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Abstract:

 This paper defines the multivariate Krawtchouk polynomials, orthogonal on the multinomial distribution, and summarizes their properties as a review. The multivariate Krawtchouk polynomials are symmetric functions of orthogonal sets of functions defined on each of N multinomial trials. The dual multivariate Krawtchouk polynomials, which also have a polynomial structure, are seen to occur naturally as spectral orthogonal polynomials in a Karlin and McGregor spectral representation of transition functions in a composition birth and death process. In this Markov composition process in continuous time, there are N independent and identically distributed birth and death processes each with support [image: there is no content]. The state space in the composition process is the number of processes in the different states [image: there is no content]. Dealing with the spectral representation requires new extensions of the multivariate Krawtchouk polynomials to orthogonal polynomials on a multinomial distribution with a countable infinity of states.
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1. Introduction


Griffiths [1] and Diaconis and Griffiths [2] construct multivariate Krawtchouk polynomials orthogonal on the multinomial distribution and study their properties. Recent representations and derivations of the orthogonality of these polynomials are in [3,4,5,6].



The authors emphasise different approaches to the multivariate orthogonal polynomials. The approach of Diaconis and Griffiths [2] is probabilistic and directed to Markov chain applications; the approach of Iliev [5] is via Lie groups; and the physics approach of Genest et al. [3] is as matrix elements of group representations on oscillator states. Xu [7] studies discrete multivariate orthogonal polynomials, which have a triangular construction of products of one-dimensional orthogonal polynomials. They are particular cases of the polynomials in this paper; see Diaconis and Griffiths [2]. These polynomials extend the Krawtchouk polynomials on the binomial distribution to a general class of multi-dimensional orthogonal polynomials on the multinomial distribution. They appear naturally in composition Markov chains as eigenfunctions in a diagonal expansion of the transition functions. There are many interesting examples of these Markov chains in Zhou and Lange [8]. Binomial and multinomial random variables can be constructed as a sum of independent and identically distributed random variables, which are indicator functions of the events that occur on each of N trials. The Krawtchouk and multivariate Krawtchouk polynomials are symmetric functions of orthogonal functions sets on each of the trials. The simplest case is the Krawtchouk polynomials where the representation is explained in Section 2. In the multivariate Krawtchouk polynomials, there is not a unique orthogonal function set on trials with multiple outcomes greater than two, so the polynomials depend on which orthogonal function set is taken for a basis on the trials.



A well-known spectral expansion by Karlin and McGregor [9,10,11] for the transition functions [image: there is no content] of a birth and death process with rates [image: there is no content], [image: there is no content] is that:


pij(t)=πj∫0∞e-ztQi(z)Qj(z)ψ(dz),i,j=0,1,…



(1)




where [image: there is no content] are orthogonal polynomials on the spectral measure ψ, which is a probability measure, and:


πj=λ0⋯λj-1μ1⋯μj,j=1,2,…



(2)







A number of classical birth and death processes have a spectral expansion where the orthogonal polynomials are constructed from the Meixner class. This class has a generating function of the form:


[image: there is no content]



(3)




where [image: there is no content] is a power series in t with [image: there is no content] and [image: there is no content] is a power series with [image: there is no content] and [image: there is no content]. Meixner [12] characterizes the class of weight functions and orthogonal polynomials with the generating function Equation (3). They include the Krawtchouk polynomials, Poisson–Charlier polynomials, scaled Meixner polynomials and Laguerre polynomials (the Meixner orthogonal polynomials are a specific set belonging to the Meixner class with a name in common). A general reference to these orthogonal polynomials is Ismail [13].



In this paper, the spectral expansion is extended to composition birth and death processes, where there are N independent and identically distributed birth and death processes operating and [image: there is no content] is such that the i-th element [image: there is no content] counts the number of processes in state i at time t. In the analogue of Equation (1), the spectral polynomials are the dual multivariate Krawtchouk polynomials. The dual polynomial system is therefore very important, and attention is paid to describing it.



There are extensions of the multivariate Krawtchouk polynomials to multivariate orthogonal polynomials on the multivariate Meixner distribution and multivariate product Poisson distribution, where they occur as eigenfunctions of multi-type birth and death processes [14].



This paper defines the multivariate Krawtchouk polynomials, summarizes their properties, then considers how they are found in spectral expansions of composition birth and death processes. It is partly a review of these polynomials and is self-contained. For a fuller treatment, see Diaconis and Griffiths [15]. The polynomials are naturally defined by a generating function, and so, generating function techniques are used extensively in the paper. Probabilistic notation is used, particularly the expectation operator [image: there is no content], which is a linear operator acting on functions of random variables, which take discrete values in this paper. If [image: there is no content] are random variables, then:


[image: there is no content]



(4)







Often, orthogonal polynomials are regarded as random variables. For example, [image: there is no content] are the one-dimensional Krawtchouk polynomials as random variables and:


EKn(X;N,p)Km(X;N,p)=∑x=0NKn(x;N,p)Km(x;N,p)NxpxqN-x=δmnn!2Nn(pq)n,m,n=0,1,…,N



(5)




where [image: there is no content]. A convention of using capital letters for random variables and lower case for values that they take is used, except when the random variables are denoted by Greek letters, when they have to be considered in context.



Section 2, Theorem 1, shows how the Krawtchouk polynomials can be expressed as elementary symmetric functions of N Bernoulli trials, centred at their mean p. The Meixner orthogonal polynomials on the geometric distribution are also expressed as functions of an infinity of centred Bernoulli trials in Theorem 2. There is some, but not total symmetry in this expression. Krawtchouk polynomials occur naturally as eigenfunctions in Ehrenfest urn processes, and the eigenfunction expansion of their transition functions is explained in Section 2.3. Section 3 introduces the multivariate Krawtchouk polynomials, explaining how they are constructed in a symmetric way from a product set of orthogonal functions on N independent multinomial trials. The dual orthogonal system is described and a scaling found, so that they are multivariate Krawtchouk polynomials on a different multinomial distribution in Theorem 3. The polynomial structure of the multivariate Krawtchouk polynomials is described in Theorem 4 and the structure in the dual system in Theorem 5. Recurrence relationships are found for the system in Theorem 6 and for the dual system in Theorem 7. The dual recurrence relationship is used to identify the polynomials as eigenfunctions in a d-type Ehrenfest urn in Theorem 8. In Section 3.2, a new extension is made to multivariate Krawtchouk polynomials where there are an infinite number of possibilities in each multinomial trial. These polynomials occur naturally as eigenfunctions in composition birth and death processes in a Karlin and McGregor spectral expansion in Theorem 9. Theorem 10 considers the polynomial structure of the dual polynomials in the spectral expansion. Theorem 11 gives an interesting identity for these spectral polynomials in composition birth and death processes when the spectral polynomials in the individual processes belong to the Meixner class.




2. Bernoulli Trials and Orthogonal Polynomials


The paper begins with expressing the one-dimensional Krawtchouk polynomials as symmetric functions of Bernoulli trials. The multivariate Krawtchouk polynomials are extensions of this construction in higher dimensions.



2.1. Krawtchouk Orthogonal Polynomials


The Krawtchouk orthogonal polynomials [image: there is no content] are orthogonal on the binomial [image: there is no content] distribution:


NxpxqN-x,x=0,1,…,N



(6)







They have a generating function:


[image: there is no content]



(7)







The scaling is such that the polynomials [image: there is no content] are monic and:


EKn(X;N,p)2=∑x=0NNxpxqN-xKn(x;N,p)2=n!2Nn(pq)n



(8)







If the Krawtchouk polynomials are scaled to be [image: there is no content], so that [image: there is no content], then there is a duality that [image: there is no content]. A binomial random variable X counts the number of successes in N independent trials, each with a probability p of success. Let [image: there is no content] if the i-th trial is a success and [image: there is no content] otherwise. Then, [image: there is no content] is a sequence of Bernoulli trials with [image: there is no content], [image: there is no content], and [image: there is no content]. It is interesting to express the Krawtchouk polynomials as symmetric functions of [image: there is no content]. If there is just one trial with [image: there is no content], [image: there is no content], and the orthogonal polynomial set on X is [image: there is no content]. There can only be a constant function and a linear function if there are just two values that [image: there is no content] can take. A product set of orthogonal functions on [image: there is no content] is [image: there is no content], and we want to form a smaller basis from these functions to orthogonal polynomials in [image: there is no content].



Theorem 1. 

The Krawtchouk polynomials are proportional to the elementary symmetric functions of [image: there is no content];


[image: there is no content]



(9)




where [image: there is no content] is the symmetric group on [image: there is no content].





Proof. 

A generating function for the symmetric functions on the right of Equation (9) is:


[image: there is no content]



(10)









If x of the [image: there is no content] are one and [image: there is no content] are zero, then Equation (10) is equal to:


[image: there is no content]



(11)




identical to the right side of Equation (7). Therefore, Equation (9) holds since the generating functions of both sides, regarding X as a random variable, are the same. ☐



The representation Equation (9) of the Krawtchouk polynomials appears with a full treatment in Diaconis and Griffiths [15] and very briefly as the generating function proof above in Griffiths [1]. The author is not aware of any other appearances of Equation (9).




2.2. Meixner Polynomials on the Geometric Distribution


The Meixner orthogonal polynomials on the geometric distribution are orthogonal on:


pqx,x=0,1,…



(12)







Let [image: there is no content] be a sequence of Bernoulli trials. Let X count the number of trials [image: there is no content] before the first trial where [image: there is no content]. That is [image: there is no content]X is clearly not a symmetric function of [image: there is no content]. The orthogonal polynomials on the geometric distribution are a special case of the general Meixner polynomials and have a generating function:


[image: there is no content]



(13)







A product set of orthogonal functions on the trials is:


[image: there is no content]



(14)







It is of interest to express the orthogonal polynomial set [image: there is no content] as a series expansion in the product set Equation (14) as a comparison of what happens with the Krawtchouk polynomials. A calculation is now made of [image: there is no content] leading to coefficients in the expansion of the Meixner polynomials in the product set of orthogonal functions. Given [image: there is no content], it must be that [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are distributed as Bernoulli trials. Therefore:


E(ξi1-p)⋯(ξir-p)∣X=x=0ifir≥x+2,q(-p)r-1ifir=x+1,(-p)rifir≤x.



(15)







Taking an expectation conditional on X, then over X,


E[(ξi1-p)⋯(ξir-p)G(z;X)]=q(-p)r-1G(z;ir-1)pqir-1+∑j=ir∞(-p)rG(z;j)pqj=(-1)r-1prqirzG(z;ir-1)



(16)







Simplification to the last line is straightforward, so it is omitted. Considering the coefficients of [image: there is no content] in Equation (16) and using Theorem 1 gives the following theorem.



Theorem 2. 

Let [image: there is no content] be a sequence of Bernoulli [image: there is no content] trials and [image: there is no content]. Then, X has a geometric distribution, and the Meixner polynomials on this geometric distribution have a representation for [image: there is no content] of:


Mn(X;1,q)=∑r=1∞∑i1<⋯<ir(ξi1-p)⋯(ξir-p)(-1)r-1qir-rMn-1(ir-1;1,q)=∑r=1∞∑l=r∞1(r-1)!Kr-1(Xl;l,p)(ξl-p)(-1)r-1ql-rMn-1(l-1;1,q)



(17)




where [image: there is no content].






2.3. An Ehrenfest urn


The Krawtchouk polynomials appear naturally as eigenfunctions in an Ehrenfest urn model. This is explored in Diaconis and Griffiths [15]. An urn has N balls coloured red or blue. Transitions occur at rate one when a ball is chosen at random, and the colour of the ball is changed according to a transition matrix:


[image: there is no content]



(18)




where [image: there is no content], [image: there is no content] and [image: there is no content]. Let [image: there is no content] be the number of red balls in the urn at time t. That is, if a blue ball is chosen, it is changed to red with probability one, whereas if a red ball is chosen, it is changed to blue with probability [image: there is no content]. [image: there is no content] is a reversible Markov process, which is a birth and death process, with a Binomial [image: there is no content] stationary distribution.



The process is a composition Markov process in the following sense. Label the balls [image: there is no content] at time [image: there is no content] and keep the labels over time as their colours change. Let [image: there is no content] describe the colour of ball i at time t: [image: there is no content] if the i-th ball is red or zero if the ball is blue. The processes [image: there is no content], [image: there is no content] are independent; each has a rate of events [image: there is no content] when the specified ball is chosen; and [image: there is no content]. Denote [image: there is no content], for [image: there is no content]. Standard Markov process theory gives that:


[image: there is no content]



(19)




where [image: there is no content]. It is immediate that the stationary distribution of each of the labelled processes is [image: there is no content]. An eigenvalue-eigenfunction expansion of [image: there is no content] is:


[image: there is no content]



(20)




where [image: there is no content] is the stationary distribution with [image: there is no content], [image: there is no content]. It is straightforward to check the agreement with [image: there is no content] by substituting the four values of [image: there is no content].



In the Ehrenfest urn composition process, the transitions are made from [image: there is no content] to [image: there is no content] if [image: there is no content] and [image: there is no content]. The transition probabilities are:


P(X(t)=y∣X(0)=x)=∑σ∈SNPη1ξσ(1)(t)⋯PηNξσ(N)(t)=Nypy(1-p)N-y{1+∑n=1Ne-λnt(pq)-nNn-1×∑σ∈SN(ησ(1)-p)⋯(ησ(n)-p)∑τ∈SN(ξτ(1)-p)⋯(ξτ(n)-p)}=Nypy(1-p)N-y×1+∑n=1Ne-λnt(pq)-n(n!)-2Nn-1Kn(x;N,p)Kn(y;N,p)



(21)







The Krawtchouk polynomials thus appear naturally as elementary symmetric functions of the individual labelled indicator functions in the Markov process.





3. Multivariate Krawtchouk Polynomials


The multivariate Krawtchouk polynomials with elementary basis u were first constructed by Griffiths [1]. A recent introduction to them is Diaconis and Griffiths [2]. They play an important role in the spectral expansion of transition functions of composition Markov processes. Zhou and Lange [8], Khare and Zhou [16] have many interesting examples of such Markov processes. Later in this paper, we consider the particular composition processes where there are N particles independently performing birth and death processes.



The multivariate Krawtchouk polynomials are orthogonal on the multinomial distribution:


m(x;p)=Nx∏j=1dpjxj,xj≥0,j=1,…,d,|x|=N



(22)




with [image: there is no content] a probability distribution. Let [image: there is no content] be independent and identically distributed random variables specifying outcomes on the N trials, such that:


P(J=k)=pk,k=1,…,d



(23)







Then:


[image: there is no content]



(24)







Let [image: there is no content] be an orthogonal set of functions on [image: there is no content] with [image: there is no content] satisfying:


∑i=1dui(l)ui(m)pi=alδlm,l,m=0,…d-1



(25)







This notation for the orthogonal set of functions follows Lancaster [17]. There is an equivalence that:


hil=ui(l-1)pi/al-1,i,l=1,…,d



(26)




are elements of a [image: there is no content] orthogonal matrix H. In this paper, [image: there is no content] are usually orthonormal functions with [image: there is no content], [image: there is no content], unless stated otherwise. The one-dimensional Krawtchouk polynomials are constructed from a symmetrized product set of orthogonal functions [image: there is no content], and the construction of the multivariate polynomials follows a similar, but more complicated procedure. Instead of having two unique elements in each orthogonal function set, there is a choice of orthogonal basis, and the construction is from the product set [image: there is no content]. The orthogonality Equation (25) is equivalent to:


[image: there is no content]



(27)




for [image: there is no content]. Define a collection of orthogonal polynomials [image: there is no content] with [image: there is no content] and [image: there is no content] on the multinomial distribution as symmetrized elements from the product set, such that the sum is over products [image: there is no content] with [image: there is no content] for [image: there is no content]. [image: there is no content] is the coefficient of [image: there is no content] in the generating function:


G(x,w,u)=∏i=1N1+∑li=1d-1wliuJi(li)=∏j=1d1+∑l=1d-1wluj(l)xj



(28)







In the one-dimensional case [image: there is no content], [image: there is no content], orthogonal on [image: there is no content], so the generating function is:


[image: there is no content]



(29)




which is, of course, the generating function of the Krawtchouk polynomials. [image: there is no content] are respectively the number of zero and one values in the N trials. It is straightforward to show, by using the generating function Equation (28), that:


EQm(X;u)Qn(X;u)=∑{x:|x|=N}Qm(x;u)Qn(x;u)m(x;p)=δmnN+n+∏j=1d-1ajnj



(30)




where [image: there is no content], with [image: there is no content]. Instead of indexing the polynomials by [image: there is no content], they could be indexed by [image: there is no content]. This notation is sometimes convenient to use in the paper. The dual orthogonality relationship is, immediately from Equation (30),


∑{n:|n|≤N}N+n+-1∏j=1d-1aj-njQn(x;u)Qn(y;u)=δxym(x,p)-1



(31)







Expanding the generating function Equation (28) shows that:


[image: there is no content]



(32)




where · indicates summation over an index and [image: there is no content] for non-negative integers b. The dual generating function is:


∑{x:|x|=N}N+n+-1Nxv1x1⋯vdxdQn(x;u)=∑j=1dvjn0∏i=1d-1∑j=1dvjuj(i)ni



(33)







Expanding the generating function:


N+n+-1NxQn(x;u)=∑{r:ri·=ni,r·j=xj}∏i=0d-1ni!∏i=0d-1∏j=1drij!∏i=1d-1∏j=1duj(i)rij



(34)







The two generating function Equations (28) and (33) are similar, and there is a form of self-duality for the polynomials. Let:


ωi(j)=uj+1(i-1),j=0,…,d-1,i=1,…,d



(35)







Then, because of Equation (25):


[image: there is no content]



(36)







The right side of Equation (33) is equal to:


[image: there is no content]



(37)




which, apart from the different indexing and non-constant function [image: there is no content], generates multivariate Krawtchouk polynomials. Suppose that [image: there is no content] for [image: there is no content]. Scale by letting [image: there is no content], so that [image: there is no content]. The orthogonality of these functions is:


[image: there is no content]



(38)







Let [image: there is no content] be the scaled probability distribution of [image: there is no content], so:


[image: there is no content]



(39)







The following theorem is evident from Equations (33) and (37), once the indexing is sorted out.



Theorem 3. 

There is a duality


N+n+-1NxQn(x;u)=∏i=1dωi(0)ni-1Qx-*(n+;ω^)



(40)




where [image: there is no content], with [image: there is no content], [image: there is no content], are multivariate Krawtchouk polynomials, orthogonal on [image: there is no content].





There is an interesting identity when u is self-dual with an indexing of j beginning from zero instead of one. That is:


uj(l)=ul(j),j,l=0,1,…,n



(41)




Then indexing [image: there is no content],


N+n+-1Qn(x;u)=Nx-1Qx(n+;u*)



(42)




where [image: there is no content]. This duality occurs in the scaled Krawtchouk polynomial basis, orthogonal on a binomial [image: there is no content] distribution.



The emphasis in Theorem 3 is on considering the dual system, obtaining [image: there is no content] from u; however, sometimes, it is natural to construct u from an orthogonal set [image: there is no content], particularly when [image: there is no content], [image: there is no content] and [image: there is no content]. Then, the polynomials on the left of Equation (40) are defined by the dual polynomials on the right. Later in the paper, it will be seen that this is natural in composition birth and death Markov processes.



The polynomial structure of the multivariate Krawtchouk polynomials is detailed in the next theorem.



Theorem 4. 

Define [image: there is no content] for [image: there is no content]. [image: there is no content] is a polynomial of degree [image: there is no content] in [image: there is no content] whose only term of maximal degree [image: there is no content] is [image: there is no content].





Proof. 

A method of proof is to consider the transform of [image: there is no content], which is given by:


[image: there is no content]



(43)




where:


Ti(ϕ)=∑j=1dpjϕjuj(i),i=0,…,d-1



(44)









This transform is easily found by taking the transform of the generating function Equation (28). One can see directly that [image: there is no content] is an orthogonal polynomial by considering the transform:


[image: there is no content]



(45)







From Equations (43) and (45), [image: there is no content] is a polynomial of degree [image: there is no content], whose only leading term is:


[image: there is no content]



(46)







This is seen by noting that the leading term is found by replacing [image: there is no content] by [image: there is no content] in:


[image: there is no content]



(47)







Since we can replace [image: there is no content] by [image: there is no content] in considering the leading term of Equation (43) and setting [image: there is no content] for [image: there is no content]. ☐



The next theorem explains the polynomial structure in the dual system.



Theorem 5. 

Let [image: there is no content] be such that [image: there is no content] for [image: there is no content], as well as the usual assumption that [image: there is no content] for [image: there is no content]. Define [image: there is no content], [image: there is no content]. Then, N+n+-1Qn(x;u) is a polynomial of total degree [image: there is no content] in [image: there is no content] whose only term of maximal degree is [image: there is no content].





Proof. 

This follows from Theorem 3, with [image: there is no content], [image: there is no content], and Theorem 4. ☐





There are recurrence relationships for the multivariate Krawtchouk polynomials, which are found here from a generating function approach; for another different proof, see Theorem 6.1 in Iliev [5]. Note that his multivariate Krawtchouk polynomials are scaled differently as


Qn(x;u)N+n+-1



(48)







In Theorems 6–8, u is taken to be orthonormal on p, so [image: there is no content], [image: there is no content] in Equation (25).



Theorem 6. 

Denote, for [image: there is no content], [image: there is no content] and [image: there is no content], [image: there is no content]. Two recursive systems are:


xjQn(x;u)=∑k=1d-1(nk+1)pjuj(k)Qn+ek(x;u)+(N-|n|+1)∑l=1d-1pjuj(l)Qn-el(x,u)+∑l,k=1d-1(nk+1-δlk)pjuj(l)uj(k)Qn-el+ek(x;u)+pj(N-|n|)Qn(x;u)



(49)




and:


uiQn(x;u)=(ni+1)Qn+ei(x;u)+(N-|n|+1)Qn-ei(x,u)+∑l,k=1d-1c(i,l,k)(nk+1-δkl)Qn-el+ek(x;u)



(50)









Proof. 

Consider:


[image: there is no content]



(51)









Equating coefficients of [image: there is no content];


EXjQn(X;u)Qn′(X;u)=N!(N-|n|-1)!∏1d-1ni!pjuj(k)n′=n+ekN!(N-|n|)!∏1d-1ni!nlpjuj(l)n′=n-elN!(N-|n|)!∏1d-1ni!nlpjuj(l)uj(k)n′=n-el+ek,l≠kN!(N-|n|-1)!∏1d-1ni!pj+∑l=1d-1N!(N-|n|)!∏1d-1ni!nlpjuj(l)2n′=n



(52)







The first recursive Equation (49) then follows by an expansion of [image: there is no content] as a series in [image: there is no content] dividing the cases in Equation (52) to obtain the coefficients by:


N+n′+=N!(N-|n|-1)!∏1d-1(ni+δik)!n′=n+ekN!(N-|n|+1)!∏1d-1(ni-δil)!n′=n-elN!(N-|n|)!∏1d-1(ni-δil+δik)!n′=n-el+ek,l≠kN!(N-|n|)!∏1d-1ni!n′=n.



(53)







The second recursion Equation (50) is found by summation, using the orthogonality of u. ☐



The dual orthogonal system when u is orthonormal is:


∑{n≥0:|n|=N}Qn+(x;u)Qn+(x;u)N+n+-1=m(x,p)-1δxy



(54)







A dual generating function is:


H(n,v,u)=∑{x:|x|=N}N+n+-1NxQn(x;u)∏i=1dvixi=∏l=0d-1∑j=1duj(l)vjnl



(55)







The generating function Equation (55) arises from considering the coefficient of [image: there is no content] in:


∑{x:|x|=N}N+n+-1NxG(x,w,u)∏i=1dvixi=N+n+-1∑j=1d-1vj+∑l=1d-1wl∑j=1dvjuj(l)N



(56)







Theorem 7. 

A dual recurrence system is, for [image: there is no content]:


[image: there is no content]



(57)









Proof. 

A derivation of the recurrence system uses a transform method. Consider:


∑{n+:|n+|=N}niE∏i=1dϕiXiφiYiQn(X;u)Qn(Y;u)N+n+-1=NTi(ϕ)Ti(φ)∑j=1dpjϕjφjN-1



(58)









Therefore, non-zero terms with [image: there is no content] are:


∑{n+:|n+|=N}niQn(x;u)Qn(y;u)N+n+-1=NN-1x-ej∏k=1dpkxk-δjkpjuj(i)plul(i)m(x,p)m(y,p)=xjuj(i)plul(i)m(y,p)



(59)







The dual recurrence is therefore Equation (57). ☐



The reproducing kernel polynomials:


[image: there is no content]



(60)




are invariant under which set of orthonormal functions u is used. They have an explicit form; see Diaconis and Griffiths [2] and Xu [7] for details.



3.1. An Ehrenfest Urn with d-Types


A d-type Ehrenfest urn has N balls of d colours [image: there is no content]. At rate one, a ball is chosen, and if it is of type j, it is changed to colour l with probability [image: there is no content], [image: there is no content]. [image: there is no content], with [image: there is no content], is the number of balls of the different colours at time t, which can be regarded as a d-dimensional random walk on [image: there is no content]. The transition functions have an eigenfunction expansion in the multivariate Krawtchouk polynomials, extending the case Equation (21) with two colours.



Theorem 8. 

Let [image: there is no content] be a d-dimensional random walk on x, [image: there is no content], where transitions are made from [image: there is no content] at rate [image: there is no content]. P is a [image: there is no content] transition matrix, with stationary distribution p, such that:


[image: there is no content]



(61)









Then, the transition functions of [image: there is no content] have an eigenfunction expansion:


p(x,y;t)=m(y,p)×1+∑{n:0<|n|≤N}e-t∑i=1d-1ni(1-ρi)/NNn-1Qn(x;u)Qn(y;u)



(62)







Proof. 

[image: there is no content] is a reversible Markov process with stationary distribution [image: there is no content], because it satisfies the balance equation:


[image: there is no content]



(63)









The reversibility is a consequence of assuming that P is a reversible transition matrix. The generator of the process acting on [image: there is no content] is specified by:


[image: there is no content]



(64)




so the eigenvalues and eigenvectors [image: there is no content] satisfy:


[image: there is no content]



(65)







Now, from Equation (57):


[image: there is no content]



(66)




which is the same as Equation (65), noting that the total rate is one away from x. Then, Equation (62) holds immediately. ☐




3.2. Extensions to the Multivariate Krawtchouk Polynomials


It is useful in considering spectral expansions of composition Markov processes to allow the following generalizations of the multivariate Krawtchouk polynomials.

	
Allow [image: there is no content] as a possibility, and let [image: there is no content] be a complete orthogonal set of functions on [image: there is no content]. The multinomial distribution is still well defined as:


m(x;p)=N!x1!x2!⋯p1x1p2x2⋯,|x|=N



(67)




and the generating function for the multivariate Krawtchouk polynomials still holds with [image: there is no content].



	
When [image: there is no content], take [image: there is no content] to be orthogonal on a discrete measure [image: there is no content], which is non-negative, but not a probability measure, because [image: there is no content].



	
Allow the basis functions u to be orthogonal on [image: there is no content], and take the dual functions [image: there is no content] to be orthogonal on a continuous distribution. An example that occurs naturally in composition birth and death chains is when [image: there is no content], [image: there is no content], [image: there is no content] are the Laguerre polynomials, orthogonal on the density:


zαΓ(α+1)e-z,z>0



(68)













3.3. Karlin and McGregor Spectral Theory


Consider a birth and death process [image: there is no content] on [image: there is no content] with birth and death rates [image: there is no content] from state i and transition probabilities [image: there is no content]. Negative oneis an absorbing state, which can be reached if [image: there is no content]. We assume that the process is non-explosive, so only a finite number of events will take place in any finite time interval. Define orthogonal polynomials [image: there is no content] by:


[image: there is no content]



(69)




for [image: there is no content] with [image: there is no content] and [image: there is no content]. The polynomials are defined by recursion from Equation (69) with [image: there is no content] defined by knowing [image: there is no content] and [image: there is no content]. If [image: there is no content], then [image: there is no content]. There is a spectral measure ψ with support on the non-negative axis and total mass one, so that:


[image: there is no content]



(70)




for [image: there is no content] where:


[image: there is no content]



(71)







If [image: there is no content], then [image: there is no content] because of possible absorption into state [image: there is no content]. If [image: there is no content], but there is no stationary distribution, because [image: there is no content], then also, possibly, [image: there is no content]. Placing [image: there is no content] shows the orthogonality of the polynomials [image: there is no content] on the measure ψ because [image: there is no content]. [image: there is no content] is clearly reversible with respect to [image: there is no content] when a stationary distribution exists, or before absorption at zero if it does not exist, since [image: there is no content]. As [image: there is no content] the limit stationary distribution, if [image: there is no content] and [image: there is no content], is:


[image: there is no content]



(72)







Suppose a stationary distribution exists, and there is a discrete spectrum with support [image: there is no content], [image: there is no content]. Then:


pij(t)=πj∑l=0∞e-ζltQi(ζl)Qj(ζl)ψ({ζl})=pj1+∑l=1∞e-ζltQi(ζl)Qj(ζl)ψ({ζl})/ψ({0})



(73)







This is an eigenfunction expansion:


pij(t)=pj1+∑l≥1e-ζltui(l)uj(l),i,j=0,1…



(74)




where u is a set of orthonormal functions on p defined by:


ui(l)=Qi(ζl)ψ({ζl})/ψ({0}),i,l=0,1,…



(75)







Several well-known birth and death processes give rise to classical orthogonal polynomial systems. In this paper, only processes where [image: there is no content] are considered, so there is no absorbing state at [image: there is no content], and the state space is [image: there is no content]. Classical papers where theory is developed and particular spectral expansions Karlin and McGregor [9,10,11,18]. Schoutens [19] details the birth and death processes and spectral expansions nicely, from which we summarize.

	
The [image: there is no content] queue where [image: there is no content], [image: there is no content].The process has a stationary Poisson distribution:


pj=e-λ/μ(λ/μ)j/j!,j=0,1,…



(76)







The orthogonal polynomials are the Poisson–Charlier polynomials:


Qn(z)=Cn(z/μ;λ/μ),n≥0



(77)




where [image: there is no content] has a generating function:


[image: there is no content]



(78)







	
The linear birth and death process where [image: there is no content], [image: there is no content], with [image: there is no content]. The process arises from individuals which split at rate λ, die at rate μ and immigration of individuals occurs at rate [image: there is no content]. Then:


πj=β(j)j!λμj,j=0,1,…



(79)







There are three cases to consider.

	
[image: there is no content]. The spectral polynomials are related to the Meixner polynomials by:


Qn(z)=Mnzμ-λ;β,λμ,n=0,1,…



(80)







The polynomials are orthogonal on:


1-λμββ(z)z!λμz,z=0,1,…



(81)




at points [image: there is no content], [image: there is no content]. The first point of increase is zero corresponding to [image: there is no content] in the spectrum. There is a negative binomial stationary distribution for the process:


pi=1-λμββ(i)i!λμi,i=0,1,…



(82)







The Meixner polynomials have a generating function:


[image: there is no content]



(83)







	
[image: there is no content].


Qn(z)=λμnMn(zλ-μ-β;β,μλ),n=0,1,…



(84)







The polynomials are orthogonal on:


1-μλββ(z)z!μλz,z=0,1,…



(85)




at points [image: there is no content], [image: there is no content]. The first point of increase is [image: there is no content], corresponding to a spectral term [image: there is no content]. There is not a stationary distribution for the process in this case, with [image: there is no content].



	
[image: there is no content]. The spectral polynomials are related to the Laguerre polynomials by:


Qn(z)=n!β(n)Ln(β-1)(z/λ),n≥0



(86)







In this case, there is a continuous spectrum, and the polynomials are orthogonal on the gamma distribution:


1λβΓ(β)zβ-1e-z/β,z>0



(87)







There is no stationary distribution of the process in this case. The Laguerre polynomials have a generating function:


[image: there is no content]



(88)












	
A two-urn model with [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. The process arises from a model with two urns with a and b balls, with N tagged balls. At an event, two balls are chosen at random from the urns and interchanged. The state of the process is the number of tagged balls in the first urn. The spectral polynomials are related to the dual Hahn polynomials by:


Qn(z)=Rn(λ(z);a,b,N),n=0,1,…



(89)




where:


[image: there is no content]



(90)




orthogonal on:


[image: there is no content]



(91)




with [image: there is no content]. There is a hypergeometric stationary distribution in the process of:


pi=aibN-ia+bN,i=0,1,…,N



(92)







	
An Ehrenfest urn where [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. The spectral polynomials are the Krawtchouk polynomials:


Qn(z)=Kn(z;N,p),0≤n≤N



(93)




orthogonal on the Binomial [image: there is no content] distribution:


NzpzqN-z,z=0,1,…N



(94)




which is also the stationary distribution in the process.









3.4. Composition Birth and Death Processes


Consider N identically distributed birth and death processes [image: there is no content], [image: there is no content], each with state space [image: there is no content]. It is assumed that there is no absorbing state at [image: there is no content] and [image: there is no content]. The transition functions for the labelled processes are [image: there is no content]. In composition Markov processes, interest is in the unlabelled configuration of [image: there is no content] specified by [image: there is no content], where:


[image: there is no content]



(95)




for [image: there is no content]. The probability generating function of [image: there is no content] conditional on [image: there is no content] is:


[image: there is no content]



(96)




where possibly, there is a countable infinity of states with [image: there is no content]. Transitions and rates are, for [image: there is no content],


[image: there is no content]



(97)







The total rate from x is [image: there is no content]. [image: there is no content] is reversible with respect to [image: there is no content] in the sense that:


m˜(x;π)λjxj=m˜(x+ej;π)μj+1xj+1,j=0,1,…m˜(x;π)μjxj=m˜(x-ej;π)λj-1xj-1,j=1,2….



(98)







Theorem 9. 

If the spectrum is discrete, with support [image: there is no content], [image: there is no content], [image: there is no content], and a stationary distribution exists, then:


[image: there is no content]



(99)




where [image: there is no content] are the multivariate Krawtchouk polynomials with:


ui(l)=Qi(ζl)ψ(ζl)/ψ(0),i,l=0,1,….



(100)









The indexing in elements of [image: there is no content] now begins at zero. If the spectrum is discrete, with support [image: there is no content], [image: there is no content], then:


[image: there is no content]



(101)




where [image: there is no content] are the multivariate Krawtchouk polynomials with:


ui(l)=Qi(ζl)ψ(ζl),i,l=0,1,….



(102)







In this case, [image: there is no content], [image: there is no content] is not identically one, and:


∑i≥0ui(k)ui(l)πi=δkl,k,l=0,1,….



(103)







This covers the case when a stationary distribution does exist and also when a stationary distribution does not exist, because [image: there is no content].



Proof. 

The probabilistic structure of [image: there is no content] with probability-generating function Equation (96) implies that the multivariate Krawtchouk polynomials are the eigenfunctions of the transition distribution. Indexing in [image: there is no content] is from zero, rather than the usual indexing from one. From the Karlin and McGregor spectral expansion Equation (70):


pij(t)=πj∑k≥0e-tζkQi(ζk)Qj(ζk)ψ({ζk})pij(t)=ψ({0})πj1+∑k≥1e-tζkQi(ζk)Qj(ζk)ψ({ζk})/ψ({0})=pj1+∑k≥1e-tζkui(k)uj(k)



(104)




where [image: there is no content] is defined in Equation (100) and satisfies:


∑i≥0ui(k)ui(l)pi=δkl,k,l≥0



(105)









The second case Equation (101) follows similarly. The multivariate Krawtchouk polynomials then have a generating function:


[image: there is no content]



(106)







☐



The transition probability expansion Equation (101) can be written in a Karlin and McGregor spectral expansion form where the dual polynomials are important. Denote [image: there is no content], [image: there is no content]; [image: there is no content]; and a multinomial spectral measure (which is a probability measure):


m˜(ν;ψ)=Nνψ(ζ0)ν0ψ(ζ1)ν1⋯,ν0+ν1+⋯=N



(107)







Then, Equation (101) can be expressed as a spectral expansion:


[image: there is no content]



(108)







The generating function of the dual polynomials:


H(n,v,u˜)=∑{x:|x|=N}N+n+-1NxQn(x,u˜)∏i≥0vixi=∏l≥0v0+∑j≥1Qj(ζl)vjnl=∏k=1Nv0+∑j≥1Qj(Zk)vj



(109)




where in this generating function [image: there is no content] is regarded as a random variable by taking:


[image: there is no content]



(110)







[image: there is no content] are independent and identically distributed random variables with probability measure ψ. Without loss of generality, take [image: there is no content] in Equation (109) and consider coefficients of [image: there is no content], indexing the dual polynomial by [image: there is no content] with [image: there is no content]. Note the scaling that the dual polynomials is one when [image: there is no content], [image: there is no content].



Theorem 10. 

Define:


Nj=∑k=1NQj(Zk)=∑l≥0nlQj(ζl),j≥1



(111)









N+n+-1Qn(x,u˜) is a polynomial of degree [image: there is no content] in [image: there is no content] whose only term of maximal degree is [image: there is no content]. The total degree of Z in the dual polynomials indexed by [image: there is no content] is [image: there is no content] with a single leading term of this degree.



Proof. 

The proof of the first statement follows from Theorem 5. The proof of the second statement is immediate by knowing that [image: there is no content] is of degree j in Z. ☐





The third case of linear birth and death processes’ composition Markov chains is interesting, as it has a continuous spectral measure, which is a product measure of N gamma distribution measures. The spectral polynomials are well defined by a generating function as coefficients of [image: there is no content] in:


[image: there is no content]



(112)




however, elements of [image: there is no content] are distinct, being continuous random variables, and the dual of the dual system is the products of dual Laguerre polynomials, which are not grouped to an index n, as when there is a discrete spectrum.



The polynomials in the Meixner class Equation (3) are additive in the sense that if [image: there is no content] are the orthogonal polynomials on the distribution of [image: there is no content], then the generating function for these polynomials is:


[image: there is no content]



(113)




and:


[image: there is no content]



(114)







This additivity implies an interesting identity.



Theorem 11. 

The dual multivariate Krawtchouk polynomials with generating function Equation (109) satisfy the identity:


[image: there is no content]



(115)




where [image: there is no content]. In this equation, [image: there is no content] is regarded as a random variable in the sense of Equation (110).





Proof. 

Set [image: there is no content], [image: there is no content] in Equation (109). Then:


∑{x:|x|=N}N+n+-1NxQn(x,u˜)v∑j=1∞jxj∏j=1∞j!xj=∏k=1N∑j≥0Qj(Zk)vj/j!=h(v)Ne|Z|u(v)=∑m=0∞QmN(|Z|)vm/m!



(116)









The theorem then follows by equating coefficients of [image: there is no content] on both sides of the generating function. ☐
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