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Abstract:



In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.






Keywords:


symmetry group; invariant subspace; conditional Lie–Bäcklund symmetry; finite-dimensional dynamical system; nonlinear differential operator




MSC:


37K35; 37K25; 53A55








1. Introduction


The invariant subspace method is an effective one to perform reductions of nonlinear partial differential equations (PDEs) to finite-dimensional dynamical systems. In [1], Galaktionov and Svirshchevskii provide a systematic account of this approach and its various applications for a large variety of nonlinear PDEs. They also addressed some fundamental and open questions on the invariant subspaces of nonlinear PDEs. Many interesting results were obtained in this book. In [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], the extensions of the invariant subspace method and various applications to other nonlinear PDEs were also discussed. It is noticed that a large number of exact solutions, such as N-solitons of integrable equations, similarity solutions of nonlinear evolution equations and the generalized functional separable solutions to nonlinear PDEs, can be recovered by the invariant subspace methods [1,21,22,23,24,25,26,27,28,29,30,31]. In the one-dimensional space case, the invariant subspace method can be implemented by the conditional Lie–Bäcklund symmetry introduced independently by Zhdanov [32] and Fokas-Liu [33]. A key point for the invariant subspace approach is the estimate of maximal dimension of the invariant subspaces [1,5,6,15,16]. It was shown in [1,5] that for k-th order one-dimensional nonlinear operator of the form:


[image: there is no content]








where [image: there is no content], the dimension of their invariant subspaces is bounded by [image: there is no content]. Such an estimate can be extended to the k-th order m-component nonlinear vector operators:


[image: there is no content]



(1)







In [15], we proved that the maximal dimension of the invariant subspaces for operator (1) is bounded by [image: there is no content]. This enables us to determine the maximal dimension preliminarily of the invariant subspaces of the nonlinear evolution equations. In contrast with the one-dimensional space case, only very limited results on the invariant subspaces of multi-dimensional PDEs were obtained. These results were obtained mostly by the ansatz-based method, and there are no systematic approaches to obtain these results. As mentioned in [1], the general problem of finding invariant subspaces for a wide class of nonlinear differential operators in the multi-dimensional case is not completely solved. A open question still remains: what is the maximal dimension of the two-dimensional k-th order scalar nonlinear operators of the form:


[image: there is no content]








where [image: there is no content], [image: there is no content] denotes all k-th order derivatives with respect to x and y?



It is of great interest to develop the invariant subspace method to study the multi-dimensional nonlinear evolution equations. Indeed, there are a number of examples whose exact solutions can be derived from the invariant subspace method; please refer to [1,2] for more examples on invariant subspaces of the [image: there is no content]-dimensional nonlinear evolution equations. For instance, it is discovered that the operators:


J[u]=uΔ2u−|∇u|2,(x,y)∈R2








and:


Q[u]=uΔ22u−(Δ2u)2+2▽u▽Δ2u,(x,y)∈R2








with [image: there is no content] admit the following invariant subspaces:


W6=L{1,x,y,x2,y2,xy},W6=L{1,coshx,cosy,cosh(2x),cos(2y),coshxcosy},W91=L{1,x,y,x2+y2,xy,xr2,yr2,r4},r2=x2+y2,W92=L{1,cosh(2x),sinh(2x),cos(2y),sin(2y),coshxcosy,sinhxcosy,coshxsiny,sinhxsiny}.











It was proven in [1] that the quadratic operator defined in [image: there is no content]:


K[u]=α(Δnu)2+βuΔnu+γ|∇u|2,x∈RN








admits the invariant subspaces:


W2r=L{1,|x|2,},WN+1q=L{1,x12,x22,⋯,xN2},Wnq=L{1,xixj,1≤i,j≤N},n=N(N+1)2+1,WNlin=L{x1,x2,⋯,xN}








and the direct sum of subspaces:


[image: there is no content]











The purpose of this paper is to develop symmetry-related method to study invariant subspaces of nonlinear evolution equations in the two- or multi-dimensional case. The outline of this paper is as follows. In Section 2, we first give two direct extensions of the concept of invariant subspace in [image: there is no content]. Then, the algorithm of this approach will be shown by looking for the invariant subspaces of the operator:


A[u]≡α(Δ2u)2+γuΔ2u+δ|∇u|2+εu2inR2,








where [image: there is no content] and ε are constants, and [image: there is no content]. In Section 3, the general description of the changes of variables for the two-dimensional invariant subspace method is given, which can be regarded as an extension to the invariant subspace method in the one-dimensional case. Since the two-dimensional nonlinear evolution equations can be reduced to one-dimensional equations by the Lie symmetry method, this fact combined with the invariant subspace method in the one-dimensional case will be used to obtain invariant subspaces of the corresponding two-dimensional nonlinear operators, which will be discussed in Section 4. As an example, we obtain many new invariant subspaces admitted by a quadratic differential operator [image: there is no content]. Section 5 is the concluding remarks on this work.




2. Direct Extensions of Invariant Subspaces


2.1. Direct Extensions in [image: there is no content]


Let us first give a brief account of the invariant subspace method as presented in [1]. Consider the general evolution equation:


ut=F(x,u,ux,uxx,⋯,u(k))≡F[u],x∈R



(2)




where F is a k-th-order ordinary differential operator with respect to the variable x and [image: there is no content] is a given sufficiently smooth function of the indicated variables. Let {fi(x),i=1,⋯,n} be a finite set of [image: there is no content] linearly independent functions, and [image: there is no content] denotes their linear span [image: there is no content]. The subspace [image: there is no content] is said to be invariant under the given operator F, if [image: there is no content], and then operator F is said to preserve or admit [image: there is no content], which means:


[image: there is no content]








for any [image: there is no content], where [image: there is no content] are the expansion coefficients of [image: there is no content] in the basis [image: there is no content]. It follows that if the linear subspace [image: there is no content] is invariant with respect to F, then Equation (2) has solutions of the form:


[image: there is no content]








where [image: there is no content] satisfy the n-dimensional dynamical system:


Ci′=Ψi(C1,⋯,Cn),i=1,⋯,n.











Moreover, assume that the invariant subspace [image: there is no content] is defined as the space of solutions of the linear n-th-order ODE:


[image: there is no content]



(3)







If the operator [image: there is no content] admits the invariant subspace [image: there is no content], then the invariant condition with respect to F takes the form:


[image: there is no content]



(4)




where [image: there is no content] denotes the equation [image: there is no content] and its differential consequences with respect to x. The invariant condition leads to the following theorem on the maximal dimension of an invariant subspace preserved by the operator F.



Theorem 1.

[1] If a linear subspace [image: there is no content] determined by the space of solutions of linear Equation (3) is invariant under a nonlinear differential operator F of order k, then:


[image: there is no content]













It is inferred from Equation (4) and the invariant criteria for conditional Lie–Bäcklund symmetry [32,33] that Equation (2) admits the conditional Lie–Bäcklund symmetry:


[image: there is no content]











To look for the exact solutions of the form:


[image: there is no content]



(5)




of the two-dimensional nonlinear evolution equations:


[image: there is no content]



(6)




we now introduce the linear subspace:


Wnmxy=L{f1(x)g1(y),⋯,fn(x)g1(y),⋯,f1(x)gm(y),⋯,fn(x)gm(y)}≡{∑i,jCijfi(x)gj(y),∀(C11,⋯,C1m,⋯,Cn1,⋯,Cnm)∈Rnm}








as an extension to [image: there is no content]. Assume that [image: there is no content] is a k-th-order differential operator with respect to the variables x and y, and {gj(y),j=1,⋯,m} is a finite set of [image: there is no content] linearly independent functions of variable y. It is easy to see that the space {fi(x)gj(y),i=1,⋯,n,j=1,⋯,m} is also a set of linearly independent functions. Let [image: there is no content] denote the linear span of the set {gj(y),j=1,⋯,m}, i.e., [image: there is no content]. Similarly, the space [image: there is no content] is defined as the space of solutions of the linear m-th-order ODE:


[image: there is no content]



(7)







If [image: there is no content], then there exists a vector [image: there is no content], such that:


[image: there is no content]



(8)







We rewrite u as:


[image: there is no content]








which means that:


Lx[u]=0,andLy[u]=0.



(9)







On the other hand, if the function [image: there is no content] satisfies the condition (9), then u has the form (8). Indeed, [image: there is no content] means that there exists a vector function [image: there is no content], such that:


[image: there is no content]








while [image: there is no content] means that:


[image: there is no content]











Since fi(x)(i=1,⋯,n) are linearly independent, the above equation leads to:


Ly[Ci(t,y)]=0,i=1,⋯,n.











Hence, there exists a set of vectors [image: there is no content], such that:


Ci(t,y)=∑j=1mCij(t)gj(y),i=1,⋯,n.











As above, we are able to obtain the invariance condition of the subspace [image: there is no content] with respect to F, i.e., [image: there is no content], which takes the form:


Lx[F[u]]|[Hx]∩[Hy]≡0,andLy[F[u]]|[Hx]∩[Hy]≡0,



(10)




where [image: there is no content] denotes [image: there is no content], [image: there is no content], and their differential consequences with respect to x and y. If [image: there is no content] admits the invariant subspace [image: there is no content], then Equation (6) has solutions (5) and can be reduced to an [image: there is no content]-dimensional dynamic system.



We next consider a special case of the function (5). If [image: there is no content], then [image: there is no content] in (3) and [image: there is no content] in (7). Without loss of generality, we assume [image: there is no content] and [image: there is no content]. Note that the function of the form:


[image: there is no content]



(11)




is a special case of (5), which is a separable function with respect to spacial variables x and y. We denote:


Wn+m−1xy=L{1,f2(x),⋯,fn(x),g2(y),⋯,gm(y)}≡C1(t)+∑i=2nCi(t)fi(x)+∑j=2mBj(t)gj(y),








which is a linear span of the set [image: there is no content]. Clearly, if [image: there is no content], then:


Lx[u]=0,Ly[u]=0,anduxy=0.



(12)







On the other hand, if [image: there is no content], then the function u has the form:


[image: there is no content]











From [image: there is no content] (notice that [image: there is no content]), we obtain:


[image: there is no content]








which means that there exists a vector [image: there is no content], such that:


[image: there is no content]











Similarly, [image: there is no content] leads to:


[image: there is no content]








where [image: there is no content] are functions of t. We denote [image: there is no content]. Hence, [image: there is no content] if and only if u satisfies the condition (12). Then, we can obtain the invariance condition of the subspace [image: there is no content] with respect to F, i.e., [image: there is no content], which takes the form:


Lx[F[u]]|[H]≡0,Ly[F[u]]|[H]≡0,and(F[u])xy|[H]≡0.



(13)




where [image: there is no content] denotes the set [image: there is no content], and their differential consequences with respect to x and y. In this case, Equation (6) has the solution of the form (11) and can be reduced to an [image: there is no content]-dimensional dynamic system.



Assume that the k-th-order differential operator [image: there is no content], including the term [image: there is no content], admits the invariant subspace [image: there is no content] (or [image: there is no content]), and note that the operator [image: there is no content] can also be regarded as a differential operator only with respect to x; the first identity in the condition (10) (or (13)) leads to the estimate [image: there is no content]. The same estimate is also true for m.



Remark 1.

It is noted that the [image: there is no content] and [image: there is no content] demonstrate two special forms of invariant subspaces of the operator [image: there is no content]. The general form can be introduced as below, which will be used in the following sections.





Let {fi(x,y),i=1,⋯,n} be a finite set of [image: there is no content] linearly independent functions, and [image: there is no content] denote their linear span [image: there is no content]. The subspace [image: there is no content] is said to be invariant under the given operator [image: there is no content], if [image: there is no content], and then, operator [image: there is no content] is said to preserve or admit [image: there is no content].




2.2. Invariant Subspaces of a Quadratic Operator in [image: there is no content]


Consider the quadratic operator:


[image: there is no content]











We will look for the invariant subspaces [image: there is no content] and [image: there is no content] of [image: there is no content]. Note that the operator [image: there is no content] is symmetric with respect to x and y; we assume that [image: there is no content]. The cases of n=2,3,4,5 will be considered respectively. In the rest of this paper, the following notations will be used:


ur0=∂ru∂xr,u0s=∂su∂ys,urs=∂r+su∂xr∂ys,r,s=1,2,⋯.











2.2.1. The Space [image: there is no content]


We first consider the case of [image: there is no content]. In this case, we look for the invariant subspaces [image: there is no content] of the operator [image: there is no content], which are determined by the following ODEs:


Lx3[v]≡d3vdx3+a2d2vdx2+a1dvdx=0,Ly3[w]≡d3wdy3+b2d2wdy2+b1dwdy=0.



(14)







Here and hereafter, [image: there is no content] are constants. The invariant conditions take the form:


G1=Lx3[A[u]]|[H]≡0,G2=Ly3[A[u]]|[H]≡0,andG3=(A[u])xy|[H]≡0,



(15)




where [image: there is no content] denotes the set [image: there is no content] and their differential consequences with respect to x and y.



Substituting [image: there is no content] into (15), we obtain:


G1=(−4a2δ−4a23α−3a2γ+6a1αa2)u202+(6ε−6a1γ−8a22αa1+a22γ+6a12α−6a1δ)u10u20+(2a2ε+a2γa1−4a2αa12)u102,G2=(−4b2δ−4b23α−3b2γ+6b1αb2)u022+(6ε−6b1γ−8b22αb1+b22γ+6b12α−6b1δ)u01u02+(2b2ε−4b2αb12+b2γb1)u012,G3=2αb2a2u02u20+(2αb1a2−γa2)u01u20+(−γb2+2αb2a1)u10u02+(−γb1−γa1+2αb1a1+2ε)u01u10.











In view of the coefficients in [image: there is no content][image: there is no content], we deduce a system of [image: there is no content] and ε, which includes ten equations. Solving the resulting system, we arrive at the following results.



Proposition 1.

Assume that the subspaces [image: there is no content] are determined by the system (14). Then, the quadratic operators [image: there is no content] in [image: there is no content] preserving the invariant subspaces [image: there is no content] determined by [image: there is no content] and the following constraints are presented as below, where [image: there is no content] are arbitrary constants.

	(1) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3−b1dvdx=0,Ly3[w]=d3wdy3+b1dwdy=0;












	(2) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3=0,Ly3[w]=d3wdy3+b2d2wdy2=0;












	(3) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3−49b22dvdx=0,Ly3[w]=d3wdy3+b2d2wdy2+29b22dwdy=0;












	(4) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3+a1dvdx=0,Ly3[w]=d3wdy3+b1dwdy=0;












	(5) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3=0,Ly3[w]=d3wdy3+b1dwdy=0;












	(6) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3+b1dvdx=0,Ly3[w]=d3wdy3+b1dwdy=0;












	(7) 

	
[image: there is no content], with:


Lx3[v]=d3vdx3=0,Ly3[w]=d3wdy3=0;



















Solving the systems (14) yields the corresponding invariant subspaces. Here, we just present the invariant subspaces in the fourth case. The invariant subspaces for the other cases can be obtained in a similar manner. In the fourth case, we get the following invariant subspaces:


[image: there is no content]











In the case of [image: there is no content], we assume that the subspace [image: there is no content] is determined by the system:


Lx2[v]≡d2vdx2+a1dvdx=0,Ly2[w]≡d2wdy2+b1dwdy=0.



(16)







By the similar calculation, we obtain the following results.



Proposition 2.

Any operators [image: there is no content] that admit the subspaces [image: there is no content] determined by the system (16) are presented as follows:

	(1) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2+a1dvdx=0,Ly2[w]=d2wdy2+b1dwdy=0;












	(2) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2=0,Ly2[w]=d2wdy2+b1dwdy=0;












	(3) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2+b1dvdx=0,Ly2[w]=d2wdy2+b1dwdy=0;












	(4) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2−b1dvdx=0,Ly2[w]=d2wdy2+b1dwdy=0;












	(5) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2=0,Ly2[w]=d2wdy2=0;



















In the case of [image: there is no content], we consider the invariant subspaces [image: there is no content] admitted by the operator [image: there is no content], which are determined by the following ODEs:


[image: there is no content]



(17)







By the similar calculation as that in the case of [image: there is no content], the invariant condition:


[image: there is no content]








leads to [image: there is no content], where [image: there is no content] denotes the set [image: there is no content], and their differential consequences with respect to x and y. The invariant condition:


Lx4[A[u]]|[H]≡0,Ly4[A[u]]|[H]≡0








yields [image: there is no content], which shows that there are no operators [image: there is no content] preserving the invariant subspaces determined by (17). Similarly, we are able to show that there are no operators [image: there is no content] to preserve the subspace [image: there is no content] defined by the following ODEs:


[image: there is no content]












2.2.2. The Space [image: there is no content]


From the invariant condition (10), a similar calculation as above leads to the following results.



Proposition 3.

There are no operators [image: there is no content] admitting the invariant subspaces [image: there is no content] determined by the system:


[image: there is no content]



(18)




for [image: there is no content]. The operators [image: there is no content], which preserve the invariant subspaces [image: there is no content] determined by the system (18) for [image: there is no content], are given as follows:

	(1) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2+a0v=0,Ly2[w]=d2vdy2+b0v=0;












	(2) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2+b1dvdx=0,Ly2[w]=d2vdy2+b1dwdy=0;












	(3) 

	
[image: there is no content], with:


Lx2[v]=d2vdx2−b1dvdx=0,Ly2[w]=d2vdy2+b1dwdy=0.



















The invariant spaces of the following two nonlinear equations can be constructed in a similar manner.



Example 1.

Consider the Jacobian:


[image: there is no content]








which is the nonlinear term in two-dimensional Rossby waves equation [34]:


[image: there is no content]













It preserves the following invariant subspaces:

	(1)

	
[image: there is no content], determined by the system:


Lx2[v]=d2vdx2+a1dvdx=0,Ly2[w]=d2wdy2+b1dwdy=0,witha1b1(a12−b12)=0;












	(2)

	
[image: there is no content], determined by any of the following systems:


Lx3[v]=d3vdx3+a1dvdx=0,Ly3[w]=d3wdy3+a1dwdy=0;Lx3[v]=d3vdx3−b22dvdx=0,Ly3[w]=d3wdy3+b2d2wdy2=0;Lx3[v]=d3vdx3±a2d2vdx2=0,Ly3[w]=d3wdy3+a2d2wdy2=0;












	(3)

	
[image: there is no content], determined by the system:


Lx4[v]=d4vdx4+a2d2vdx2=0,Ly4[w]=d4wdy4+a2d2wdy2=0;












	(4)

	
[image: there is no content], determined by any of the following systems:


Lx2[v]=d2vdx2=0,Ly2[w]=d2wdy2+b1dwdy=0;Lx2[v]=d2vdx2+a0v=0,Ly2[w]=d2wdy2+b0w=0.

















Example 2.

The invariant subspaces [image: there is no content] and [image: there is no content] admitted by Monge–Ampère operator [image: there is no content] were given in [1]. Here, we are looking for more invariant subspaces of this operator. Indeed, it still admits the following invariant subspaces:

	(1) 

	
[image: there is no content], determined by the system:


Lx2[v]=d2vdx2+a1dvdx=0,Ly2[w]=d2wdy2+b1dwdy=0,witha1b1=0;












	(2) 

	
[image: there is no content], determined by any of the following systems:


Lx3[v]=d3vdx3=0,Ly3[w]=d3wdy3+b2d2wdy2+b1dwdy=0;












	(3) 

	
[image: there is no content], determined by any of the following systems:


Lx2[v]=d2vdx2=0,Ly2[w]=d2wdy2+b1dwdy+b0w=0,withb0b1=0;Lx2[v]=d2vdx2+a0v=0,Ly2[w]=d2wdy2+b0w=0;












	(4) 

	
[image: there is no content], determined by the system:


Lx3[v]=d3vdx3=0,Ly3[w]=d3wdy3=0.






















3. Invariant Subspaces under the General Change of Variables


In King’s papers [2,12], the formal solution of two-dimensional nonlinear diffusion equations:


[image: there is no content]



(19)




was proposed as a non-group-invariant exact solution, which belongs to the subspace [image: there is no content]. The solution:


U=C1(t)+C2(t)x+C3(t)x2+C4(t)y+C5(t)y2+C6(t)xy+C7(t)x(x2+y2)+C8(t)y(x2+y2)+C9(t)(x2+y2)2



(20)




of the equation:


Ut=UΔ2U−|∇U|2≡J[U],(x,y)∈R2,



(21)




was presented as a generalization of solution (19). The derivation was based on the change of variables. King [2] discovered that Equation (21) was invariant under the following change of variables:


U(1)=(x2+y2)−2U,x(1)=xx2+y2,y(1)=yx2+y2,t(1)=t,



(22)




which means that:


Ut=J[U]⟶Ut(1)(1)=J[U(1)],i.e.,Ut=(x2+y2)2J[U(1)].











Hence, [image: there is no content]. On the other hand, since the operator [image: there is no content] preserves the invariant subspace:


W6(1)=L{1,x(1),(x(1))2,y(1),(y(1))2,x(1)y(1)}≡L1,xx2+y2,x2(x2+y2)2,yx2+y2,y2(x2+y2)2,xy(x2+y2)2,








then the operator [image: there is no content] preserves the corresponding subspace:


[image: there is no content]











In [1], Galaktionov and Svirshchevskii used the Lie symmetry of Equation (21) to give the invariant transformations of variables as (21). Then, they applied the invariant transformations and invariant subspaces of the corresponding one-dimensional equation of (21), i.e., [image: there is no content], to obtain the invariant subspaces [image: there is no content] and [image: there is no content]. In general, we have the following result.



Proposition 4.

Given a two-dimensional nonlinear differential operator [image: there is no content] with respect to the variables x and y, if the nonlinear evolution Equation (6) is invariant under the transformation:


u(1)=r(x,y)u,x(1)=p(x,y),y(1)=q(x,y),t(1)=t,



(23)




and operator [image: there is no content] admits the linear space [image: there is no content], then [image: there is no content] also admits the linear space:


[image: there is no content]













Proof:

Equation (6) is invariant under the transformation (23), which means [image: there is no content]. On the other hand, [image: there is no content]. Hence, [image: there is no content]. Assume that:


[image: there is no content]








where [image: there is no content][image: there is no content] are arbitrary functions of t. Correspondingly,


[image: there is no content]











[image: there is no content] admits the subspace [image: there is no content], which means that there exist functions [image: there is no content][image: there is no content], such that:


[image: there is no content]








i.e.,


[image: there is no content]











Then, [image: there is no content] admits the subspace:


[image: there is no content]











This completes the proof of the proposition. ☐





Example 3.

In Proposition 1, we find that the operator [image: there is no content] admits the invariant subspaces:


W51=L{1,cos(b1x),sin(b1x),cosh(b1y),sinh(b1y)}and.













Hence, by the changes of variables (22), the following subspace:


W^3+3−1xy=L{(x2+y2)2,(x2+y2)2cos(b1xx2+y2),(x2+y2)2sin(b1xx2+y2),(x2+y2)2cosh(b1yx2+y2),(x2+y2)2sinh(b1yx2+y2)}








is invariant under [image: there is no content].



Note that the transformation (22) is a special one, under which Equation (21) is invariant. We can introduce a general transformation. As for the one-dimensional case [1]; two two-dimensional operators [image: there is no content] and [image: there is no content] are said to be equivalent, if there exists the change of variables:


u=r(x,y)u˜,x˜=p(x,y),y˜=q(x,y)








such that:


[image: there is no content]











It implies that if the operator [image: there is no content] preserves the invariant subspace [image: there is no content], then the equivalent operator [image: there is no content] preserves the invariant subspace [image: there is no content], where [image: there is no content].




4. Invariant Subspace in [image: there is no content] and Lie’s Classical Symmetries


The Lie theory of the symmetry group plays an important role for differential equations, which is a useful method to explore various properties and obtain exact solutions of nonlinear PDEs. The approach and its several extensions are illustrated in the books [35,36] and the papers [32,33,37,38]. One of the multiple applications of the Lie symmetry method is the similarity reduction of PDEs to ones with fewer variables. As usual, if an n-dimensional PDE admits one symmetry, then it can be reduced to an [image: there is no content]-dimensional PDE equation and even to a ODE. It has been known that the invariant subspaces of one-dimensional differential operator were used to construct solutions of multi-dimensional nonlinear evolution equations of the radially symmetry form, which are one-dimensional evolution equations. For the two-dimensional case, the radially-symmetric solution can be regarded as the rotational-invariant solution. Accordingly, more invariant subspaces of two-dimensional operators can be obtained by combining the Lie symmetry method with the invariant subspaces of one-dimensional operators.



Example 4.

Consider the invariant subspaces preserved by the quadratic operator [image: there is no content]. The equation:


[image: there is no content]








can be changed into Equation (21) by the transformation [image: there is no content]. Indeed, for [image: there is no content], the above equation can be rewritten as:


[image: there is no content]



(24)




which is a well-known equation for describing the Ricci flow in a two-dimensional space [39]. Lie’s classical symmetries of Equation (24) were computed in [40,41,42,43,44,45]. Indeed, Equation (24) admits the Lie group of symmetry with infinitesimal generator:


[image: there is no content]








where [image: there is no content] and ξ, η and ϕ satisfy the following constraints:


ϕ=(2k2−2ξx)u,ξx−ηy=0,ηx+ξy=0.



(25)









Clearly, the function [image: there is no content] satisfies the two-dimensional Laplace equation:


[image: there is no content]











Solving Equation (25), we obtain the following infinitesimal generators admitted by Equation (24):


X1=∂x+∂y,X2=y∂x−x∂y,X3=x∂x+y∂y−2u∂uX4=xy∂x+12(y2−x2)∂y−2yu∂u,X5=12(x2−y2)∂x+xy∂y−2xu∂u,X6=sinh(ax)sin(ay)∂x−cosh(ax)cos(ay)∂y−2acosh(ax)sin(ay)u∂u,X7=sinh(ax)cos(ay)∂x+cosh(ax)sin(ay)∂y−2acosh(ax)cos(ay)u∂u,X8=sinh(ay)sin(ax)∂x+cosh(ay)cos(ax)∂y−2asinh(ay)cos(ax)u∂u,X9=sinh(ay)cos(ax)∂x−cosh(ay)sin(ax)∂y+2asinh(ay)sin(ax)u∂u,etc.











Here, a is a non-zero arbitrary constant. On the other hand, the corresponding infinitesimal generators admitted by the Equation (21) can be obtained by the transformation [image: there is no content], i.e.,


u⟶1U,∂u⟶−U2∂U,








which reduce Equation (21) to one-dimensional equations. We denote them by [image: there is no content][image: there is no content].



	(1)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The corresponding invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies:


[image: there is no content]












	(2)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The corresponding invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies:


[image: there is no content]












	(3)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The corresponding invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies:


[image: there is no content]












	(4)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The corresponding invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies:


[image: there is no content]












	(5)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies [image: there is no content].




	(6)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies [image: there is no content].




	(7)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies [image: there is no content].




	(8)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies:


[image: there is no content]












	(9)

	
[image: there is no content]. For [image: there is no content], its invariants are [image: there is no content] and [image: there is no content]. The invariant solutions of (21) are [image: there is no content], where [image: there is no content] satisfies [image: there is no content].







Using the invariant subspace method for the one-dimensional case, we find that the nonlinear operators [image: there is no content] only admit two- and three-dimensional subspaces determined by spaces of solutions of linear ODEs as:


[image: there is no content]











We concentrate on the three-dimensional invariant subspaces, which are listed as below:

	(1)

	
The operator [image: there is no content] admits the invariant subspaces:


[image: there is no content]








determined by the spaces of solutions of the ODE:


[image: there is no content]












	(2)

	
The operator [image: there is no content] admits the invariant subspaces:


[image: there is no content]








determined by the spaces of solutions of the ODE:


[image: there is no content]












	(3)

	
The operator [image: there is no content] admits the invariant subspaces:


[image: there is no content]








determined by the spaces of solutions of the ODE:


[image: there is no content]












	(4)

	
The operator [image: there is no content] admits the invariant subspaces:


[image: there is no content]








determined by the spaces of solutions of the ODE:


[image: there is no content]












	(5)

	
The operator [image: there is no content] admits the invariant subspaces:


[image: there is no content]








determined by the spaces of solutions of the ODE:


[image: there is no content]








where and hereafter b is an arbitrary constant, and c is a non-zero arbitrary constant.









Then, we can obtain the corresponding invariant subspaces preserved by [image: there is no content], which are presented as below:


W3=L{1,x+y,(x+y)2},W3=L{1,cos(c(x+y)),sin(c(x+y))},W3=L{1,cosh(c(x+y)),sinh(c(x+y))},W3=L{x2+y2,(x2+y2)ln(x2+y2),(x2+y2)(ln(x2+y2))2},W3=L{x2+y2,(x2+y2)1−c,(x2+y2)1+c},W3=L{x2+y2,(x2+y2)sin(cln(x2+y2)),(x2+y2)cos(cln(x2+y2))},W3=L{x2+y2,(x2+y2)arctan(yx),(x2+y2)(arctan(yx))2},W3=L{x2+y2,(x2+y2)sin(carctan(yx)),(x2+y2)cos(carctan(yx))},W3=L{x2+y2,(x2+y2)cosh(carctan(yx)),(x2+y2)sinh(carctan(yx))},W3=L{x2,xy,y2},W3=L{(x2+y2)2,(x2+y2)2cosh(cxx2+y2),(x2+y2)2sinh(cxx2+y2)},W3=L{(x2+y2)2,(x2+y2)2sin(cxx2+y2),(x2+y2)2cos(cxx2+y2)},W3=L{x2,x(x2+y2),(x2+y2)2},W3=L{(cos2ay+sinh2ax),(cos2ay+sinh2ax)arctancosaysinhax,(cos2ay+sinh2ax)(arctancosaysinhax)2},W3=L{(cos2ay+sinh2ax),(cos2ay+sinh2ax)sin(carctancosaysinhax),(cos2ay+sinh2ax)cos(carctancosaysinhax)},W3=L{(cos2ay+sinh2ax),(cos2ay+sinh2ax)cosh(carctancosaysinhax),(cos2ay+sinh2ax)sinh(carctancosaysinhax)},W3=L{sinh2ax,cosaysinhax,cos2ay},W3=L{(sin2ax−cosh2ay),(sin2ax−cosh2ay)lnsinax+coshaysinax−coshay,(sin2ax−cosh2ay)(lnsinax+coshaysinax−coshay)2},










W3=L{(sin2ax−cosh2ay),(sin2ax−cosh2ay)sin(carctanhsinaxcoshay)(sin2ax−cosh2ay)cos(carctanhsinaxcoshay)},W3=L{(sin2ax−cosh2ay),(sin2ax−cosh2ay)cosh(carctanhsinaxcoshay),(sin2ax−cosh2ay)sinh(carctanhsinaxcoshay)}.











Since the operator [image: there is no content] is symmetric with respect to the variables x and y, the following invariant subspaces can also be obtained from the above invariant subspaces:


[image: there is no content]











Example 5.

Consider the two-dimensional porous medium equation:


ut=(upux)x+(upuy)y,p≠0,−1,



(26)




which can be changed into the equation:


[image: there is no content]



(27)




by the transformation [image: there is no content]. Equation (27) admits the scaling invariance with the infinitesimal generator:


[image: there is no content]



(28)




which possesses the invariants:


U˜=1x2U(z,t),z=yx,t˜=t.













Under the Lie symmetry [image: there is no content], this equation is reduced to:


[image: there is no content]











The operator [image: there is no content] admits invariant subspace [image: there is no content] determined by ODE [image: there is no content]. Hence, the operator [image: there is no content] admits the invariant subspaces [image: there is no content]. On the other hand, for [image: there is no content], the operator [image: there is no content] admits another invariant subspace [image: there is no content] determined by the ODE:


[image: there is no content]











Therefore, the corresponding invariant subspace admitted by the operator [image: there is no content] is:


[image: there is no content]











Accordingly, some invariant subspaces of [image: there is no content] can be obtained from the invariant subspace [image: there is no content] admitted by the operator [image: there is no content], which is the polynomial subspace. The polynomial subspaces of nonlinear operators are studied in many papers, which were used to construct exact solutions of nonlinear evolution equations, including porous medium equations, thin film equations and Euler equations [1,2,3,12,13,14,28,29,46,47,48,49]. Using the Lie symmetry method, we may obtain polynomial invariant subspaces of some two-dimensional nonlinear operators. Note that in Examples 4 and 5, the invariant subspace [image: there is no content] can be obtained from the one-dimensional invariant subspace [image: there is no content] and the Lie group of symmetry (28). The subspace [image: there is no content] is determined by the space of solutions of linear ODE [image: there is no content], which can be explained by the conditional Lie–Bäcklund symmetry with character [image: there is no content] [1,32,33]). Besides those, the nonlinear evolution equation [image: there is no content] also admits the Lie group of transformation with the infinitesimal generator (28). By the similar calculations as above, we find that the operator [image: there is no content] admits the invariant subspace [image: there is no content]. In [10], the operators preserving a given invariant subspace were discussed, for instance the space [image: there is no content], which was regarded as a “simple” problem for the affine annihilator.



Example 6.

Consider the evolution Monge–Ampère equation:


[image: there is no content]



(29)









It is easy to verify that this equation admits the Lie groups of transformations with infinitesimal operators:


X1=y∂x±x∂y,X2=y∂x±12∂y,X3=x∂y±12∂x.











We find that [image: there is no content] has invariants [image: there is no content], [image: there is no content] and [image: there is no content]. With respect to this Lie symmetry, Equation (29) is reduced to:


[image: there is no content]











The operator [image: there is no content] admits the invariant subspace [image: there is no content] determined by the ODE:


[image: there is no content]








and the invariant subspace [image: there is no content] determined by ODE [image: there is no content]. Hence, the Monge–Ampère operator [image: there is no content] admits the invariant subspaces:


W3=L{1,x2±y2,(x2±y2)2},andW3=L{1,x2±y2,(x2±y2)2}











Similarly, under the Lie symmetries [image: there is no content], we obtain the following invariant subspaces preserved by the Monge–Ampère operator:


W3=L{1,(x±y2)32,(x±y2)3},W4=L{1,(x±y2),(x±y2)2,(x±y2)3},











In general, assume that nonlinear evolution Equation (6) admits the Lie group of transformation with infinitesimal generator X, which has invariants:


z=p(x,y),u˜=ur(x,y),t˜=t,








and reduces it to the one-dimensional nonlinear evolution equation:


[image: there is no content]











We then obtain the following proposition.



Proposition 5.

If the nonlinear differential operator [image: there is no content] admits the invariant subspaces [image: there is no content], then two-dimensional nonlinear differential operator F preserves the invariant subspaces [image: there is no content].





The proof is similar to that of Proposition 4. Clearly, in this approach, the estimate on the dimension of invariant subspace obeys Theorem 1.




5. Concluding Remarks


In this paper, several approaches are developed to obtain invariant subspaces of the two-dimensional nonlinear operators, including two direct extensions to the invariant subspace method in [image: there is no content], the method of the general change of variables and the one-dimensional invariant subspace method combined with the Lie symmetry method. In particular, we find that the subspaces [image: there is no content] and [image: there is no content] of the two-dimensional nonlinear differential operators are extensions of the invariant subspaces for one-dimensional nonlinear differential operators, which are determined by the spaces of solutions of ODEs completely. In [image: there is no content], the invariant subspaces admitted by the quadratic operator [image: there is no content] and their applications are considered. In general, the extensions of the concept of invariant subspaces in [image: there is no content] could be introduced. Assume that [image: there is no content] is a finite set of linearly independent functions, and [image: there is no content] denotes their linear span [image: there is no content], where [image: there is no content]. The [image: there is no content]-dimensional subspace:


[image: there is no content]








can be introduced as an extension to the subspace [image: there is no content] in [image: there is no content] Consider the N-dimensional nonlinear operator:


[image: there is no content]








where [image: there is no content], [image: there is no content], etc. Assume that the subspace [image: there is no content] is the space of solutions of the ODE:


Lxj[vj]≡dmjvjdxjmj+ajmj−1(xj)dmj−1vjdxjmj−1+⋯+aj0(xj)vj=0,j=1,⋯,N.











Then, the invariance condition of the subspace [image: there is no content] preserved by the operator [image: there is no content] (i.e., [image: there is no content]) is:


Lxj[F[u]]|[H˜]≡0,j=1,⋯,N,








where [image: there is no content] denotes [image: there is no content], and their differential consequences with respect to [image: there is no content][image: there is no content]. Similarly, we assume that [image: there is no content] is a set of basis of solutions of the ODE system:


L¯xj[vj]≡dmjvjdxjmj+ajmj−1(xj)dmj−1vjdxjmj−1+⋯+aj1(xj)dvjdxj=0,j=1,⋯,N.











Let [image: there is no content] denote the space of solutions of this ODE, where [image: there is no content]. We can introduce the [image: there is no content]-dimensional subspace:


[image: there is no content]








as an extension of [image: there is no content] in [image: there is no content]. Then, the invariance condition of the subspace [image: there is no content] preserved by the operator [image: there is no content] (i.e., [image: there is no content]) is:


L¯xj[F[u]]|[H¯]≡0,(F[u])xixj|[H¯]≡0,








where [image: there is no content] denotes [image: there is no content], [image: there is no content], and their differential consequences with respect to [image: there is no content][image: there is no content]. The invariant subspaces obtained by this method can be regarded as original subspaces and used to obtain new ones by the general changes of variables in Section 3.



To obtain more invariant subspaces of nonlinear differential operators, we adopt the direct sum of invariant subspaces, which was used by Galaktionov and Svirshchevskii [1] to obtain the new invariant subspaces preserved by a given operator. For example, in Proposition 6.1 of [1], it was shown that the direct sum of the subspaces [image: there is no content] and [image: there is no content] is preserved by the operator [image: there is no content]. It is expected that the formulation of the direct sum can be used to obtain the invariant subspaces [image: there is no content] and [image: there is no content] of [image: there is no content] by them. Indeed, the following result is always true.



Proposition 6.

Given a nonlinear differential operator F. If the linear subspaces [image: there is no content] and [image: there is no content] are preserved by the operator F and [image: there is no content], then the direct sum of [image: there is no content] and [image: there is no content], i.e., [image: there is no content] is invariant or partially invariant under the operator F.





Clearly, for the “nonlinear property” of the nonlinear operator, [image: there is no content] is not always true. However, in the case of [image: there is no content], it is said to be partially invariant under the operator F (see [1]). The linear space [image: there is no content] is partially invariant under the operator [image: there is no content] i.e., [image: there is no content], but for some part M of [image: there is no content], [image: there is no content]. If the subspace [image: there is no content] is partially invariant under a given operator, then the corresponding evolution equation can be reduced to an over-determined system of ODEs. One can verify whether the direct sum of two invariant subspaces is invariant under the given operator by a direct computation.



The following result is a further extension to Proposition 6.



Proposition 7.

Let F be a given nonlinear differential operator. If the linear subspaces [image: there is no content], ⋯, [image: there is no content] are preserved by the operator F, then the subspace [image: there is no content] is invariant or partially invariant under the operator F.





Let us return to the invariant subspaces [image: there is no content] and [image: there is no content]. We can express:


[image: there is no content]








where:


W31=L{1,x,y},W32=L{x2,xy,y2},W33=L{x2,x(x2+y2),(x2+y2)2},W34=L{y2,y(x2+y2),(x2+y2)2}.








and express:


[image: there is no content]








where:


W51=L{1,cos2y,sin2y,cosh2x,sinh2x},W32=L{cos2y,coshxcosy,cosh2x},W33=L{cos2y,sinhxcosy,sinh2x},W34=L{sin2y,coshxsiny,cosh2x},W35=L{sin2y,sinhxsiny,sinh2x}.











Note that [image: there is no content], [image: there is no content], [image: there is no content], and every component of [image: there is no content] and [image: there is no content] can be obtained by the knowledge of algebra and ODEs (see Section 2 and Section 4). The following invariant subspace [image: there is no content] of [image: there is no content] can be obtained from [image: there is no content] by the discrete symmetry [image: there is no content], [image: there is no content]. Indeed, we have:

	(1)

	
[image: there is no content], with:


[image: there is no content]












	(2)

	
[image: there is no content], with:


[image: there is no content]

















Here, [image: there is no content] can be obtained by the method in Section 4. Similarly, we can check that both the operator [image: there is no content] and [image: there is no content] admit the invariant subspace [image: there is no content]. Hence, the porous medium Equation (26) has the exact solution of the more general form:


[image: there is no content]











On the other hand, it was shown that the operator [image: there is no content] admits the following invariant subspaces (see Example 5):


W31=L{x2,xy,y2},W32=L{x2,y2,xx2+y2},W33=L{x2,y2,yx2+y2}











By direct calculation, one can check that the operator [image: there is no content] admits another invariant subspace:


[image: there is no content]











Hence, for [image: there is no content], the porous medium Equation (26) has another solution of the form:


[image: there is no content]











Finally, we would like to address some open questions. Firstly, although we have several operable approaches to obtain the invariant subspaces of two-dimensional nonlinear operators, we do not have a systematic approach to obtain the invariant subspaces of [image: there is no content] as [image: there is no content] and [image: there is no content] and those of the Monge–Ampère operator as:


[image: there is no content]











Secondly, as mentioned in the Introduction, what is the maximal dimension of the certain types of invariant subspaces of multi-dimensional k-th order nonlinear differential operators? All of these questions will be the content of our future research.
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