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Abstract: The role of the environment initial conditions in the breaking of the time reversal
symmetry of effective theories and in generating the soft irreversibility is studied by the help of
Closed Time Path formalism. The initial conditions break the time reversal symmetry of the solution
of the equation of motion in a trivial manner. When open systems are considered then the initial
conditions of the environment must be included in the effective dynamics. This is achieved by
means of a generalized ε-prescription where the non-uniform convergence of the limit ε→ 0 leaves
behind a spontaneous breakdown of the time reversal symmetry.
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1. Introduction

One usually observes a system in interaction with its environment. The laws, discovered
in such a manner are highly complex; they describe an open, effective rather than conserved,
closed dynamics. Some simplifications may take place when we bring the environment into
the thermodynamical limit and the complicated, open features of the dynamics are reduced to
irreversibility and dissipative forces. The emergence of the ensuing dynamical breakdown of the
time reversal invariance is the subject of this work.

The number of the dynamical variables of a large environment is controlled by an artificially
introduced quantity, the cutoff, and its removal defines the infinitely large environment. The cutoff is
usually a dimensional number and is chosen to be far away from the scale of observations to make the
predictions approximatively independent of its choice. One the one hand, this procedure makes our
description natural in the sense that it eliminates an unreasonably large number in our expressions.
However, on the other hand, the resulting infinite system is defined formally and it may possess
surprising features if the removal of the cutoff takes place in a non-uniformly convergent manner.

Our intuition is based on uniform convergence, and a point-wise convergence can produces
phenomenas which are not localizable in finite space-time or energy-momentum regions. Multiple
limits may develop a dependence on the order of their execution, multiple integrals may become
dependent on the order of integration and the result of the execution of a limit and a derivative of a
parametric integrals may depend of the order the limit and the derivative are taken. A well known
family of non-uniformly converging integrals consists of the distributions, the generalized functions:
The regulated distribution is a regular function which depends on a parameter ε and the limit, ε→ 0,
is supposed to be carried out after the integration only.

Non-uniform convergences appear usually through the amplification by a divergence, controlled
by a cutoff. The infinity can hide at infinitely small or at infinitely large scales and we have three
kinds of dimensional variables, length, time and mass hence there are six different types of infinity.
The mass-dependence can usually by expressed by the help of wavelengths, the remaining four
infinities being the following: (i) L → ∞: The thermodynamical limit generates the spontaneously
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broken symmetries; (ii) L → 0: The infinitely short distance modes lead to finite, observable effects,
called anomalies in quantum field theories; (iii) T → 0: The short time structure of the trajectory of a
point particle in non-relativistic quantum mechanics reveals an O(h̄) effect, the fractal nature of the
particle trajectories; (iv) T → ∞: The infinitely slow modes generate high sensitivity on the initial or
final conditions and determine the fate of the time reversal invariance. These phenomena are briefly
outlined in Appendix A for completeness, and we restrict our attention to the limit T → ∞ in the rest
of this paper.

The initial or final conditions, commonly called auxiliary conditions, are carefully separated
from the equations of motion because we can freely adjust the former whereas the latter is given
by Nature. Our starting point is that such a separation is not justified in the effective dynamics
of the observed system, interacting with its environment, because the effective dynamics obviously
depends on the environment initial conditions in a non-local manner in time. In other words, the
environmental initial conditions are an integral part of the effective system dynamics, rather than
being an independent input. Such a state of affairs can be seen easier when the effective dynamics is
approximated by expanding its non-locality in the time derivative. The resulting effective equation
of motion contains higher order derivatives and needs additional auxiliary conditions to provide a
unique solution. Although such data should obviously come from the environment, this latter being
unobserved, we do not possess this information. The solution, proposed below is to incorporate the
environmental auxiliary conditions into the effective action itself.

Once the environment initial conditions are taken care in the effective action they influence the
symmetry of the dynamics. Trace the fate of time related symmetries when the system is followed in
the time interval ii ≤ t ≤ t f : The time translation invariance is recovered in the limit ti → −∞ if the
initial conditions correspond to a stationary state of motion. The state of the time reversal symmetry
is more involved. The loss of the time reversal symmetry can be detected for finite t f by recording the
motion of the system and checking whether the recording played forward and backward satisfies the
same equation of motion. There is an important difference between the motions running in opposite
time directions, namely the initial conditions: The initial conditions of the playback motion are the
final conditions of the original one. This fact is crucial for us since the environment trajectory depends
on the environment auxiliary conditions and it is just this dependence that breaks the time reversal
invariance of the effective dynamics. The nontrivial question here is whether such a symmetry
breaking survives the limits ti → −∞ and f f → ∞.

We assume that the dynamics of the full system is closed and invariant under time reversal
and show that the time reversal symmetry of the effective dynamics of the observed system is
broken by a mechanism which is similar to that occurring in the spontaneous symmetry breakdown.
In particular, one can separate the following three levels of the breakdown of the time reversal
symmetry: (i) The auxiliary conditions of a closed system, presented separately from the equation
of motion, leave the dynamics time reversal invariant and break the symmetry of the solutions only.
This effect, not being part of the dynamical equations, is to be compared with the trivial, external
symmetry breaking; (ii) The initial conditions of a closed system will be represented by a generalized
ε-prescription, namely by some infinitesimal terms in the action in such a manner that the time
reversal transformation flips the sign of these terms, ε → −ε. The time reversal invariance is broken
by an infinitesimal, O(ε) symmetry breaking term in the action which generates a finite, O(ε0) effect
on the level of the solutions. This phenomenon is analogous to the spontaneous symmetry breaking
except that it takes place even for a single degree of freedom and leaves the finite O(ε0) part of the
action untouched; (iii) By virtue of a symmetry breaking within the environment which is easy to
excite, i.e., has gapless spectrum the effective action contains finite O(ε0) symmetry breaking terms
which may generate soft irreversibility. The possible relation between irreversibility and dynamically
broken symmetries has already been noticed, namely that irreversible systems need an infinitely large
environment with continuous spectrum [1–4]. The goal of the present work is to explain in detail that
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a large environment can make the effective dynamics irreversible by the non-uniform convergence as
the different regulators are removed.

The possible breakdown of the time reversal symmetry by the boundary conditions are detected
by comparing two motions, one follows the real time evolution from the initial to the final boundary
conditions and the initial and the final conditions are exchanged for the other. This makes the
Closed Time Path (CTP) formalism, characterized by the redoubling of the degrees of freedom
and evolving the doublers in opposite direction of the time, well suited to address this problem.
This scheme is available both in the quantum and the classical level and has further important
advantages, namely it provides a unique solution of the effective equation of motion with higher
oder time derivatives, it allows the dynamical breakdown of the time reversal symmetry by treating
the initial conditions as part of the dynamics and finally it supports dissipative forces which are
local in time. This scheme has been introduced long time ago in quantum mechanics [5] and has
already been used in different contexts, such as the relaxation in many-body systems [6], perturbation
expansion for retarded Green-functions [7], manifestly time reversal invariant description of quantum
mechanics [8–10], finite temperature effects in quantum field theory [11–13], mixed state contributions
to the density matrix by path integral [14], non-equilibrium processes [3,15], equations of motion
for the expectation value of local operators [16,17] and scattering processes with non-equilibrium
final states [18]. The distinguished feature of the CTP scheme, a reduplication of the degrees of
freedom, fits so naturally to quantum mechanics that one wonders if such a modification is not
implicitly present already in classical mechanics. The result of such an inquiry is the classical CTP
scheme [19,20], to be used below.

The spontaneous symmetry breaking takes place in systems with symmetric local dynamics.
Hence the spontaneous breakdown of the time reversal symmetry is a nothing but a dynamical
proposal to solve part of the time arrow problem, the emergence of an orientation for the time in
a time reversal invariant microscopic dynamics [21–28]. The simplest and most natural explanation
of the directed flow of time in macroscopic phenomena is the second law of thermodynamics, the
non-decreasing nature of entropy for closed systems. The generalization of the thermodynamical
entropy to statistical mechanics, the Boltzmann and the Gibbs entropies [29], together with the
information theoretical approach [30], allow us to extend the entropy beyond equilibrium states.
The dissipated work, given in terms of the relative entropy of a driven system and its time
reversed form [31–34], relates the entropy production and the thermodynamical time arrow in simple
and convincing manner. The retardation of the electromagnetic radiation, described by the time
reversal symmetric Maxwell equations, is the manifestation of the radiation time arrow. When a
phenomenon crosses the border of the quantum and the classical regimes and a unique reality is
formed then the irreversible collapse of the wave function indicates the presence of a quantum time
arrow, too. These time arrows, generated by time reversal invariant dynamics, arise from a common
origin, namely the unusually low entropy, ordered and cohered initial state of the Universe [35,36].
In other words, the breakdown of the time reversal symmetry should be generated by the ultimate
cosmological time arrow. This turn of the argument opens the Pandora’s box and confronts us a
completely new problem, namely there might be subsystems with different initial and final entropy,
supporting different time arrows, in particular the time arrow should be opposite in the expanding
and in the contracting phase of the Universe [37,38]. The low initial entropy of the universe is
due to the homogeneity and isotropy [39] and it is natural to suspect inflation, the driving force
to reach a homogeneous and isotropic state, as the origin of the time arrow [40]. There are counter
arguments [41,42] proposing a different scenario where different space-time regions support different
time arrows. The eternal [43,44] and the spontaneous inflation [45,46] may offer a more refined
framework however this picture is presumably not the final one.

A tiny time arrow was ignored in the previous paragraph which arises from the CP violating
weak interactions and turns into T-violation by assuming CPT symmetry. In view of the importance
of the time arrow issue we need the demonstration of the explicit T-violation by the weak interactions,
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a problem which turned out to be surprising difficult [47]. The simplest check, namely the
measurement of a non-vanishing expectation value of a T-odd observable in a non-degenerate
stationary state, is not feasible. The reason is that in the studies of the weak interactions we have
access to scattering states only where the different initial and final state interactions generate T-odd
contributions to the expectation value even if the elementary interactions of the scattering process
are T-invariant. Another possibility to detect T-violation goes by comparing the transition rate of a
decay and of the time reversed recombination process, obtained by exchanging the initial and final
states. This is obviously an irrealistic undertaking since the entropy is strongly increased by the decay,
rendering the preparation of the initial state for the recombination process too difficult. The proposal
to use the entanglement between the neutral B meson pairs, generated by the Υ(4S) decay, to tag the
initial and the final states of the B0 − B̄0 oscillation [48–50] led finally to a convincing demonstration
of the T-violating nature of the weak interactions [51]. It is believed that the T-violation of the weak
interactions can not be responsible of the other time arrows. Firstly, these last-named are traced
back to the initial conditions, an element of the dynamics which is independent of the equation
of motion. Secondly, the current understanding of the baryogenesis requires a non-equilibrium
state of the Universe, a time arrow, independently of the details of the baryon number production
mechanism [52].

The role of initial conditions is obvious in breaking the time reversal symmetry even if the
equation of motion is symmetric. However, we may impose both the initial and final conditions
in a dynamics, described by the help of second order time derivatives, rendering the whole scheme
formally more symmetric. Even if the dynamics is based on first time derivatives the second boundary
condition can be imposed on the probabilities in a classical statistical system or in the quantum
case, eg. collision processes. Such a construction was proposed to achieve a manifest time reversal
symmetric formalism of quantum mechanics [8–10] and to further generalize the CTP formalism [17].
While such a scheme is well justified in the description of a small system the complexity of the final
environment state of a dissipative system renders the use of final conditions unpractical.

The spontaneously broken time reversal symmetry is about irreversibility. An irreversible
process is called hard or soft when it takes place at finite or vanishing frequencies, respectively.
Irreversibility manifests itself perturbatively or non-perturbatively, depending on the amplitude of
the motion which generates it. The non-perturbative, hard processes correspond to a large amplitude
motion in finite time, such as the instability at coexisting phases or the loss of information during the
collapse of the wave function and represent a specially difficult problem. We shall rather be contend
to follow the building up of the soft, perturbative irreversibility, dissipation. These phenomenas are
related to our limited control of large many-body systems since the observations, performed in a finite
time can not fully identify the frequencies and the amplitudes. This is the origin of a non-uniform
convergence and the ensuing thermodynamical time arrow is best understood by coarse graining [53].
One can actually regard the effective dynamics as a result of a coarse graining in space and/or time,
and this view suggests that the origin of soft irreversibility is the coarse graining of the environment.
An order parameter of the time reversal symmetry is constructed below by the help of the extended
action principle. The time arrow, defined by the sign of the order parameter, is a mechanical one since
it is defined without referring to a thermal bath or an equilibrium states. It corresponds to an ordered
initial conditions hence its direction should agree with the thermodynamical time arrow.

The presentation starts in Section 2 with a brief recapitulation of the problems one faces when
searching for an efficient scheme, such as the variational method, to describe classical effective
theories. The spontaneous breakdown of the time reversal symmetry is described in Section 3
within the framework of the CTP scheme for classical, closed systems. The extension to the effective
dynamics of open systems is presented in Section 4. A brief discussion of the emergence of the
finite life-time and the decoherence in open quantum systems is given in Section 5. The conclusions
are summarized in Section 6. There are two Appendices, added for completeness, different
manifestations of the non-uniform convergence, the hallmark of spontaneous symmetry breaking,
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are surveyed in Appendix A, followed by the derivation of the CTP Green function for a classical
harmonic oscillator in Appendix B. Readers who like to be provided with a conceptual survey before
being confronted with technical details are recommended to jump now to Appendix A.

2. Classical Effective Theories

A generic problem in classical mechanics is to find the dynamics of a coordinate x, called
system, interacting with its environment, described by the coordinates y = (y1, . . . , yN) which are
not followed [55,56]. We assume that the full system, described by the coordinates x, y, follows a time
reversible and conservative dynamics which keeps the coordinates bounded at finite energy. This
latter condition may require a fixed, large but finite value of the ultraviolet (UV) regulator in quantum
field theoretical models. The corresponding action is written in the form S[x, y] = Ss[x] + Se[x, y],
whose equations of motion are supposed to be second order differential equations in time. We need
auxiliary conditions to make the solution of the equations of motion unique. They are usually initial
conditions, specified for the system and the environment at the initial time, t = ti, and the system
trajectory is followed until a final time, t = t f . The effective equation of motion, a closed equation
to be satisfied by the system trajectory, is obtained in two steps. First one solves the environment
equation of motion for a general system trajectory, x(t). After that the solution, y[t; x], is substituted
into the system equation of motion.

The effective equation of motion can be obtained as a variational equation of the effective action,
Se f f [x] = S[x, y[x]]. In fact, the variational equation,

δSe f f [x]
δx(t)

=
δS[x, y[x]]

δx(t)
+
∫ t f

tt
dt′

δS[x, y[x]]
δy(t′)

δy[t′; x]
δx(t)

= 0 (1)

and the environment equation of motion,

δS[x, y]
δy |y=y[x]

= 0 (2)

imply
δS[x, y]

δx |y=y[x]
= 0 (3)

The effective action, S[x, y[x]], is not useful in irreversible systems because the local forces of the
variational scheme are holonomic,

F(x, ẋ) = −∂xU(x, ẋ)− d
dt

∂ẋU(x, ẋ) (4)

therefore local, non-conservative dissipative forces have no place within the traditional action
formalism. Furthermore, while the variational equations are derived for fixed initial and final
coordinates one should rather avoid the use of final conditions in the case of a dissipative
environment. Hence we need a generalization of the action principle which can handle initial
condition problems, as opposed to boundary conditions, used in the traditional variation method.
The trade of the final coordinates to the initial velocities is not a trivial change because the variational
equation for the final coordinate, ∂S/∂y f = p f = 0, suppresses the motion. Both the local
non-conservative forces and the initial conditions can be accommodated in the variational scheme
by reduplicating of the degrees of freedom.

3. A Single Degree of Freedom

A generalization of the action principle described in this Section handles the initial conditions as
part of the dynamics. We start with the brief introduction of the generalized action principle [19],
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followed by the demonstration of the spontaneously broken time reversal invariance for the
harmonic oscillator.

3.1. Classical Chronon-Dynamics

We address now the two of the issues, raised in Section 2, namely the need of the handling of
non-holonomic forces and the use of initial conditions in the variation method of classical mechanics.
The system coordinate plays a double role in the function U(x, ẋ) of the holonomic forces: ∂xU(x, ẋ)
and ∂ẋU(x, ẋ) produce the force while U(x, ẋ) represents a contribution to the energy. These two roles
can be separated by the help of an active and a passive system coordinate, x and xp, respectively and
defining a semi-holonomic force by the equation

F(x, ẋ) = −∂xU(x, ẋ, xp, ẋp)|xp=x −
d
dt

∂ẋU(x, ẋ, xp, ẋp)|xp=x (5)

They cover the effective forces since the effective equation of motion, Equation (1), can be
written as

δS[x, y[xp]]

δx |xp=x
= 0 (6)

A new problem, left behind by the introduction of a passive copy of the system, is the treatment
of this copy within the variational procedure. It can be solved, together with the problem of the initial
conditions, by extending the motion for twice as long time. First we let the system follow its time
evolution from the initial time ti until the final time t f . After that we perform a time inversion on the
state of motion and follow the reversed motion until the original initial conditions are recovered, as
shown in Figure 1. The trajectory, spanned in such a manner,

x̃(t) =

{
x(t) ti < t < t f

x(2t f − t) t f < t < 2t f − ti
(7)

is a closed loop. We assume now that our system is subject of holonomic forces only and is governed
by the Lagrangian L(x, ẋ); the effective theories will be considered in Section 4.1. The action of the
extended trajectory, x̃(t), is

S[x̃] =
∫ t f

ti

dtL(x̃(t), ˙̃x(t)) +
∫ 2t f−ti

t f

dtLT(x̃(t), ˙̃x(t)) (8)

where T denotes time reversal, x̃T(t) = x̃(2t f − ti − t). We split the trajectory x̃(t) into two segments,

x̂(t) = (x+(t), x−(t)) = (x̃(t), x̃(2t f − t)) (9)

and write

S[x̂] =
∫ t f

ti

dt[L(x+(t), ẋ+(t))− L(x−(t), ẋ−(t))] (10)

where both x+(t) and x−(t) satisfy the same initial conditions. The time reversal, xT(t) = x(t f + ti − t),
can be represented by exchanging the trajectories, x̂T = τx̂, where

τ =

(
0 1
1 0

)
(11)
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Figure 1. The system undergoes a time reversal transformation, the time arrow is flipped at t = t f ,
and the motion is followed back to its initial state.

The CTP doublet, x̂ = (x+, x−), will be called chronon since it allows us to represent the
directions of the flow of the time within the action principle and the time reversal transformation will
be called chronon conjugation. A physical trajectory, satisfying the equation of motion is chronon
conjugation invariant,

x+(t) = x−(t) (12)

The action Equation (8) is degenerate within the space of chronon conjugation invariant
trajectories and in the null-space of the equation of motion of a harmonic system. We need a
non-degenerate action functional when the initial conditions are handled by the action hence we
add an infinitesimal piece to the CTP Lagrangian,

S[x̂] =
∫ t f

ti

dt[L(x+, ẋ+)− L(x−, ẋ−)] + Sε[x̂] (13)

with

Sε[x̂] = i
ε

2

∫ t f

ti

dt(x+2 + x−2) (14)

We shall see that the splitting term, Sε, forms an analytic structure in the frequency space
to handle the non-uniform convergence arising in the long time limit around the null-space.
The immediate advantage of removing the degeneracy with an imaginary term is that time reversal,
the chronon conjugation, can be represented by flipping the sign of the real part of the action,

ST [x̂] = S[τx̂] = −S∗[x̂] (15)

An equivalent way to realize time reversal is to perform the transformation t → 2t f − ti − t
and ε→ −ε.

The action Equation (13) contains the doubler trajectories, x+(t) and x−(t), independently from
each other and adds nothing new compared with the traditional action formalism. However the
reduplication of the degrees of freedom can be used to handle time reversal non-invariant effects by
the appropriate choice of the functional space of the chronon trajectory, x̂(t), in which the variation is
performed to derive the equation of motion: The same initial conditions, x±(ti) = xi, ẋ(ti) = vi, are
imposed on both doublers which are coupled at the final time by the condition

x+(t f ) = x−(t f ) (16)

which cancel the boundary contribution emerging in the calculation of the variational equation of
motion. Note that t f is not a relevant parameter as long as the classical trajectory, x(t) = x±(t), is
concerned because it is independent of the choice of t f for t < t f .

3.2. Harmonic Systems

The simplest dynamical system is defined by a quadratic action,

S[x̂] =
1
2

∫ t f

ti

dtdt′ x̂(t)K̂(t, t′)x̂(t′) +
∫ t f

ti

dtx̂(t) ĵ(t) (17)
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where x̂ = (x+, x−) and ĵ = (j+, j−) are CTP doublets and the “metric tensor“,

ĝ =

(
1 0
0 −1

)
(18)

can be used to raise or lower the chronon indices, e.g., x± = ±x±, j± = ±j±, in such a manner
that the scalar product, xσ jσ, preserves the chronon conjugation symmetry Equation (15) (because
ĝτĝ = −1). The chronon Green function, D̂ = K̂−1, provides the classical trajectory x̂ = −D̂ĵ. If the
source is physically realizable, j+ = −j− = j, then both doublers follow the same classical trajectory,
Equation (12), and one is left with the condition,

D++ + D−− = D+− + D−+ (19)

This relation, together with the chronon conjugation symmetry and conditions =j = =x = 0
yield the block structure

∆σσ′ =

(
∆n −∆ f

∆ f −∆n

)
+ i∆i

(
1 1
1 1

)
(20)

for both ∆ = D and ∆ = K. The blocks Dn and D f can be associated with the the near and far
Green functions of the electromagnetic field. The retarded and advanced components are defined by

∆
r
a = ∆n ± ∆ f , and the relations

K
r
a = (D

r
a)−1, Ki = −(Da)−1Di(Dr)−1 (21)

follow from the straightforward inversion for commutative blocks. The quadratic form of the action
is symmetric, ∆σσ′(t, t′) = ∆σ′σ(t′, t), implying ∆n(t, t′) = ∆n(t′, t), ∆i(t, t′) = ∆i(t′, t), ∆ f (t, t′) =

−∆ f (t′, t), and that the diagonal and the off-diagonal blocks of the harmonic action have +1 and −1
time parity, respectively. The time translation symmetry is recovered in the limit t f − ti → ∞ where
the Fourier transformation,

∆̂(t, t′) =
∫ dω

2π
e−iω(t−t′)∆̂(ω) (22)

produces real ∆n(ω), ∆i(ω) and imaginary ∆ f (ω). Note that the imaginary part of the action, Ki, is
infinitesimal and the finite imaginary part of the Green function, Di, drops out in classical mechanics,
playing a role in the quantum case only.

It is instructive to check two features of the CTP formalism. The solution of the equation of
motion, obtained by the help of the Green function, can be used to show the way the time inversion
non-invariant forces appear in the extended action formalism. Furthermore, the argument provides
the justification for Dr being the retarded Green function. To start we use the parametrization
x± = x ± xd/2 and j± = jd/2± j and bring the classical trajectory into the form x = −Dr j− iDi jd,
xd = −Da jd. Next, we consider the response of the extended trajectory, x̃(t) of Figure 1, induced by a
physical source, j(t) = j0δ(t− t0), jd = 0. Such a source introduces a change, ∆x(t), of the trajectory
for t0 < t < t f which will be replayed in the time reversed part of the motion, t f < t < 2t f − t0.
The source, −j0δ(t− t0), acting at that time restores the already known, initial ti < t < t0 segment of
the trajectory, in particular the initial conditions, too. The lesson is that j generates retarded response
and preserves the chronon conjugation invariance of the trajectory. This is in agreement with the
manner the variational equation selects the classical trajectory, namely both doublers start with the
same initial conditions and develop the same response for t0 < t < t f . Note that the final condition,
Equation (16), is trivially satisfied and plays no particular role. This is not the case for jd 6= 0 which
induces a more complicated response. The imaginary part plays a role only in the quantum case,
and the real part, xd 6= 0, shows that the trajectory is non-invariant under chronon conjugation.
The final condition, Equation (16), on the chronon trajectories plays an important role in this case.
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The oscillations, propagating along the doubler trajectories are reflected, turned back in time and
passed to the other doubler, at the final time in such a manner that the response to jd be advanced,
i.e., restricted to ti < t < t0.

Another interesting point is the identification of the way the extended action formalism
accommodates Newton’s friction force in a harmonic oscillator. This is not possible within the
framework of the traditional action principle because the time inversion parity of the antisymmetric
time derivative, ∂t, is −1 thus it generates only a boundary term in the action. However the time
derivative, ∂̂t = τ∂t, is a symmetric operator due to the identity ĝτĝ = −1, and the action,

S[x̂] = −1
2

∫ t f

ti

dtx̂(t)(m∂̂2
t + mΩ2 − k∂̂t)x̂(t) + Sε[x̂] (23)

yields the equation of motion [54] mẍ± = −mΩ2x± − kẋ∓, up to the infinitesimal terms of Sε. This is
similar to the way the O(...x ) Lorentz force emerges in electrodynamics where the role of the chronon
conjugation is played by the space inversion.

3.3. Generalized ε-Prescription

The generalization of the standard ε-prescription is presented here to handle the general
auxiliary conditions, first for a harmonic oscillator, defined by the chronon action,

S[x̂; ĵ] = ∑
σ=±1

∫ t f

ti

[
σ

(
m
2

ẋσ2 − mΩ2

2
xσ2 + jσxσ

)
+ i

mε

2
xσ2
]

(24)

The case of weakly interacting models will follow after the discussion of the harmonic case.
Our strategy for a harmonic oscillator is based on the use of the Green function and consists of

the following two steps: First we introduce new infinitesimal quadratic terms in the action in such a
manner that the solution of the equation of motion, x = −Dr j, automatically satisfies the trivial initial
conditions, x(ti) = ẋ(ti) = 0. In the next step we introduce further linear terms in the Lagrangian
which generate the desired non-trivial initial conditions.

The details of the calculation of the Green function, corresponding to the trivial initial conditions
are given in Appendix B, in the presence of an UV and an IR regulator, a finite time step, ∆t, and
the duration of observation, t f − ti, respectively. The initial coordinate is set to zero by the choice of
the functional space, and the initial velocity is found to be vanishing for finite values of the cutoffs.
The common coordinate, z = x+(t f ) = x−(t f ), is eliminated first at a finite UV cutoff, and this
step is followed by performing the continuum limit, ∆t → 0. We find at this stage a Fourier series
which represents the Green function and is non-diagonal in the frequency space, owing to the broken
translation symmetry in time. The Fourier sum can be approximated by Fourier integrals for large
enough t f − ti, and the Green function becomes diagonal in the frequency space, D̂(ω) = Ĝ(ω, Ω)/m,
as ti → −∞, t f → ∞,

Ĝσσ′(ω, Ω) =

 1
ω2−ω2

0+iε
−i2πΘ(−ω0)δ(ω

2 −ω2
0)

−i2πΘ(ω0)δ(ω
2 −ω2

0) − 1
ω2−ω2

0−iε

 (25)

or equivalently,

Gn = P
1

ω2 −Ω2 , G f = −iπsign(ω)δ(ω2 −Ω2), Gi = −πδ(ω2 −Ω2) (26)

as long as the inequalities

t f − t� Ω
ε
� t f − ti (27)
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are assured. The first inequality protects the final condition against the eroding effects of the
ε-prescription, the second bound assures that the discrete sum of the Fourier series can be
approximated by the Fourier integral and places us deeply in the non-uniform limit, displayed in
Figure A2.

The Green function has off-shell and on-shell components, the latter denoting the modes of the
null-space of the kernel of the harmonic action. The symmetric part, Dn, given by the principal value
prescription contains the response of the harmonic oscillator to the external source and represents the
off-shell part. The rest, D f , and Di, are on-shell, the former takes care of the initial conditions and the
latter is responsible of the interference effects in the quantum case, cf. Section 5.

After the Green function, D̂, generating the solution with trivial initial conditions has been found
we turn our attention to the case of non-trivial initial conditions. Since the limits ti → −∞ and t f → ∞
are performed in the construction of the Green function we replace the auxiliary conditions, imposed
on some fixed time, by the requirement that the trajectory be of the form

xa(t) = x0 sin(Ωt + α) (28)

for sufficiently large −t or t, respectively. The generalized ε-prescription is defined by the action

S[x̂] =
1
2

∫ ∞

−∞
dtdt′[x̂(t)− x̂a(t)]K̂(t− t′)[x̂(t′)− x̂a(t′)] (29)

where K̂ = D̂−1, D̂ being given by Equation (25) with ε = 0+ and ε = 0− for initial and final
conditions, respectively, and with xσ

a = xa. It is easy to see that the equation of motion produces the
desired trajectory and the inversion of the Green function yields K̂(ω) = mĤ(ω, Ω), where

Hσσ′(ω, Ω) = (ω2 −Ω2)

(
1 0
0 1

)
+ iε

(
1 −2Θ(−ω)

2Θ(ω) −1

)
(30)

in particular
Hn = ω2 −Ω2, H f = isign(ω)ε, Hi = ε (31)

The action Equation (24) can be written in the form Equation (13) in the limit ti = −∞, t f = ∞ with

Sε[x̂] = ε

[
i
2

∫ ∞

−∞
dt[x+(t)− x−(t)]2 +

1
π

P
∫ ∞

−∞
dtdt′

x+(t)x−(t′)
t− t′

]
(32)

where P denotes the principal value prescription.
A few remarks are in order at this point:

1. The coupling at the final time within a chronon, Equation (16), is transformed into an
infinitesimal, time translation invariant coupling.

2. The initial conditions are represented by the homogeneous solution of the equation of motion
which belong to the null-space of the equation of motion operator. They influence the action
of the generalized ε-prescription in O(ε) which is enough to generate a finite effect via the
null-space singularity of Equation (A17).

3. Since the initial conditions are handled by the imaginary terms of the action the time flows in
such a the direction which makes =S[x̂] increasing during the motion, cf. Equation (15).
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The aforementioned analysis can be extended to weakly interactive systems. Let us consider the
model described by the coordinate x = (x1, . . . , xN) and the action

S[x̂] = ∑
n

∫ ∞

−∞
dtdt′[x̂n(t)− x̂an(t)]mnK̂(t− t′, Ωn)[x̂n(t′)− x̂an(t′)]

−1
4 ∑

σ

σ ∑
n1n2n3n4

gn1n2n3n4

∫ t f

ti

dtxσ
n1
(t)xσ

n2
(t)xσ

n3
(t)xσ

n4
(t) (33)

The solution of the equation of motion,

[D̂−1
n (x̂n − x̂an)]

σ =
N

∑
n2n3n4=0

gnn2n3n4 xσ
n2

xσ
n3

xσ
n4
− jσn (34)

with D̂−1
n (ω) = mnĤn(ω, Ωn), can be found by iteration, the tree-graphs of the first three orders

are depicted in Figure 2. The homogeneous solutions can be taken into account by the shift of the
external source, ĵn → ĵn + (D̂n)−1 x̂hn. One can prove by the repeated application of the equation
∑σ′ σ

′Dσσ′ = Dr that the CTP Green functions, D̂n, can be replaced by Dr
n in the equation of motion.

The result is the equation of motion

(Dr
n)
−1(xn − xhn) =

N

∑
n2n3n4=0

gnn2n3n4 xn2 xn3 xn4 − jn (35)

for physical trajectory with the external source, jσ
n = jn.

To avoid the secular terms we apply the adiabatic switching approximation, the interactions
are turned on gradually in time, g → g(t), where the coupling strength is negligible at the initial
time, g(−∞) = 0. The time dependence in the coupling constant spreads the discrete spectrum
contributions, generated by the iteration at integer multiples of Ω, into the continuous spectrum.

x

x

x

x

x

x

x

x

x

x

xx . .

.

.

.

x

B

A

Figure 2. The iteration of the equation of motion Equation (34) can be visualized by tree-graphs.
Here the lines represent the Green functions, Dr, the dots stand for the vertex g and the crosses
represent the source, j. The line AB of the third graph is referred to in Section 4.4.

3.4. Mechanical Time Arrow

The auxiliary conditions break the time reversal symmetry independently of the equation of
motion, the dynamics. However the breaking of the symmetry seems to be part of the dynamics
when the auxiliary conditions are represented in the chronon action by Lε. The regulated retarded
Green function, Equation (A25), converges in a non-uniform manner during the removal of the
null-space regulator, T → ∞, cf. Figure A2, and amplifies the infinitesimal symmetry breaking,
Equation (31), to finite effects, Equation (26). This is reminiscent of the non-uniform convergence
of the order parameter in the thermodynamical limit when spontaneous symmetry breaking takes
place except that now the symmetry breaking is in time rather than in space. This similarity can
further be corroborated by constructing an order parameter for the time reversal symmetry.

A localized, time reversal invariant external perturbation, j(t) = j0δ(t − t0), generates a
response, δx(t), which is not time reversal invariant, δẋ(t0) 6= 0, due to the boundary conditions
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in time. Since the transformation ε → −ε exchanges the initial and final conditions the discontinuity
at ε = 0,

χ(t0) = −
1

2j0
lim

∆t→0
lim

ε→0+
[ẋε(t0 + ∆t) + ẋε(t0 − ∆t)]− (ε→ −ε) (36)

serves as a local order parameter of time reversal symmetry where the ε-dependence is displayed
explicitly. This transforms into a time independent order parameter,

χ = −2Ḋ f (0) (37)

in the limits ti → −∞ and t f → ∞ and acquires the value χ = 1/m for the Green function
Equation (B20).

The construction, presented for the trivial initial condition, remains well defined for arbitrary
initial conditions. In fact, the ε-dependence appears through the quadratic part of the action and the
initial conditions, encoded by the linearly coupled source, do not modify the order parameter. Thus

τmech = sign(χ) = sign(ε) (38)

can be interpreted as a mechanical time arrow, defined for a single degree of freedom without
referring to environment or equilibrium state.

As to the regulator dependence of the order parameter the retarded Green function
Equation (A25) yields χ = F(εT) where the function F(z) is defined by Equation (A1). The order
parameter shows the hallmarks of spontaneous symmetry breaking, namely the non-commutativity
of the removal of two effects, the IR cutoff and the external symmetry breaking. When this is carried
out in the proper order, the symmetry breaking is removed in an infinitely large system, a finite
symmetry breaking is left over.

4. Open Systems in the Thermodynamical Limit

Let us suppose that a variation in time of the system trajectory, δx(t), generates a perturbation,
δy(t), of the environment trajectory. The non-vanishing order parameter, Equation (36), considered
for the environment indicates that δy(t) is not time reversal invariant therefore its reaction back to the
system, δx′(t), breaks the time reversal symmetry, as well, in such a manner that the order parameter
is determined by the environment time arrow only. Such a transmutation of the environment time
arrow to the system, to be demonstrated in details in this Section, originates from the ε-prescription of
the environment and can be considered as a spontaneous breakdown of the time reversal symmetry.
The difference between the realization of the symmetry breaking in a closed and an open systems
is that the action has O(ε) and O(ε0) symmetry breaking terms in the former and the latter case,
respectively. In the case of infinitely large environment with continuous spectrum soft perturbative
irreversibility follows for certain system initial conditions. If the environment has gapless modes then
an all initial conditions lead to irreversible dynamics.

To separate the symmetry breaking within the system and in the environment it is advantageous
to allow to set independently the initial or the final conditions for the system and the environment.
This freedom allows us to introduce two independent ε parameters, εs and εe for the system and
the environment action, respectively which induce two order parameters by applying the definition
Equation (36) separately to the system and the environment.

4.1. Effective Chronon Theory

The application of the CTP scheme to a closed, conservative system amounts to a simple
paraphrase of the standard equations and the power of this formalism manifests itself within the
effective theories of open systems [55]. The chronon action,

S[x̂, ŷ] = S[x+, y+]− S[x−, y−] + Sε[x̂] + Sε[ŷ] (39)
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of the full, closed system yields the effective action,

Se f f [x̂] = S[x+, y[x̂]]− S[x−, y[τx̂]] + Sε[x̂] (40)

The trajectory y[x̂] is the solution of the environment equation of motion,

δS[x̂, ŷ]
δŷ

= 0 (41)

and satisfies the environment auxiliary conditions which are initial conditions for dissipative
environments. Note that owing to the independent variations of y+(t) and y−(t), the solution,
y[x+, x−], contains more information than y[x], arising from solving Equation (2). According to
Figure 1 the couplings between the members of a chronon, δ2y[x̂]/δx+δx−, arise from the coupling
of the trajectories at the final time, t f . The couplings which survive the limit t f → ∞ correspond
to phenomena which decouple from the system and take place in the asymptotic long time state of
the environment.

One can separate the original system dynamics in the effective action by writing Se f f [x̂] =

Ss[x̂] + Sin f l [x̂] where
Sin f l [x̂] = Se[x+, y[x̂]]− Se[x−, y[τx̂]] (42)

denotes the influence functional [14]. Another way to write the effective action is

Se f f [x̂] = S1[x+]− S1[x−] + S2[x̂] (43)

where δ2S2[x̂]/δx+δx− 6= 0. The interpretation of S1 and S2 can be inferred from the equations
of motion. It is specially advantageous to write these equations by using the parametrization
x± = x ± xd/2 [7] because it is sufficient to calculate the effective action in O(xd) for chronon
conjugation invariant trajectories satisfying Equation (12). The variational equation for xd at xd = 0,

0 =
δS1[x]

δx
+

δS2[x, xd]

δx |xd=0
(44)

indicates that that the one-point action, S1, includes the conservative part of the effective dynamics,
and the two-point action, S2, covers non-conservative, semiholonomic forces.

We can find the same effective action by Legendre transformation, as well, by borrowing the
ideas from quantum mechanics and defining the generator functional,

W[ ĵ] = S[x̂, ŷ] +
∫ t f

ti

dtĵ(t)x̂(t) (45)

where the system and the environment coordinates are eliminated by their equation of motion,

δS[x̂]
δx̂

+ ĵ =
δS[x̂]

δŷ
= 0 (46)

The n-point Green functions are given by the functional Taylor expansion,

W[ ĵ] =
∞

∑
n=0

1
n!

∫ t f

ti

dt1 · · · dtnDσ1,...,σn(t1, . . . , tn)jσ1(t1) · · · jσn(tn) (47)

and can be found by iteration. The system trajectory is actually the one-point function,

xσ(t) =
δW[ ĵ]
δjσ(t) | ĵ=0

(48)
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and the higher order Green functions describe the dependence of the trajectory on the source, given
in terms of the higher order graphs in the iterative solution of the equation of motion, cf. Figure 2.
The effective action, Equation (40), is recovered as the Legendre transform of W[ ĵ],

Se f f [x̂] = W[ ĵ]−
∫ t f

ti

dtĵ(t)x̂(t) (49)

where ĵ is eliminated on the right hand side by inverting Equation (48).

4.2. Energy Balance

The recovery of the symmetry with respect to translation in time as t f − ti → ∞ has been proven
in Section 3.3. This symmetry is a characteristic feature of soft irreversibility where the energy loss to
the environment in equilibrium is due to the uncontrollable small amplitude, slow fluctuations rather
than external time dependence in the dynamics. We turn our attention to the energy balance equation
to discover the dissipative effective forces.

We start with the harmonic oscillator, Equation (A7), coupled to an external source, L → L + jx.
The work done by the oscillator on the external source,

W = −
∫

dtj(t)ẋ(t) (50)

can be expressed as a frequency integral,

W
r
a = i

∫ dω

2π
ωj(−ω)[D

r
a(ω)j(ω) + xa(ω)] (51)

where the upper and the lower case refers to the initial and the final conditions, respectively.
The coefficient of the Green function in the integrand is an odd function of the frequency and

suppresses the the contribution of Dn, allowing the replacement D
r
a → ±D f , D f being given by

Equation (26). Since the support of D f is the null-space the energy exchange in an asymptotically
long time takes place in the null-space only,

W
r
a = ±|j(Ω)|2

2m
+

x0Ω
2
=[j(Ω)e−iα] (52)

This is a natural result since only the null-space modes can be non-vanishing in the absence of
the external source and can accumulate the energy excess or loss. Note that sign(W) = sign(χ) for
x0 = 0, in agreement with the possibility of using the direction of time in which the energy of the
oscillator is lost as an order parameter of the time reversal invariance in dissipative dynamics.

The conserved quantities, defined formally in the CTP formalism by the help of the Noether
theorem, are vanishing due to the chronon conjugation symmetry Equation (15). Hence we have
to perform the symmetry transformations on one copy only, leaving the other, representing the
environment, unchanged in deriving the CTP analogy of Noether’s theorem [55–57]. The conserved
quantities are defined by the help of S1[x], and if S2[x̂] violates a symmetry then the corresponding
conservation law receives a non-vanishing source term and becomes a balance equation.

Let us now assume that the effective action corresponds to an effective Lagrangian,
Le f f (x̂) = L1(x+) − L1(x−) + L2(x̂), containing time derivatives up to order nd. The equation of
motion for x+ is

nd

∑
j=0

(−1)j dj

dtj
δ

δx(j)
[L1(x+) + L2(x+, x−)]|x−=x+ = 0 (53)
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where the notation x(j) = djx/dtn is used. To find the energy balance equation we make a variation,
δx+ = −ξ ẋ, δx− = 0 and write the linearized action of ξ(t),

S[ξ] = −
nd

∑
j=0

∫
dt

djξ ẋ
dt(j)

δL
δx(j)

(54)

in the form

S[ξ] =
∫

dt
{

ξ

[
∂−t L2(x̂)− d

dt
L1(x+)

]
−

nd

∑
j=0

(
j

∑
k=1

(
j
k)

δL1(x+)
δx+(j)

ξ(k)x+(j−k+1) +
j

∑
k=0

(
j
k)

δL2(x̂)
δx+(j)

ξ(k)x+(j−k+1)

)}
|x=x+=x−

(55)

after some partial integrations, where the partial derivative ∂−t acts on x− only. The corresponding
equation of motion for ξ, when x = x+ = x− is the classical trajectory, is

Ḣnd = κ (56)

where
H1 =

δL1

δẋ
ẋ− L1 (57)

for nd = 1 and

Hn = H1 +
nd

∑
j=2

[
j

δL1

δx(j)
x(j) +

j−1

∑
k=1

(
j
k+1)(−1)k dk

dtk

(
δL1

δx(j)
x(j−k)

)]
(58)

for nd ≥ 2 with the source term,

κ = −
nd

∑
j=0

δL2

δx−(j) |x+=x−=x
x(j+1) (59)

representing that part of the interaction energy which is lost to the environment at the final time.
The rate of change is not definite for large amplitude and fast motion but the bound κ ≤ 0 will be
proven in the next Section for perturbative soft irreversibility.

There is a fundamental difference between the energy of the Newtonian mechanics and Hn,
namely the latter is not definite for nd ≥ 2 [58,59]. The effective dynamics is usually non-local in time
if the frequency spectrum is discrete and the local gradient expansion assumes continuous spectrum,
i.e., an infinite environment. The conservation of the total, system plus the environment energy can
not prevent that the system energy becomes unbounded from below in this case.

4.3. Normal Modes I.: Finite System

We now extend the argument of the previous section to a multi-dimensional harmonic system,
described by the coordinate z = (x, y1, . . . , zN) and the action,

S =
1
2 ∑

n,n′

∫ ∞

−∞
dtdt′ ẑn(t)K̂nn′(t− t′)ẑn′(t

′) +
∫ ∞

−∞
dtẑ1(t) ĵ(t) (60)

describing time reversal invariant and conservative forces, and seek the effective action for x̂ = ẑ1

which can be calculated by the help of the generator functional Equation (45). All normal modes
have the same mechanical time arrow in the model. First we diagonalize the action by the
orthogonal transformation,

zn = ∑
j

Anjwj (61)
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transforming the normal modes, w, into z. Next, the generator functional,

W[ ĵ] = ∑
j

[
1
2

∫ ∞

−∞
dtdt′ŵj(t)k̂−1

j (t− t′)ŵj(t′) + A1,j

∫ ∞

−∞
dtŵj(t) ĵ(t)

]
(62)

with
k̂ j = ∑

n,n′
AnjK̂nn′An′ j (63)

is constructed by solving the normal mode equations of motion and inserting the solution into W[ ĵ],

W[ ĵ] = −1
2 ∑

j

∫ ∞

−∞
dtdt′ ĵ(t)A1j k̂−1

j (t− t′)A1j ĵ(t′) (64)

Finally, one arrives at the effective action,

Se f f [x̂] =
1
2

∫ ∞

−∞
dtdt′ x̂(t)K̂(t− t′)x̂(t′) +

∫ ∞

−∞
dtx̂(t) ĵ(t) (65)

with
K̂−1 = ∑

j
A2

1j k̂
−1
j (66)

The solution of the effective equation of motion, x̂ = −D̂j, is obtained in terms of the Green
function, D̂ = K̂−1. We use a physically realizable source, jσ = σj, giving rise to the response
x± = x = −Dr j where Dr = (Kr)−1, according to the inversion rules Equation (21). The equation of
motion satisfied by this trajectory is Krx = −j with

1
Kr(ω)

= ∑
j

A2
1j

Mj[ω2 −Ω2
j + isign(ω)ε]

(67)

where Mj and Ωj ≥ 0 denote the j-th normal mass and frequency, respectively and ∑j A2
1j = 1.

The structure of the effective equation of motion can better be understood by noting that the
external source, j, is coupled to several normal modes, cf. Equation (62) hence the energy injected
into the system by the source is spread over the normal modes and generates a rather complicated
response, reminiscent of interacting systems [60]. The retarded Green function,

Dr(ω) =
1

Kr(ω)
= ∑

j

A2
1j

Mj

[
ω2 −Ω2

j

(ω2 −Ω2
j )

2 + 4ε2
− isign(ω)

2ε

(ω2 −Ω2
j )

2 + 4ε2

]
(68)

given for ε 6= 0, shows that <Kr(ω) is non-vanishing and time reversal invariant except in the
normal mode spectrum. At the same time =Kr(ω) is localized in the frequency space within the
ε neighborhood of the spectrum and breaks the time reversal invariance and sign(ω=Kr(ω)) =

sign(ωε). The discrete peaks of =Kr(ω) represent the breakdown of the time reversal invariance
in the effective dynamics, induced by the environment auxiliary conditions.

4.4. Normal Modes II.: Infinite System

It is advantageous to introduce the spectral function,

ρ(Ω) = ∑
j

A2
1j

2MjΩj
δ(Ωj −Ω) (69)
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for infinite systems, N = ∞, yielding

1
Kr(ω)

= ∑
j

∫
dΩδ(Ωj −Ω)

A2
1j

Mj

1
(ω + iε)2 −Ω2

=
∫

dΩ
2ρ(Ω)Ω

(ω + iε)2 −Ω2 (70)

where the possible dependence on the order of performing the summation and the integration is
revealed by the non-uniform convergence in the second line as ε→ 0.

As a simple example take a mixed spectrum,

ρ(Ω) =
1

2msωs
δ(Ω−ωs) + ρD(Ω) (71)

where the environment is represented by a Drude-type spectral weight,

ρD(Ω) = Θ(Ω)
g2Ω

mΩD(Ω2
D + Ω2)

(72)

The roots of

Kr(ω) =
ms[(ω + iε)2 −ω2

s ]

1− πg2ms
ΩDm

(ω+iε)2−ω2
s

ΩD−iω

(73)

ω(±) = ±ωs − iε and ω(0) = −iΩD, define the spectrum of an irreversible effective theory.
To understand better the dependence of the first equation in Equation (70) on the order of the

summation and the integration, let us make a coarse graining in time by using the trajectories x(t)→
xT(t) = x(t)cT(t), where c(t) ≈ 1 if |x| � T and c(t) ≈ 0 if |t| � T, T being an IR cutoff function with
time reversal invariance, c(−t) = c(t). Such a restriction of the trajectories amounts to the spread

xT(ω) =
∫ dω′

2π
x(ω−ω′)cT(ω

′) (74)

of the discrete frequency lines in the frequency space. We introduce the minimal separation of the
discrete normal frequencies, ∆ω̃ = inf |ω̃j − ω̃j′ |, and distinguish the following cases [4]:

• ∆ω̃ > 0: The observations, carried out in time T � 1/∆ω̃, can resolve all normal modes
and the effective theory for xT is conservative. We can reproduce such observations with an
effective theory where the integration over the spectral variable is performed first, followed by
the summation. The linear equation of motion operator is given by Equation (68) and the motion
is reversible at frequencies which do not belong to the normal mode spectrum.

• ∆ω̃ = 0: The normal frequency spectrum has an accumulation point and the long but finite time
measurements leave infinitely many normal modes unresolved. The infinitely many unresolved
normal modes act as an uncontrollable absorber of the system energy and the effective dynamics
for xT with finite T contains dissipative forces. The summation must be carried out first in the
first equation in Equation (70) in this case, leaving the integration for the second step.

The soft irreversibility can be found in the iterative solution of weakly interactive models, too.
Let us take for instance the model described by the action Equation (33), whose iterative solution
can be written as a series of tree-graphs, as shown on Figure 2. Consider the contribution of the
Green function, Dr

n = Dn
n + D f

n, n > 1, corresponding to the line AB in the third graph. The system
coordinate acts as an external source on the environment coordinate xn and the contribution
Dnσ′(t1, t2)xσ′

1 (t2), to xσ
n(t1), shown by dashed lines in Figure 3, represents the oscillations of xn at

t f = ∞, the absorber for the system energy.
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Figure 3. The system coordinate, x1, acts as an external source on the environment coordinate xn,
n > 1, cf. Figure 1. The dashed lines represent D+

nσ′ (t1, t2)zσ′

1 (t2), t−2 = t2, t−2 = 2t f − ti − t+2 , the
response of zn(t1) on z1(t2).

The leading order solution with trivial environment initial conditions is

xσ
n(t) = gn000 ∑

σ′

∫ ∞

−∞
dt′Dσ

σ′n(t− t′)xσ′3
1 (t′) +O(g2) (75)

for n > 1 and its insertion into the chronon action yields the influence functional for x = x1,

Sin f l [x̂] =
1
2 ∑

σσ′
σ

N

∑
n=1

g2
n000

∫ ∞

−∞
dtdt′xσ3(t)Dσσ′n(t− t′)xσ′3(t′) +O(g3) (76)

The spectral function,

ρ(Ω) = ∑
n

g2
n000

2mnωn
δ(Ω−ωn) (77)

allows us to write

Sin f l [x̂] = ∑
σσ′

∫
dΩΩρ(Ω)

∫ ∞

−∞
dtdt′xσ3(t)Gσσ′(t− t′, Ω)xσ′3(t′) +O(g3) (78)

where the Fourier transform of Ĝ(t − t′, Ω) is given by Equation (25). The corresponding effective
equation of motion for x+ = x− is

ẍ(t) = −ω2
0x(t) + x2(t)

6
m0

∫
dΩΩρ(Ω)

∫ ∞

−∞
dt′Gr(t− t′, Ω)x3(t′) +O(g3) (79)

Although there are nonlinear terms, the discussion of the breakdown of the time reversal
invariance and the emergence of dissipative forces, presented for the harmonic model, applies.

4.5. Toy Model

We can better isolate the role of the environment in generating irreversibility by looking into the
harmonic model of the Lagrangian [61,62],

L =
m0

2
ẋ2 −

m0ω2
0

2
x2 +

N

∑
n=1

(
mn

2
ẏ2

n −
mnω2

n
2

y2
n − gnynx

)
(80)

where the time may run in different direction in the system and the environment, for x and y,
respectively. The chronon action assumes the form

S[x̂, ŷ] =
1
2

∫ ∞

−∞
dtdt′[x̂(t)D̂−1

0 (t− t′)x̂(t′) + ŷ(t)Ĝ−1(t− t′)ŷ(t′)]−
∫ ∞

−∞
dtx̂(t)gŷ(t) (81)

in terms of the trajectories x̂ = τΘ(−εs) x̂, ŷ = τΘ(−εe)ŷ and g = sign(εeεs)diag(g1, . . . , gn).
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The elimination of the environment leads to the effective action,

S[x̂, ŷ] =
1
2

∫ ∞

−∞
dtdt′ x̂(t)K̂(t− t′)x̂(t′) (82)

where the inverse Green function, K̂ = D̂−1
0 − Σ̂ = D̂−1, contains the self energy Σ̂ = gĝĜĝg, where

ĝ is given by Equation (18). The perturbative inversion yields the geometric series,

D̂ = D̂0 + D̂0Σ̂D̂0 + D̂0Σ̂D̂0Σ̂D̂0 + D̂0Σ̂D̂0Σ̂D̂0Σ̂D̂0 + · · · (83)

When applied to the source, jσ = σj, both D̂0 and σ̂ can be replaced by their retarded component,

Dr = Dr
0 + Dr

0ΣrDr
0 + Dr

0ΣrDr
0ΣrDr

0 + Dr
0ΣrDr

0ΣrDr
0ΣrDr

0 + · · · (84)

The influence functional,

Sin f l [x̂] = −
1
2

∫ ∞

−∞
dtdt′

∫ dω

2π
e−iω(t′−t) x̂(t′)Σ̂(ω)x̂(t) (85)

can conveniently be parametrized by means of the spectral function,

ρ(Ω) = ∑
n

g2
n

2mnωn
δ(ωn −Ω) (86)

and the self energy assumes the form

Σ̂(ω) =
∫ ∞

0
dΩ2Ωρ(Ω)Ĝ(ω, Ω) (87)

where Ĝ(ω, Ω) is given by Equation (25), in particular

Σn(ω) = 2P
∫ ∞

0
dΩ

Ωρ(Ω)

ω2 −Ω2

Σ f (ω) = −sign(εe)iπsign(ω)ρ(|ω|)
Σi(ω) = −sign(εe)πρ(|ω|) (88)

The expansion of the exponent in the right hand side of Equation (85) in t′ − t and Σ̂(ω) in ω

yields the influence Lagrangian,

Lin f l = −
1
2
(x~Σnxd + xd~Σnx + xd~Σ f x− x~Σ f xd + xdi~Σixd) (89)

where
~̂Σ =

∞

∑
`=0

(−1)`

`!
∂`iωΣ̂(0)∂`t (90)

The equation of motion, generated by the variation of xd, at xd = 0, is

mẍ = −(mω2
0 +~Σr)x (91)

with ~Σr = ~Σn + ~Σ f and contains the following terms up to O(∂2
t ): (i) O(∂0

t ): a normal frequency
renormalization, ω2

0 → ω2
0 − ∆ω2, with

∆ω2 =
2
m

∫ ∞

0
dΩ

ρ(Ω)

Ω
(92)
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(ii) O(∂t): a Newtonian friction force, F = −kẋ, with k = πρ′(0), and (iii) O(∂2
t ): a mass

renormalization, m→ m + δm, where

δm = 4
∫ ∞

0
dΩ

ρ(Ω)

Ω3 (93)

The finite imaginary part of the self energy dominates the imaginary part of the effective action
making χs = 0 and sign(χe) = sign(εe). The first equation indicates that no symmetry breaking
is taking place within the system and the second equation shows that the mechanical time arrow of
the environment is simply transfered to the system since (τmech)s = −signḊ f (0). This is reminiscent
of spontaneous symmetry breaking, namely the replacement ε → h, and T → V brings the order
parameter Equation (37) into M, mentioned in Section A.1.

One can separate the following cases:

1. Discrete environment spectrum without condensation point: The breakdown of the time reversal
symmetry is not universal. The experiments, performed in a sufficiently long time reveal the
time reversal invariant system dynamics, realized at frequencies which do not belong to the
environment spectrum.

2. Discrete environment spectrum with condensation point: The continuous spectral function
becomes a good approximation for finite time observations at the condensation point and
indicate the irresistible loss of energy to those modes.

3. The continuous environment spectrum: We find soft irreversibility at any frequency.
The analysis of the discrete spectrum reveals that the loss of energy is due to the environment,
whose modes are degenerate with the system.

The soft irreversibility is the result of the mixing of the environment modes into the system
dynamics, described by Σ f . This mixing can clearly be seen in the geometric series Equation (84),
where Σr = Σn + Σ f and each Σ f stands for environment excitations. These excitations decouple
from the system after the system-environment interactions is adiabatically switched off because they
correspond to the environment null-space.

It is instructive to calculate the energy balance by using the results of Section 4.2 for continuous
spectrum. Let us assume the validity of the expansion of the effective action in the time derivative
and use the effective Lagrangian,

Le f f =
1
2
(x+Knx+ − x−Knx− + x+K f x− − x−K f x+) (94)

where Kn = ∑j Kn
j ∂

2j
t and K f = ∑j K f

j ∂
2j+1
t . After some partial integration we have

Le f f = ∑
j
(−1)j

{
1
2

Kn
j [(x+(j))2 − (x−(j))2 − K f

j x−(j)x+(j+1)
}

(95)

and the corresponding energy balance equation, Equation (56), contains the system energy

H = −1
2

Kn
0 x2 − 1

2
Kn

1 ẋ2 +
n

∑
j=2

(−1)jKn
j

{(
j− 1

2

)
x(j)2 +

j−1

∑
k=1

(
j
k+1)(−1)k dk

dtk [x
(j)x(j−k)]

}
(96)

and the source term

κ =
n

∑
j=0

(−1)jK f
j x(j+1)2 (97)
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The total energy loss, the integral of κ during the motion, allows us to define the energy loss,

κ(ω) =
n

∑
j=0

(−1)jK f
j (ω)ω2(j+1)|x(ω)|2 (98)

for each frequency.
Consider first the Green function in the form of the normal mode decomposition, cf.

Equation (68), where D f (ω) is imaginary and the positivity of the norm in the coordinate space,
z, guarantees the inequalities

sign(ω)iD f (ω) ≥ 0 (99)

and sign(ω)=K f (ω) > 0. The latter yields (−1)jsign(ω)K f
j (ω) ≤ 0 and makes the system energy

non-increasing, Ḣ ≤ 0, within each frequency mode. Naturally this result holds only for the
trivial environment initial conditions and it is easy to see that the source term, κ, is non-definite
for non-trivial initial conditions. Let us now return to the toy model where the time arrow can
formally be set separately for the system and the environment. Since sign(ω)sign(=(K f (ω)) =

sign(εe) according to the second equation of Equation (88) we have sign(ω)sign(iD f (ω)) = sign(εe),
indicating that the system dynamics is stable and the system energy is non-increasing whatever
direction the time flows for the system if that direction is the same as for the environment time.

5. Finite Life-Time and Decoherence

We turn to the quantum case where the breakdown of time reversal invariance induces genuine
quantum effects. The soft irreversibility stands for the possibility of any mode of the system
to loose energy to the environment, leading to the leakage of the norm of the system state into
the environment, the dynamical origin of the finiteness of the life-time of the system excitations,
in the quantum case. Another effect of the gapless excitation spectrum is that the slightest
system-environment interaction generates a system-environment mixing according to the degenerate
perturbation expansion, and the system state becomes mixed by decoherence. This represents
an irreversible loss of the informations, contained in the suppressed off-diagonal elements of the
density matrix.

5.1. Quantum Chronon-Dynamics

The CTP formalism was introduced by J. Schwinger for the perturbation expansion of the
expectation values,

〈ψ(ti)|U†(t, ti)AU(t, ti)|ψ(ti)〉 (100)

in quantum mechanics [5]. Here |ψ(ti)〉 denotes the state at the time ti and U(t, t′) is the time
evolution operator. The reduplication of the degree of freedom originates from the simultaneous
presence of the bra and ket in the expectation value, two states, developing in opposite direction in
time but representing the same physical system.

The naive quantization of the chronon dynamics of a closed system, introduced in Section 3.1,
is based on the Hamiltonian, H = p̂ ˙̂x − L, the replacement of c-numbers with operators,
[xσ, pσ′ ] = δσ

σ′ ih̄, and the representation of the chronon location x̂ = (x+, x−) by the help of the dyadic
product, |x+〉〈x−|. The use of the dyadic products rather than the kets eliminates a disadvantageous
feature of the bracket formalism, namely the dependence of the action of anti-linear operators on
the choice of the basis. An anti-linear operator, A, acts as a complex conjugation on c-numbers,
Ac|ψ〉 = c∗A|ψ〉, hence its action on a basis vector depends whether this latter is represented by real
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of complex functions, an inherent ambiguity in a linear space over the complex numbers. In fact, by
assuming |ψ〉 = c|χ〉 we have

Aa|ψ〉 =
{

a∗c|χ〉 A|ψ〉 = |ψ〉
a∗c∗|χ〉 A|χ〉 = |χ〉

(101)

The usual convention in representing time inversion in quantum mechanics by an anti-linear
operator, T, is to impose T|x〉 = |x〉. By assuming |ψ±〉 = c±|χ±〉 we find in the linear space of states
of chronons,

Aa|ψ+〉〈ψ−| =
{

a∗c∗+c−|χ−〉〈χ+| A|ψ+〉〈ψ−| = |ψ−〉〈ψ+|
a∗c∗+c−|χ−〉〈χ+| A|χ+〉〈χ−| = |χ−〉〈χ+|

(102)

The time evolution of the chronon wave function, ψ(x̂), can be obtained by the help of a path
integral expression,

A(t f , x̂ f , ti, x̂i) =
∫

D[x̂]e
i
h̄ S[x̂] (103)

where the integration is over trajectories with end points x̂(ti) = x̂i, x̂(t f ) = x̂ f and the action in
the exponent is given by Equations (13) and (14). The standard procedure to derive the equation
of motion for A, which usually gives the Schrödinger equation, now leads to the Neumann
equation, indicating that ψ(t, x̂) = A(t, x̂, ti, x̂i) is actually the density matrix. This is not surprising
after noting the formal similarity between the doubling x → (x+, x−) and ψ(x) = 〈x|ψ〉 →
ρ(x+, x−) = 〈x+|ρ|x−〉 in classical and quantum systems, respectively. Such an interpretation reveals
a fundamental difference between ρ(x̂) and ψ(x): The expectation value, 〈A〉ρ, is additive in the
quantum state, 〈A〉ρ1+ρ2 = 〈A〉ρ1 + 〈A〉ρ2 , without interference. The state ρ contains all quantum
effects, i.e., all interference has already been placed into ρ(x̂). The only expression for 〈A〉ρ which is
additive in ψ and respects the condition Equation (16) of virtual variation is 〈A〉ρ = Tr[ρA]. The time
reversal, realized either by chronon conjugation or the transformation ε → −ε in classical physics, is
represented by the complex conjugation in the coordinate basis.

From now on we return to the traditional quantization scheme and introduce the quantum
version of the generator functional Equation (45),

e
i
h̄ W[ ĵ] = TrT[e−

i
h̄
∫

dt(H(t)−j+(t)x(t))]ρiT∗[e
i
h̄
∫

dt(H(t)−j−(t)x(t))] (104)

where the trace stands for the the condition Equation (16) and ρi denotes the initial density matrix
with the path integral representation

e
i
h̄ W[ ĵ] =

∫
D[x̂]e

i
h̄ S[x̂]+ i

h̄
∫

dtx̂(t) ĵ(t) (105)

5.2. Open Quantum Systems

If the observed system is not closed but interacts with its environment, the action S[x, y] =

Ss[x] + Se[x, y], leads to the path integral expression,

e
i
h̄ W[ ĵ] =

∫
D[x̂]e

i
h̄ Se f f [x̂]+

i
h̄
∫

dtx̂(t) ĵ(t) (106)

where the bare (Wilsonian) effective action, Se f f [x̂] = Ss[x+]− Ss[x−] + Sin f l [x̂], where the influence
functional is given by

e
i
h̄ Sin f l [x̂] =

∫
D[ŷ]e

i
h̄ Se [x+ ,y+ ]− i

h̄ Se [x− ,y− ]+ i
h̄ Sε [ŷ] (107)

and the decomposition Equation (43) can be used again.



Symmetry 2016, 8, 25 23 of 37

It is instructive to consider a generalization of the CTP formalism, based on the density matrix,

ρ(x+f , x−f ) = 〈x
+
f |U(t f , ti)ρiU†(t f , ti)|x−f 〉 (108)

rather than its trace, as in Equation (104). It is the Open Time Path scheme, and the path integral
expression for the reduced density matrix is

ρ(x+f , x−f ) =
∫

D[x̂]D[ŷ]e
i
h̄ S[x+ ,y+ ]− i

h̄ S[x− ,y− ]+ i
h̄ Sε [x̂]+ i

h̄ Sε [ŷ] (109)

with x̂(t f ) = x̂ f and y+(t f ) = y−(t f ), and the effective action of the CTP formalism gives

ρ(x+f , x−f ) =
∫

D[x̂]e
i
h̄ S1[x+ ]− i

h̄ S∗1 [x
− ]+ i

h̄ S2[x̂]+ i
h̄ Sε [x̂] (110)

The decoherence in the coordinate diagonal representation, the suppression of the contributions
of well separated chronon trajectories, is driven by =S2. The couplings between the doubler
trajectories in S2 which generate semiholonomic forces in classical mechanics now stand for the
contributions of several final environment states in the trace of Equation (104), make the system
state mixed and represent the system-environment entanglement. In particular, the O(x̂2) terms in
Equation (32) represent an infinitesimal decoherence and the corresponding initial state is mainly the
ground state but contains an infinitesimal amount of mixing.

The two trajectories of a chronon are identical in classical physics, cf. Equation (12). It is easy
to see that the unitarity of the time evolution preserves Equation (12) on the level of the averages.
In fact, the average of the coordinate at time to < t f can be calculated in two equivalent,
t f -independent manners,

Tr[xρ(to)] =
δW[ ĵ]
δj±(t)

(111)

owing to the identities

〈ψ(ti)|U†(to, ti)xU(to, ti)|ψ(ti)〉 = 〈ψ(ti)|U†(t f , ti)U(t f , to)xU(to, ti)|ψ(ti)〉
= 〈ψ(ti)|U†(to, ti)xU†(t f , to)U(t f , ti)|ψ(ti)〉 (112)

cf. the remark about the t f independence of the classical trajectory, made at the end of Section 3.1.
This allows us to identify xd = x+ − x− with the quantum fluctuations in the coordinate basis.

The reduplication of the degrees of freedom deals with time reversal symmetry breaking
interactions within the framework of the action formalism. It seems to be only a formal device in
classical mechanics because the equation of motion make the doublers within a chronon equivalent.
This changes when quantum systems are considered: Equation (12) holds in the average only
and the dynamical independence of the doublers within a chronon are needed to accommodate
the principle of superposition. In fact, the uncertainty principle excludes the use of the classical
trajectory to extract the dynamics of the momentum which is rather found by the help of the higher
moments of xd, the violation of Equation (12), in the path integral Equation (105). In other words,
the quantum fluctuations are the microscopic manifestation of the presence of the dynamically
independent doublers. The time arrow is opposite for the the bra and the ket, the two members of the
chronon and generate advanced effects of the quantum fluctuations. In fact, consider two degrees of
freedom, described by the coordinates x1 and x2, coupled linearly by the term gx1x2 of Lagrangian.
The product gx2 acts as a linear source for x1 and the remarks, made in Section 3.2, show that the
effect of jd = j+ + j− → gxd

2 is advanced. The opposite orientation of the time arrow for bras and ket
makes the time arrow for x = (x+ + x−)/2 and xd = x+− x− opposite, as well, and has an important
role, it produces positive Lyapunov exponent for the quantum fluctuations.
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5.3. Propagator

The generator functional, Equation (104), motivates the introduction of the generalized time
ordered product [11],

T̄[Aσ(t)Bσ′(t′)] =


Θ(t− t′)Aσ(t)Bσ′(t′) + Θ(t′ − t)Bσ′(t′)Aσ(t) (σ, σ′) = (+,+)

Θ(t′ − t)Aσ(t)Bσ′(t′) + Θ(t− t′)Bσ′(t′)Aσ(t) (σ, σ′) = (−,−)
Aσ(t)Bσ′(t′) (σ, σ′) = (−,+)

Bσ′(t′)Aσ(t) (σ, σ′) = (+,−)

(113)

and the definition of the propagator

TrT̄[xσ(t)xσ′(t′)] = ih̄Dσσ′(t, t′) (114)

which turns out to be identical with the classical Green function, Equation (25) in the case of the
harmonic oscillator and ground state initial conditions. The diagonal block gives the Feynman
propagator, DF = D++, and the off diagonal part defines the spectral function, given by the
Wightmann function,

iD−+(ω) = Tr[A(−ω)A(ω)]

= ∑
mn
〈m|A(−ω)|n〉〈n|A(ω)|m〉

= ∑
mn
|〈m|A(ω)|n〉|2

≥ 0 (115)

where |n〉 are eigenstates of the Hamiltonian and the last inequality follows from the positivity of
the norm. The spectral function is vanishing for ω < 0 if the motion starts in the ground state and
iDi(ω) = sign(<ω)D f (ω) follows, or equivalently, the Feynman propagator can be reconstructed by
the help of the retarded or advanced Green functions,

DF(ω) = Dn(ω) + iDi(ω) =

{
Dr(ω) <ω > 0

Da(ω) <ω < 0
(116)

Since Dr(ω) is a real function of iε an equivalent form of this equation is

D
r
a(ω) = DF(±|<ω|+ i=ω) (117)

Similar relations hold for the inverse Green function, iKi(ω) = sign(ω)K f (ω), furthermore the
inequality Equation (115) assures the bound Equation (99).

It is illuminating to rewrite the harmonic action Equation (17), in terms of x± = x ± xd/2 and
j± = ±j + ja/2,

S[x, xd] =
1
2

∫ t f

ti

dtdt′[xd(t)Kr(t, t′)x(t′) + x(t)Ka(t, t′)xd(t′) + xd(t)iKi(t, t′)xd(t′)]

+
∫ t f

ti

dt[x(t)ja(t) + xd(t)j(t)] (118)

showing that the auxiliary variable, ja, generates the O(h̄0) expectation value of the coordinate when
j+ = −j− 6= 0 in Equation (105), expressed by the help of the real components of either the action
or the propagator, Dr = (Kr)−1 and Da = (Ka)−1, which satisfies the classical equation of motion.
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A genuineO(h̄) quantum effect, the linear superposition of quantum fluctuations, is displayed by the
imaginary component, Di = −DrKiDa which drops out from the equations of classical mechanics.

The imaginary part of the propagator manifests itself both in the diagonal and the off-diagonal
CTP blocks of the propagator which controls two different quantum effects. The imaginary part of
the diagonal blocks of the action, =K±±, modifies the normalization of a pure state or the trace of the
density matrix. It is well known that the Hilbert space provides a ray representation of the physical
states, namely the kets |ψ〉 and c|ψ〉 correspond to the same physical state. The electromagnetic
interaction arises as a relativistic gauge theory, based on the redundancy of a pure phase, |c| = 1.
The redundancy of |c| 6= 1 opens the possibility of the leakage of the state to another sector of the
Hilbert space, the finite life-time of a state. The diagonal block, K++, is the inverse of the Feynman
propagator when the system starts in the ground state [55], and its roots, D−1

F (ω0) = 0, correspond to
the normal mode frequencies. Thus the time scale of the leakage of the system into the environment,
1/|=ω0|, a result of the system-environment entanglement, is the damping time scale of the classical
trajectory according to Equation (117). Note that the unitarity of the time evolution is preserved in the
CTP effective theories which keep the trace of the reduced density matrix unity hence a quantum state
with finite life-time is mixed, reflecting the system-environment entanglement. Another quantum
effect, the decoherence in coordinate representation, is the result of the imaginary parts of both the
diagonal and the off-diagonal blocks. In fact, they contribute to the O(xd2) term of the effective
action and suppress the contribution of the chronon trajectories to the reduced density matrix in
Equation (110) with well separated doublers. The identity =K++ = =K−+ implies that the intrinsic
time scale of of the decoherence and the dissipation are identical in a harmonic system.

Both the mixing of the state and the decoherence are already present with an infinitesimal
strength even in a closed system. In fact, the first and the second term in the action, Equation (32), of
the generalized ε-prescription represent an infinitesimal decoherence and mixing, respectively. Both
become of finite strength in the effective theory for an infinitely large environment with continuous
spectrum via the spontaneous breakdown of the time reversal symmetry.

The identity of the classical and quantum Green functions makes the generalization of the
classical treatment of harmonic models to the quantum case trivial. The quantum version of the
toy model of Section 4.5 has already been throughly examined [63,64]. The calculation of the CTP
effective theory proceeds as in the classical case, in particular the influence Lagrangian Equation (89)
can be recovered and the classical equation of motion remains valid for the expectation value of
the coordinate. The non-increasing nature of the energy, given by Equation (96), is assured by the
positivity of the norm and the Schwinger-Dyson resummation, Equation (83), can be interpreted
as a result of the mixing of the degenerate system and environment excitations. Similar procedure
yields the quadratic effective Lagrangian for a test particle, interacting with an ideal gas [65]. The
quadratic classical effective Lagrangian of the point charge [66] remains valid in non-relativistic
quantumelectrodynamics, too.

5.4. Double Role of the Environment Induced Time Arrow

While the CTP action of a closed system, Equation (13), has an infinitesimal imaginary part
the effective action, Equation (40), may acquire finite imaginary pieces, cf. the third equation of
Equation (88). The initial conditions of the trajectories x±(t) are identical in classical physics,
making xd = x+ − x− = 0 and keeping the imaginary terms of the equation of motion for
x = (x+ + x−)/2 infinitesimal. The initial conditions are more involved in the quantum case where
the quantum fluctuations show up already in the initial state, xd(ti) 6= 0, and the finite imaginary
part of the effective action displays two genuine O(h̄) quantum effects, the finiteness of the life-time
and decoherence:

• The transfer of the mechanical time arrow from the environment to the system by the
spontaneous breakdown of the time reversal symmetry determines the direction of the time in
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which the dissipative work, performed by the system is positive and the motion is stable. The
norm of the system state is non-increasing in the time direction.

• The positive norm of the system states makes =S2 ≥ 0, where S2 is defined by the help of
the decomposition Equation (43) of the effective action and renders the interference among the
possible system histories destructive rather than constructive in the same time direction.

The mixing of states in the system and the environment sectors and the decoherence change
the norm of the state during the time evolution. Both effect are kept stable by the transfer of the
environment time arrow in a manner similar to the stabilization of the classical energy, discussed in
Section 4.5.

6. Conclusions

The role of the environment initial conditions in generating soft irreversibility was studied in
this work. Our particular scheme, the CTP formalism, is chosen to assure consistency since the
environment initial conditions play a crucial role in the effective dynamics, and it is appropriate to
incorporate all initial conditions into the dynamics. This way of encoding the initial conditions leads
to null-space divergences to be regulated by an ε-prescription. The frequency integrals converge
in a non-uniform manner during the removal of the cutoff, ε → 0+, a feature that generates the
spontaneous breakdown of the time reversal symmetry within a gapless, harmonic environment.
The spontaneous symmetry breaking, a phase transition, takes place only if the number of degrees
of freedom tends to infinite. How can such a phenomenon be observed in a harmonic model
where the normal modes are non-interacting hence independent? The resolution of the apparent
puzzle is that if the system coordinate is coupled to infinitely many environment normal modes
then a small modification of the coupling may produce a large, singular change in the system
dynamics. While each environment normal mode generates infinitesimal time reversal asymmetric
effective interactions they make together the effective dynamics irreversible if their spectral weight is
sufficiently large.

The local, dissipative effective forces have been derived in the classical CTP formalism
for harmonic and weakly coupled systems and the energy balance equation has been obtained.
The energy is found to be non-increasing for each frequency mode in a harmonic system if the
environment develops from a stable, stationary state.

The approach, pursued in this work, provides an order parameter to monitor the status of the
time reversal symmetry on mechanical ground. The mechanical time arrow, defined by the sign of the
order parameter, agrees with the thermodynamical time arrow because the initial system, satisfying
some fixed initial condition, has minimal entropy. The spontaneous symmetry breaking is usually
the result of the increased sensitivity of symmetry breaking fluctuations in an unstable equilibrium
point. While this picture can not completely be carried over the symmetry breaking within the time
the formal similarities between spontaneous symmetry breaking and the transfer of the mechanical
time arrow suggests the emergence of a unique time arrow within large, closed, stationary systems.

The present approach leaves several questions open. The different levels of the breakdown of
the time reversal invariance has been established by means of the ε-prescription and, quite obviously,
they depend on the details of our approach. Is the resulting scenario generally valid, independent
of the formalism or we see just some non-physical features of a particular analytic structure on the
complex frequency plane? Another question concerns the relation between the thermodynamical and
the quantum time arrows, between the soft and the hard irreversibility in general. Which features of
soft irreversibility remain valid for irreversible processes taking place at a fixed scale, like the one, in
Wilson’s cloud chamber?
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Appendix A. Non-Uniform Convergence and Symmetry Breaking

The large environment, defined by a cutoff, may produce counter intuitive effective dynamics
because the convergence during the removal of the cutoff is non-unform. The origin and the physical
implications of different kinds of non-unfiform space-time convergences are brefly reviewed in
this appendix.

Appendix A.1. Long Distance Cutoff: Phase Transition

The simplest way to control the number of degrees of freedom of a system, N, is the use of a large
but finite size, L. The infinite system is defined by the thermodynamical limit, L→ ∞, performed by
keeping thedensity N/V, V = L3 fixed. The spontaneous symmetry breaking can be detected in a
sufficiently large system by measuring averages in stationary equilibrium states. One introduces an
external, explicite symmetry breaking of strength h and checks the status of the symmetry in the limit
h → 0. A qualitative volume dependence of the order parameter of the symmetry h → −h is given
by M(V, h) = F(Vh), with

F(z) =
1
π
= ln

1 + iz
1− iz

(A1)

where the volume V controls the closeness of a pole to the real, physical h axis, cf. Figure A1.
The survival of the symmetry breaking as h → 0 indicates the existence of a long characteristic time
scale and the non-commutativity of the h→ 0 and the thermodynamical limits.
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Figure A1. The qualitative dependence of the order parameter M on the explicit symmetry breaking,
h, for V = 1 (dotted line), V = 5 (dashed line) V = 100 (thick line).

The dynamical basis of the non-commutativity is a diverging intrinsic time scale: Observations,
carried out in arbitrary large, but finite time in an infinitely large system may give different results
than the infinitely long time observations in large, but finite system. The result is the coexistence of
different formal measures in the statistical ensembles of infinite systems, a non-trivial phase structure.
The choice of a phase at the coexisting point by the dynamics is a new feature, realized by strictly
infinite systems only.

It is easy to follow this phenomenon in a special class of phase transitions, the spontaneous
symmetry breaking which is due to the slowing down of the order parameter. Let us consider a
macroscopic, solid body, consisting of N particles of mass m which interact with translation and
rotation invariant forces and separate the translational and rotational motion by distinguishing
laboratory and body-fixed, co-moving coordinate systems, the latter is defined by having vanishing
center of mass velocity and a diagonal tensor of inertia

Θjk = m ∑
n

xj
nxk

n (A2)
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The collective coordinates X, θ, φ, α consist of the vector of the translation and the Euler angles of
the rotation which bring the laboratory frame into the body-fixed coordinate system. These variables
serve as order parameters for translations and rotations and their effective dynamics is described by
the Hamiltonian

Hcoll =
1

2M
P2 +

1
2

Lj(Θ−1)jkLk (A3)

written in terms of the total momentum and angular momentum, P and L, respectively.
The different representations of a finite Heisenberg algebra are unitary equivalent and the

ground state of the Hamiltonian Equation (A3) is a singlet with vanishing expectation value for
the order parameters. However, the excitation spectrum becomes dense for large systems and the
classical description of the order parameters becomes an excellent approximation for macroscopic
bodies. The result is the slowing down of the order parameters: Assuming that the energy of each
degrees of freedom is kBT/2 in a pure state the order of magnitude of the velocity of the collective
coordinates of a system of mass M, given in grams, and characteristic size L, expressed in centimeters,
is Ẋ ≈

√
T/M × 10−8 cm/s and θ̇, φ̇, α̇ ≈

√
T/M/L × 10−8/s, where the temperature is given in

Kelvin. The order parameters can safely be considered as stationary on the macroscopic scale.
The importance of the non-commutativity of the thermodynamical and the long observation

time limits is not restricted to the status of symmetries and such a singularity characterizes the
phase transitions without order parameter, too. A typical example is the fluid-vapor transition which
can not be related to symmetry breaking since one can arrive from one phase to the other without
encountering singularities by going around the tricritical point.

Appendix A.2. Short Distance Cutoff: Dynamically Modified Relations

The cutoff which controls the number of degrees of freedom, placed close to each other in space,
is a minimal distance, a. Its removal, the renormalization procedure, may produce non-uniform
convergence and thereby induce unexpected violation of some relations, believed to be safe of
modification by the interaction.

The easiest way to locate the origin of the non-uniform convergence in the renormalization of
quantum field theories is the BPHZ renormalization scheme [67–69] which can briefly be summarized
as follows. One starts with the formal perturbation series of the one particle irreducible Green
functions and modifies the Lagrangian in a recursive manner in each order of the perturbation
expansion to introduce a regulated, well defined theory which converges as a → 0. Let us start
with the contribution of a Wick-rotated Feynman graph, given in the Euclidean space-time, to a
one-particle irreducible vertex function in the form of the loop-integral,

G(p) = a[G]
∫

dq̃I( p̃, q̃, g̃) (A4)

where p and q denote the external momentum and the integration variables, respectively and g
stands for the parameters of the Lagrangian. The quantities with tilde are made dimensionless by
the cutoff, q̃ = aq, g̃ = ga−[g], etc. The Wick rotation, the analytic extension of the loop-integral
for imaginary energy, is needed to decouple the problem of null-space singularities, considered later,
from the large q divergences, treated here. The loop integral Equation (A4) is only formal because
it may be divergent. The overall divergence of this integral is the divergence which comes from the
integration domain where all components of q diverge with the same rate as a → 0. The power
counting is a simple algorithm to find the degree of the overall divergence, it is given by the mass
dimension of the integral, [G], h̄ = c = 1. The loop integrals with [G] < 0 are finite and need no
special attention. The itegrals with overall divergence, [G] ≥ 0 are dangerous and one modifies the
Lagrangian by adding a counterterms for each such graph. The counterterms are defined by the first
[G] order of the Taylor expansion of G in p around p = 0 and their impact on the perturbation series
is the subtraction of the Taylor expansion terms from the graph in question. As a result, the graph
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Equation (A4) is now well defined and assumes its bare, regulated value, GB(p) = G(p) − P(p),
where P(p) is polynomial of p, consisting of the first [G] order of G(p). The complicated part of the
BPHZ scheme is a rather involved, recursive proof that the removal of the overall divergences at the
order of the perturbation expansion where they appear leaves no sub-divergences behind and makes
the limit a→ 0 convergent and finite.

The distinguished feature of the BPHZ scheme is that it can be carried out before the integration,
by directly subtracting the divergent terms from the integrand [69]. The subtracted loop-integral has
overall degree of divergence−1 therefore it is finite and plays no role anymore in the renormalization.
This makes this scheme attractive because it allows us to remove the cutoff before the integration and
the renormalized Feynman graphs can be given in terms of finite integrals, without the explicite
use of the cutoff. Such a removal of the divergences is realized by the use of appropriately
chosen, cutoff-dependent parameters to define the bare Lagrangian, g̃ → g̃a, and the renormalized
loop-integral is defined by

GR(p) = lim
a→0

a[G]
∫

dq̃I( p̃, q̃, g̃a) (A5)

We now turn to the question of uniform convergence. The uniform convergence of the
loop-integral is important because it allows us to interchange the order of the removal of the cutoff,
a → 0, and the integration and thereby to define the renormalized perturbation expansion in terms
of integrals, written without any cutoff. Furthermore it makes the loop-integral independent of
the order of the integration over the energy and the momentum. A simple way to show that the
integral Equation (A5) converges uniformly is to find an integrable bound, i.e., a function F(p, q) ≥
a[G]|I(q̃, p̃, g̃a)|, with ∫

dqF(p, q) < ∞ (A6)

It is easy to check that the Wick-rotated loop-integrals with negative overall degree of divergence
converge uniformly.

It may happen that there are graphs in the theory with non-negative overall degree of divergence
which are accidentally finite [70]. These graphs are finite and need no counterterms but may converge
in a non-uniform manner and make the renormalized theory, defined by the limit a → 0, different
from the theory which is obtained by simply setting a = 0 in the subtracted integrand. Such a
surprising phenomenon, a cutoff leaves a finite trace in the dynamics even after it has been removed,
is called in a somehow unfortunate manner anomaly. Physical phenomenas, such as the anomalous
breakdown of chiral invariance and the neutral pion decay [71,72], the breakdown of scale invariance
close to the critical point, the emergence of the proton mass in QCD [73] and the Abraham-Lorentz
force [66] owe their existence to such a restricted convergence of the renormalization procedure.

The space-time continuum of the renormalized theories possesses features beyond the
Bolzano-Weierstrass theorem. These are characterized by the (finite) counterterms of the accidentally
finite vertex functions, an unexpected source of free parameters in the Lagragnian. The impact of
them on the dynamics can not be localized in the space-time hovewer they change relations which
are thought to be safe of effects of the interactions. It is a difficult task to find these relations, and much
simpler to figure out the differences by inspecting equations expressing some symmetries. This might
be the reason for non-uniform convergence during the removal of the UV cutoff is often refered to as
the dynamical symmetry breaking.

Phase transitions and spontaneous symmetry breaking are usually driven by the potential
energy, the kinetic energy being less important for the long distance modes, with a remarkable
exception, the deconfinement transition in finite temperature Yang-Mills theories [74]. The dynamical
symmetry breaking and the singularities of the one-particle sector, reviewed below, are also related
to the kinetic energy.
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Appendix A.3. Short Time Cutoff: Propagation Along Fractals

The description of a single degree of freedom needs infinitely many modes in time.
The discretization of the time with the time step ∆t maximizes the frequency of observing the
system at Λ = 2π/∆t and allows us to approach the continuous time in a mathematically well
defined manner. It will be shown below that such an approach leads to nowhere differentiable,
fractal trajectories for a non-relativistic point particle, a feature needed to respect the canonical
commutation relation.

We shall work with a harmonic oscillator, defined by the Lagrangian,

L =
m
2

ẋ2 − mΩ2

2
x2 (A7)

and consider the trace of the time evolution operator,

f (t f − ti, ∆t) = Tr∆t

[
e−

i
h̄ H(t f−ti)

]
(A8)

regulated for long time by a large, but finite propagation time, t f − ti, and for short time by ∆t.
The path integral expression,

f (t f − ti, ∆t) =
( m

2πih̄∆t

) N
2

N

∏
j=1

∫
dxje

i
h̄ ∆t ∑N

`=1[
m
2 (

x`−x`−1
2 )2−mΩ2

2 x2
` ] (A9)

where x0 = xN and ∆t = (t f − ti)/N gives rise to the propagator

Tr∆t[T[x(m∆t)x(n∆t)]] =
ih̄
m

∆ω

2π

N

∑
k=1

e−i 2π
N k(m−n)

4
∆t2 sin2 ωk∆t

2 −Ω2 + i ε
m∆t

(A10)

where ∆ω = 2π/(t f − ti) and ωk = k∆ω. First we remove the IR cutoff by performing the limit
t f − ti → ∞. One can simplify this expression for sufficiently large t f − ti by splitting the values of
k into two sets, for 1 ≤ n < cN and for cN ≤ n < N where c is a small, N-independent number.
The sum over the latter set is O(1/N) and can be neglected for large N, allowing the replacement,
2

∆t sin ωk∆t
2 → ωn, in the right hand side of Equation (A10). Another, simpler justification of such a

replacement is simply noting that the sum has −1 overall degree of divergence therefore it converges
uniformly and the summation and the limit ∆t→ 0 commute. The result is the expression

Tr∆t[T[x(t)x(t′)]] =
ih̄
m

∫ π
∆t

− π
∆t

dω

2π

e−iω(t−t′)

ω2 −Ω2 + iε
(A11)

for the UV regulated propagator.
To check the canonical commutation relation we consider the function

C(t, ∆t) =
m
t

Tr∆t[x(t)(x(t)− x(0))− (x(t)− x(0))x(0)] (A12)

The insertion of the momentum, p`, into a matrix element is equivalent with the presence of the
multiplicative factor m(x` − x`−1)/∆t in the integrand of the path integral. Therefore the expectation
value of the canonical commutator is

lim
∆t→0

C(∆t, ∆t) = 〈0|[x, p]|0〉 (A13)
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The factor 1/t in front of the trace brings the primitiv degree of divergence up to zero and the
limit ∆t→ 0 non-uniform for 0 ≤ t. In fact, the sum

C(t, ∆t) =
ih̄
πt

∆ω
N

∑
k=1

1− e
−i2πk t

t f −ti

4
∆t2 sin2 ωk∆t

2 −Ω2 + i ε
m∆t

(A14)

gives limt→0 C(t, ∆t) = 0 but it can safely be replaced by the integral

C(t, ∆t) = i
h̄

πt

∫ π
∆t

− π
∆t

dω
1− e−iωt

ω2 −Ω2 + iε
(A15)

for a fixed t > 0, yielding limt→0 C(t, 0) = ih̄, in agreement with the canonical commutation relation.
This latter implies an unbounded spectrum of the canonical variables, and it is natural that the UV
cutoff must be removed before the limit t→ 0 is performed.

Another consequence of the canonical commutation relation and the non-uniform convergence
of the Feynman propagator is the linear UV divergence of

lim
t′→t

Tr∆t[T[ẋ(t)ẋ(t′)]] =
ih̄
m

∫ π
∆t

− π
∆t

dω

2π

ω2

ω2 −Ω2 + iε

=
ih̄

m∆t
+

h̄Ω
2m

+O(∆t) (A16)

indicating that the trajectories which dominate the path integral have diverging velocity. The scaling
law v = O(∆t−1/2) implies that the dominant trajectories of the path integral are fractals with
Haudorff dimension DH = 2 and the time integral of the action is of the Îto-type [75].

Appendix A.4. Long Time Cutoff: Null-Space Singularities and Auxiliary Conditions

We consider now a harmonic oscillator whose coordinate couples linearly to a time dependent
external source, the corresponding Lagrangian being L + jx where L is given by Equation (A7).
The null space of the oscillator consists of the trajectories satisfying the homogeneous equation of
motion, (∂2

t + Ω2)x(t) = 0, and it plays a special role in the dynamics. One reason for this is that the
action is degenerate within the null-space hence the trajectories from the null-space do not appear
in the variational principle. We use the eigenfunctions (∂2

t + Ω2)xλ(t) = λxλ(t) as a basis set for
periodic trajectories with period length τ and write the solution of the inhomogeneous equation of
motion as a linear superposition,

x(t) = −∑
λ

jλ
λ

xλ(t) (A17)

where jλ is the component of the external source in our basis. To allow the desired initial or final
conditions at ti or t f , respectively, we go to the limit τ → ∞ and replace the sum by an integral.
The impact of the external source on the dynamics is strong at λ ∼ 0 and we have to exclude the null
space from the discrete spectrum of the source. The Fourier integral, appearing in Equation (A17),
develops a logarithmic divergence due to the null-space modes and needs regularization. To resolve
the null space we need a long time and therefore use a regulator which modifies the Green function to

DT(t) =
∫ dω

2π
Θ
(
||ω| −Ω| − 1

T

)
e−iωt

m(ω2 −Ω2)
(A18)

yielding a solution in the form

x(t) = lim
T→∞

∫
dtDT(t− t′)j(t′) (A19)
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The regulator can easily be removed with the result

lim
T→∞

DT(t) =
∫ dω

2π
P

e−iωt

m(ω2 −Ω2)
= − sin Ω|t|

2mΩ
= Dn(t) (A20)

P standing for the principal value prescription. Dn(t) can be called the near Green function by
analogy with electrodynamics. The kind of divergences we encounter here usually shows up when
the continuous and the discrete spectra overlap and their separation needs a low frequency regulator.

Another special role of the null space can be found by noting that the near Green function
is symmetric under time inversion, Dn(t) = Dn(−t), hence can not accomodate initial or final
conditions which break the time reversal symmetry. These conditions are usually realized by adding
an appropriately chosen trajectory from the null space to the right hand side of Equation (A19). This
strategy leads to the retarded and advanced Green functions

D
r
a(t) = Dn(t)± D f (t) (A21)

withe the far Green function
D f (t) = − sin Ωt

2mΩ
(A22)

The procedure works because principal value integral can completely be canceled by null-space
trajectories for t > 0 or t < 0. Such a cancelation is highly non-trivial and occurs due to the
completeness of the eigenfunctions of ∂2

t + Ω2 in the limit ti → −∞, t f → ∞,

∑
λ

xλ(t)xλ(t′)→ δ(t− t′) (A23)

The construction of the solution of the initial or final condition problem is streamlined by the
traditional ε-prescription,

1
x + iε

=
x

x2 + ε2 − i
ε

x2 + ε2

= P
1
x
− iπδ(x) (A24)

which reproduces the Green function Equation (A21) by the appropriate, infinitesmial shift of the
poles. The first equation, written for finite ε, indicates that the ε-prescription is actually an IR
regularization procedure.

We have now two regulators: T provided by the finite time of observations, and ε handling
the auxilary conditions. Their simultaneous presence leads to non-uniform convergence in
Equation (A19) when the retarded Green function

Dr
T(t) =

∫ dω

2π
Θ
(
||ω| −Ω| − 1

T

)
e−iωt

m[ω2 −Ω2 + isign(ω)ε]
(A25)

is used. For large T

Dr
T(t) = −[Θ(t) + G(εT)]

sin Ωt
mΩ

+O( t
T
) (A26)

with

G(z) =
1
π
= ln

(
iz + 1
iz− 1

)
(A27)

cf. Figure A2. The similarities of Figures A1 and A2 arise from the relation G(z) = F(z)− 1 mod 2,
showing that ε play the role of an external parameter to break the time reversal symmetry explicitely.
The symmetry of the solution Equation (A19) remains broken after the limit ε → 0, similar to the
usual spontaneous symmetry breaking generated by the auxiliary conditions via the kinetic energy.
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Figure A2. The function G(εT) plotted against ε for T = 1 (dotted line), T = 5 (dashed line) and
T = 100 (thick line).

Appendix B. Green Function of a Harmonic Oscillator

We calulate in this Appendix the chronon Green function of a harmonic oscillator which belongs
to the trivial initial conditions x(ti) = ẋ(ti) = 0.

Appendix B.1. Discretized Time

The irregular dynamics at the initial and the end points of the trajectories require special care
hence we use discretized time, tn = ti + n∆t, n = 0, . . . , N, with ∆t = T/N, T = t f − ti and write the
action Equation (24) in the form

S(x̂, y, ĵ) = ∆t
N−1

∑
n=0

∑
σ=±1

{
σ

[
m
2

( xσ
n+1 − xσ

n

∆t

)2

− mΩ2

2
xσ2

n + jσ
n xσ

n

]
+ i

mε

2
xσ2

n

}
(B1)

where x̂ = (x̂0, . . . , x̂N−1), x±0 = 0, and y = xN , written as

S(x̂, y, ĵ) =
1
2

x̂D̂−1
0 x̂ +

N−1

∑
n=0

x̂(yÂ + ĵ) (B2)

the trajectory x̂n being treated as an N-dimensional vector,

D−1
0(σn)(σ′n) = δσσ′σ

[ m
∆t

(2δn,n′ − δn+1,n′ − δn−1,n′)− ∆tmΩ2δn,n′ + i∆tσmεδn,n′
]

(B3)

and
Aσn = −δn,N−1

mσ

∆t
(B4)

To find D̂0 we choose ti = −T, t f = 0, use the linear space of functions defined at discrete time
values, x(tn), n = 0, . . . , N, within the interval [−T, 0] with boundary conditions x(t0) = x(tN) = 0,

x(tn) =

√
2
T

N

∑
j=1

xj sin ωjn (B5)

with ωj = jπ/T. The inverse of Equation (B3) is easy to find,

D̂0 =

(
D0 0
0 D∗0

)
(B6)
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where

D0(t, t′) =
2

Tm

N

∑
j=1

sin ωjt sin ωjt′

ω̂2
j −Ω2 + iε

(B7)

and ω̂n = 2
∆t sin π ∆tn

2T .

Appendix B.2. Effective Action

The closing of the chronon trajectory at the final time is realized by the shift x̂(tn) → x̂(tn) +

δn,N x f , x f being the common final point. Since we are not interested in the dynamics of x f it can be
eliminated by employing the method of the effective theory outlined in Section 4.1. First we perform
the Legendre transformation W[ ĵ] = S[x̂, x f , ĵ],

∂S(x̂, x f , ĵ)
∂x̂

= − ĵ,
∂S(x̂, x f , ĵ)

∂x f
= 0 (B8)

We eliminate now x̂ by solving the first equation, x̂ = −D̂0(x f Â + ĵ) and insert the solution into
Equation (B2),

S(x̂, x f , ĵ) = −1
2
(x f Â + ĵ)D̂0(yÂ + ĵ) (B9)

The solution of the second equation of Equation (B8)

y = − ÂD̂0 ĵ
ÂD̂0 Â

(B10)

is inserted into Equation (B9) to give

W[ ĵ] = −1
2

ĵD̂ ĵ (B11)

in terms of the Green function
D̂ = D̂0 − D̂0 Â

1
ÂD̂0 Â

ÂD̂0 (B12)

Appendix B.3. Removal of the UV and the IR Cutoffs

To remove the UV cutoff we need

m2

∆t2 D0(−∆t,−∆t) =
2m

T∆t2

N

∑
j=1

sin ω2
j ∆t

ω̂2
j −Ω2 + iε

(B13)

which we split into a sum of O(N) and finite pieces,

lim
N→∞

m2

∆t2 D0(−∆t,−∆t) =
2m
T

∞

∑
j=1

(
1− sin2 ∆tωj

2

)
+

2mΩ2

T

∞

∑
j=1

1
ω2

j −Ω2 + iε
(B14)

The other ingredient is

lim
∆t→0

m
∆t

Dd(t,−∆t) = − 2
T

∞

∑
j=1

ωj sin ωjt
ω2

j −Ω2 + iε
(B15)

The CTP diagonal Green function, D̂0, can be found in a manner, similar to the derivation of the
Feynman propagator Equation (A11), the result being

lim
∆t→0

D0(t, t′) =
2

Tm

∞

∑
j=1

sin ωjt sin ωjt′

ω2
j −Ω2 + iε

(B16)
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The removal of the IR cutoff is done by taking a large t f − ti and approximating the sum by
an integral,

D0(t, t′) =
i

2mΩ
[e(iΩ+ ε

2Ω )(t+t′) − e−(iΩ+ ε
2Ω )|t−t′ |]

m2

∆t2 D0−∆t,−∆t =
m
∆t
− imΩ

m
∆t

D0(t,−∆t) = −e(iΩ+ ε
2Ω )t

(B17)

assuming the inequality ∆ω = π/T � ε/Ω to assure the applicability of the contour integral method
in the calculation. The expressions Equation (B17) yield the Green function

D̂(t, t′) = − i
2mΩ

[(
e−(iΩ+ ε

2Ω )|t−t′ | 0
0 −e(iΩ+ ε

2Ω )|t−t′ |

)
+ e

ε
2Ω (t+t′)

(
0 eiΩ(t−t′)

e−iΩ(t−t′) 0

)]
(B18)

which becomes in the limit ti → −∞, t f → ∞

D̂(t, t′) =
i

2mΩ

(
−e−iΩ|t−t′ | −eiΩ(t−t′)

e−iΩ(t−t′) eiΩ|t−t′ |

)
(B19)

i.e.,

Dn = − sin Ω|t|
2mΩ

, D f = − sin Ωt
2mΩ

, Di = −cos Ωt
2mΩ

(B20)

as long as the inequality, t f − t � Ω/ε is observed to prevent the loss of the final condition
Equation (16). Note that the Green function corresponds to the initial conditions xi = ẋi = 0 within
our functional space.

Appendix B.4. Quantum Oscillator

The generator functional Equation (104) for the harmonic oscillator for ρi = |0〉〈0|,

W[ ĵ] = −1
2

ˆ̄jD̂ĵ (B21)

reproduces the classical Green function, written in this case as

iD̂(t, t′) =

(
〈T[x(t)x(t′)]〉 〈x(t′)x(t)〉
〈x(t)x(t′)〉 〈T[x(t′)x(t)]〉∗

)
(B22)

In particular, D++ is the Feynman propagator and D−+ gives the Wightman function.
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