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Abstract: It is shown that quantization and superintegrability are not concepts that are inherent to
classical Physics alone. Indeed, one may quantize and also detect superintegrability of biological
models by means of Noether symmetries. We exemplify the method by using a mathematical model
that was proposed by Basener and Ross (2005), and that describes the dynamics of growth and
sudden decrease in the population of Easter Island.
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1. Introduction

In a review to honor the 50th Anniversary Year of the Journal of Theoretical Biology [1], one reads:

“It is frequently claimed that— like Newton’s invention of calculus—biological theory will
require ‘new mathematics’.... There are, however, many areas of mathematics that have
been neglected by theoretical biology that could prove to be of great value. Einstein’s work
on general relativity, for instance, made good use of mathematical ideas, in particular
differential geometry that had previously been developed with completely different
motivation. More likely than not, the formal structures have been set forth in some context,
and await their discovery and subsequent development in representing biological theory.”

Since many mathematical tools used in physics have also been used in biology with different success,
we present a somewhat forgotten and neglected tool, a tool that in one of its outcomes, Noether symmetries,
helped Einstein and Klein in their quarrel with Hilbert about the energy-momentum conservation of
general relativity theory [2]. This tool is Lie continuous symmetries, which yield conservation laws,
calculus of variation setting, and ultimately quantization.

The applications of Lie symmetries to various biological models have already been shown to either
provide more accurate predictions [3] or implement [4–8] the usual techniques related to qualitative
and numerical analysis, which are common tools for any mathematical biologist.

We would like to stir up some controversy with the purpose of making both mathematicians and
biologists ponder over some missed opportunities [9].

In [10], a mathematical model that describes the dynamics of growth and sudden decrease in the
population of Easter Island was proposed. The model is a nonlinear system of two first-order ordinary
differential equations, i.e.,

ẇ1 = cw1

(
1− w1

K

)
− hw2, (1)

ẇ2 = aw2

(
1− w2

w1

)
, (2)
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where w1 is the amount of resources, w2 is the population, c is the growth rate of the resources, K the
carrying capacity, h the harvesting constant, and a the growth rate of the population. More details on
the construction of this model can be found in [10] where numerical solutions of the system (1)–(2)
were given and a qualitative analysis of the general behavior of solutions both in finite and infinite
time was presented.

In [11], we have applied Lie group analysis to this system and found that it can be integrated by
quadrature if the involved parameters satisfy certain relationships. We have also discerned hidden
linearity. Moreover, we have determined a Jacobi last multiplier and consequently a Lagrangian for
the general system [12], and have found other cases, independent of and dependent on symmetry
considerations in order to construct a corresponding variational problem, thus enabling us to find
conservation laws by means of Noether’s theorem. A comparison with the qualitative analysis given
in [10] was provided.

In the present paper, we perform the quantization of the system (1)–(2); namely, we derive the
Schrödinger equation by means of the method that preserves the Noether symmetries [13].

Moreover, in the wake of Volterra’s last papers [14,15], the same mathematical model (1)–(2) is
transformed into two second-order Lagrangian equations, and the superintegrability of this system
is proven; namely three conservation laws, including the Hamiltonian, are found by means of
Noether’s theorem.

2. Quantizing with Noether Symmetries

It has been known for sixty-five years that quantization and nonlinear canonical transformations
have no guarantee of consistency [16]. For a more recent perspective see [17] where an up-to-date
account of the various approaches to tackle canonical transformation is also provided.

In [13,18], a procedure which obviates the constraint imposed by the conflict between
consistent quantization and the invariance of the Hamiltonian description under nonlinear canonical
transformation was proposed. It is based on the preservation of Noether symmetries when going from
classical to quantum mechanics. The quantization of classical problems is achieved by constructing a
suitable time-dependent Schrödinger equation.

This method was reformulated in [19] for problems that are linearizable by Lie point symmetries,
and also successfully applied to various classical problems: second-order Riccati equation [20],
dynamics of a charged particle in a uniform magnetic field and a non-isochronous Calogero’s goldfish
system [18], an equation related to a Calogero’s goldfish equation [21], two nonlinear equations
somewhat related to the Riemann problem [22], a Liénard I nonlinear oscillator [19], a family of
Liénard II nonlinear oscillators [23], N planar rotors and an isochronous Calogero’s goldfish system [24],
the motion of a free particle and that of a harmonic oscillator on a double cone [25].

If a system of second-order equations is considered, i.e.,

ẍ(t) = F(t, x, ẋ), x ∈ IRN , (3)

that comes from a variational principle with a Lagrangian of first-order, then the quantization method
that was first proposed in [13] consists of the following steps:

Step I. Find the Lie symmetries of the Lagrange equations

Υ = W(t, x)∂t +
N

∑
k=1

Wk(t, x)∂xk .

Step II. Among them, find the Noether symmetries

Γ = V(t, x)∂t +
N

∑
k=1

Vk(t, x)∂xk .
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This may require searching for the Lagrangian yielding the maximum possible number of
Noether symmetries [26–29].

Step III. Construct the Schrödinger equation, where we assume h̄ = 1 without loss of generality,
admitting these Noether symmetries as Lie symmetries, namely

2iψt +
N

∑
k,j=1

fkj(x)ψxjxk +
N

∑
k=1

hk(x)ψxk + f0(x)ψ = 0 (4)

admitting the Lie symmetries

Ω = V(t, x)∂t +
N

∑
k=1

Vk(t, x)∂xk + G(t, x, ψ)∂ψ,

without adding any other symmetries apart from the two symmetries that are present in any
linear homogeneous partial differential equation, namely

ψ∂ψ, α(t, x)∂ψ,

where α = α(t, x) is any solution of the Schrödinger Equation (4).

In [11], we derived w1 from Equation (2), i.e.,

w1 = − au2

u̇− au
. (5)

and consequently obtained a second-order ordinary differential equation in u ≡ w2,

ü =
(2a− h)u̇2

au
− (a + c− 2h)u̇− ac

K
u2 + a(c− h)u. (6)

Among other cases, we found that if the following relationships among the parameters a, h and c
are satisfied

a = 2c, h =
3
2

c (7)

then Equation (6), i.e.,

ü =
5u̇2

4u
− 2c2

K
u2 − c2u (8)

admits a three-dimensional Lie symmetry algebra generated by

Γ1 = ∂t, Γ2 = e−ct (∂t + 2cu∂u) Γ3 = ect (∂t − 2cu∂u) . (9)

In [11], we proved that these three operators generate a representation of the complete symmetry
group of Equation (8), determined a straightforward Jacobi last multiplier, i.e., [11]

M =

√
u

2cu3 . (10)

and consequently the following Lagrangian

L =
√

u
(

u̇2

4cu3 +
c
u
− 2c

K

)
, (11)

that admits (9) as Noether symmetries. The three symmetries (9) are a representation of the complete
symmetry group of Equation (8), namely a group that completely specifies a given differential equation
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through its algebraic representation [30]. Indeed, if we impose to the following general second-order
ordinary differential equation

ü = F(t, u, u̇) (12)

to admit the symmetry algebra with generators (9), then we obtain the equation

ü =
5u̇2

4u
− Bu2 − c2u, (13)

namely a family of equations characterized by the parameter B, which can be replaced with −2c2/K
without any loss of generality.

We remark that it is important to have a Lagrangian, otherwise the quantization of Equation (8)
cannot be pursued [31].

The Hamiltonian corresponding to the Lagrangian (11) is

H = c
√

u
(

u2 p2 − 1
u
+

2
K

)
. (14)

In the present paper, we quantize Equation (8), namely we derive the Schrödinger equation by
preserving the Noether symmetries. We follow the three steps given above, i.e.,

Step I. We have found the three Lie symmetries, i.e., (9).
Step II. Those symmetries are also the Noether symmetries of the Lagrangian (11).
Step III. We consider the general equation

2iΨt + f11(u)Ψuu + h1(u)Ψu + f0(u)Ψ = 0 (15)

and impose that it should admit the following three Lie symmetries

Ω1 = Γ1 + G1(t, u, Ψ)∂Ψ, Ω2 = Γ2 + G2(t, u, Ψ)∂Ψ, Ω3 = Γ3 + G3(t, u, Ψ)∂Ψ, (16)

without adding any other symmetries apart from the two symmetries that are present in any
linear homogeneous partial differential equation, namely

Ψ∂Ψ, α(t, u)∂Ψ,

where α = α(t, u) is any solution of the Schrödinger Equation (15).

Using ad hoc REDUCE interactive programs [32], we derive the following Schrödinger equation:

2iΨt + u2√uΨuu −
√

u
(

η + 4
c2

u

)
Ψ = 0, (17)

with η any arbitrary constant.
Indeed, Equation (17) admits a Lie symmetry algebra generated by the following operators:

Ω1 = Γ1,

Ω2 = Γ2 + ce−ct
(

3
2
+ 4i

c√
u

)
Ψ∂Ψ (18)

Ω3 = Γ3 + cect
(
−3

2
+ 4i

c√
u

)
Ψ∂Ψ.



Symmetry 2016, 8, 155 5 of 9

The spectrum of this Schrödinger equation is continuous. This is not a surprise. In fact, in [11] we
have derived that the general solution of Equation (8) is of exponential type, i.e.,

u =
64A2

2K

exp(2ct)
(
8 + A2

1K + 4A2
2K exp(−2ct) + 4A1 A2K exp(−ct)

)2 , (19)

with A1, A2 arbitrary constants.
However, if we replace t with τ = it , then Equation (8) becomes:

d2u
dτ2 =

5
4u

(
du
dτ

)2
+

2c2

K
u2 + c2u. (20)

This equation is one of the isochronous Liénard II equations [33], ∀h = h(u), i.e.,

d2u
dτ2 +

h′′

h′

(
du
dτ

)2
+ ω2 h

h′
+

A
h′h3 = 0, (21)

with the identification c2 = 4ω2, and h(u) = (AK/(2ω2u))1/4. The quantization of Equation (21)
was given in [34]. In [23], the quantization that preserves the Noether symmetries was applied to all
equations (21). Equation (20) gives rise to the following Schrödinger equation

2iψτ +
ψuu

(h′)2 −
h′′ψu

(h′)3 +

(
A
h2 −ω2h2

)
ψ = 0. (22)

Its eigenfunctions are:
ψn = h

k+1
2 e−i k+2

2 ωt− ω
2 h2

Lk/2
n

(
ωh2

)
, (23)

with k =
√

1− 4A, and Lk/2
n the associated Laguerre polynomials, while the energy eigenvalues are:

En = 2ω

(
n +

1
2
+

k
4

)
. (24)

More details can be found in [23].

3. In the Wake of Volterra: A Superintegrable System

In 1939 Volterra wrote [15]:

“I have been able to show that the equations of the struggle for existence depend on a
question of Calculus of Variations (omissis). In order to obtain this result, I have replaced
the notion of population by that of quantity of life [14]. In this manner I have also obtained
some results by which dynamics is brought into relation to problems of the struggle
for existence.”

The quantity of life X and the population N of a species are connected by the relation

N =
dX
dt

. (25)

It is immediately obvious that this idea of raising the order of each equation is totally different
from that by Trubach and Franco [35], who provided a method for finding a linear Lagrangian for
systems of first-order equations. Also, Volterra’s method is different from that of deriving a single
second-order equation from a system of two first-order equations: indeed, Volterra takes a system of
first-order equations and transforms it into a system of second-order equations.

In [12], Volterra’s examples were analyzed and their connection to the Jacobi last multiplier
was shown.
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Let us apply Volterra’s method to the system (1)–(2).
We mimic Volterra by introducing what we call the quantity of natural life u2, such that:

w2 =
du2

dt
. (26)

Then, Equation (1) becomes a linear differential form in w1 and u2, and the substitution
w1 = r1 − hu2 simplifies it. Consequently, a Riccati equation is obtained, and the following
linearizing transformation

r1 =
K
c

du1

dt
, (27)

yields

ü1 =
c

K2 (K(2hu2 + K)u̇1 − hc(hu2 + K)u2u1) , (28)

while Equation (2) becomes:

ü2 =
au̇2

Ku̇1 − hcu2u1
(Ku̇1 − hcu2u1 − cu1u̇2) . (29)

Next, we check whether the system (28)–(29) admits a Lagrangian by applying Douglas’s
method [36], which consists of determining whether (at least) a Lagrangian exists for systems of
two second-order ordinary differential equations that satisfy given conditions. We found that a
Lagrangian (and only one) exists if a = h = c, namely if the system (28)–(29) becomes the following:

ü1 =
c2u2

K2 (2Ku̇1 − c2u1u2)−
c
K
(c2u1u2 − Ku̇1), (30)

ü2 = cu̇2 +
c2u1u̇2

2
c2u1u2 − Ku̇1

. (31)

In [11], the case a = h = c was discussed in Remark 3 of Section 4 where the general solution of
w2 in (1)–(2) was determined in implicit form, i.e.,

A1 − 3(c2 + 1)u
3u
√

u
+

√
K

2A1
log
(

K
A1u

)
+

√
2K
A1

log
(

A1 +
√

A1(A1 − c2u)
)
= t + A2.

The unique Lagrangian is

L = 2K log(c2u1u2 − Ku̇1)u̇2 + cu2(cu2 + 2K). (32)

It admits three Noether symmetries generated by the following operators:

Γ1 = ∂t, Γ2 = c2tu1∂u1 + K∂u2 , Γ3 = u1∂u1 . (33)

The corresponding first integrals are:

I1 = −cu2(cu2 + 2K)− 2K2u̇1u̇2

c2u1u2 − Ku̇1
,

I2 = 2K log(c2u1u2 − Ku̇1)− 2c2tu2 − 2cKt− 2c2Ktu1u̇2

c2u1u2 − Ku̇1
, (34)

I3 = u2 +
Ku1u̇2

c2u1u2 − Ku̇1
,

with gauge functions F1 = 0, F2 = 2cKt(cu2 + K), and F3 = u2, respectively.



Symmetry 2016, 8, 155 7 of 9

The first integral I1 in (34) is the Hamiltonian. Indeed, if one introduces the momenta p1, p2 by
means of the Legendre transformation applied to the Lagrangian (32), i.e.,

p1 ≡ ∂L
∂u̇1

= − 2K2u̇2

c2u1u2 − Ku̇1
,

p2 ≡ ∂L
∂u̇2

= 2K log(c2u1u2 − Ku̇1), (35)

then the corresponding Hamiltonian, i.e. H ≡ p1u̇1 + p2u̇2 − L, is

H = −cu2(cu2 + 2K) +
1
K

(
c2 p1u1u2 − p1 exp

( p2

2K

))
, (36)

that is I1 in (34), if u̇1, u̇2 are replaced with p1, p2, as given in (35).
Introducing the momenta into I2, and I3 in (34) yields:

Int2 = p2 − 2c2tu2 − 2cKt +
c2tp1u1

K
,

Int3 = u2 −
p1u1

2K
, (37)

respectively. Then the Hamiltonian system is superintegrable, since we have been able to determine
three first integrals.

4. Discussion and Final Remarks

We have shown that it is possible to quantize and also detect superintegrability of biological models.
The key is to find a Lagrangian and its admitted Noether symmetries. The Easter Island model (1)–(2) was
used as an example. Both classical quantization and superintegrability could be achieved if the involved
parameters satisfy certain relationships, namely a = 2c, h = 3

2 c, and a = h = c, respectively.
Classical quantization was achieved by applying the quantization method that preserves the

Noether symmetries [13]. We have derived the Schrödinger equation corresponding to Equation (8) by
preserving the three Noether symmetries (9). Also, we have shown that if we replace the independent
variable t with τ = it, then Equation (8) is transformed into Equation (20), which is one of the
isochronous Liénard II equations [33]. Its corresponding Schrödinger equation was derived in [23,34].
The eigenfunctions and energy eigenvalues are given in (23) and (24), respectively.

About superintegrability, we have applied Volterra’s idea [14] to system (1)–(2) by introducing
the quantity of natural life u2 as given in (26), and therefore increasing the order of the system (1)–(2).
Consequently, a Riccati equation also appeared and we have applied the known transformation (27)
that yields a second-order equation. Thus, we have obtained a system of two second-order
equations (28) and (29). Then, we have applied Douglas’s method and derived a unique Lagrangian
if the involved parameters satisfy the relationships a = h = c. Finally, we have shown that the
corresponding Hamiltonian (36) yields a superintegrable Hamiltonian system, since we have been able
to determine three first integrals (34) by means of Noether’s theorem.

We would like to conclude with the following statement in [37]:

“Only rarely does one find mention, at post-graduate level, of any problem in connection
with the process of actually solving such equations. The electronic computer may perhaps
be partly to blame for this, since the impression prevails in many quarters that almost
any differential equation problem can be merely put on the machine, so that finding an
analytical solution is largely a waste of time. This, however, is only a small part of the
truth, for at higher levels there are generally so many parameters or boundary conditions
involved that numerical solutions, even if practicable, give no real idea of the properties of
the equation. Moreover, any analyst of sensibility will feel that to fall back on numerical
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techniques savours somewhat of breaking a door with a hammer when one could, with a
little trouble, find the key”.
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