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Abstract:



The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example) and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions) for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration) for a wide range of values of the model parameters.
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1. Introduction


Peritoneal dialysis is a life saving treatment for chronic patients with end stage renal disease [1]. The peritoneal cavity, an empty space that separates bowels, abdominal muscles and other organs in the abdominal cavity, is applied as a container for dialysis fluid, which is infused there through a permanent catheter and left in the cavity for a few hours. During this time small metabolites (urea, creatinine) and large molecules (e.g., albumin) diffuse from blood that perfuses the tissue layers close to the peritoneal cavity to the dialysis fluid, and finally are removed together with the drained fluid. The treatment cycle (infusion, dwell, drainage) is repeated several times every day. The peritoneal transport occurs between dialysis fluid in the peritoneal cavity and blood passing down the capillaries in the tissue surrounding the peritoneal cavity (see Figure 1, in which a symmetrical structure of the tissue with respect to the cavity is assumed). Typically, many solutes are transported from blood to dialyzate, but some solutes such as for example an osmotic agent (glucose), which is present in a high concentration in dialysis fluid, are transported in the opposite direction, i.e., to the blood.


Figure 1. A simplified scheme of fluid and solute transport in peritoneal dialysis.
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To the best of our knowledge, the first mathematical models for solute and fluid transport during peritoneal dialysis were proposed in the 1980s [2,3,4]. However, a rigorous mathematical description of fluid and solute transport between blood and dialysis fluid in the peritoneal cavity is still not formulated fully yet (in spite of the well-known basic physical laws for such transport) because of the complexity of the peritoneal transport. Recent mathematical and numerical studies introduced new concepts on peritoneal transport and yielded a better description of particular processes such as pure water transport, combined osmotic fluid flow and small solute transport, or water and proteins transport [5,6,7,8,9,10].



In [11], a new mathematical model for fluid and solute transport in peritoneal dialysis was constructed, which addresses the problem of a combined description of ultrafiltration to the peritoneal cavity, absorption of the osmotic agent (glucose) from the peritoneal cavity and the leakage of macromolecules (albumin) from the blood to the peritoneal cavity. The model is based on a three-component nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with the relevant boundary and initial conditions. Under some assumptions the model was simplified in order to obtain exact formulae for spatially non-uniform steady-state solutions. As the result, the exact formulae for the fluid fluxes from blood to the tissue and across the tissue are constructed. It should be stressed that the analytical results presented in [11] were derived for the simplest profiles of the fractional fluid void volume ν (i.e., the volume occupied by the fluid in the interstitium while the rest of the tissue being cells and macromolecules is not allowed for fluid transport), namely ν is either a constant or a linear function with respect to the space variable x.



Here we go essentially further. Because experimental data (see, e.g., [12]) show that the fractional fluid void volume depends on the hydrostatic pressure in a nonlinear way, one should assume nonlinear profiles for ν. Moreover, the transportation of macromolecules (albumin is a typical example) essentially differs from the water and glucose transportation because of their large size. Usually it is taken into account by introducing a constant coefficient α in order to show that only a part of the fractional fluid void volume is accessible for such macromolecules. To avoid such a simplification, we introduce so-called fractional albumin volume [image: there is no content], which (like ν) depends on the hydrostatic pressure; however, it is not assumed that [image: there is no content], as in previous studies [9,11].



In order to obtain some analytical formulae, we used some correctly-specified profiles [image: there is no content] and ν, taking into account that both functions should be convex upwards along the main part of tissue (or at least in a vicinity of the point [image: there is no content] where the most intensive transport occurs, see Figure 2). Thus, exponential profiles for these functions were used because they are much closer to the profiles arising in experimental data than those studied in [11]. Under the same assumptions as in [11], new exact formulae (involving hypergeometric functions) for the fluid fluxes from blood to the tissue and across the tissue are constructed.


Figure 2. Graph of the function [image: there is no content] (red curve) and graphs of the function [image: there is no content] for [image: there is no content] (green curve), [image: there is no content] (blue curve), [image: there is no content] (orange curve), and [image: there is no content] (black curve).
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Analytical results are supplemented by numerical simulations for finding the albumin concentration and the albumin clearance for the real experimental data. As a result, we have shown that the albumin concentration within the tissue essentially depends on the function representing the fractional albumin volume [image: there is no content].



The obtained analytical results are compared to those obtained in [11] and checked for their applicability for the description of transport during peritoneal dialysis. In particular, using numerical simulations we established how the exact solutions found under pure mathematical assumptions differ from numerical ones obtained without any additional assumptions. As a result, it is shown that the analytical formulae obtained can describe the fluid and solute transport (especially the rate of ultrafiltration) for a wide range of values of parameters arising in the model.



The paper is organized as follows. In Section 2, an extended mathematical model of glucose and albumin transport in peritoneal dialysis is presented. In Section 3, new non-uniform steady-state solutions of the model are constructed and their properties are investigated. In Section 4, these solutions are tested for the real parameters that were taken from the references devoted to clinical treatments of peritoneal dialysis. The results are compared to those derived via analytical formulae in [11] and with numerical simulations obtained in [5,9,10]. Finally, we present some conclusions in the last section.




2. Mathematical Model


Here we present an extended version of the model of fluid and solute transport in peritoneal dialysis derived previously in [11]. The model was developed in one spatial dimension with [image: there is no content] representing the boundary of the peritoneal cavity and [image: there is no content] representing the end of the tissue surrounding the peritoneal cavity (see Figure 1). The model assumes the symmetrical structure of the surrounding tissue with respect to the cavity and the homogenous spreading of the source within the whole tissue as an approximation to the discrete structure of blood and lymphatic capillaries. The model also assumes that solutes are transported only within the interstitial fluid. Here we extend the model in order to take into account the possible dependence of several parameters on the hydrostatic pressure.



The mathematical description of transport processes within the tissue is based on the conservation law expressing a local balance of fluid volume and solute mass. For incompressible fluid, the change of volume may occur only due to the elasticity of the tissue. The fractional fluid void volume, i.e., the volume occupied by the fluid in the interstitium expressed per unit volume of the whole tissue, is denoted by [image: there is no content], and its time evolution is described as:


[image: there is no content]



(1)




where [image: there is no content] is the volumetric fluid flux across the tissue (ultrafiltration), [image: there is no content] is the density of volumetric fluid flux from blood capillaries to the tissue, and [image: there is no content] is a known function, which depends on the hydrostatic pressure [image: there is no content] and is the density of volumetric fluid flux from the tissue to the lymphatic vessels. Typically the function [image: there is no content] is assumed to be linear [9] or a positive constant [11].



The equation that describes the local changes of glucose amount in the tissue, [image: there is no content], is:


[image: there is no content]



(2)




where [image: there is no content] is the glucose concentration in the tissue, [image: there is no content] is the glucose flux through the tissue, and [image: there is no content] is the density of the glucose flux from blood.



The equation that describes the local changes of albumin amount in the tissue, [image: there is no content], has the form:


[image: there is no content]



(3)




where [image: there is no content], [image: there is no content] and [image: there is no content] correspond to the albumin concentration, albumin flux through the tissue and albumin flux from blood, respectively. Here the function [image: there is no content] is introduced, which is called the fractional albumin volume. The function [image: there is no content] takes into account an obvious fact that only a part of the fractional fluid void volume ν is accessible for albumin because its molecular size is much larger than the glucose molecular size [7,9], so that [image: there is no content] for [image: there is no content]. Usually it is assumed that [image: there is no content] ([image: there is no content]). However, we believe that it is an essential simplification. In fact, by introducing the coefficient [image: there is no content], one simply assumes that, having any minimal [image: there is no content], a part of tissue is still accessible for such macromolecules. However, it is obvious that there exists a critical value of ν, for which only glucose and small metabolites are transported within tissue, while large molecules are completely blocked, i.e., [image: there is no content]. On the other hand, [image: there is no content] provided the fractional void volume is sufficiently large, i.e., [image: there is no content]. Thus, we replace [image: there is no content] by the function [image: there is no content].



In order to specify the fluxes arising in Equations (1)–(3), we assume that the osmotic pressure of glucose and the oncotic (this terminology is often used instead of “osmotic” for large proteins) pressure of albumin are described by the van’t Hoff law. Thus, the volumetric fluid flux across the tissue is generated by hydrostatic, osmotic and oncotic pressure gradients:


[image: there is no content]



(4)




where K is the hydraulic conductivity of the tissue that is assumed constant for simplicity(K may also depend on the pressure P), R is the gas constant, T is absolute temperature, and [image: there is no content] and [image: there is no content] are the Staverman reflection coefficients for glucose and albumin in the tissue, respectively. The density of fluid flux from blood to the tissue is generated, according to the Starling law, by the hydrostatic, osmotic and oncotic pressure differences between blood and tissue:


[image: there is no content]



(5)




where [image: there is no content] is the hydrostatic pressure, [image: there is no content] is the hydraulic conductance of the capillary wall, [image: there is no content] is the hydrostatic pressure of blood, [image: there is no content] and [image: there is no content] are the glucose and albumin concentrations in blood, and [image: there is no content] and [image: there is no content] are the Staverman reflection coefficients for glucose and albumin in the capillary wall, respectively.



The glucose flux across the tissue is composed of a diffusive component (proportional to the glucose concentration gradient) and a convective component (proportional to glucose concentration and fluid flux):


[image: there is no content]



(6)




where [image: there is no content] is the diffusivity of glucose in the tissue, [image: there is no content] is the sieving coefficients of glucose in the tissue [13].



The density of glucose flux between blood and the tissue consists of three components, namely a diffusive component (proportional to the difference of the glucose concentration in blood, [image: there is no content], and the glucose concentration in the tissue, [image: there is no content]), a convective component (proportional to the density of fluid flow from the blood to the tissue, [image: there is no content]) and a component that represents lymphatic absorption of solutes (proportional to the density of volumetric lymph flux, [image: there is no content]):


[image: there is no content]



(7)




where [image: there is no content] is the diffusive permeability of the capillary wall for glucose and [image: there is no content] is the sieving coefficients of glucose in the capillary wall.



In a similar way, the albumin flux across the tissue, [image: there is no content], and the density of albumin flux to the tissue, [image: there is no content], can be described as:


[image: there is no content]



(8)






[image: there is no content]



(9)




where [image: there is no content] and [image: there is no content] are the sieving coefficient of albumin in the tissue and in the capillary wall, respectively, [image: there is no content] is the diffusivity of albumin in the tissue, and [image: there is no content] is the diffusive permeability of the capillary wall for albumin.



Equations (1)–(3) together with Equations (4)–(9) for flows form a system of three nonlinear second-order partial differential equations with five variables: [image: there is no content] and [image: there is no content]. Therefore, two additional equations are needed in order to construct a well defined model. Using data from experimental studies (see for the details [8]), we can obtain a constitutive equation describing how the fractional fluid void volume ν depends on interstitial pressure, P. In the general case, this equation has the form:


[image: there is no content]



(10)




where F is a monotonically non-decreasing bounded function with the limits: [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content] (particularly, one may take Pmin=-∞,Pmax=∞). Here [image: there is no content] and [image: there is no content] are empirically measured constants. In the case of the fractional void volume for albumin [image: there is no content], we propose to use the similar formulae:


[image: there is no content]



(11)




where [image: there is no content] is another monotonically non-decreasing bounded function with the limits: [image: there is no content] if [image: there is no content] and [image: there is no content] if [image: there is no content]. Obviously [image: there is no content] and [image: there is no content].



Finally, boundary and initial conditions can be defined as follows. Since experimental data and theoretical studies suggest that intraperitoneal pressure [image: there is no content], glucose [image: there is no content] and albumin [image: there is no content] concentrations in the peritoneal cavity are constant for some time period (see for the details [8,9,10]), the constant Dirichlet conditions for the tissue layer in contact with the peritoneal cavity:


x=0:P=PD,CG=CGD,CA=CAD



(12)




can be taken. Boundary conditions on another boundary of the tissue layer of the width L are the zero flux conditions


x=L:∂P∂x=0,∂CG∂x=0,∂CA∂x=0.



(13)




i.e., the tissue is impermeable at [image: there is no content].



The initial conditions describe equilibrium within the tissue without any contact with dialysis fluid:


t=0:P=P*,CG=CG*,CA=CA*,



(14)




where P*,CG*, and [image: there is no content] are some non-negative values, which have been specified in [11].



Note that Equations (1)–(11) can be: united into three nonlinear partial differential equations (PDEs) for hydrostatic pressure [image: there is no content], glucose concentration [image: there is no content] and albumin concentration [image: there is no content]. Thus, these three PDEs together with boundary and initial Conditions (12)–(14) form a nonlinear boundary-value problem.




3. Non-Uniform Steady-State Solutions of the Model


The time needed to approach the steady state is of the order of minutes for small solutes, such as glucose. One increases for much larger solutes, especially for albumin. However, if we take into account that patients are on continuously repeated treatment and that there are a few exchanges of dialysis fluid per day, the transport system for large molecules after many exchanges is also close to the steady state (see more detailed discussion e.g., in [14]). Thus, the solutions for the steady state of the system should be considered as good approximations for real conditions in the tissue in this clinical setting.



Firstly, we note that there is a special steady state of the tissue in its physiological state without dialysis, and, therefore, no transport to the peritoneal cavity occurs. In this case, the boundary conditions at [image: there is no content] given by Equation (12) are replaced by zero Neumann conditions, and the steady-state solution can be easily found by solving the equations


qU-ql=0,qG=0,qA=0.



(15)







This is a system of algebraic equations and in order to solve one, we only need to specify the function [image: there is no content]. In the general case, one obtains the spatially uniform steady-state concentrations of glucose and albumin in the form:


[image: there is no content]



(16)




where the hydrostatic pressure is a solution of the transcendent equation:


[image: there is no content]



(17)







The equation can be explicitly solved for the simplest functions [image: there is no content] only. For example, a cubic equation is obtained in the case of the linear function [image: there is no content]; hence their roots can be derived. Notably, setting [image: there is no content], Equations (16)–(17) produce the constant steady-state


CG*=CGB,CA*=CAB,P*=PB,



(18)




which one expects to get without any mathematical modeling.



However, a constant steady-state solution cannot describe fluid and solute transport in peritoneal dialysis. Having in mind constructing non-uniform steady-state solutions, we transform the nonlinear boundary-value problem presented above to an equivalent form by introducing non-dimensional independent and dependent variables (except for ν and [image: there is no content], those are non-dimensional variables) of the form


x*=xL,t*=KPDtL2,



(19)






p(t*,x*)=PPD,u(t*,x*)=CG-CGBCGD-GGB,w(t*,x*)=CACGD-GGB.



(20)







Thus, after rather simple calculations and taking into account Equations (4), (6) and (8), one obtains Equations (1)–(3) in the form (hereafter upper index * is omitted):


[image: there is no content]



(21)






[image: there is no content]



(22)






∂(νAw)∂t=d2t0∂∂xνA∂w∂x+STA∂∂xwν∂p∂x-STAt0σ1∂∂xwν∂u∂x-STAt0σ2∂∂xwν∂w∂x+t0SAwqU-t0b2w-t0w0(b2-ql),



(23)




where


qU=β1t0(p0-p)+σGσ1σTGu+σAσ2σTA(w-w0),β=LpaL2K,σ1=σTGKRTCGD-GGBL2,σ2=σTAKRTCGD-GGBL2,d1=DGL2,d2=DAL2,b1=pGa+ql,b2=pAa+ql,u0=CGBCGD-GGB,w0=CABCGD-GGB,p0=PBPDt0=L2KPD,w*=w-w0,



(24)







Now we want to find the steady-state solutions of Equations (21)–(23) satisfying the boundary Conditions (12)–(13). They take the form:


x=0:p=1,u=1,w=CADCGD-GGB



(25)






x=1:∂p∂x=0,∂u∂x=0,∂w∂x=0.



(26)




for the non-dimensional variables. In order to find the steady-state solutions, Equations (21)–(23) should be reduced to the system of ordinary differential equations (ODEs):


[image: there is no content]



(27)






d1ddxνdudx+STGt0ddxuνdpdx-STGσ1ddxuνdudx-STGσ2ddxuνdwdx+(SGu+u0(SG-STG))qU-b1u-σTGu0ql=0,



(28)






d2ddxνAdwdx+STAt0ddx(w-w0)νdpdx-STAσ1ddx(w-w0)νdudx-STAσ2ddx(w-w0)νdwdx+(SAw-STAw0)qU-b2(w-w0)-σTAw0ql=0.



(29)







Unfortunately, the non-linear system of ODEs Equations (27)–(29) is still very complex and cannot be integrated in the case of arbitrary coefficients, i.e., it seems to be impossible to find non-uniform steady-state solutions. Thus, one may look for the correctly-specified coefficients, for which this system can be simplified. It was noted in [11] that the relations:


SA=STA,SG=STG



(30)




lead to an essential (this means that automatically σG=σTG,σA=σTA) simplification of this system. Using Assumption (30), one arrives at the semi-coupled system of ODEs:


[image: there is no content]



(31)






[image: there is no content]



(32)




to find the functions [image: there is no content] and [image: there is no content] provided the functions ν and [image: there is no content] are known. Since the functions [image: there is no content] and [image: there is no content] are expressed via p,u and w and its first-order derivatives, boundary Conditions (25)–(26) take the form:


x=0:qU=β1t0(p0-1)+σ1+σ2CAD-CABCGD-GGB



(33)






x=1:∂qU∂x=0,jU=0.



(34)







However ν and [image: there is no content] depend on the pressure [image: there is no content], which is also unknown function, and therefore we need to to use the function F from Formula (10). Since the function [image: there is no content] is decreasing (with respect to x!) provided [image: there is no content] is a spatially non-uniform steady-state solution, the function [image: there is no content] is also a decreasing function from [image: there is no content] till [image: there is no content]. Therefore, fixing an appropriate function [image: there is no content] and finding the function [image: there is no content] ([image: there is no content] is an inverse function to F), one obtains ODE (31) in the form:


[image: there is no content]



(35)







The simplest case occurs when [image: there is no content] and the function is the linear function of the form


ν(p(x))≡ν(x)=νmax-(νmax-νmin)x,x∈[0,1].



(36)







This case was examined in [11]. While the assumption about the constant density [image: there is no content] of flux from the tissue to the lymphatic vessels is quite reasonable, experimental data say that the function [image: there is no content] describing the fractional fluid void volume is more complicated. In particular, this function should be convex upwards (at least in a vicinity of the point [image: there is no content]). Here we consider exponential profiles for [image: there is no content] of the form:


[image: there is no content]



(37)




where


ν0=νmaxeα-νmineα-1,ν1=νmax-νmineα-1








in order to obtain [image: there is no content] and [image: there is no content] for [image: there is no content] and [image: there is no content] respectively. Obviously Formula (37) produces a wide range of profiles depending on values of the positive parameter α (see Figure 2).



Substituting (37) into (31), we obtain the linear second-order ODE with variable coefficients:


[image: there is no content]



(38)




where [image: there is no content].



Here we obtain two forms of its solutions in explicit form. The first one can be expressed via elementary functions while the second involves hypergeometric functions.



Let us construct the first one, which can be derived for a specific value of the parameter α only. In fact, a particular solution of Equation (38) has been found in the form [image: there is no content] provided α is the solution of the transcendental equation:


[image: there is no content]



(39)







In particular, using the parameter values presented in Table 1 (see Section 4), we have calculated that [image: there is no content]. Using this particular solution, we obtain the general solution:


[image: there is no content]



(40)




via the well-known formula.



Table 1. Parameters of the model used for numerical analysis of peritoneal transport. The values of parameters are taken from (Waniewski et al. 2007; Stachowska-Pietka et al. 2007); Cherniha et al. 2014).







	
Parameter Name

	
Parameter Symbol, Value and Unit






	
Minimal fractional void volume

	
[image: there is no content]




	
Maximal fractional void volume

	
[image: there is no content]




	
Staverman reflection coefficient for glucose

	
[image: there is no content] varies from 0 to [image: there is no content]




	
Sieving coefficient of glucose in tissue

	
[image: there is no content]




	
Staverman reflection coefficient for albumin

	
[image: there is no content] varies from [image: there is no content] to [image: there is no content]




	
Sieving coefficient of albumin in tissue

	
[image: there is no content]




	
Hydraulic permeability of tissue

	
[image: there is no content][image: there is no content]




	
Gas constant times temperature

	
[image: there is no content][image: there is no content]




	
Width of tissue layer

	
[image: there is no content][image: there is no content]




	
Hydraulic permeability of capillary wall

	
[image: there is no content]




	
times density of capillary surface area

	
[image: there is no content][image: there is no content]




	
Volumetric fluid flux to lymphatic vessels

	
[image: there is no content][image: there is no content]




	
Diffusivity of glucose in tissue divided by [image: there is no content]

	
[image: there is no content][image: there is no content]




	
Diffusivity of albumin in tissue divided by [image: there is no content]

	
[image: there is no content][image: there is no content]




	
Permeability of capillary wall for glucose

	
[image: there is no content]




	
times density of capillary surface area

	
[image: there is no content][image: there is no content]




	
Permeability of capillary wall for albumin

	
[image: there is no content]




	
times density of capillary surface area

	
[image: there is no content][image: there is no content]




	
Glucose concentration in blood

	
[image: there is no content][image: there is no content]




	
Albumin concentration in blood

	
[image: there is no content][image: there is no content]




	
Glucose concentration in dialysate

	
[image: there is no content][image: there is no content]




	
Albumin concentration in dialysate

	
[image: there is no content]




	
Hydrostatic pressure of blood

	
[image: there is no content][image: there is no content]




	
Hydrostatic pressure of dialysate

	
[image: there is no content] varies from 3 to 12 [image: there is no content]










Substituting (40) into (32), the fluid flux:


[image: there is no content]



(41)




has been calculated. The constants [image: there is no content] and [image: there is no content] can be specified using the boundary Conditions (33)–(34), namely:


c1=κq0-qlκ+ν0ln(νo-ν1)+ν1,c2=q0-qlκ+ν0ln(νo-ν1)+ν1,



(42)




where:


[image: there is no content]










[image: there is no content]











The exact solution of Equation (38) for an arbitrary value of the parameter α can be found as follows. The transformation (see e.g., [15]) [image: there is no content], [image: there is no content], where k is the root of the quadratic equation [image: there is no content], leads to the equation:


[image: there is no content]



(43)







The substitution [image: there is no content] leads to the hypergeometric equation:


[image: there is no content]



(44)







It is well-known that the general solution of Equation (44) has the form:


[image: there is no content]



(45)




where [image: there is no content] is the hypergeometric function. Turning back to the original notations, we obtain the following formula for the density of fluid flux from blood to the tissue:


qU=c1ekαxFk,k+1,2k+1;ν1ν0eαx+c2e-kαxF-k,-k+1,-2k+1;ν1ν0eαx+ql,



(46)




where [image: there is no content]



Substituting (46) into (32) and using the known properties of hypergeometric functions (see e.g., [16]), the fluid flux of the form:


jU=KνLpaL(c1(kαekαxF(k,k+1,2k+1;ν1ν0eαx)+ν1ν0k(k+1)2k+1αe(k+1)αxF(k+1,k+2,2k+2;ν1ν0eαx))+c2(-kαe-kαxF(-k,-k+1,-2k+1;ν1ν0eαx)+ν1ν0-k(-k+1)-2k+1αe(-k+1)αxF(-k+1,-k+2,-2k+2;ν1ν0eαx)))



(47)




is obtained. Hereafter, the following notations are used:


f1=F(k,k+1,2k+1;ν1ν0)f2=F(-k,-k+1,-2k+1;ν1ν0)f3=F(k,k+1,2k+1;ν1ν0eα)f4=F(k+1,k+2,2k+2;ν1ν0eα)f5=F(-k,-k+1,-2k+1;ν1ν0eα)f6=F(-k+1,-k+2,-2k+2;ν1ν0eα)



(48)






h1=kαe-kαxf3+ν1ν0k(-k+1)-2k+1αe(-k+1)αf4h2=kαekαxf5+ν1ν0k(k+1)2k+1αe(k+1)αf6



(49)







Unknown constants [image: there is no content] and [image: there is no content] can be specified using the boundary Conditions (33)–(34); hence the formulae:


c1=h1(q0-ql)h1f1+h2f2,c2=h2(q0-ql)h1f1+h2f2



(50)




were obtained.



Thus, we have found the formulae for [image: there is no content] and [image: there is no content], which present the exact solution of ODEs (26) and (32) and the boundary Conditions (33)–(34). In other words, the exact formulae for non-uniform steady-state solutions describing the fluid flux across the tissue, [image: there is no content], and the fluid flux from blood to the tissue, [image: there is no content], during peritoneal dialysis are constructed.



Having these formulae, the concentrations of glucose and albumin in the tissue can be found by solving linear second-order ODEs:


[image: there is no content]



(51)






[image: there is no content]



(52)




taking into account the boundary Conditions (25)–(26). Here the function [image: there is no content] should be prescribed according to (11) (see Section 5 for details); the functions [image: there is no content] and [image: there is no content] are defined by Formula (40) and (41). Note that Equations (51)–(52) can be easily constructed using ODEs (28)–(29), restrictions (30) and relations (31)–(32), i.e., these ODEs have the same structure for arbitrary given functions [image: there is no content] and [image: there is no content].



Finally, hydrostatic pressure [image: there is no content] is easily obtained provided the glucose concentration [image: there is no content] and the albumin concentration [image: there is no content] are known using the first Formula in (24).




4. Numerical Results and Their Application for Peritoneal Dialysis without the Albumin Transport


Here we present numerical results based on the formulae derived in Section 3. Our aims are to compare the results with those obtained earlier and to check whether they are applicable for describing the fluid-glucose-albumin transport in peritoneal dialysis. The parameters used in the formulae were mostly taken from [11] and are presented in Table 1.



In order to compare the numerical results obtained here with those for osmotic peritoneal transport derived earlier, in which albumin transport was not considered, we neglect the oncotic pressure as a driving fluid force across the tissue, i.e., we put the Staverman reflection coefficients for albumin [image: there is no content]. This means that the fluid flux across the tissue, [image: there is no content], and the fluid flux from blood to the tissue, [image: there is no content] (see Formulae (4) and (5)), do not depend on the albumin concentration, i.e., [image: there is no content]. Especially we pay attention to the fluid flux [image: there is no content] (ultrafiltration flow ), which describes the net exchange of fluid between the tissue and the peritoneal cavity across the peritoneal surface and therefore shows the efficiency of removal of water during peritoneal dialysis. The assessment of ultrafiltration flow is very important from a practical point of view because low values of this flow in some patients indicate that some problems with osmotic fluid removal have occurred, which may finally result in the failure of the therapy [17]. Note that the ultrafiltration flow values calculated below under restrictions [image: there is no content] will be larger than without this restriction (the sign of the last term in (4) is opposite to the previous one because oncotic and osmotic pressures act in the opposite directions).



Because of the unsolved problem of the values for Staverman reflection coefficients, which cannot be directly measured (see [18] for details), we concentrated on the coefficient [image: there is no content], namely to establish how peritoneal transport depends on values of [image: there is no content]. All of the other parameters were fixed and are listed in Table 1. However, taking into account that the hydrostatic pressure of dialyzate [image: there is no content] may essentially vary (depending on individual characteristics of patients), we have done also numerical simulations in order to estimate the impact of this parameter.



Having the function [image: there is no content] and the function [image: there is no content], the concentration of glucose u in the tissue can be found by numerically solving the linear ODE (51) , finally the hydrostatic pressure p is obtained using the first formula in (24).



The results are presented in Figure 3 (all of the curves presented in the paper were constructed using the package Maple 17). As one may note three different values of the Staverman reflection coefficient [image: there is no content] were used. Figure 3 presents the spatial distributions of the steady-state density of the fluid flux from blood to the tissue [image: there is no content] and the fluid flux across the tissue [image: there is no content], calculated using Formulae (46)–(50). Negative values of [image: there is no content] indicate that the net fluid flux occurs across the tissue towards the peritoneal cavity. Therefore it corresponds to the water removal by ultrafiltration. The monotonically decreasing (with the distance from the peritoneal surface) function [image: there is no content] and the monotonically increasing function [image: there is no content] are in agreement with the experimental data and previously obtained numerical results for the models that took into account only the glucose transport (see for the details [5,10] and the references cited therein).


Figure 3. The fluid fluxes from blood to tissue [image: there is no content] (in min-1) and across tissue [image: there is no content] (in min-1·cm) and the glucose concentration C (in mmol·mL-1) as functions of distance from peritoneal cavity x (in cm) for [image: there is no content], [image: there is no content] (red curve), [image: there is no content] (green curve), and [image: there is no content] (black curve). [image: there is no content] and [image: there is no content] mmHg.
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Moreover, we noted that the values of the fluxes [image: there is no content] and [image: there is no content] obtained here slightly differ from those obtained in [11] for the same parameters and the linear profile (36). In particular, using the value of the fluid flux [image: there is no content] at the point [image: there is no content], one may calculate the ultrafiltration flow. Total fluid outflow from the tissue to the cavity (ultrafiltration), calculated assuming that the surface area of the contact between dialysis fluid and peritoneum is equal to [image: there is no content] cm2 (a typical value for this surface [19]), is [image: there is no content], [image: there is no content] and [image: there is no content] mL/min for the the Staverman reflection coefficients [image: there is no content], [image: there is no content] and [image: there is no content], respectively. Thus, the ultrafiltration is about [image: there is no content] higher than the one obtained in [11]. Obviously, this difference is a consequence of the profile change for the fractional void volume (see Figure 2).



Figure 3 also presents the spatial distributions of the glucose concentration in the tissue (see the right picture) depending on the values of [image: there is no content]. The interstitial glucose concentration [image: there is no content] decreases rapidly with the distance from the peritoneal surface to the constant steady-state value of [image: there is no content] (see Formula (15) in [11]) independently of the [image: there is no content] values. This remains in agreement with the previous results obtained in [5,11].



Because the assumption about the equality of the reflection coefficients in the tissue and in the capillary wall, which demonstrates an interesting specific symmetry in the equations, can be too restrictive for practical applications of the derived formulae, one needs to provide some additional justification. As it follows from the biophysical interpretation of these coefficients, the inequality [image: there is no content] takes place instead of (30). Having this in mind, we have done numerical simulations in order to define a domain, in which the formulae obtained can be applied for the calculation of ultrafiltration during peritoneal dialysis. In order to define this domain we have calculated [image: there is no content] and [image: there is no content] using the values of parameters from Table 1, however without restrictions (30). The results are partly presented in Figure 4.


Figure 4. The phase planes, showing the regions in which the analytic and numerical solutions differ by less than [image: there is no content], for the hydrostatic pressures [image: there is no content][image: there is no content] (left); [image: there is no content][image: there is no content] (center) and [image: there is no content][image: there is no content] (right).
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The phase plane for the variables [image: there is no content] and [image: there is no content] pictured in Figure 4(left) shows the domain, in which the difference between ultrafiltration derived via Formulae (47)–(50) and one calculated without restrictions (30) by numerical simulations is less than [image: there is no content] (it was assumed that such exactness is reasonable for practical applications). The phase planes pictured in Figure 4(center, right) show how this domain depends on dialyzate pressures, which usually vary from 3 mmHg–12 mmHg. The phase plane in center shows the domain obtained for the dialyzate pressure [image: there is no content] mmHg, while the plane on the right presents the domain for the lowest admissible pressure [image: there is no content] mmHg. Thus, one may conclude that the assumption about the equality of the reflection coefficients in the tissue and in the capillary wall provides good approximation for the case of nonequal coefficients if their values are within the respective domains. However, depending on the values of the dialyzate pressure these domains can be either larger (for low pressures) or smaller (for high pressures).




5. Numerical Results and Their Application for Peritoneal Dialysis


Here we present numerical results based on the formulae derived in Section 3 under the condition that the albumin transport plays an important role in the transport process between the tissue and the peritoneal cavity. Our aims are to estimate the role the fractional albumin volume [image: there is no content] in this process (when the stationary phase occurs i.e., the steady-state solutions describe the fluid-solute transport) and to compare the results obtained with some experimental data. In order to do this, we fix the following large value of the Staverman reflection coefficients for albumin: [image: there is no content].



As was explained in Section 2, we assume that the function [image: there is no content] depends on the space variable x in a more complicated way than it is usually assumed, i.e., [image: there is no content] ([image: there is no content]) [9,11]. Here we take:


[image: there is no content]



(53)




where:


νA0=νAmaxeαA-νAmineαA-1,νA1=νAmax-νAmineαA-1








in order to obtain [image: there is no content] and [image: there is no content] for [image: there is no content] and [image: there is no content], respectively. The fractional fluid void volume [image: there is no content] is still assumed of the form (37). In the numerical results presented here, we take [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. This means that a critical value of ν, for which only glucose and small metabolites are transported within tissue, while large molecules are completely blocked, is close to [image: there is no content], while the fractional void volume [image: there is no content] is sufficiently large in order to allow the albumin transport in the same way as small metabolites are transported.



We remind the reader that the standard assumption is [image: there is no content] ([image: there is no content]). Now we want to show that the results obtained for two different ways of the function [image: there is no content] prescription can be essentially different.



First of all, we need to specify the constant γ, because the coefficients arising in (53) are already given. Taking into account that the formulae for [image: there is no content] and ν reflect the tissue elasticity (during peritoneal transport), the part of the whole tissue allowing the albumin transportation should be a fixed number, hence [image: there is no content]. Thus, using Formulae (37) and (53), the correctly-specified value γ should be calculated as follows:


γ=I1I2,I1=∫0LνA(x)dx,I2=∫0Lν(x)dx,



(54)




and, as a result, one obtains [image: there is no content]. The graphs of the functions given by Formulae (37), (53) and [image: there is no content] is presented in Figure 5. All of the other parameters were fixed and are listed in Table 1.


Figure 5. Graphs of the functions [image: there is no content] (brown curve), [image: there is no content] (green curve) and [image: there is no content] (red curve).
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Because of the reasons explained in Section 4, we concentrated on different values of the coefficient [image: there is no content]. Namely, we want to establish how the albumin concentration and the albumin clearance from the tissue depend on the values of [image: there is no content] and the profile of [image: there is no content]. It should be noted that the fluid flux from blood to the tissue [image: there is no content] and the fluid flux across the tissue [image: there is no content] do not depend on the albumin transport parameters (see Formulae (40)–(41)); hence these fluxes can be still found in the same way as above (see Section 4).



Figure 6 presents the spatial distributions of the albumin concentration in the tissue depending on the values of [image: there is no content]. These curves were obtained by the numerical simulation of ODE (52) with the boundary Conditions (25)–(26). The interstitial albumin concentration [image: there is no content] increases rapidly with the distance from the peritoneal surface to the constant steady-state value of [image: there is no content] (see Formula (15) in [11]). One easily notes that the albumin concentration is essentially smaller in the case of [image: there is no content] (53) than in the case [image: there is no content], provided the values of [image: there is no content] are small. This essential difference occurs in the tissue layer, which has the width [image: there is no content][image: there is no content] (depending on the [image: there is no content] value). However, both profiles of the albumin concentration practically coincide for large values of [image: there is no content]. Analogous simulations have been done for a wide range of parameters arising in Formulae (37), (53) and (54), and the results were similar. Thus, we conclude that the fractional albumin volume [image: there is no content] cannot be assumed as a linear function of ν (at least for small values of the Staverman reflection coefficients for glucose and large ones for albumin).


Figure 6. The albumin concentration [image: there is no content] (in [image: there is no content]) as a function of distance from the peritoneal cavity x (in [image: there is no content]) for [image: there is no content](green curves) and [image: there is no content] (red curves) in the cases [image: there is no content] (left), [image: there is no content](center) and [image: there is no content](right). [image: there is no content] and [image: there is no content][image: there is no content].
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The albumin clearance is an important characteristic of dialysis and the rate of the albumin clearance is defined by the albumin flux across the tissue, [image: there is no content]. This rate can be calculated in a similar way to the total fluid outflow (ultrafiltration), and


ClA=5·103|jA(0)|CAB,[ClA]=mL/min








where [image: there is no content][image: there is no content] is the surface area of the contact between dialysis fluid and peritoneum [9], and the function [image: there is no content] is defined by (8) and is negative (similarly to [image: there is no content]) at a vicinity of point [image: there is no content] (the albumin concentration [image: there is no content] and the fluid flux [image: there is no content] are already known).



The albumin clearance rates [image: there is no content] and the ultrafiltration rates [image: there is no content] for different values of the coefficient [image: there is no content] are presented in Table 2. As it is well-known from experimental data [image: there is no content], so that the results are plausible. Moreover, the albumin clearance rates [image: there is no content] are growing when the coefficient [image: there is no content] is increasing, and this again corresponds to the experimental data. However, one notes that the values of [image: there is no content] are too high comparing to some experimental data [20], in which the rates [image: there is no content][image: there is no content] were measured. We assume that there are two main reasons leading to the above contradiction: (i) the fractional albumin volume [image: there is no content] can be essentially smaller than the one presented in Figure 5; (ii) the mathematical assumption(30) is too restrictive. In order to examine these reasons, one needs to do many numerical simulations and to provide a detailed analysis of the results obtained. We plan to do this in a forthcoming paper.



Table 2. The albumin clearance and ultrafiltration in peritoneal dialysis. All of the values of the parameters are taken from Table 1 and [image: there is no content].







	
Staverman Reflection

	
Ultrafiltration

	
Albumin




	
Coefficients [image: there is no content]

	
[image: there is no content]

	
Clearance [image: there is no content]






	
0.001

	
[image: there is no content][image: there is no content]

	
[image: there is no content][image: there is no content]




	
0.002

	
[image: there is no content][image: there is no content]

	
[image: there is no content][image: there is no content]




	
0.003

	
[image: there is no content][image: there is no content]

	
[image: there is no content][image: there is no content]




	
0.005

	
[image: there is no content][image: there is no content]

	
[image: there is no content][image: there is no content]




	
0.010

	
[image: there is no content][image: there is no content]

	
[image: there is no content][image: there is no content]




	
0.015

	
[image: there is no content][image: there is no content]

	
[image: there is no content][image: there is no content]











6. Conclusions


In this paper, the mathematical model for fluid transport in peritoneal dialysis, which was proposed in [11], was further studied and generalized. The model is based on a three-component nonlinear system of two-dimensional partial differential equations and the relevant boundary and initial conditions.



In order to show that the transportation of macromolecules (albumin is a typical example) essentially differs from the water and glucose transportation because of their large size we have introduced a new notion, fractional albumin volume [image: there is no content], which (like ν) depends on the hydrostatic pressure P; however, it is not assumed that [image: there is no content], as in previous studies. It should be noted that such a generalization means that so called effective diffusivities [image: there is no content] and [image: there is no content] are some independent functions of the hydrostatic pressure (generally speaking, the diffusivities [image: there is no content] and [image: there is no content] can also be some functions of the pressure P).



To find non-uniform steady-state solutions, the model was reduced to the boundary-value problem for a non-linear ODE system. It turns out that the system obtained can be essentially simplified under assumptions (30) about the equality of the Staverman reflection coefficients in the tissue and in the capillary wall, which demonstrates an interesting specific symmetry in the governing equations of the model. In order to obtain exact solutions in an explicit form, the exponential profiles for the fractional fluid void volume were used, which are much closer to the profiles arising in experimental data than the linear profiles used in [11]. As a result, the exact formulae (involving both elementary and hypergeometric functions) for the density of fluid flux from blood to the tissue and the fluid flux across the tissue were constructed.



New analytical results are compared to those obtained earlier and checked for their applicability for the description of transport during peritoneal dialysis. In Section 4, we have done this assuming the water and glucose transport and neglecting the albumin transport. In particular, we have shown that values of ultrafiltration calculated using new formulae are higher than those obtained earlier (for the same parameters but for linear profiles for the fractional fluid void volume ν); therefore they seem to be more plausible. However, one cannot directly compare these ultrafiltration values with experimental data because the Staverman reflection coefficients cannot be directly measured.



Using numerical simulations we established how the exact solutions found under pure mathematical assumption (about the equality of the Staverman reflection coefficients) differ from those numerically constructed without this assumption. In particular, we have shown that the assumption about this equality leads to the correct values of ultrafiltration provided these coefficients belong to a correctly-specified domain. Moreover, it was proven that the size of the domain essentially depends on the values of dialyzate pressure. Thus, the exact solutions obtained can be applied for a wide range of parameters arising in experimental data for peritoneal transport.



In Section 5, the albumin transport was taken into account using very high values of the Staverman reflection coefficients for albumin. This means that the albumin transport is an important component in solute transport. We have shown that the albumin concentration profiles are essentially different if one calculates those by a standard way, i.e., assuming that [image: there is no content] ([image: there is no content]), and by the introduction of the notion of the fractional albumin volume, i.e., the function [image: there is no content] does not depend linearly on ν, but is defined by the Formula (11). The relevant simulations have been done for different values of the Staverman reflection coefficients. As a result, one may claim that the above mentioned profiles coincide only for large values of [image: there is no content].



We have also calculated the albumin clearance [image: there is no content] and the ultrafiltration rates [image: there is no content] (two very important characteristics of the peritoneal dialysis) in order to estimate the applicability of the results. The results obtained are qualitatively plausible, however quantitative rates of the albumin clearance are essentially higher than those arising in experimental studies. We aim to study possible reasons elsewhere.







Acknowledgments


This research was conducted within the project `Information technologies: Research and their interdisciplinary applications’ (funded by the Operational Programme Human Capital, EU), which provided financial support to the first author. R.C. also thanks the Department of Mathematical Modelling of Physiological Processes, Institute of Biocybernetics and Biomedical Engineering for hospitality.




Author Contributions


J.W. wrote Section 1; J.W and R.C. created the mathematical model (Section 2); R.C. and K.G. constructed steady-state solutions (Section 3) and provided the numerical results presented in Section 4; J.W and R.C. carried out numerical simulations for peritoneal transport with albumin and wrote conclusions (Section 5 and Section 6).




Conflicts of Interest


The authors declare no conflict of interest.




References


	1. 
Gokal, R.; Nolph, K.D. The Textbook of Peritoneal Dialysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. [Google Scholar]

	2. 
Flessner, M.F.; Dedrick, R.L.; Schultz, J.S. A distributed model of peritoneal-plasma transport: theoretical considerations. Am. J. Physiol. 1984, 246, R597–R607. [Google Scholar] [PubMed]

	3. 
Flessner, M.F.; Fenstermacher, J.D.; Dedrick, R.L.; Blasberg, R.G. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am. J. Physiol. 1985, 248, F425–F435. [Google Scholar] [PubMed]

	4. 
Seames, E.L.; Moncrief, J.W.; Popovich, R.P. A distributed model of fluid and mass transfer in peritoneal dialysis. Am. J. Physiol. 1990, 258, R958–R972. [Google Scholar] [PubMed]

	5. 
Cherniha, R.; Dutka, V.; Stachowska-Pietka, J.; Waniewski, J. Fluid Transport in Peritoneal Dialysis: A Mathematical Modeland Numerical Solutions. In Mathematical Modeling of Biological Systems, Volume I: Cellular Biophysics, Regulatory Networks, Development, Biomedicine, and Data Analysis; Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H., Eds.; Birkhäuser Boston: Boston, MA, USA, 2007; pp. 281–288. [Google Scholar]

	6. 
Cherniha, R.; Waniewski, J. Exact solutions of a mathematical model for fluid transport in peritoneal dialysis. Ukr. Math. J. 2005, 57, 1112–1119. [Google Scholar] [CrossRef]

	7. 
Flessner, M.F. Transport of protein in the abdominal wall during intraperitoneal therapy. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G424–G437. [Google Scholar] [PubMed]

	8. 
Stachowska-Pietka, J.; Waniewski, J.; Flessner, M.F.; Lindholm, B. Distributed model of peritoneal fluid absorption. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H1862–H1874. [Google Scholar] [CrossRef] [PubMed]

	9. 
Stachowska-Pietka, J.; Waniewski, J.; Flessner, M.F.; Lindholm, B. A distributed model of bidirectional protein transport during peritoneal fluid absorption. Adv. Perit. Dial. 2007, 23, 23–27. [Google Scholar] [PubMed]

	10. 
Waniewski, J.; Dutka, V.; Stachowska-Pietka, J.; Cherniha, R. Distributed modeling of glucose-induced osmotic flow. Adv. Perit. Dial. 2007, 23, 2–6. [Google Scholar] [PubMed]

	11. 
Cherniha, R.; Stachowska-Pietka, J.; Waniewski, J. A mathematical model for fluid-glucose-albumin transport in peritoneal dialysis. Int. J. Appl. Math. Comput. Sci. 2014, 24, 837–851. [Google Scholar] [CrossRef]

	12. 
Zakaria, E.R.; Lofthouse, J.; Flessner, M.F. In vivo effects of hydrostatic pressure on interstitium of abdominal wall muscle. Am. J. Physiol. 1999, 276, H517–H529. [Google Scholar] [PubMed]

	13. 
Katchalsky, A.; Curran, P.F. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, MA, USA, 1965. [Google Scholar]

	14. 
Waniewski, J. Mean transit time and mean residence time for linear diffusion-convection-reaction transport system. Comput. Math. Methods Med. 2007, 8, 37–49. [Google Scholar] [CrossRef]

	15. 
Polyanin, A.D.; Zaitsev, V.F. Handbook of Exact Solutions for Ordinary Differential Equations, 2nd ed.; Chapman and Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]

	16. 
Seaborn, J.B. Hypergeometric Functions and their Applications; Springer-Verlag: New York, NY, USA, 1991. [Google Scholar]

	17. 
Parikova, A.; W. Smit, D.G.S.; Krediet, R.T. Analysis of fluid transport pathways and their determinants in peritoneal dialysis patients with ultrafiltration failure. Kidney Int 2006, 70, 1988–1994. [Google Scholar] [CrossRef] [PubMed]

	18. 
Waniewski, J. Peritoneal fluid transport: mechanisms, pathways, methods of assessment. Arch. Med. Res. 2013, 44, 576–583. [Google Scholar] [CrossRef] [PubMed]

	19. 
Chagnac, A.; Herskovitz, P.; Ori, Y.; Weinstein, T.; Hirsh, J.; Katz, M.; Gafter, U. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. Journal of the American Society of Nephrology 2002, 13, 2554–2559. [Google Scholar] [CrossRef] [PubMed]

	20. 
Waniewski, J.; Wang, T.; Heimburger, O.; Werynski, A.; Lindholm, B. Discriminative impact of ultrafiltration on peritoneal protein transport. Perit. Dial. Int. 2000, 20, 39–46. [Google Scholar] [PubMed]























© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).







media/file4.png
0.357
0.30-5
0.25'5
0.20-5
0.15-3
0.10—5

0.05






nav.xhtml


  symmetry-08-00050


  
    		
      symmetry-08-00050
    


  




  





media/file5.png
0003

00002

00003

00002






media/file3.png
oo oo 000t
o

0005

0006

000z

003 006 oos 0006
o

oo oo0s
o

0004

0005





media/file0.png
T
Peritoneal I Tissue

cavity with 1 .@: ..w. ®| cu
dialysate | @% Col
g o ® ..O Blood capillary

1® A
sPL?:fl:z:zeal st :...O.% Interstitium
= 1 Oe'000s8C00e






media/file1.png
v(x)

0.34

0.32

0.30

0.26 |

0.24 |

0.22






media/file2.png
1000j,(x)

-0

010





media/file6.png





