , y such that X(x) = X(y). Since the transforms (28) and (29) are as regular linear mappings
one-to-one correspondences, this fact again implies that Z1(x) = Z1(y), . . . , Zn(x) = Zn(y). Then from
the polynomial expression (20) we obtain for all λ ∈ P+ that it holds that Cλ(x) = Cλ(y). The same
equality has to hold for those C-functions Cλ which form a basis of the space CFM . We conclude that
for any f ∈ CFM is valid that f (x) = f (y), x , y which is a contradiction. �

The absolute value of the determinant of the Jacobian matrix of the X-transform (30) is essential
for construction of the cubature formulas—its value is determined in the following proposition.

Proposition 4. The absolute value of the Jacobian determinant |Jx(X)| of the X-transform (30) is given by

|Jx(X)| =
κ(2π)n

|F||W|
|Sρ(x)|, (35)

where κ is defined as

κ =


2−b

n
2 c for An

1
2 for D2k+1
1
4 for E6

1 otherwise.

(36)

Proof. Note that the X-transform can be composed of the following two transforms: the transform
ζ : x 7→ (Z1(x), . . . , Zn(x)) and the transform R : (Z1, . . . , Zn) 7→ (X1, . . . , Xn) via relations (28) and (29).
To calculate the Jacobian of the transform ζ, let us denote byα∨ the matrix of the coordinates (in columns)
of the vectors α∨1 , . . . ,α∨n in the standard orthonormal basis of Rn and by a1, . . . , an the coordinates of
a point x ∈ Rn in α∨-basis, i.e., x = a1α∨1 + · · ·+ anα∨n . If a denotes the coordinates a1, . . . , an arranged
in a column vector then it holds that x = α∨a. The absolute value of the Jacobian of the mapping
a 7→ (Z1(α∨a), . . . , Zn(α∨a)) is according to Equation (32) in [2] given by (2π)n

|Sρ(α∨a)|. Using the
chain rule, this implies for the absolute value of the Jacobian |Jx(ζ)| of the map ζ that

|Jx(ζ)| = |detα∨|−1(2π)n
|Sρ(x)|.

It can be seen directly from Formula (6) and Proposition 2.1 in [7] that

|detα∨| = |W||F|.

The calculation of the absolute value of the Jacobian determinant κ = |Jx(R)| is straightforward
from definitions (28) and (29). �

3.2. The Cubature Formula

We attach to any λ ∈ P+ a monomial yλ ≡ yλ1
1 . . . yλn

n ∈ C[y1, . . . , yn] and assign to this monomial
the m-degree |λ|m of λ. The m-degree of a polynomial p ∈ C[y1, . . . , yn], denoted by degm p, is defined
as the largest m-degree of a polynomial occurring in p(y) ≡ p(y1, . . . , yn). For instance we observe from
Proposition 1 and (20) that the m-degree of each C-polynomial p̃λ coincides with the m-degree of λ,

degm p̃λ = |λ|m. (37)
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The subspace ΠM ⊂ C[y1, . . . , yn] is formed by the polynomials of m-degree at most M, i.e.,

ΠM ≡
{
p ∈ C[y1, . . . , yn] |degm p ≤M

}
. (38)

In order to investigate how the m-degree of a polynomial changes under the substitution of the
type (29) we formulate the following proposition.

Proposition 5. Let j, k ∈ {1, . . . , n} be two distinct indices j < k such that m∨j = m∨k and p, p̃ ∈ C[y1, . . . , yn]

two polynomials such that

p̃(y1, . . . , yn) = p(y1, . . . , y j−1,
y j + yk

2
, . . . , yk−1,

y j − yk

2i
, . . . yn)

holds. Then degmp̃ = degmp.

Proof. Since any polynomial p ∈ ΠM is a linear combination of monomials yλ with |λ|m ≤ M, it is
sufficient to prove p̃ ∈ ΠM for all monomials p of m-degree at most M. If p is a monomial yλ with
|λ|m ≤M, then

p̃(y1, . . . , yn) =

( y j + yk

2

)λ j
( y j − yk

2i

)λk ∏
l∈{1,...,n}\{ j,k}

yλl
l .

Using the binomial expansion, we obtain

p̃(y1, . . . , yn) =
1

iλk2λ j+λk

λ j∑
r=0

λk∑
s=0

(−1)λk−s
(
λ j
r

) (
λk
s

)
yr+s

j y
λ j+λk−(r+s)
k

∏
l∈{1,...,n}\{ j,k}

yλl
l .

Therefore, the m-degree of the polynomial p̃ is given by

degmp̃ = max
r,s
{(r + s)m∨j + (λ j + λk − (r + s))m∨k +

∑
l∈{1,...,n}\{ j,k}

λlm∨l } .

Since we assume that m∨j = m∨k , we conclude that degm p̃ =
∑n

l=1 λlm∨l = degm p. �

Having the XM-transform (33), it is possible to transfer uniquely the values (10) of ε(x), x ∈ FM to
the points of ΩM, i.e., by the relation

ε̃(y) ≡ ε(X−1
M y), y ∈ ΩM. (39)

Taking the inverse transforms of (28) and (29) and substituting them into the polynomials (24)
and (20) we obtain the polynomials K, pλ ∈ C[y1, . . . , yn] such that

|Sρ|2 = K(X1, . . . , Xn). (40)

Theorem 6 (Cubature formula). For any M ∈ N and any p ∈ Π2M−1 it holds that∫
Ω

p(y)K−
1
2 (y) dy =

κ
c|W|

(2π
M

)n ∑
y∈ΩM

ε̃(y)p(y) . (41)



Symmetry 2016, 8, 63 10 of 22

Proof. Proposition 3 guarantees that the X-transform is one-to-one except for some set of measure
zero and Proposition 4 together with (23) gives that the Jacobian determinant is non-zero except for the
boundary of F. Thus using the integration by substitution y = X(x) we obtain∫

Ω
p(y)K−

1
2 (y) dy =

κ(2π)n

|F||W|

∫
F

p(X(x)) dx.

The one-to-one correspondence for the points FM and ΩM from Proposition 3 enables us to rewrite
the finite sum in (41) as

κ
c|W|

(2π
M

)n ∑
y∈ΩM

ε̃(y)p(y) =
κ

c|W|

(2π
M

)n ∑
x∈FM

ε(x)p(X(x)). (42)

Successively applying Proposition 5 to perform the substitutions (29) in p we conclude that there
exists a polynomial p̃ ∈ Π2M−1 such that p̃(Z1, . . . , Zn) = p(X1, . . . , Xn). Due to (19) we obtain for the
polynomial p̃ that

p(X1, . . . , Xn) = p̃(Z1, . . . , Zn) =
∑

λ∈P+
2M−1

c̃λZλ1
1 Zλ2

2 . . .Zλn
n =

∑
λ∈P+

2M−1

c̃λ
∑

ν≤λ, ν∈P+

cνCν

and therefore it holds that

1
|F|

∫
F

p(X(x)) dx =
∑

λ∈P+
2M−1

c̃λ
∑

ν≤λ, ν∈P+

cν
1
|F|

∫
F

Cν(x) dx (43)

and
1

cMn

∑
x∈FM

ε(x)p(X(x)) =
∑

λ∈P+
2M−1

c̃λ
∑

ν≤λ, ν∈P+

cν
1

cMn

∑
x∈FM

ε(x)Cν(x). (44)

Since Proposition 1 states that for all ν ≤ λ it holds that |ν|m ≤ |λ|m ≤ 2M − 1, we connect
Equations (43) and (44) by Proposition 2. �

Note that for practical purposes it may be more convenient to use the cubature formula (41) in its
less developed form resulting from (42),∫

Ω
p(y)K−

1
2 (y) dy =

κ
c|W|

(2π
M

)n ∑
x∈FM

ε(x)p(X(x)) . (45)

This form may be more practical since the explicit inverse transform to XM is usually
not available and, on the contrary, the calculation of the coefficients ε(x) and the points
X(x), x ∈ FM is straightforward.

4. Cubature Formulas of Rank Two

In this section we specialize the cubature formula for the irreducible root systems of rank two.
Let us firstly recall some basic facts about root systems of rank 2, i.e., A2, C2 and G2. They are
characterized by two simple roots ∆ = (α1,α2) which satisfy

A2 : 〈α1,α1〉 = 2 , 〈α2,α2〉 = 2 , 〈α1,α2〉 = −1,

C2 : 〈α1,α1〉 = 1 , 〈α2,α2〉 = 2 , 〈α1,α2〉 = −1,

G2 : 〈α1,α1〉 = 2 , 〈α2,α2〉 =
2
3

, 〈α1,α2〉 = −1 .

(46)
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The transformation rules among the root system and the remaining three bases is given as follows,

A2 : α1 = α∨1 = 2ω1 −ω2 , α2 = α∨2 = −ω1 + 2ω2 , ω1 = ω∨1 , ω2 = ω∨2 ,

C2 : α1 =
1
2
α∨1 = 2ω1 −ω2 , α2 = α∨2 = −2ω1 + 2ω2 , ω1 =

1
2
ω∨1 , ω2 = ω∨2 ,

G2 : α1 = α∨1 = 2ω1 − 3ω2 , α2 =
1
3
α∨2 = −ω1 + 2ω2 , ω1 = ω∨1 , ω2 =

1
3
ω∨2 .

(47)

Taking the weights in the standard form λ = (λ1,λ2) = λ1ω1 + λ2ω2, the corresponding Weyl
group is generated by reflections r1 and r2 of the explicit form

A2 : r1(λ1,λ2) = (−λ1,λ1 + λ2) , r2(λ1,λ2) = (λ1 + λ2,−λ2) ,

C2 : r1(λ1,λ2) = (−λ1,λ1 + λ2) , r2(λ1,λ2) =(λ1 + 2λ2,−λ2) ,

G2 : r1(λ1,λ2) =(−λ1, 3λ1 + λ2) , r2(λ1,λ2) = (λ1 + λ2,−λ2) .

(48)

Any Weyl group orbit of a generic point λ ∈ P consists of

A2 : {(λ1,λ2) , (−λ1,λ1 + λ2) , (λ1 + λ2,−λ2) , (−λ2,−λ1) , (−λ1 −λ2,λ1) , (λ2,−λ1 −λ2)} ,

C2 : {±(λ1,λ2) ,±(−λ1,λ1 + λ2) ,±(λ1 + 2λ2,−λ2) ,±(λ1 + 2λ2,−λ1 −λ2)} ,

G2 : {±(λ1,λ2) ,±(−λ1, 3λ1 + λ2) ,±(λ1 + λ2,−λ2) ,±(2λ1 + λ2,−3λ1 −λ2) ,

± (−λ1 −λ2, 3λ1 + 2λ2) ,±(−2λ1 −λ2, 3λ1 + 2λ2)} .

(49)

4.1. The Case A2

If the points are considered in the α∨-basis, x = a1α∨1 + a2α∨2 , the symmetric C-functions (49) and
antisymmetric S-functions of A2 are explicitly given by

C(λ1,λ2)(a1, a2) =
1

hλ

(
e2πi(λ1a1+λ2a2) + e2πi(−λ1a1+(λ1+λ2)a2) + e2πi((λ1+λ2)a1−λ2a2)

+e2πi(λ2a1−(λ1+λ2)a2) + e2πi((−λ1−λ2)a1+λ1a2) + e2πi(−λ2a1−λ1a2)
)

,

S(λ1,λ2)(a1, a2) = e2πi(λ1a1+λ2a2) − e2πi(−λ1a1+(λ1+λ2)a2) − e2πi((λ1+λ2)a1−λ2a2)

+ e2πi(λ2a1−(λ1+λ2)a2) + e2πi((−λ1−λ2)a1+λ1a2) − e2πi(−λ2a1−λ1a2) ,

where the values hλ can be found in Table 1.

Table 1. The values of hλ are shown for A2, C2 and G2 with ? denoting the corresponding coordinate
different from 0.

λ ∈ P+ hλ
A2 C2 G2

(0, 0) 6 8 12
(?, 0) 2 2 2
(0,?) 2 2 2
(?,?) 1 1 1

Performing the transform (29), the resulting real-valued functions X1, X2 are given by

X1(a1, a2) = cos 2πa1 + cos 2πa2 + cos 2π(a1 − a2) ,

X2(a1, a2) = sin 2πa1 − sin 2πa2 − sin 2π(a1 − a2) .
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The integration domain Ω can be described explicitly as

Ω =
{
(y1, y2) ∈ R2

| − (y2
1 + y2

2 + 9)2 + 8(y3
1 − 3y1y2

2) + 108 ≥ 0
}

.

The weight K-polynomial (40) is given explicitly as

K(y1, y2) = −(y2
1 + y2

2 + 9)2 + 8(y3
1 − 3y1y2

2) + 108 .

The index set which will label the sets of points FM and ΩM is introduced via

IM =
{
[s0, s1, s2] ∈ (Z≥0)3

| s0 + s1 + s2 = M
}

.

Thus the grid FM consists of the points

FM =
{ s1

M
ω∨1 +

s2

M
ω∨2 | [s0, s1, s2] ∈ IM

}
.

If for j = [s0, s1, s2] ∈ IM we denote

(y( j)
1 , y( j)

2 ) =
(
X1

(2s1 + s2

3M
,

s1 + 2s2

3M

)
, X2

(2s1 + s2

3M
,

s1 + 2s2

3M

))
then the set of nodes ΩM consists of the points

ΩM =
{
(y( j)

1 , y( j)
2 ) ∈ R2

| j ∈ IM

}
.

The integration domain Ω together with the set of nodes Ω15 is depicted in Figure 1.

Figure 1. The region Ω of A2 together with the points of Ω15. The boundary of Ω is defined by the
equation K(y1, y2) = 0.

Each point of FM as well as of ΩM is labeled by the index set IM and it is convenient for the point
x ∈ FM and its image in ΩM labeled by j ∈ IM to denote

ε j = ε(x) = ε̃(XM(x)).



Symmetry 2016, 8, 63 13 of 22

The values of ε j can be found in Table 2. The cubature rule for any p ∈ Π2M−1 is of the form∫
Ω

p(y1, y2)K−
1
2 (y1, y2) dy1 dy2 =

π2

9M2

∑
j∈IM

ε jp(y( j)
1 , y( j)

2 ). (50)

Table 2. The values of ε j are shown for A2, C2 and G2 with ? denoting the corresponding coordinate
different from 0.

j ∈ IM
ε j

A2 C2 G2

[?, 0, 0] 1 1 1
[0,?, 0] 1 2 3
[0, 0,?] 1 1 2
[?,?, 0] 3 4 6
[?, 0,?] 3 4 6
[?,?, 0] 3 4 6
[?,?,?] 6 8 12

The cubature rule (50) is an analogue of the formula deduced in [24] using the generalized cosine
functions TCk and generalized sine functions TSk defined by

TCk(t) =
1
3

[
e

iπ
3 (k2−k3)(t2−t3) cos k1πt1 + e

iπ
3 (k2−k3)(t3−t1) cos k1πt2 + e

iπ
3 (k2−k3)(t1−t2) cos k1πt3

]
,

TSk(t) =
1
3

[
e

iπ
3 (k2−k3)(t2−t3) sin k1πt1 + e

iπ
3 (k2−k3)(t3−t1) sin k1πt2 + e

iπ
3 (k2−k3)(t1−t2) sin k1πt3

]
,

where t = (t1, t2, t3) ∈ R3 with t1 + t2 + t3 = 0 and k = (k1, k2, k3) ∈ Z3 with k1 + k2 + k3 = 0. It can be
shown by performing the following change of variables and parameters

t1 = 2a1 − a2 , t2 = −a1 + 2a2 , t3 = −a1 − a2 ,

k1 = λ1 , k2 = λ2 , k3 = −λ1 − λ2

that generalized cosine and sine functions actually coincide (up to scalar multiplication) with the
symmetric C-functions and antisymmetric S-functions of A2. More precisely, we obtain

TCk(t) =
hλ
6

Cλ(x) , TSk(t) =
1
6

Sλ(t) .

Example 1. The cubature formula (50) is the exact equality of a weighted integral of any polynomial
function of m-degree up to M with a weighted sum of finite number of polynomial values. It can be
used in numerical integration to approximate a weighted integral of any function by finite summing.

If we choose the function f (y1, y2) = K
1
2 (y1, y2) as our test function, then we can estimate the

integral of 1 over Ω ∫
Ω

f (y1, y2)K−
1
2 (y1, y2) dy1 dy2 =

∫
Ω

1 dy1 dy2

by finite weighted sums with different M’s and compare the obtained results with the exact value of
the integral of 1 which is 2π � 6.2832. Table 3 shows the values of the finite weighted sums for M = 10,
20, 30, 50, 100.
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Table 3. The table shows the estimations of the integrals of 1 over the regions Ω of A2, C2 and G2 resp.
by finite weighted sums of the right-hand side of (50)–(52) together with the number of points in ΩM

resp. for M = 10, 20, 30, 50, 100.

M 10 20 30 50 100 Exact Value

A2 6.0751 6.2314 6.2602 6.2749 6.2811 2π � 6.2832
|ΩM| 66 231 496 1326 5151 -

C2 10.056 10.5133 10.5985 10.6421 10.6605 10.6666
|ΩM| 36 121 256 676 2601 -

G2 7.4789 8.2561 8.4092 8.4885 8.5221 8.5333
|ΩM| 14 44 91 234 884 -

4.2. The Case C2

If the points are considered in the α∨-basis, x = a1α∨1 + a2α∨2 , the symmetric C-functions (49) and
antisymmetric S-functions of C2 are explicitly given by

C(λ1,λ2)(a1, a2) =
2

hλ
(cos 2π(λ1a1 + λ2a2) + cos 2π(−λ1a1 + (λ1 + λ2)a2)

+ cos 2π((λ1 + 2λ2)a1 − λ2a2) + cos 2π((λ1 + 2λ2)a1 − (λ1 + λ2)a2)) ,

S(λ1,λ2)(a1, a2) = 2 (cos 2π(λ1a1 + λ2a2) − cos 2π(−λ1a1 + (λ1 + λ2)a2)

− cos 2π((λ1 + 2λ2)a1 − λ2a2) + cos 2π((λ1 + 2λ2)a1 − (λ1 + λ2)a2)) .

Performing the transform (28), the resulting real-valued functions X1, X2 are given by

X1 = 2(cos 2πa1 + cos 2π(a1 − a2)) , X2 = 2(cos 2πa2 + cos 2π(2a1 − a2)) .

The integration domain Ω can be described explicitly as

Ω =
{
(y1, y2) ∈ R2

| − 2y1 − 4 ≤ y2 , 2y1 − 4 ≤ y2 ,
1
4

y2
1 ≥ y2

}
.

The weight K-polynomial (40) is given explicitly as

K(y1, y2) = (y2
1 − 4y2)((y2 + 4)2

− 4y2
1) .

The index set which will label the sets of points FM and ΩM is introduced via

IM =
{
[s0, s1, s2] ∈ (Z≥0)3

| s0 + 2s1 + s2 = M
}

.

Thus the grid FM consists of the points

FM =
{ s1

M
ω∨1 +

s2

M
ω∨2 | [s0, s1, s2] ∈ IM

}
.

If for j = [s0, s1, s2] ∈ IM we denote

(y( j)
1 , y( j)

2 ) =
(
X1

(2s1 + s2

2M
,

s1 + s2

M

)
, X2

(2s1 + s2

2M
,

s1 + s2

M

))
then the set of nodes ΩM consists of the points

ΩM =
{
(y( j)

1 , y( j)
2 ) ∈ R2

| j ∈ IM

}
.

The integration domain Ω together with the set of nodes Ω15 is depicted in Figure 2.
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Figure 2. The region Ω of C2 together with the points Ω15. The boundary is described by three equations
y2 = −2y1 − 4, y2 = 2y1 − 4 and y2 = 1

4 y2
1.

Similarly to the case A2, each point of FM as well as of ΩM is labeled by the index set IM and it is
convenient for the point x ∈ FM and its image in ΩM labeled by j ∈ IM to denote

ε j = ε(x) = ε̃(XM(x)) .

The values of ε j can be found in Table 2.
The cubature rule for any p ∈ Π2M−1 takes the form∫

Ω
p(y1, y2)K−

1
2 (y1, y2)dy1 dy2 =

π2

4M2

∑
j∈IM

ε jp(y( j)
1 , y( j)

2 )) . (51)

Example 2. The cubature formula (51) is the exact equality of a weighted integral of any polynomial
function of m-degree up to M with a weighted sum of finite number of polynomial values. It can be
used in numerical integration to approximate a weighted integral of any function by finite summing.

Similarly to Example 1, if we choose the function f (y1, y2) = K
1
2 (y1, y2) as our test function,

then we can estimate the integral of 1 over Ω∫
Ω

f (y1, y2)K−
1
2 (y1, y2) dy1 dy2 =

∫
Ω

1 dy1 dy2

by finite weighted sums with different M’s and compare the obtained results with the exact value
of the integral of 1 which is 32

3 = 10.6666̄. Table 3 shows the values of the finite weighted sums
for M = 10, 20, 30, 50, 100.
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4.3. The Case G2

If the points are considered in the α∨-basis, x = a1α∨1 + a2α∨2 , the symmetric C-functions (49) and
antisymmetric S-functions of G2 are explicitly given by

C(λ1,λ2)(a1, a2) =
2

hλ
(cos 2π(λ1a1 + λ2a2) + cos 2π(−λ1a1 + (3λ1 + λ2)a2)

+ cos 2π((λ1 + λ2)a1 − λ2a2) + cos 2π((2λ1 + λ2)a1 − (3λ1 + λ2)a2)

+ cos 2π((−λ1 − λ2)a1 + (3λ1 + 2λ2)a2) + cos 2π((−2λ1 − λ2)a1 + (3λ1 + 2λ2)a2)) ,

S(λ1,λ2)(a1, a2) = 2 (cos 2π(λ1a1 + λ2a2) − cos 2π(−λ1a1 + (3λ1 + λ2)a2)

− cos 2π((λ1 + λ2)a1 − λ2a2) + cos 2π((2λ1 + λ2)a1 − (3λ1 + λ2)a2)

+ cos 2π((−λ1 − λ2)a1 + (3λ1 + 2λ2)a2) − cos 2π((−2λ1 − λ2)a1 + (3λ1 + 2λ2)a2)) .

Performing the transform (28), the resulting real-valued functions X1, X2 are given by

X1 = 2(cos 2πa1 + cos 2π(a1 − 3a2) + cos 2π(2a1 − 3a2)) ,

X2 = 2(cos 2πa2 + cos 2π(a1 − a2) + cos 2π(a1 − 2a2)) .

The integration domain Ω can be described explicitly as

Ω =
{
(y1, y2) ∈ R2

| − 2((y2 + 3)
3
2 + 3y2 + 6) ≤ y1 ≤ 2((y2 + 3)

3
2 − 3y2 − 6), y1 ≥

1
4

y2
2 − 3

}
.

The weight K-polynomial (40) is given explicitly as

K(y1, y2) = (y2
2 − 4y1 − 12)(y2

1 − 4y3
2 + 12y1y2 + 24y1 + 36y2 + 36) .

The index set which will label the sets of points FM and ΩM is introduced via

IM =
{
[s0, s1, s2] ∈ (Z≥0)3

| s0 + 2s1 + 3s2 = M
}

.

Thus the grid FM consists of the points

FM =
{ s1

M
ω∨1 +

s1

M
ω∨2 | [s0, s1, s2] ∈ IM

}
.

If for j = [s0, s1, s2] ∈ IM we denote

(y( j)
1 , y( j)

2 ) =
(
X1

(2s1 + 3s2

M
,

s1 + 2s2

M

)
, X2

(2s1 + 3s2

M
,

s1 + 2s2

M

))
then the set of nodes ΩM consists of the points

ΩM =
{
(y( j)

1 , y( j)
2 ) ∈ R2

| j ∈ IM

}
.

The integration domain Ω together with the set of nodes Ω15 is depicted in Figure 3.
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Figure 3. The region Ω of G2 together with the points of Ω15. The boundary of Ω is described by
three equations y1 = 1

4 y2
2 − 3, y1 = 2((y2 + 3)

3
2 − 3y2 − 6) and y1 = −2((y2 + 3)

3
2 + 3y2 + 6).

Similarly to the case A2, each point of FM as well as of ΩM is labeled by the index set IM and it is
convenient for the point x ∈ FM and its image in ΩM labeled by j ∈ IM to denote

ε j = ε(x) = ε̃(XM(x)) .

The values of ε j can be found in Table 2. The cubature rule for any p ∈ Π2M−1 is of the form∫
Ω

p(y1, y2)K−
1
2 (y1, y2)dy1 dy2 =

π2

3M2

∑
j∈IM

ε jp(y( j)
1 , y( j)

2 ) . (52)

As in the case A2, the cubature rule (52) is similar to the Gauss-Lobatto cubature formula derived
in [25], where Xu et al study four types of functions CCk(t), SCk(t), CSk(t) and SSk(t) closely related to
the orbit functions over Weyl groups. Concretely, the functions CCk(t) and SSk(t) are given by

CCk(t) =
1
3

[
cos

π(k1 − k3)(t1 − t3)

3
cosπk2t2 + cos

π(k1 − k3)(t2 − t1)

3
cosπk2t3

+ cos
π(k1 − k3)(t3 − t2)

3
cosπk2t1

]
,

SSk(t) =
1
3

[
sin

π(k1 − k3)(t1 − t3)

3
sinπk2t2 + sin

π(k1 − k3)(t2 − t1)

3
sinπk2t3

+ sin
π(k1 − k3)(t3 − t2)

3
sinπk2t1

]
,

where the variable t is given by homogeneous coordinates, i.e.,

t = (t1, t2, t3) ∈ R3
H =

{
t ∈ R3

| t1 + t2 + t3 = 0
}

and parameter k = (k1, k2, k3) ∈ Z3
∩R3

H. It can be verified that the linear transformations of variable
and parameter

t1 = −a1 + 3a2 , t2 = 2a1 − 3a2 , t3 = −a1,

k1 = λ1 + λ2 , k2 = λ1 , k3 = −2λ1 − λ2
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give the connection with C-functions and S-functions of G2:

Cλ(x) =
12
hλ

CCk(t) , Sλ(x) = −12SSk(t) .

Example 3. The cubature formula (52) is the exact equality of a weighted integral of any polynomial
function of m-degree up to M with a weighted sum of finite number of polynomial values. It can be
used in numerical integration to approximate a weighted integral of any function by finite summing.

Similarly to Example 1, if we choose the function f (y1, y2) = K
1
2 (y1, y2) as our test function, then

we can estimate the integral of 1 over Ω∫
Ω

f (y1, y2)K−
1
2 (y1, y2) dy1 dy2 =

∫
Ω

1 dy1 dy2

by finite weighted sums with different M’s and compare the obtained results with the exact value
of the integral of 1 which is 128

15 = 8.5333̄. Table 3 shows the values of the finite weighted sums for
M = 10, 20, 30, 50, 100.

5. Polynomial Approximations

5.1. The Optimal Polynomial Approximation

Since the polynomial function (40) is continuous and strictly positive in Ω◦, its square root K−
1
2

can serve as a weight function for the weighted Hilbert space L2
K(Ω), i.e., a space of complex-valued

cosets of measurable functions f such that
∫

Ω | f |
2K−

1
2 < ∞with an inner product defined by

( f , g)K =
1

κ(2π)n

∫
Ω

f (y)g(y)K−
1
2 (y) dy. (53)

Our aim is to construct a suitable Hilbert basis of L2
K(Ω). Taking the inverse transforms of (28)

and (29) and substituting them into the polynomials (20) we obtain the polynomials pλ ∈ C[y1, . . . , yn]

such that

Cλ = pλ(X1, . . . , Xn). (54)

Moreover, successively applying Proposition 5 to perform the substitutions (29) in pλ and taking
into account (37) we obtain that

degm pλ = |λ|m. (55)

Calculating the scalar product (53) for the pλ polynomials (54), we obtain that the continuous
orthogonality of the C-functions (14) is inherited, i.e.,

(pλ, pλ′)K = h−1
λ δλ,λ′ , λ,λ′ ∈ P+. (56)

Assigning to any function f ∈ L2
K(Ω) a function f̃ ∈ L2(F) by the relation f̃ (x) = f (X(x)) and

taking into account the expansion (15) we obtain for its expansion coefficients cλ that

cλ =
hλ
|W||F|

∫
F

f̃ (x)Cλ(x) dx =
hλ

κ(2π)n

∫
Ω

f (y)pλ(y)K−
1
2 (y) dy. (57)

Therefore any f ∈ L2
K(Ω) can be expanded in terms of pλ,

f =
∑
λ∈P+

aλpλ , aλ = hλ ( f , pλ)K (58)
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and the set of C-polynomials pλ, λ ∈ P+ is a Hilbert basis of L2
K(Ω).

To construct a basis of the space of multivariate polynomials ΠM suffices to note that Equation (19)
guarantees that each monomial Zλ1

1 Zλ2
2 . . .Zλn

n can be expanded in terms of Cλ with λ ∈ P+
M; the same

can be said about the transformed monomials Xλ1
1 Xλ2

2 . . .Xλn
n . Thus by the same argument as above we

obtain for any p ∈ ΠM the expansion

p =
∑
λ∈P+

M

bλpλ , bλ = hλ (p, pλ)K. (59)

Truncating the series (58) to the finite set P+
M we obtain a polynomial approximation uM[ f ] ∈ ΠM

of the functions f ∈ L2
K(Ω),

uM[ f ] =
∑
λ∈P+

M

aλpλ , aλ = hλ ( f , pλ)K. (60)

Relative to the L2
K(Ω) norm is this approximation indeed optimal among all polynomials from

ΠM as states the following proposition.

Proposition 7. For any f ∈ L2
K(Ω) is the uM[ f ] polynomial (60) the best approximation of f , relative to the

L
2
K(Ω)-norm, by any polynomial from ΠM.

Proof. Consider any p ∈ ΠM a polynomial of the form (59), any f ∈ L2
K(Ω) expanded by (58) and

uM[ f ] an approximation polynomial (60). Then we calculate that

( f − p, f − p)K = ( f , f )K − ( f , p)K − (p, f )K + (p, p)K

= ( f , f )K −
∑
λ∈P+

M

h−1
λ aλbλ −

∑
λ∈P+

M

h−1
λ bλaλ +

∑
λ∈P+

M

h−1
λ |bλ|

2

= ( f − uM[ f ], f − uM[ f ])K +
∑
λ∈P+

M

h−1
λ |bλ − aλ|2 ≥ ( f − uM[ f ], f − uM[ f ])K .

�

5.2. The Cubature Polynomial Approximation

Rather than the optimal polynomial approximation (60) one may consider for practical applications
its weakened version. Such a weaker version is obtained by using the cubature formula for an
approximate calculation of ( f , pλ)K, i.e., we set

vM[ f ] =
∑
λ∈P+

M

aλpλ , aλ =
hλ

c|W|Mn

∑
y∈ΩM

ε̃(y) f (y)pλ(y). (61)

Since for f ∈ ΠM−1 and pλ, λ ∈ P+
M it holds that f pλ ∈ Π2M−1and the cubature formula is thus

valid, we obtain that the optimal approximation coincides with vM[ f ],

vM[ f ] = uM[ f ], f ∈ ΠM−1. (62)

Example 4. As a specific example of a continuous model function in the case C2, we consider

f (y1, y2) = e−(y2
1+(y2+1.8)2)/(2×0.352)

defined on Ω. The graph of f together with its approximations vM[ f ] for M = 10, 20, 30 is shown in
Figure 4.
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Figure 4. The figure shows the model function f and its approximations vM[ f ] for M = 10, 20, 30 on Ω
of C2.

Integral error estimates of the polynomial approximations vM[ f ]∫
Ω
| f (y1, y2) − vM[ f ](y1, y2)|

2K−
1
2 (y1, y2)dy1 dy2

can be found in Table 4.

Table 4. The table shows the values of integral error estimates of the polynomial approximations vM[ f ]
for M = 10, 20, 30.

M 10 20 30∫
Ω | f − vM[ f ]|2K−

1
2 dy1 dy2 0.0636842 0.0035217 0.0000636

6. Conclusions

• Due to the generality of the present construction of the cubature formulas, some of the cases
presented in this paper appeared already in the literature. The case A2 is closely related to
two-variable analogues of Jacobi polynomials on Steiner’s hypocycloid [26]; the case C2 is
related to two-variable analogues of Jacobi polynomials on a domain bounded by two lines
and a parabola [26–28] and the corresponding Gaussian cubature formulas induced by these
polynomials are studied for example in [10]. The case G2 and its cubature formulas are detailed
in [25].

• The Chebyshev polynomials of the first kind induce the cubature formula of the maximal
efficiency—Gauss-Chebyshev quadrature [5,29]. The nodes of this formula are M roots of the
Chebyshev polynomials of the first kind of degree M and it exactly evaluates a weighted integral
for any polynomial of degree at most 2M − 1. The set of nodes ΩM of A1 does not correspond
to the set of roots of the Gauss-Chebyshev quadrature—ΩM of A1 consists of M + 1 points and
includes two boundary points of the interval. Thus, the number of points ΩM exceeds by one the
minimum number of nodes and the resulting cubature formula is not optimal. This phenomenon,
already observed for the An sequence in [9], generalizes to all cases of Weyl groups. Even though
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the developed formulas are slightly less efficient than the optimal ones, they contain points on the
entire boundary of ΩM—this might be useful for some applications.

• The technique for construction of the cubature formulas in this article is based on discrete
orthogonality of C-functions over the set FM. For the case A1 the cosine transform corresponding
to the discrete orthogonality of cosines is standardly known as discrete cosine transform of the type
DCT-I [30]. The M roots of the Chebyshev polynomials of the first kind, which lead to the optimal
cubature formula, enter the discrete orthogonality relations of the type DCT-II. This indicates that
the discrete orthogonality relations of C-functions, which generalize the transforms of the type
DCT-II, DCT-III and DCT-IV for admissible cases of Weyl groups [31], might lead to cubature
formulas of higher efficiency.

• The weaker version of the polynomial approximation (60) assigns to any complex function
f : Ω→ C a polynomial functional series {uM[ f ]}∞M=1. Existence of conditions for convergence of

these functional series together with an estimate of the approximation error
∫ ∣∣∣ f − uM[ f ]

∣∣∣2 K−
1
2

poses an open problem.
• The Clenshaw-Curtis method for deriving cubature formulas is based on expressing a given

function into a series of the corresponding set of orthogonal polynomials and then integrating the
series term by term [32,33]. The coefficients in the series are calculated using discrete orthogonality
properties. The comparison of the resulting cubature formulas by the Clenshaw-Curtis technique
and the method used in the present paper and in [1,2] deserves further study.

• The polynomials of the orbit functions used in the present paper and in [1,2] to derive the cubature
formulas are directly related to the Jacobi polynomials associated to root systems as well as to the
Macdonald polynomials. The discrete orthogonality of the Macdonald polynomials with unitary
parameters, achieved in [34], opens a possibility of an extension of the current cubature formulas
to the corresponding subset of the Macdonald polynomials.
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Technical University in Prague. Jiří Hrivnák is also grateful for the hospitality extended to him at the Centre
de recherches mathématiques, Université de Montréal and gratefully acknowledge support by RVO68407700.
Lenka Motlochová would like to express her gratitude to the Department of Mathematics and Statistic at Université
de Montréal and the Institute de Sciences Mathématiques de Montréal.

Author Contributions: The contribution of the authors is essentially identical. All authors participated equally in
the development of the mathematical concepts and composition of the manuscript. The authors, identified in
alphabetical order, approve the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moody, R.V.; Motlochová, L.; Patera, J. Gaussian cubature arising from hybrid characters of simple Lie
groups. J. Fourier Anal. Appl. 2014, 20, 1257–1290.

2. Moody, R.V.; Patera, J. Cubature formulae for orthogonal polynomials in terms of elements of finite order of
compact simple Lie groups. Adv. Appl. Math. 2011, 47, 509–535.

3. Bourbaki, N. Groupes et algèbres de Lie. Chapitres IV, V, VI, 1st ed.; Hermann: Paris, France, 1968.
4. Klimyk, A.U.; Patera, J. Orbit functions. SIGMA 2014, 2, 60.
5. Rivlin, T.J. The Chebyshev Polynomials; Wiley: New York, NY, USA, 1974.
6. Moody, R.V.; Patera, J. Orthogonality within the families of C-, S-, and E-functions of any compact semisimple

Lie group. SIGMA 2006, 2, 14.
7. Hrivnák, J.; Patera, J. On discretization of tori of compact simple Lie groups. J. Phys. A Math. Theor. 2009,

42, 385208.
8. Cools, R. An encyclopaedia of cubature formulas. J. Complex. 2003, 19, 445–453.
9. Li, H.; Xu, Y. Discrete Fourier analysis on fundamental domain and simplex of Ad lattice in d-variables.

J. Fourier Anal. Appl. 2010, 16, 383–433.



Symmetry 2016, 8, 63 22 of 22

10. Schmid, H.J.; Xu, Y. On bivariate Gaussian cubature formulae. Proc. Am. Math. Soc. 1994, 122, 833–841.
11. Caliari, M.; de Marchi, S.; Vianello, M. Hyperinterpolation in the cube. Comput. Math. Appl. 2008, 55,

2490–2497.
12. Crivellini, A.; D’Alessandro, V.; Bassi, F. High-order discontinuous Galerkin solutions of three-dimensional

incompressible RANS equations. Comput. Fluids 2013, 81, 122–133.
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