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Abstract: A complex map can give rise to two kinds of fractal sets: the Julia sets and the
parameters sets (or the connectivity loci) which represent different connectivity properties of the
corresponding Julia sets. In the significative results of (Int. J. Bifurc. Chaos, 2009, 19:2123–2129) and
(Nonlinear. Dyn. 2013, 73:1155–1163), the authors presented the two kinds of fractal sets of a class of
alternated complex map and left some visually observations to be proved about the boundedness
and symmetry properties of these fractal sets. In this paper, we improve the previous results by
giving the strictly mathematical proofs of the two properties. Some simulations that verify the
theoretical proofs are also included.
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1. Introduction

Julia set [1], one of the most attractive fractal sets, is proposed by Gaston Julia when he studied
the following complex quadratic polynomial

Pc : zn+1 = zα
n + c c ∈ C, α = 2 (1)

Since it was proposed, Julia set has attracted significant interests in the topics of property
analysis [2–5], superior iteration [6–8], time-delay [9], control [10,11] and so forth. Due to its good
explanation for lots of complicated phenomena, Julia set has also been widely applied in the fields of
physics [12], biology [13], image cryptography [14] and so on.

As mentioned in the research of [15,16], it may not be quite accurate to depict the evolution
of the natural process mentioned above just by employing a unique system. In some cases, the
alternated iterations can be used to have a better understanding of the natural process. In particular,
for system (1), Danca et al. [17,18] proposed its alternated version as follows:

Pc1,c2 : zn+1 =

{
z2

n + c1, if n is even,
z2

n + c2, if n is odd,
(2)

where zn, c1 = p + iq, c2 = r + is ∈ C, C = (c1, c2)
T(T means transposition).

Based on the Fatou–Julia theorem [19] (see Theorem 2), the Julia set (see Definition 1) generated
from Pc1,c2 , which is denoted as J(Pc1,c2), can be connected, disconnected and totally disconnected
via choosing different parameters c1, c2 [17]. To test numerically which values of the parameters c1, c2
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give rise to connected, disconnected, or totally disconnected J(Pc1,c2), the auxiliary complex quadratic
polynomial Qc1,c2 was proposed in [17]:

Qc1,c2 : wn+1 = (w2
n + c1)

2 + c2, (3)

where wn = xn + iyn. Furthermore, they proved that the Julia sets generated from Pc1,c2 and
Qc1,c2 are the same with given c1, c2. Thus the connectivity of J(Pc1,c2) relies on the critical orbits
of system (3). In [18], the graphical results of the connectivity loci which represent the three
connectivity states of the corresponding J(Pc1,c2) were unveiled by analyzing the critical orbits of (3).
In concrete terms, the fractal sets which represent the connected, disconnected, totally disconnected
Julia sets were respectively denoted as the Connectedness–Locus, Disconnectedness–Locus and
Totally connectedness–Locus [17,18]. Based on these graphical results, some observations about
the boundedness and symmetry properties of these connectivity loci were summarized in Section 4
of [18]. These unproved properties are just the original purpose and the starting point of this article.

Actually, there has been some research on the boundedness and symmetry properties for the
fractal sets of complex maps which have only one critical point (see the classical M-J sets [2,20,21] and
the generalized M-J sets [4,22,23]). For the systems like (3) which have more than one critical point, the
results mainly focused on the properties of their Julia sets (see the Julia sets of cubic polynomials [3]
and the superior Julia set [6]). To our knowledge, few research papers have addressed the problems
about the boundedness and symmetry properties of their connectivity loci (or Mandelbrot set) since
all the critical orbits should be considered.

Thus, as a supplementary research of [17,18], the purpose and achievement of this paper are no
other than giving the mathematical proof about the two properties of the Connectedness–Locus and
the Julia sets generated from (2) via analyzing all the critical orbits of system (3).

The remainder of this paper is outlined as follows. Section 2 recalls some definitions
and theorems about the alternated complex map. In Section 3, the boundedness properties of
the alternated Julia sets and the Connectedness–Locus are proposed and proved. In Section 4,
the symmetry properties of the 3-D slice of Connectedness–Locus and the alternated Julia sets
are analyzed in two theorems. Simulations are given to support the validity of the results. Finally,
Section 5 concludes the paper.

2. The Fractal Sets Generated from Alternated Complex Map

In this section, some necessary definitions and theorems are recalled and given.

Definition 1. [17] The filled Julia set of the system (2), denoted as K(Pc1,c2), is the set of all the values of initial
conditions z0 such that

lim
n→∞

|Pn(z0, c1, c2)|9 ∞, (4)

where Pn(·) represents the n-th iteration of the initial point z0. The Julia set of Pc1,c2 which is the boundary of
the filled Julia set is denoted as

J(Pc1,c2) = ∂(K(Pc1,c2)). (5)

Theorem 1. [17,18] J(Pc1,c2) and J(Qc1,c2) are the same for given c1 and c2 parameter values.

Theorem 2. [19] The connectivity properties of the Julia set for a complex polynomial of degree d > 2 can be
identified based on the following cases:

• The Julia set is connected if and only if all the critical orbits are bounded.
• The Julia set is totally disconnected, a cantor set, if (but not only if) all the critical orbits are unbounded.
• For a polynomial with at least one critical orbit unbounded, the Julia set is totally disconnected if and

only if all the bounded critical orbits are aperiodic.
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Then from Theorem 1 and Theorem 2, the connectivity of the J(Pc1,c2) or K(Pc1,c2) (J and K
have the same connectivity properties [18]) relies on the boundedness of the three critical points of
Qc1,c2 : 0,±

√
−c1. The following definition is given.

Definition 2. [18] The Connectedness-Locus of the alternated complex map (2), denoted as Me(Pc1,c2), is
composed by all the initial constant c1, c2 such that the orbits of 0 and

√
−c1 are bounded (since ±

√
−c1

behave the same boundedness properties).

In [17,18], Me(Pc1,c2) is named as “Connectedness–Locus” or “Connected zone”. The reason we
denote it as Me(Pc1,c2) in this paper is that it has the same efficacy with the classical Mandelbrot set [20]
which gives rise to the connectedness property. Thus, in this paper, we could also call Me(Pc1,c2) the
Mandelbrot-efficacy set.

As shown in Definition 2, Me(Pc1,c2) is formed by the initial constants c1, c2, which illustrates that
it belongs to a four-dimensional space (p, q, r, s). By fixing q0 = 0, the 3-D slice of Me(Pc1,c2) is shown
in Figure 1a (also see the red part of Figure 1 in [18]). The internal slice of Me(Pc1,c2)q0=0 with p0 = 0 is
revealed in Figure 1b. The partial enlarged views of Figure 1b are successively shown in Figure 1c,d
which fully display the beautiful and complex fractal structure of Me(Pc1,c2).
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Figure 1. (a) The 3-D slice of Mandelbrot-efficacy set: Me(Pc1,c2 )q0=0; (b) The 2-D slice of
Me(Pc1,c2 )q0=0 with p0 = 0; (c,d) The partial enlarged views of Me(Pc1,c2 )p0=0,q0=0.

The Julia sets J(Pc1,c2) with different parameters A and B which are located in Figure 1d are
shown in Figure 2. It can be seen that J(Pc1,c2) is connected with c2 = −0.3305 − 0.4745i but
disconnected with c2 = −0.3285− 0.4765i.
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Figure 2. (a) K(Pc1,c2 ) with c1 = 0, c2 = −0.3305 − 0.4745i (A in Figure 1d); (b) K(Pc1,c2 ) with
c1 = 0, c2 = −0.3285− 0.4765i (B in Figure 1d).

3. Boundedness of the Fractal Sets Generated from Alternated Complex Map

In this section, by analysing the orbits of the three critical points of system (3), the boundedness
properties of J(Pc1,c2) and Me(Pc1,c2) are given in the next two theorems.

Theorem 3. J(Pc1,c2) ⊂ {z0
∣∣ |z0| ≤ max{|c1|, |c2|, R}}, where R is the real root of the complex equation

λ3 − 2λ2 − λ− 2 = 0. i.e.s T ≈ 2.659 (Solution of R is based on the Cardan’s formula [24]).

Proof. If ∃w0 such that |w0|>max{|c1|, |c2|, R}, one can get

|w1| = |w4
0 + 2w2

0c1 + c2
1 + c2|

> |w0|4 − 2|w0|2|c1| − |c1|2 − |c2|
> |w0|4 − 2|w0|3 − |w0|2 − |w0|
= |w0|(|w0|3 − 2|w0|2 − |w0| − 1).

Since |w0|3 − 2|w0|2 − |w0| > 2 when |w0| > R, there exists a ε > 0 such that

|w1| > (1 + ε)|w0|.

Then, |w1| > |w0|>max{|c1|, |c2|, R}, one gets

|w2| = |w4
1 + 2w2

1c1 + c2
1 + c2|

> |w1|(|w1|3 − 2|w1|2 − |w1| − 1).
> |w1|(|w0|3 − 2|w0|2 − |w0| − 1).
> (1 + ε)|w1|.

Finally, one can get |wn| > (1 + ε)n|w0| → ∞ when n → ∞. Then from Definition 1, one knows
that J(Qc1,c2) ⊂ {w0

∣∣ |w0| ≤ max{|c1|, |c2|, R}}. As J(Qc1,c2) = J(Pc1,c2), the theorem is obtained.

Theorem 4. Me(Pc1,c2) ⊂ {(c1, c2)
∣∣ |c1| ≤ R, |c2| ≤ R}, where R is the same as Theorem 3.

Proof. Derive the max{|c1|, |c2|, R} in Theorem 3 into three cases as follows: max{|c1|, |c2|} > R :

{
1© : |c1| > max{|c2|, R}
2© : |c2| > max{|c1|, R}.

3© : max{|c1|, |c2|} ≤ R.

( 1©): For case 1©, one knows that |c1|>|c2| and |c1|>T, the orbit of the critical value 0 satisfies that



Symmetry 2016, 8, 7 5 of 8

|Q(0)| = |c2
1 + c2| ≥ |c1|2 − |c2|

> |c1|2 − |c1| > |c1|(R− 1)
> |c1|.

Then, |Q(0)| satisfies the condition of Theorem 3, it is clear that the orbit of 0 is diverging.

( 2©): For case 2©, one knows that |c2| > |c1| and |c2| > R, the orbit of the critical value
√
−c1

satisfies that:

|Q2(
√
−c1)| = |c4

2 + 2c2
2c1 + c2

1 + c2|
≥ |c2|4 − |2c2|2|c1| − |c1|2 − |c2|
> |c2|4 − |2c2|3 − |c2|2 − |c2|
> |c2|(R3 − 2R2 − R− 1)
> |c2|.

Thus, |Q2(
√
−c1)| satisfies the condition of Theorem 3, one can know that the orbit of

√
−c1

is diverging.
Taken together, for all the three critical values, their orbits are bounded only

when max{|c1|, |c2|} ≤ R. (case 3©). From Definition 2, one gets: Me(Pc1,c2) ⊂ {(c1, c2)
∣∣ |c1| ≤

R, |c2| ≤ R}.

Remark 1. When c1 = c2 = c, system (2) becomes the classical map (1). The complex equation λ3 − 2λ2 −
λ− 2 = 0 in Theorem 3 becomes λ− 2 = 0.
• Then Theorem 3 becomes: J(Pc) ⊂ {z

∣∣ |z| ≤ max{|c|, 2}}.
• Theorem 4 becomes: M(Pc) ⊂ {c

∣∣ |c| ≤ 2}.
J(Pc) and M(Pc) mean the Julia set and Mandelbrot set of Pc. The conclusions in this remark are consistent
with the classical results [20].

4. Symmetry of the Fractal Sets Generated from Alternated Complex Map

Symmetry [2,4,23] is an important property of fractal sets. This section focuses on the symmetry
properties of the Julia set J(Pc1,c2) and the 3-D slice of the Mandelbrot-efficacy set Me(Pc1,c2)q0=0.
The following two theorems are given and proved.

Theorem 5. The Mandelbrot-efficacy set Me(Pc1,c2)q0=0 is symmetric around the pr-plane.

Proof. For the critical points 0,±
√
−c1, we give them a unitary expression w′0. Then by choosing any

two parameters values

(c1, c2)
T = (p0, 0, r0, s0)

T , (c1, c2)
T = (p0, 0, r0,−s0)

T ,

the orbits of all the three critical points w′0 preserve complex conjugacy when n > 1. That is:

(w′n
2
+ c1)

2 + c2 = w′n+1,

(w′n
2
+ c1)

2 + c2 = w′n+1.

Thus, the critical orbits w′n behave the same boundedness property by choosing any two
parameters which are symmetric around the pr-plane. Then, based on Definition 2, the two parts
of Me(Pc1,c2)q0=0 divided by the pr-plane are symmetric.

It is illustrated in Figure 3 that the 2-D slices Me(Pc1,c2)q0=0,s0 have the same morphological
structure with Me(Pc1,c2)q0=0,−s0 . The simulations verify the validity of the Theorem 5.
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(a)

(b)
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Figure 3. (a) Me(Pc1,c2 )q0=0,s0=−0.9 and Me(Pc1,c2 )q0=0,s0=0.9; (b) Me(Pc1,c2 )q0=0,s0=−0.75 and
Me(Pc1,c2 )q0=0,s0=0.75; (c) Me(Pc1,c2 )q0=0,s0=−0.3 and Me(Pc1,c2 )q0=0,s0=0.3.

Theorem 6. The Julia set J(Pc1,c2) is centrally symmetric around the origin.

Proof. When c1, c2 are given, one gets a corresponding Julia set. For any two initial points w0 and
−w0, they map to the same w1 = (w2

0 + c1)
2 + c2.

Thus for any two points which are centrally symmetric around the origin, their orbits behave
the same boundedness properties. From Definition 1, one knows that J(Pc1,c2) is centrally symmetric
around the origin.

With the help of the graphical method proposed in [18], we supplement the
Disconnectedness-Locus (gray zone) and the Totally disconnectedness-Locus (white zone) to
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Me(Pc1,c2)q0=0,s0=−0.75. Then three different points are picked out and their corresponding filled Julia
sets are shown in Figure 4.

The simulations of both Figure 4 and Figure 2 verify the correctness of Theorem 6.

Figure 4. (a–c) The connectivity loci of system (2) and its partial enlarged views; (d) Connected
K(Pc1,c2 ) with c1 = −0.09, c2 = 0.021 − 0.75i (D point in (c)); (e) Disconnected K(Pc1,c2 )

with c1 = −0.096, c2 = 0.028 − 0.75i (E point); (f) Totally disconnected K(Pc1,c2 ) with
c1 = −0.098, c2 = 0.032− 0.75i (F point).

5. Conclusions

Fractals is one of the hottest topics in the fields of nonlinear dynamics. The properties of
fractal sets are necessary to be investigated and favorable for the practical applications. This work
focus on the boundedness and symmetry properties of the fractal sets generated from a class of
alternated complex map. This is an important supplementary theoretical research for the existing
related research and could represent a guide for the future research on the properties analysis about
the complex maps with higher order or more complicated alternate rules.
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