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Abstract:

 We reply to the comment by Frewer and Khujadze regarding our contribution “Lie Symmetry Analysis of the Hopf Functional-Differential Equation” (Symmetry 2015, 7(3), 1536). The method developed by the present authors considered the Lie group analysis of the Hopf equations with functional derivatives in the equation, not the integro-differential equations in general. It was based on previous contributions (Oberlack and Wacławczyk, Arch. Mech. 2006, 58; Wacławczyk and Oberlack, J. Math. Phys. 2013, 54). In fact, three of the symmetries calculated in (Symmetry 2015, 7(3), 1536) break due to internal consistency constrains and conditions imposed on test functions, the same concerns the corresponding symmetries derived by Frewer and Khujadze and another, spurious symmetry, which was not discussed by Frewer and Khujadze. As a result, the same set of symmetries is obtained with both approaches.




Keywords:


Lie symmetries; Hopf equation; Burgers equation; functional differential equations; turbulence








1. Introduction


We discuss objections of Frewer and Khujadze on the Lie group analysis applied to the functional Hopf-Burgers equation in [1]. We reject the criticism from Section 1 in their contribution. In Section 2 of this reply, we want to point to a fundamental mistake in Frewer and Khujadze as, in contrast to what is claimed by Frewer and Khujadze, we did not intend in [1] to develop and, in fact, did not develop an alternative approach to the previous approaches of Ibragimov [2], Fushchich [3] or Zawistowski [4] applicable to integro-differential equations. In fact, presently, a functional differential was investigated with respect to its symmetries, which, mathematically, is a very different object. The development of Lie symmetry methods for equations with functional derivatives started with the works [5] and [6]. Therein, the authors considered the Hopf–Burgers equation in the Fourier space. The method was first presented in [5]; next, solutions of the characteristic system of equations and invariant solutions for the functionals were derived in [6]. In [5,6], the transformation of the wavenumber space was not accounted for. The analysis proposed by Frewer and Khujadze is based on the method from [5,6].



Next, we refer to technical errors listed in Paragraphs E.1–E.3 and E.5 of the comment of Frewer and Khujadze. We reject the criticism from Paragraph E4. In Section 4, we discuss the main objection of Frewer and Khujadze. They correctly noted that internal consistency constraints break two symmetries derived in [1]; however, the corresponding transformations calculated by Frewer and Khujadze are also broken. Moreover, we expect that an additional, spurious symmetry follows from the modified method presented by Frewer and Khujadze. This symmetry was not discussed by Frewer and Khujadze; hence, first, they did not consider all consistency constrains, and second, they did not in fact perform full Lie symmetry analysis with their modified approach.



In fact, neither approach can derive symmetry transformations of the space variable x apart from the scaling and translation by a constant. The scaling of x was derived properly in [1], contrary to what Frewer and Khujadze discuss in their comment (Remark D2, Equations (50)–(54)). We show that Frewer and Khujadze introduced in this case the infinitesimals from their modified approach into formulas from [1], which, obviously, could not lead to the correct result. As we reject the critisism of Frewer and Khujadze from paragraph E4, as a consequence, the symmetry [image: there is no content] is formally admitted by the considered equation. This symmetry, however, breaks when the assumption of an asymptotic decay of the test functions is made.



As far as the scaling symmetry of Φ ([image: there is no content] in [1]) is concerned, we do not agree with Frewer and Khujadze. This symmetry is present also in other methods used to describe stochastic fields, namely the multipoint correlation function approach and the multipoint probability density function approach; see [7,8], where also its physical meaning was discussed.




2. Relation to Other Works


Frewer and Khujadze criticize [1] saying that: “It is claimed that this new, third approach allows for a standard Lie-point symmetry analysis without having to directly transform the volume element of integration. Listed as the third item in [1, p. 1549], this approach is intended to avoid the ‘more complicated’ [1, p. 1549] approaches of Ibragimov et al. which rests on a Lie-Bäcklund analysis, and that of Fushchich and Zawistowski et al. which incorporates the transformation of the volume element (Jacobian) within a standard Lie-point analysis.”



All of the cited works concern the analysis of integro-differential equations, however, without functional derivatives in the equations. As it was pointed out in the first sentence in the abstract of [1] “we extend the classical Lie symmetry analysis from partial differential equations to integro-differential equations with functional derivatives”. These type of functional equations were not considered in the works of Ibragimov, Fushchich or Zawistowski [2,3,4]. Moreover, it was never claimed in [1] to propose a method that is better (or simpler) than the approaches of Ibragimov et al., Fushchich or Zawistowski et al. We referred to the approach from [4] as we wanted to account for the transformation of the x variable in the integral in our case of the Hopf-type functional equation; however, due to the mathematical difficulties, it was written in [1]: “One has to pay attention that analogous formula for the transformed integral should be used during the calculation of [image: there is no content], [image: there is no content] and [image: there is no content],..., which, in our particular case of of the equation with functional derivatives, makes this approach more complicated”.



In conclusion, integro-differential equations considered in the works of Ibragimov, Fushchich or Zawistowski [2,3,4] and equations of the Hopf-type (with functional derivatives), are fundamentally different. Instead, the extended Lie group method for equations with functional derivatives (however, without transformations of the space variable) was first proposed in [5,6].




3. Technical Errors


In [1], an extension of the n-point characteristic function:


[image: there is no content]



(1)




towards a “continuum” limit [image: there is no content]:


[image: there is no content]



(2)




was considered. We developed an approach to account for symmetry transformations of the functional equation with functional derivatives, e.g., the Hopf–Burgers equation:


∂ϕ([y(x)],t)∂t=∫Gy(x)i∂∂xδ2ϕ([y(x)],t)δy(x)2+ν∂∂x2δϕ([y(x)],t)δy(x)dx



(3)







The variable [image: there is no content] was presented as proposed by Klauder [9]:


[image: there is no content]



(4)




to obtain:


[image: there is no content]



(5)







The functional was further treated as a function of the infinite, but discrete set of variables [image: there is no content] and t. In such a case, differentiating the functional Φ, e.g., with respect to t would lead to:


[image: there is no content]



(6)







This can be rewritten in terms of the functional derivatives as:


[image: there is no content]



(7)







This was Equation (12) in [1] where [image: there is no content] should be replaced by its correct form [image: there is no content]. If formula (5) is differentiated as described by Equation (6), it is found that Equation (6) is equivalent to Equation (7). So formulated, the problem would be in fact identical to the “discrete” case with [image: there is no content].



In fact, such an approach is valid only for the transformations of [image: there is no content] in Equation (4), or differently formulated, transformations [image: there is no content] and and [image: there is no content]. This condition was not considered in [1].



With the definition Equation (4), from Equation (7) the formula (15) in [1] was obtained. An alternative formula, without the decomposition Equation (4), (derived also in [10]), reads:


[image: there is no content]



(8)







This explains the objections raised up in Paragraphs E.1–E.3 in the comment of Frewer and Khujadze. The analysis without the use of the decomposition Equation (4) is given in the Appendix. However, as will be discussed below, symmetry transformations where [image: there is no content] and [image: there is no content] must be also broken, and as a result, six symmetry transformations found also in [1] are left.



As is seen in the definition of the functional Equation (2), there are dual function spaces [image: there is no content] and [image: there is no content]; however, Φ is presented as the functional of test functions [image: there is no content] only. Instead of the transformation of [image: there is no content], x, t and Φ, we accounted for the corresponding transformation of [image: there is no content], x, t and Φ. The question is how the functions in Equation (2) should transform and if it is possible to present the problem as such, that only the transformations of [image: there is no content], x, t and Φ are accounted for. Let us consider a transformed time derivative of Equation (2). We should have the following equality:


[image: there is no content]



(9)




For the case of the Galilei transformation, this equality would be satisfied with: [image: there is no content]. In fact, due to a different argument of the test functions y the Galilei-invariance of the Hopf-Burgers equation is broken. The same concerns the projective symmetry [image: there is no content] from [1].



Let us consider the “Galilei-type” transformation derived by Frewer and Khujadze: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. With this, we obtain from Equation (9) an incorrect result:


[image: there is no content]



(10)







Already, this inequality breaks in fact all of the obtained symmetries down to the case [image: there is no content]. With the formula (7), Equation (9) is satisfied for the Galilei invariance [image: there is no content] derived in [1], however, [image: there is no content] transforms incorrectly to [image: there is no content] instead of [image: there is no content].



Note that there is an additional, spurious symmetry, which can be obtained with the proposal of Frewer and Khujadze and also the modified analysis given in the Appendix:


x¯=x-iν(eϵ-1)∫y(x)dx,y(x)¯=eϵy(x),t¯=eϵt,Φ¯=Φ



(11)




(both approaches should give the same result as for this transformation [image: there is no content]). For such a case, the functional derivative reads:


[image: there is no content]











This symmetry is also broken due to the condition:


[image: there is no content]



(12)







Again, this equality is not satisfied by Equation (11), which means that the modification of the method proposed by Frewer and Khujadze still accounts for the transformations [image: there is no content] only, similar to the method proposed in [1]. In fact, when the additional constrains are accounted for, Frewer and Khujadze obtain the same set of six symmetries, as derived with the analysis proposed in [1].



We do not agree with the objection raised by Frewer and Khujadze in Paragraph E.4. It was assumed in [1] that:


[image: there is no content]



(13)







In such a case, not only the mean [image: there is no content], but also any multipoint correlation function [image: there is no content] is zero if, for any i, [image: there is no content]. This is not the case for the example presented by Frewer and Khujadze in Equation (77). In fact, the three-point correlation function computed from their formula (77) is:


⟨Ut(x)Ut(x′)Ut(x″)⟩=δ3Φδy(x)δy(x′)δy(x″)|y=0=-iΦf3(t)e-λ(x2+x′2+x″2)+if(t)Φ2g(x,x′)+2g(x,x″)+2g(x′,x″)



(14)







In the limit [image: there is no content], this formula equals [image: there is no content], which clearly contradicts the assumption Equation (13).



Instead of giving rather specialized examples, we can consider the following expansion of the characteristic functional in the Taylor series (see [11]):


Φ=1+∫f1(x,t)y(x)dx+∫∫f2(x,x′,t)y(x)y(x′)dxdx′++∫∫∫f3(x,x′,x″,t)y(x)y(x′)y(x″)dxdx′dx″+⋯



(15)




where [image: there is no content], [image: there is no content], etc., so that the multipoint correlations can be constructed from functions: [image: there is no content] as


[image: there is no content]



(16)







The first functional derivative of Φ reads:


δΦδy(xi)=f1(xi,t)+∫2f2(xi,x,t)y(x)dx+∫∫3f3(xi,x,x′,t)y(x)y(x′)dxdx″+⋯



(17)







If all of the multipoint correlations tend to zero for [image: there is no content], then also [image: there is no content], and all functions [image: there is no content] under the integrals are zero in this limit. Hence, with the assumption Equation (13), the functional derivatives of Φ are zero when a spatial variable tends to infinity.



In Paragraph E.5 of the Comment, Frewer and Khujadze wrote that one term was missing in Equation (A11) in [1]. This mistake did not have an impact on the further calculations in view of the further result given in Equation (49) in [1].




4. Choice of variables


The main objection raised by Frewer and Khujadze’, is the problem of choosing [image: there is no content] as a variable. Instead, Frewer and Khujadze consider [image: there is no content] and argue that their approach is correct, giving Examples (15)–(17) in their work. In none of the examples can [image: there is no content] be distinguished as a variable. Trivially, there are functionals where this is the case; however, we consider the characteristic functional of the form Equation (2) or the expansion Equation (15), where [image: there is no content] is always accompanied by the element [image: there is no content]. Hence, the existence of other Examples (15)–(17) does not prove that our analysis is erroneous. Moreover, the example provided by Frewer and Khujadze on page 11 in their comment (Equations (50)–(54)) does not prove anything either, as we also obtain a correct form of the scaling symmetry. We accounted for the infinitesimals of the transformed [image: there is no content], which we denoted by [image: there is no content]. It is debatable if [image: there is no content] would be a better notation. This variable should not be confused with [image: there is no content] in the comment of Frewer and Khujadze (we have chosen the notation [image: there is no content] for optical reasons, since the expressions like [image: there is no content] may look strange).



Related to the scaling symmetry, we find in our case:


ξt=2t,ξx=x,ξy(x)dx=y(x)dx,η=0



(18)




(see the result in Theorem 9 on page 23 in our paper with the constant [image: there is no content]). If we substitute this result into the formula for [image: there is no content] on page 1546, we also obtain the correct result:


[image: there is no content]



(19)







The error of Frewer and Khujadze becomes particularly apparent, as they introduce their result for [image: there is no content] into our formula for [image: there is no content], where the infinitesimal [image: there is no content] of a variable [image: there is no content] is present.



Frewer and Khujadze derived the following relation between [image: there is no content] and the infinitesimal of the variable [image: there is no content]:


[image: there is no content]



(20)




(see formula (14) in their comment). It follows that, when [image: there is no content] and [image: there is no content] are derived from the symmetry analysis, also the infinitesimal for the variable [image: there is no content] can be derived. In [1], the whole bracketed term in Equation (20) was denoted by [image: there is no content], which could, in fact, lead to confusion. In the following, we change the notation to:


[image: there is no content]



(21)







If we substitute relation (21) for [image: there is no content] into Equation (A4) we obtain the same formula for the prolonged infinitesimal [image: there is no content], with 7 terms, as given in Equation (49) of the comment.



It should be noted that the choice of the variable to be transformed in [1] followed from the considerations of Hopf [11], who introduced [image: there is no content] and defined [image: there is no content] as the mass contained in the subset S of the considered interval. Hopf considered an example of a functional:


[image: there is no content]



(22)




and defined the differential [image: there is no content] as:


[image: there is no content]



(23)







For such a choice, the function [image: there is no content] could be interpreted as a partial derivative of Φ with respect to its argument [image: there is no content].



The choice of [image: there is no content] as a variable might be a matter of discussion, and in particular, the notation chosen in [1] could be misleading. This latter issue is, however, a matter of notation and is not related to the mathematical content.



With the variable [image: there is no content] different results for the intermediate form of the projective symmetry are obtained. We rewrite Equation (8), which should account for possible transformations of [image: there is no content]:


[image: there is no content]



(24)




while the corresponding chain rule of Frewer and Khujadze reads:


[image: there is no content]



(25)




(this is given in Equation (A7) in the comment). Therefore, there is a difference in the last RHS term in formula (24) above and Equation (25) which leads to a different intermediate form of the projective symmetry.



Frewer and Khujadze wrote in their comment that their analysis led to the following form of the intermediate projective symmetry (see Equation (A27) in their comment; note that they considered a modified equation with a factor [image: there is no content] in the convective term):


t¯=t1-tϵ,x¯=x1-tϵ,y¯(x¯)=y(x),Φ¯=Φ



(26)







However, in such a case, when y remains invariant, [image: there is no content] should transform, so we would have:


t¯=t1-tϵ,x¯=x1-tϵ,y¯(x¯)=y(x),U¯=(1-tϵ)U(x,t),Φ¯([U(x,t)¯],[y(x)¯],t)=Φ



(27)







As an immediate consequence, Φ is a functional of two function spaces U and y if both of them are to be transformed. This was not accounted for in the analysis of Frewer and Khujadze, as in such a case, the calculated derivative of a transformed variable [image: there is no content] would have a different form.



To sum up, as it was argued, with both approaches applied to the Hopf-Burgers equation, the only transformations of x that are accounted for are the scaling and translation. Here, independently of the choice of [image: there is no content] or [image: there is no content] as a variable the same final set of symmetries is obtained.




5. Breaking of Symmetries


Frewer and Khujadze correctly noticed that the condition [image: there is no content], which should hold also for the transformed variables [image: there is no content], finally breaks the Galilei invariance and the symmetry [image: there is no content]. Moreover, with the method presented in the Appendix and, also, as we expect, with the analysis of Frewer and Khujadze, the following spurious symmetry is obtained:


x¯=x-iν(eϵ-1)∫y(x)dx,y(x)¯=eϵy(x),t¯=eϵt,Φ¯=Φ











This symmetry also should be broken due to the condition Equation (12), or, more genarally, the requirement that [image: there is no content] is an arbitrary function of space only both in the "old" and "new" variables.



As we rejected in Section 3 the criticism of Frewer and Khujadze given in paragraph E4, the transformation [image: there is no content] from [1] (translation of [image: there is no content] by a constant) is formally admitted as a symmetry of the Hopf-Burgers equation. However, if we assume that the test functions [image: there is no content] should decay asymptotically to 0 at infinity, symmetry [image: there is no content] breaks.



Finally, the Hopf-Burgers equation is invariant under the transformations given by [image: there is no content]–[image: there is no content] and [image: there is no content]–[image: there is no content] in [1].
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Appendix A.


Below, we present briefly the Lie group analysis procedure of the Hopf–Burgers Equation (3) without the use of the decomposition Equation (4). We only focus on these formulas and transformations, which are different from the corresponding formulas in [1].




Infinitesimals


By means of the differential operators presented in [1], we can calculate the infinitesimals [image: there is no content] as functionals of the infinitesimals [image: there is no content] or, using the relation Equation (21), infinitesimals of [image: there is no content]. For the viscous Hopf–Burgers functional differential equation (FDE), we need the three infinitesimals [image: there is no content], [image: there is no content] and [image: there is no content].



In order to calculate [image: there is no content], we differentiate the transformed Hopf functional [image: there is no content] with respect to t, taking into account the fact that [image: there is no content] does not depend explicitly on [image: there is no content]:


[image: there is no content]



(A1)







With the one-parameter Lie point transformations, Equation (A1) reads:


[image: there is no content]



(A2)







Evaluating this equation in [image: there is no content] and taking further steps as in [1] lead to an equation for [image: there is no content]:


[image: there is no content]



(A3)







In order to calculate [image: there is no content], we differentiate [image: there is no content] with respect to [image: there is no content]. An analog calculation leads to:


ζ;y(x)=δηϕδy(x)+ϕ,y(x)∂ηϕ∂ϕ-ϕ,tδξtδy(x)-ϕ,tϕ,y(x)∂ξt∂ϕ-∫Gϕ,y(x′)δξγ(x′)dx′δy(x)-∫Gϕ,y(x′)ϕ,y(x)∂ξγ(x′)dx′∂ϕ



(A4)







Analogously, as was also done in [1], we derive the following forms of infinitesimals [image: there is no content] and [image: there is no content]:


[image: there is no content]



(A5)






[image: there is no content]



(A6)







Applying the differential operators introduced in [1], one can represent the infinitesimals Equations (A5) and (A6) as sums of partial and functional derivatives of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].




Determining the System of Equations for the Infinitesimals


In order to calculate the determining system of equations for the infinitesimals [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] of the Hopf–Burgers Equation (3), we consider the equation:


[image: there is no content]











The generator [image: there is no content] is given in [1]. The contributing summands of [image: there is no content] are given by:


Xmodif(3)=∫Gξγ(x′)dx′δδy(x′)+ζ;t∂∂ϕ,t+∫G∫Gζ;xy(x″)y(x′)dx′dx″δδϕ,xy(x″)y(x′)+∫Gζ;xxy(x′)dx′δδϕ,xxy(x′)











Applying [image: there is no content] to F, we get the equation:


[image: there is no content]



(A7)







In order to derive the final determining equation, we insert the infinitesimals [image: there is no content] (cf. Equation (A3)), [image: there is no content] and [image: there is no content] and employ [image: there is no content] in order to eliminate [image: there is no content]. With the same assumptions as taken in [1], the resulting Equation (A7) has the form:


0=A+∫Gϕ,y(z)Bdz+∫G∫Gϕ,y(x)y(z)Cdzdx+∫G∫Gϕ,y(x)ϕ,y(z)Ddzdx+∫G∫G∫Gϕ,y(x)y(a)ϕ,y(z)Edadzdx+∫G∫G(ϕ,y(x))2ϕ,y(z)Fdzdx+∫Gϕ,ty(x)Gdx+∫G∫G(ϕ,y(x))2ϕ,y(z)y(z)Hdzdx+∫Gϕ,y(x)ϕ,ty(x)Idx+∫Gϕ,ty(x)y(x)Jdx+∫G∫Gϕ,y(z)y(x)y(x)Kdzdx+∫G∫Gϕ,y(x)y(x)ϕ,y(z)y(z)Ldzdx











Since the infinitesimals [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] do not depend on derivatives of ϕ, all coefficients of all appearing derivatives of ϕ have to vanish:


[image: there is no content]











This leads to the system of linear FDE’s for the infinitesimals [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].

	
[image: there is no content] reads:


∂ηϕ∂t-∫Gy(x)i∂3ηϕ∂x∂(y(x)dx)2+ν∂3ηϕ∂x2∂y(x)dxdx=0



(A8)







	
[image: there is no content] reads:


0=ν∂2∂z2y(z)∂ηϕ∂ϕ-ν∂2∂z2y(z)∂ξt∂t-∂ξγ(z)∂t-ν∂2ξγ(z)∂z2-2iy(z)∂2∂z∂ϕδηϕδy(z)+iν∫G∂2∂z2y(x)y(z)∂∂xδ2ξtδy(x)2dx+i∫Gy(x)∂∂xδ2ξγ(z)δy(x)2dx-i∂∂zy(z)∂∂zδξzδy(z)+2i∂∂zy(z)∂∂ϕδηϕδy(z)-i∫G∂∂xy(x)δ2ξγ(z)δy(x)2dx+i∂2∂z2y(z)δξzδy(z)+ν2∫G∂2∂z2y(x)y(z)∂2∂x2δξtδy(x)dx+ν∫Gy(x)∂2∂x2δξγ(z)δy(x)dx-2ν∫G∂∂xy(x)∂∂xδξγ(z)δy(x)dx-ν∂∂zy(z)∂2ξz∂z2-ν∂2∂z2y(z)∂ηϕ∂ϕ+ν∫G∂2∂x2y(x)δξγ(z)δy(x)dx+2ν∂2∂z2y(z)∂ξz∂z



(A9)







	
[image: there is no content] reads:


0=-i∂∂xy(x)∂ηϕ∂ϕδ(x-z)+i∂∂xy(x)∂ξt∂tδ(x-z)+i∂ξγ(x)∂xδ(x-z)+∫G∂∂zy(a)y(z)∂∂aδ2ξtδy(a)2δ(x-z)da+2iy(x)∂∂xδξγ(z)δy(x)-2i∂∂xy(x)δξγ(z)δy(x)+i∂∂xy(x)∂ηϕ∂ϕδ(x-z)-i∂∂xy(x)∂ξx∂xδ(x-z)-iν∫G∂∂zy(a)y(z)∂2∂a2δξtδy(a)δ(x-z)da+νy(x)∂3ξγ(z)∂x2∂ϕ+νy(x)∂2ξγ(z)∂x2-ν∂∂xy(x)∂ξγ(z)∂x-ν∂∂xy(x)∂ξγ(z)∂x



(A10)







	
[image: there is no content] reads:


0=-ν2∂4∂z2∂x2y(x)y(z)∂ξt∂ϕ-ν∂2∂x2y(x)∂ξγ(z)∂ϕ+2iν∂2∂z2y(x)y(z)∂2∂x∂ϕδξtδy(x)+2iy(x)∂2∂x∂ϕδξγ(z)δy(x)-i∂∂xy(x)∂2ξx∂x∂ϕδ(x-z)-2iν∂3∂z2∂xy(x)y(z)∂∂ϕδξt∂y(x)-2i∂∂xy(x)∂∂ϕδξγ(z)δy(x)δ(x-z)-2i∂∂xy(x)∂∂ϕδξγ(z)δy(x)+2i∂∂xy(x)∂2ηϕ∂ϕ2δ(x-z)+2i∂2∂x2y(x)∂ξx∂ϕδ(x-z)-ν∂∂xy(x)∂2ξγ(z)∂x∂ϕ-2ν∂∂xy(x)∂2ξγ(z)∂x∂ϕ-ν∂∂xy(x)∂2ξγ(z)∂x∂ϕ+2ν∂2∂x2y(x)∂ξγ(z)∂ϕ+ν2∂4∂z2∂x2y(x)y(z)∂ξt∂ϕ+ν∂2∂x2y(x)∂ξγ(z)∂ϕ+ν∂2∂x2y(x)∂ξγ(z)∂ϕ-2ν2∂3∂z2∂xy(x)y(z)∂2ξt∂x∂ϕ+ν2∂2∂z2y(x)y(z)∂3ξt∂x2∂ϕ



(A11)







	
[image: there is no content] reads:


0=2iν∂3∂z2∂xy(x)y(z)∂ξt∂ϕδ(x-a)+i∂∂xy(x)∂ξγ(z)∂ϕδ(x-a)+2∂∂xy(x)y(z)∂2∂z∂ϕδξtδy(z)δ(x-a)+2iy(z)∂2ξγ(x)∂z∂ϕδ(a-z)+iy(x)∂2ξγ(z)∂x∂ϕδ(x-a)-2∂2∂z∂xy(x)y(z)∂∂ϕδξtδy(z)δ(x-a)-2i∂∂zy(z)∂ξγ(x)∂ϕδ(a-z)-i∂∂xy(x)∂ξγ(z)∂ϕδ(x-a)-2i∂∂zy(z)∂ξγ(x)∂ϕδ(a-z)-iν∂3∂z2∂xy(x)y(z)∂ξt∂ϕδ(x-a)-i∂∂xy(x)∂ξγ(z)∂ϕδ(x-a)-iν∂3∂z2∂xy(x)y(z)∂ξt∂ϕδ(x-a)+iν∂2∂z2y(x)y(z)∂2ξt∂x∂ϕδ(x-a)+2iν∂2∂z∂xy(x)y(z)∂2ξt∂z∂ϕδ(x-a)-2iν∂∂xy(x)y(z)∂3ξt∂z2∂ϕδ(x-a)



(A12)







	
Equations [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are the same as in [1].









Solution of the Determining System of Equations for the Infinitesimals


Similarly as in [1], equation [image: there is no content] leads to:


[image: there is no content]



(A13)




and equations [image: there is no content], [image: there is no content] and [image: there is no content] to


[image: there is no content]



(A14)







With this, Equation (A12) leads to:


[image: there is no content]



(A15)







Now, we take a look at the remaining four Equations (A8)–(A11). We start with Equation (A11). Considering Equations (A14) and (A15), Equation (A11) reads:


[image: there is no content]











This equation has to hold for all choices of [image: there is no content], hence the coefficients of [image: there is no content], [image: there is no content] and y have to vanish, which leads to:


[image: there is no content]



(A16)






[image: there is no content]



(A17)






[image: there is no content]



(A18)







These equations mean that [image: there is no content] and that there are functionals [image: there is no content], such that:


[image: there is no content]



(A19)







For f, we choose the ansatz:


[image: there is no content]



(A20)







The next equation we solve is Equation (A10). If we use Equations (A14) and (A13) and apply the product rule, Equation (A10) reads:


[image: there is no content]



(A21)







Considering the case [image: there is no content], we get:


[image: there is no content]



(A22)







By virtue of Equations (A13) and (A15), we have [image: there is no content]; we will use the following ansatz:


ξγ(z)=c(z,t)+c0(z,t)y(z)



(A23)







Next, we want to consider Equation (A21) without the restriction [image: there is no content]; hence, we integrate Equation (A21) with respect to [image: there is no content]. This leads to:


∂∂xy(x)∂ξt∂t+∂ξγ(x)∂x-∂∂xy(x)∂ξx∂x-2∫Gy′(x)δξγ(z)δy(x)dz=0











Now, we put in ansatz Equation (A23); make use of [image: there is no content]; and take into consideration that this equation has to hold for all choices of [image: there is no content]; hence, the coefficients of 1, y, [image: there is no content] and [image: there is no content] have to vanish:


[image: there is no content]



(A24)






[image: there is no content]



(A25)






[image: there is no content]



(A26)







From Equations (A25) and (A26), it further follows that:


[image: there is no content]



(A27)







Considering Equations (A24) and (A25), ansatz Equation (A23) reads:


[image: there is no content]



(A28)







Now, we are ready to deal with Equation (A9). We use Equations (A14), (A20) (A27) and (A28) and the fact that the coefficients of [image: there is no content]y, [image: there is no content] and [image: there is no content] have to vanish. Then, Equation (A9) leads to:


[image: there is no content]



(A29)






[image: there is no content]



(A30)






[image: there is no content]



(A31)






[image: there is no content]



(A32)







If we calculate the derivative of Equation (A32) with respect to z and take into account Equation (A27), we obtain:


[image: there is no content]



(A33)




which, substituted into Equation (A31), gives [image: there is no content] Hence, by ansatz Equation (A20):


[image: there is no content]



(A34)







If we substitute Equation (A34) into Equation (A8), we get:


f′(t)ϕ+∂g∂t-∫Gy(x)i∂3g∂x∂(y(x)dx)2+ν∂3g∂x2∂y(x)dxdx=0



(A35)







This equation has to hold for every ϕ; hence, the coefficient of ϕ has to vanish. This furnishes [image: there is no content] Equation (A35) further reads:


∂g∂t-∫Gy(x)i∂3g∂x∂(y(x)dx)2+ν∂3g∂x2∂y(x)dxdx=0



(A36)







An admissible ansatz for [image: there is no content] is given by:


ξz=a1(t)+a2(t)z+∫Ga3(x′,t)y(x′)dx′



(A37)







In this ansatz, [image: there is no content] is a constant and [image: there is no content] and [image: there is no content] are unknown functions. If we insert this ansatz into Equations (A30) and (A32), we get:


ξt=A2(t)+a4t+a5,a4,a5∈R



(A38)




where [image: there is no content] and


ξz=a1(t)+a2(t)z+iνa2(t)-a4∫Gy(x′)dx′



(A39)







We further insert Equations (A39), (A38) and (A29) into Equation (A28) to get an expression for [image: there is no content]. Finally, we take into account the symmetry breaking restrictions concerning the functions f and g in Equations (A19) and (A20), as described in Section 3.3 in [1], and obtain the infinitesimals of the viscous Hopf–Burgers FDE:


ξt=A2(t)+a4t+a5ξx=a1(t)+a2(t)x+iνa2(t)-a4∫Gy(x′)dx′ξy(x)dx=ξγ(x)dx=a6dx+a4y(x)dxηϕ=a7(ϕ-1)+g([y(x′)],t)








where [image: there is no content] are arbitrary constants, [image: there is no content] and [image: there is no content] are arbitrary functions and g is an arbitrary functional, which has to fulfill the viscous Hopf–Burgers FDE.



At the end, we consider the requirement that [image: there is no content] is an arbitrary function of x only and [image: there is no content] should be a function of [image: there is no content]. As argued by Frewer and Khujadze, this would impose further constraints onto the symmetries, and we obtain [image: there is no content], [image: there is no content], [image: there is no content]. Moreover, due to the condition Equation (12) discussed in Section 3, also [image: there is no content].
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