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Abstract: We analyse the evolution of primordial magnetic fields in spatially flat Friedmann
universes and reconsider the belief that, after inflation, these fields decay adiabatically on all scales.
Without abandoning classical electromagnetism or standard cosmology, we demonstrate that this
is not necessarily the case for superhorizon-sized magnetic fields. The underlying reason for this
is causality, which confines the post-inflationary process of electric-current formation, electric-field
elimination and magnetic-flux freezing within the horizon. As a result, the adiabatic magnetic decay
is not a priori guaranteed on super-Hubble scales. Instead, after inflation, large-scale magnetic fields
obey a power-law solution, where one of the modes drops at a rate slower than the adiabatic. Whether
this slowly decaying mode can dominate and dictate the post-inflationary magnetic evolution
depends on the initial conditions. These are determined by the evolution of the field during inflation
and by the nature of the transition from the de Sitter phase to the reheating era and then to the
subsequent epochs of radiation and dust. We discuss two alternative and complementary scenarios to
illustrate the role and the implications of the initial conditions for cosmic magnetogenesis. Our main
claim is that magnetic fields can be superadiabatically amplified after inflation, as long as they remain
outside the horizon. This means that inflation-produced fields can reach astrophysically relevant
residual strengths without breaking away from standard physics. Moreover, using the same causality
arguments, one can constrain (or in some cases assist) the non-conventional scenarios of primordial
magnetogenesis that amplify their fields during inflation. Finally, we show that our results extend
naturally to the marginally open and the marginally closed Friedmann universes.
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1. Introduction

The origin of cosmic magnetism remains an essentially open question despite the efforts and
the established widespread presence of magnetic (B) fields in the universe [1–4]. Recent reports
of the first ever detection of intergalactic fields, with strengths around 10−16 G, have added to
the mystery [5–8]. Provided they are verified, these claims also support the case for primordial
magnetism [9,10]. The latter is an attractive proposition because it could potentially explain all the
large-scale B-fields of the universe. Nevertheless, there are serious theoretical problems in producing
such primordial fields. These mainly stem from the long standing belief that (conventional) magnetic
fields in spatially flat Friedmann-Robertson-Walker (FRW) universes decay adiabatically throughout
the evolution of these models and on all scales.

The structure of the magnetic fields in galaxies seems to support the galactic-dynamo idea [11–16].
Depending on the efficiency of the amplification, dynamos generally require B-seeds stronger than
∼10−22 G at the time of completed galaxy formation. It has also been claimed that this lower limit
could be pushed down to ∼10−30 G in spatially open, or in Λ-dominated FRW models [17]. The size
of the initial magnetic seed is also an issue, since it should not be smaller that ∼100 pc after the
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collapse of the protogalaxy, which implies a comoving scale of approximately 10 Kpc before the
collapse. Seeds generated after inflation, during the radiation era for example, are typically too
small in size because their coherence length can never exceed that of the causal horizon at the
time of magnetogenesis. Inflation naturally achieves superhorizon correlations, so it can easily
produce primordial fields of the required length. Nevertheless, in all the standard scenarios of
inflationary magnetogenesis, B-fields decay adiabatically as soon as they cross outside the Hubble
horizon. This practically means that B ∝ a−2, with a = a(t) representing the cosmological scale factor,
essentially from the beginning of inflation until today. The result is astrophysically irrelevant magnetic
fields today. In particular, the residual strength of a field with comoving (pre-collapse) size close
to 10 Kpc today can be as low as 10−53 G (see [9,10] and references therein). Having said that, the
aforementioned numerical result assumes that the adiabatic magnetic decay persists on all scales after
inflation. This is believed to reflect the high electrical conductivity of the post-inflationary universe,
which in turn is thought to guarantee that magnetic fields remain frozen into the cosmic medium.
The magnetic-flux freezing, however, is a causal (local) process, which cannot be achieved without
the presence of electric currents. Therefore, applying the adiabatic decay-law on all scales, implicity
assumes the existence of electric currents with superhorizon correlations, or that local causal physics
can affect superhorizon perturbations. Both of these hypotheses, however, violate causality.

During inflation there are no electric currents and their formation starts once the universe enters
its reheating phase. The process is causal, which implies that the coherence size of the newly formed
currents never exceeds that of the horizon. After inflation, the latter coincides with the Hubble
radius. Hence, the same causality arguments that confine the post-inflationary B-fields within the
Hubble scale (see above), also forbid the electric currents from achieving super-Hubble correlations.
Without such large-scale currents, it is no longer safe to employ the ideal magnetohydrodynamic
(MHD) approximation to study the evolution of magnetic fields on superhorizon lengths. After all, the
ideal-MHD limit is the result of causal microphysical processes, which have local range only and cannot
dictate the evolution of B-fields with super-Hubble correlations without violating causality. Put another
way, as long as they remain superhorizon-sized, B-fields remain immune to causal physics and they
are only affected by the background expansion, just like any other inflation-generated perturbation.
All these mean that, on scales larger than the horizon, the magnetic flux is not necessarily conserved
and the adiabatic (B ∝ a−2) decay-law is not a priori guaranteed. In fact, a straightforward calculation
shows that, after the end of inflation, superhorizon-sized B-fields obey a power-law solution, where
one of the modes drops slower than the adiabatic. This slowly decaying mode can dominate and
thus dictate the magnetic evolution depending on the initial conditions. The latter are decided by the
evolution of the field during the de Sitter phase and by the nature of the transition from inflation to
reheating (as well as to the subsequent epochs of radiation and the dust). Following Israel’s work
on “junction conditions”, we discuss two typical and complementary scenarios, illustrating how
superhorizon-sized magnetic fields can be superadiabatically amplified after inflation.

The rate of the aforementioned slowly decaying magnetic mode depends on the equation of
state of the matter that fills the universe at the time. Throughout the reheating phase, in particular,
one finds that B ∝ a−3/2, which slows down further to B ∝ a−1 in the radiation era, before returning
to the B ∝ a−3/2-law during the subsequent dust epoch. Thus, as long as they remain outside
the Hubble radius, magnetic fields are superadiabatically amplified all along their post-inflationary
evolution. Once back inside the horizon, however, the electric currents take over and quickly freeze
the B-fields into the highly conductive plasma, thus “restoring” their adiabatic decay-law. The time
of the second horizon entry is crucial for the final magnetic strength and depends on the scale of
the magnetic mode in question. Clearly, the larger the wavelength of the mode the longer its stays
outside the Hubble radius, the longer its superadiabatic amplification and the stronger its residual
magnitude. Assuming a magnetic seed with current comoving (pre-collapse) scale around 10 Kpc, for
example, one can show that its present value is approximately 10−33 G. This is far stronger than the
previously quoted value of 10−53 G. Further amplification is expected to occur during the collapse of
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the magnetised protogalactic cloud, which can bring the final strength of the field closer to, or even
within, the galactic-dynamo range.

Although our analysis is primarily focused on the spatially flat FRW models, our conclusions and
results extend naturally to their marginally closed and marginally open counterparts. This is intuitively
plausible and it can also be shown analytically. Moreover, in marginally open Friedmann models,
the superadiabatic amplification extends to the (physically unambiguous) subcurvature magnetic
modes. Consequently, classical electromagnetism and conventional FRW cosmology can produce
cosmological B-fields with residual strengths much larger than generally expected. Moreover, using
the same arguments, one can either constraint or assist the non-conventional scenarios of primordial
magnetogenesis, which amplify their fields during inflation and then allow them to decay adiabatically
to the present. In particular, the more efficient the inflationary amplification, the stronger the constraint.
A relatively mild amplification during the de Sitter phase, on the other hand, could produce B-fields of
astrophysical relevance today. The main message, however, is that causality and the inferred absence
of superhorizon-sized electric currents appear to make the post-inflationary evolution of large-scale
B-fields a matter of initial conditions. These do not always guarantee the adiabatic decay-law, but
also allow for the superadiabatic amplification of primordial magnetic fields on super-Hubble lengths.
A development that could put the question of cosmic magnetism under an entirely new perspective.

2. The Question of Cosmic Magnetogenesis

The scenarios of cosmic magnetogenesis are typically classified into early-time and late-time
mechanisms, according to whether they operate before or after recombination. In this section we will
briefly outline the main problems faced by the early-time mechanisms, which are distinguished further
into inflationary and post-inflationary scenarios.

2.1. The Scale Question

The main drawback of primordial magnetic fields generated after inflation is their scale.
Typical dynamos require seeds with coherence lengths no less than 100 pc by the time galaxy formation
has been completed. This translates into a comoving scale of approximately 10 Kpc before the collapse
of the proto-galactic cloud. Post-inflationary magnetic fields, however, are generally much smaller
in size [9,10]. The reason is causality, which always confines the correlation length of the generated
B-field within that of the causal horizon (i.e., the Hubble radius). Put another way, given that no
physical process propagates faster than the speed of light, all causally produced magnetic fields have
sizes smaller than the Hubble length at the time of their creation [18]. The latter is typically too small.
For instance, assuming that the magnetic field is produced at the electroweak phase transition, its
present size will be close to that of our solar system.

Theoretically, the scale problem can be solved, if there is an amount of MHD turbulence in the
plasma and the initial B-seed is highly helical. In that case, magnetic helicity cascades inversely
from smaller to larger scales, shifting magnetic energy to larger wavelengths and thus increasing the
effective size of the original seed [19–22]. Nevertheless, the present view is that the “inverse cascade”
scenario is rather unlikely to deliver the desired results, unless the amount of primordial magnetic
helicity is unrealistically large.

2.2. The Strength Question

There is no scale issue whatsoever for magnetic fields generated during inflation. What the de
Sitter phase does, is stretch subhorizon-sized quantum fluctuations in the Maxwell field to scales far
larger than the Hubble radius, where they can be treated as classical electromagnetic fields. The main
problem of inflationary magnetogenesis is the anticipated extreme weakness of the residual B-field,
which is believed to have no astrophysical significance. Recall that galactic dynamos typically need
magnetic seeds between ∼10−22 G and ∼10−12 G at the time the galaxy has been formed, although it
might be possible to push the lower limit down to ∼10−30 in open or in Λ-dominated FRW universes.
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This can happen because galaxies are older in the latter models, thus giving the dynamo more time to
produce the observed µGauss-order fields [17].

The problem is that magnetic fields that have survived the de Sitter phase are largely expected to
have strengths far below 10−30 G today. This has been attributed to the so-called adiabatic magnetic
decay. The belief, in other words, that conventional B-fields decay as B ∝ a−2 (a is the scale factor of the
universe) at all times and on all scales. As a result, the typical strengths of inflationary magnetic fields
quoted in the literature are below 10−50 G today. In particular, the residual magnitude of the B-field
does not depend on the particulars of the adopted inflationary scenario and is given by (e.g., see [9,10]
and references therein)

B ' 10−57λ−2
B G (1)

where λB is the present (pre-collapse) scale of the magnetic mode in question (measured in Mpc).
Setting λB ' 10 Mpc, which is the minimum required for the dynamo to work (see Section 2.1 above),
we find B ' 10−53 today. Therefore, unless classical Maxwellian electromagnetism or standard
cosmology are abandoned, inflationary magnetic fields are astrophysically irrelevant. In the following
sections we will demonstrate that this is not necessarily the case.

3. Magnetic Fields in Flat FRW Universes

Cosmological magnetic fields in spatially flat FRW universes are widely believed to decay
adiabatically on all scales, during both their inflationary and post-inflationary life. Nevertheless,
the adiabatic magnetic decay on superhorizon lengths has never been explicitly shown to hold, but its
validity has been somehow heuristically extended from the sub-Hubble to the super-Hubble scales.
Here, we will take another look at the evolution of large-scale B-fields after inflation.

3.1. Causality and Large-Scale Magnetic Evolution

Consider an FRW spacetime, with Euclidean spatial geometry, permeated by weak electromagnetic
perturbations. Then, introduce a group of observers with 4-velocity ua (so that uaua = −1). Relative to
these observers, the electromagnetic tensor (Fab) splits into an electric (Ea) and a magnetic (Ba) field as
Fab = 2u[aEb] + εabcBc, with εabc representing the 3-dimensional Levi-Civita tensor [23–25]. To linear
order, the magnetic component of the Maxwell field obeys the wave-like formula [26]

B̈a + 5HḂa + 3(1− w)H2Ba −D2Ba = curlJa (2)

where H = ȧ/a is the background Hubble parameter, w = p/ρ is the barotropic index of the matter
(with ρ and p representing its energy density and isotropic pressure respectively), D2 = DaDa is
the 3-dimensional covariant Laplacian operator and Ja the electric current (with Jaua = 0). Also,
curlJa = εabcDbJ c by definition. Note that the above holds on a spatially flat FRW background (for the
open and closed Friedmann models see Sections 6.1 and 6.2 respectively). To simplify the mathematics
let us introduce the rescaled magnetic field Ba = a2Ba and use conformal, instead of proper, time
(η with η̇ = 1/a). Then, expression (2) reduces to the familiar compact form [9,10]

B′′a − a2D2Ba = a2curlJa (3)

where the primes denote conformal-time derivatives. In addition to its compactness, the above
expression is (formalistically) independent of the w-index, namely of the type of matter that fills the
universe, provided the latter retains its barotropic nature.

During inflation the universe is believed to be a very poor electrical conductor. This means
that there are no electric currents and during the de Sitter phase the right-hand side of (2) vanishes
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identically. In other words, at the moment the inflation-produced magnetic fields exit the Hubble
horizon they obey the wave-like equation

B′′a − a2D2Ba = 0 (4)

Introducing the harmonic splitting Ba = ∑n B(n)Q
(n)
a , with DaB(n) = 0 = Q′ (n)a and

D2Q(n)
a = −(n/a)2Q(n)

a , the above recasts into

B′′(n) + n2B(n) = 0 (5)

with n > 0 representing the comoving wavenumber of the n-th magnetic mode. This differential
equation accepts an oscillatory solution, which written for the actual magnetic field reads

a2B(n) = C1 cos(nη) + C2 sin(nη) (6)

where nη = λH/λn. The latter ratio measures the physical size of the magnetic mode (λn = a/n)
relative to the Hubble horizon (λH = 1/H). Solution (6) applies to inflationary magnetic fields as
they cross the horizon during the de Sitter era. Once well outside the Hubble radius, namely on
wavelengths with λH/λn � 1 (i.e., for nη � 1 in conformal-time terms), a simple Taylor expansion
reduces the above to the power law

a2B(n) = C1 + C2nη (7)

with a = a(η). The transition from oscillation to power-law growth at the Hubble threshold, as seen
in solutions (6) and (7), is nothing new to cosmological perturbation theory. It happens to linear
density perturbations, for example, during the radiation epoch (e.g., see Section 4.4 in [27]). Physically,
the change from oscillatory behaviour to power law at the Hubble length, simply reflects the fact
that superhorizon-sized perturbations have not yet started to oscillate properly, because they have
oscillation periods longer than the age of the universe at the time [28].

Once outside the Hubble radius and as long as it stays there, the B-field remains causally
disconnected and its evolution is only affected by the background expansion. Although the electrical
conductivity of the universe grows after inflation and currents start to form, causality confines them
inside the Hubble horizon. This ensures that there can never exist electric currents with superhorizon
correlations and, in their absence, the ideal-MHD limit should not be applied to super-Hubble scales.
Recall that it is the currents that eliminate the electric fields and freeze their magnetic counterparts
into the matter [29]. Moreover, the process of magnetic-flux freezing is also causal and, as it is well
known, causal physics can never affect superhorizon-sized perturbations. This principle summarises the
implications of causality for cosmology (e.g., see [32–35] for analogous quotes) and is at the root of
the celebrated “horizon problem”. Put another way, causality implies that the time required for the
freezing-in information to travel the whole length of a super-Hubble B-field is longer than the age
of the universe at the time. Therefore, the B-field cannot re-adjust itself to the new environment and
freeze-in, until it has crossed back inside the horizon and come into full causal contact. Instead, as
long as it remains outside the Hubble horizon, the magnetic field is immune to causal physics and
retains only the “memory” of its distant past. This implies that the magnetic evolution is still governed
by the long-wavelength limit (7) of the source-free wave-equation (4). In the following sections we will
consider the implications of this claim.

It is worth noting that this is not the first time the aforementioned source-free approach is applied
to the study of large-scale cosmological magnetic fields (e.g., see [36–42]). Nevertheless, in [36–41] the
role of causality and its implications were either assumed implicitly, or there was only a brief (passing)
reference to them. Also, in [36–40], the background model was a spatially open Friedmann universe.
The causality issue is discussed in certain detail also in [42], where the focus is on the non-conventional
scenarios of cosmic magnetogenesis, and in [43], which looks specifically into the role of the initial
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conditions in conventional mechanisms of magnetic generation. In both of the aforementioned articles,
the background universe is a spatially flat FRW spacetime. Here, we provide an extended discussion
of the matter and of its potentially pivotal implications for cosmic magnetogenesis (conventional or
not), in flat and in marginally curved Friedmann models.

3.2. Large-Scale Superadiabatic Magnetic Amplification

Following the above arguments, large-scale (causally disconnected) magnetic fields evolve in
line with the power-law solution (7), from the moment they cross outside the Hubble horizon during
inflation until the time of their re-entry (in the radiation epoch, or later in the dust era). In what
follows, we will focus our attention to the second mode on the right-hand side of (7), the presence of
which implies that the adiabatic decay-law (B ∝ a−2) is not necessarily guaranteed on super-Hubble
lengths. This mode is not a priori negligible, despite the fact that nη � 1 on super-Hubble scales.
Indeed, when the initial conditions are such that C2 � C1, the aforementioned second mode can make
a difference and it can lead to the superadiabatic amplification of large-scale magnetic fields (see
Sections 3.2–3.4 below). Clearly, as the universe expands, the conformal time increases and the product
nη will eventually become larger than unity. Physically this means that the B-field has re-entered the
Hubble radius. Once back inside the horizon, solution (7) is no longer valid. There, causal physics take
over and the electric currents can quickly freeze the magnetic field into the highly conductive cosmic
medium. Then onwards, the ideal-MHD limits applies, the magnetic flux remains conserved and the
B-field decays adiabatically (i.e., B ∝ a−2).

Before proceeding to examine the implications of solution (7) for the magnetic evolution after
inflation, let us take a brief look at the inflationary phase first. Assuming exponential (de Sitter-type)
expansion, we may set a ∝ −1/η with η < 0. Then, after dropping the mode-index (n) for the economy
of the presentation and then calculating the integration constants on the right-hand side of (7), the
latter recasts into

B =
(
3B0 − η0B′0

) ( a0

a

)2
−
(
2B0 − η0B′0

) ( a0

a

)3
(8)

Consequently, large-scale (conventional) magnetic fields on spatially flat FRW backgrounds decay
adiabatically (i.e., B ∝ a−2) throughout the de Sitter phase of the expansion.

Let us now look at the evolution of superhorizon-sized cosmological B-fields after inflation.
Once again, after evaluating the two integration constants on the right-hand side of solution (7), the
latter acquires the form shown below [44].

B =
[
B0 − η0

(
2a0H0B0 + B′0

)] ( a0

a

)2
+ η0

(
2a0H0B0 + B′0

) ( a0

a

)2
(

η

η0

)
(9)

Note that we have used the relation H = a′/a2 for the Hubble parameter (recall that the primes
indicate differentiation with respect to the conformal time). The above monitors the linear evolution of
superhorizon-sized magnetic fields on spatially flat FRW backgrounds. We should also point out that
the barotropic index of the matter is not necessarily constant but it can vary with time (i.e., w = w(t)).
This means that solution (9) applies continuously throughout the lifetime of the universe, provided the
cosmological expansion is entirely smooth and the matter can always be treated as a single barotropic
medium. Under this proviso, expression (9) also monitors the magnetic evolution through the various
cosmological transitions (e.g., the one leading from inflation to reheating).

The precise physics of the early transitions and the exact nature of the cosmic medium during
those periods are still ambivalent. Nevertheless, the barotropic index of the matter is believed to
maintain constant value during prolonged periods in the lifetime of the universe. As long as w remains
invariant, the cosmological scale factor and the conformal time are related by

a = a0

(
η

η0

)2/1+3w
(10)
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where w 6= −1/3 and the zero suffix indicates a given initial time. On using the above, it is
straightforward to show that H = a′/a2 = 2/(1 + 3w)aη and then recast solution (9) into

B = −
[(

4
1 + 3w

− 1
)

B0 + η0B′0

] ( a0

a

)2
+

(
4B0

1 + 3w
+ η0B′0

)( a0

a

)3(1−w)/2
(11)

The latter also monitors the linear evolution of superhorizon-sized B-fields on spatially flat FRW
backgrounds filled with a single barotropic medium. In contrast to solution (9), however, here the
barotropic index of the matter has been treated as a constant. Consequently, solution (11) does not
apply continuously throughout the evolution of the universe, but only to periods during which
w = constant 6= −1/3 (e.g., to the reheating and the radiation eras when w = 0 and w = 1/3
respectively). In other words, solution (11) is a special case of (9).

3.3. The Epochs of Reheating, Radiation and Dust

Looking at solutions (9) and (11), we immediately notice that the first of the two magnetic modes
on their right-hand side always decays adiabatically. The rate of the second mode, however, is not
a priori fixed but depends on the equation of state of the cosmic medium. The latter also determines
the relation between the cosmological scale factor and the conformal time. In particular, as long
as w = constant> −1/3 the second mode on the right-hand side of (11) decays at a rate slower
than the adiabatic. The same behaviour can also be seen in solution (9). Therefore, when dealing
with conventional matter, superhorizon sized magnetic fields on spatially flat FRW backgrounds are
superadiabatically amplified. This, under the proviso that the initial conditions allow the second
modes in (9) and (11) to survive and dominate.

With these in mind, let us take a closer look at the post-inflationary magnetic evolution. During the
reheating phase, as well as during the dust era later, w = 0 , a ∝ η2 and H = 2/aη. Then, solutions (9)
and (11) reduce to

B = −
(
3B0 + η0B′0

) ( a0

a

)2
+
(
4B0 + η0B′0

) ( a0

a

)3/2
(12)

Thus, as long as reheating lasts (as well as after equipartition) superhorizon-sized magnetic fields
drop as B ∝ a−3/2, instead of following the standard adiabatic (B ∝ a−2) decay-law. During the
intermediate epoch of radiation w = 1/3, which means that a ∝ η and H = 1/aη. Then, throughout
that period solutions (9) and (11) take the form

B = −
(
B0 + η0B′0

) ( a0

a

)2
+
(
2B0 + η0B′0

) ( a0

a

)
(13)

ensuring that large-scale magnetic fields drop as B ∝ a−1 when radiation dominates the energy density
of the universe. Finally, let us also consider a phase of stiff-matter domination. In that case, w = 1,
a ∝ η1/2, H = 1/2aη and

B = −η0B′0
( a0

a

)2
+
(
B0 + η0B′0

)
(14)

with the dominant mode remaining constant. Note that towards the end of inflation, when the inflaton
rolls down the slope of its potential, the effective equation of state of the cosmic medium is that of
stiff matter.

In summary, after the end of the de Sitter phase, large-scale B-fields on spatially flat FRW
backgrounds obey solutions which always contain modes with decay rates slower than the adiabatic.
This happens without the need to break away from conventional electromagnetic theory, or to abandon
standard physics and conventional cosmology. Whether these slowly-decaying magnetic modes can
dominate over the adiabatic one depends on their associated coefficients. When the latter are of
roughly the same order of magnitude, the slowly decaying modes quickly take over and dictate the
subsequent evolution of the B-field. The initial conditions at the beginning of the post-inflationary
epoch are therefore crucial.
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3.4. The Role of the Initial Conditions

The initial conditions of the post-inflationary magnetic evolution are decided by the field’s
behaviour in the de Sitter phase and by the nature of the transitions to the eras of reheating and
radiation. Based on Israel’s work on junction conditions [45], we will discuss two typical and
complementary initial-condition scenarios. Alternative approaches may also be possible.

Scenario A: Let us consider the typical scenario, where the background barotropic index undergoes
an abrupt change from w−∗ before the transition to w+

∗ afterwards (with w+
∗ 6= w−∗ ) [46]. Let us also

assume that the matching spatial hypersurface is that of constant conformal time. This translates into
a “jump” in the expansion rate of the background universe, namely in the Hubble parameter, on either
side of the transit surface (i.e., H+

∗ 6= H−∗ , or [H∗]+− = H+
∗ −H−∗ 6= 0). The latter implies a discontinuity

in the extrinsic curvature of the matching hypersurface, which requires the presence of a “thin shell”
there with finite energy-momentum tensor. Practically speaking, we assume that the width of the shell
is too small compared to the scales of interest. In that case, the aforementioned shell can be replaced by
a spacelike hypersurface. Discontinuities of this nature can be used to bypass the (as yet ambivalent)
details of early cosmological transitions, like the one leading from inflation to reheating (e.g., see [47]
and references therein).

Conventional scenarios of inflationary magnetogenesis demand that the magnetic field
decays adiabatically throughout the de Sitter regime (i.e., B ∝ a−2). On the other hand,
typical non-conventional mechanisms of primordial magnetic generation amplify their B-fields
superadiabatically during inflation (i.e., B ∝ a−m with 0 ≤ m < 2) [9,21]. With these in mind,
let us assume that all along the de Sitter phase the magnetic field obeys the power law

B = B0

( a0

a

)m
= B0

(
η

η0

)m
(15)

where 0 ≤ m ≤ 2 and the zero suffix indicates the beginning of the exponential expansion. Note that
the second equality reflects the fact that a ∝ −1/η, with η < 0, during de Sitter-type inflation (i.e., for
w = −1 – see Equation (10) in Section 3.3). Differentiating (15) with respect to the conformal time gives
B′ = mB/η, which ensures that

η−∗ B′ −∗ = mB−∗ (16)

at the end of inflation proper.
Once into reheating, the barotropic index changes from w−∗ = −1 to w+

∗ = 0. Then, according to
solution (11), throughout reheating superhorizon-sized magnetic fields evolve as

B = −
(
3B+
∗ + η+

∗ B′ +∗
) ( a+∗

a

)2

+
(
4B+
∗ + η+

∗ B′ +∗
) ( a+∗

a

)3/2

(17)

with a ≥ a+∗ (see also Equation (12) in Section 3.3). When the transit hypersurface is that of constant
conformal time, we may set η+

∗ = −η−∗ (recall that η+
∗ > 0 and η−∗ < 0) [48]. This implies a “jump”

in the expansion rate of the background universe and a discontinuity in its extrinsic curvature of
the matching hypersurface, which can be compensated by the presence of a thin layer there [47].
Consequently, assuming that there is no magnetic discontinuity at the linear level, namely that
B+
∗ = B−∗ and B′ +∗ = B′ −∗ , constraint (16) translates into

η+
∗ B′ +∗ = −mB+

∗ (18)
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The above sets the initial conditions for the evolution of the B-field during reheating and combines
with solution (17) to give

B = −(3−m)B+
∗

(
a+∗
a

)2

+ (4−m)B+
∗

(
a+∗
a

)3/2

(19)

where a ≥ a+∗ [49]. Therefore, as long as m 6= 4, the dominant magnetic mode of (19) drops as B ∝ a−3/2

and the B-field is superadiabatically amplified throughout reheating. We remind the reader that almost
all the scenarios of inflationary magnetogenesis assume that 0 ≤ m ≤ 2.

Let us look at the magnetic evolution in the subsequent epochs of radiation and dust.
Following solution (19) and keeping in mind that a ∝ η2 during reheating (see Equation (10)), we
deduce that B ∝ η−3 throughout that period. Then,

η−∗ B′ −∗ = −3B−∗ (20)

just before the transition to the radiation era. Once there, the barotropic index of the background
matter changes from w−∗ = 0 to w+

∗ = 1/3 and solution (11) reads

B = −
(
B+
∗ + η+

∗ B′ +∗
) ( a+∗

a

)2

+
(
2B+
∗ + η+

∗ B′ +∗
) ( a+∗

a

)
(21)

with a ≥ a+∗ (see also Equation (13) in Section 3.3). As before, suppose that the matching hypersurface
is that of constant conformal time and assume that the magnetic evolution through the transition is
smooth. Then, demanding η+

∗ = η−∗ , B+
∗ = B−∗ and B′

+

∗ = B′
−
∗ , constraint (20) recasts into

η+
∗ B′ +∗ = −3B+

∗ (22)

and sets the initial conditions for the magnetic evolution in the radiation era. Substituting the above
into the right-hand side of (21), we arrive at

B = 2B+
∗

(
a+∗
a

)2

− B+
∗

(
a+∗
a

)
(23)

where a ≥ a+∗ . Consequently, superhorizon-sized magnetic fields are superadiabatically amplified
(i.e., B ∝ a−1) all along the radiation epoch as well.

Similarly, we find that η−∗ B′ −∗ = −B−∗ prior to the equilibrium time, since a ∝ η when w = 1/3
(see Equation (10) in Section 3.3). At the time of matter-radiation equality the background barotropic
index changes from w−∗ = 1/3 to w+

∗ = 0. Then, when the matching hypersurface is that of constant
conformal time and the B-field evolves smoothly through the transit, we have

η+
∗ B′ +∗ = −B+

∗ (24)

at the start of matter domination. Finally, setting w = w+
∗ = 0 into the right-hand side of solution (11)

and using the above initial conditions, leads to

B = −2B+
∗

(
a+∗
a

)2

+ 3B+
∗

(
a+∗
a

)2/3

(25)

with a ≥ a+∗ . Therefore, as long as the magnetic field remains outside the Hubble radius, B ∝ a−3/2

and its superadiabatic amplification continues into the dust era as well. Moreover, the effect is
independent of the magnetic evolution during the de Sitter phase. On whether, in particular, the
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B-field depleted adiabatically throughout inflation or not (provided B ∝ a−m, with m 6= 4 at the
time—see solution (19) above).

Scenario B: Suppose that the background equation of state undergoes an abrupt change, as the
universe crosses from one epoch to the next, but this time do not allow for a thin shell on the transition
hypersurface. Then, there can be no discontinuity in the extrinsic curvature of the matching surface.
When dealing with a Friedmann universe, this means no jump in the value of the background Hubble
parameter there (i.e., [H∗]+− = H+

∗ −H−∗ = 0). In such a case, the transit hypersurface is that of constant
energy density, though not necessarily of constant conformal time. Discontinuities of this nature can
also be used to cope with early universe transitions.

In line with the literature on inflationary magnetogenesis and with Scenario A before, let us
assume that large-scale primordial magnetic fields obey the power law

B = B0

( a0

a

)m
(26)

during the de Sitter phase. Again, the zero suffix indicates the onset of the exponential expansion and
0 ≤ m ≤ 2. Differentiating the above with respect to the conformal time, guarantees that

B′ −∗ = −ma−∗ H−∗ B−∗ (27)

at the end of inflation proper. Recalling that [a∗]+− = 0 = [H∗]+− on the background matching surface
and then setting [B∗]+− = 0 = [B′∗]

+
− at the linear level, constraint (27) translates into

B′ +∗ = −ma+∗ H+
∗ B+
∗ (28)

at the start of reheating and sets the initial conditions for the subsequent evolution of the B-field.
Following solution (9), throughout the reheating phase (when a ∝ η2), superhorizon-sized

magnetic fields are monitored by

B =
[
B+
∗ − η+

∗
(
2a+∗ H+

∗ B+
∗ + B′ +∗

)] ( a+∗
a

)2

+ η+
∗
(
2a+∗ H+

∗ B+
∗ + B′ +∗

) ( a+∗
a

)3/2

(29)

with a ≥ a+∗ . Inserting condition (28) into the right-hand side of the above and keeping in mind that
H = 2/aη during reheating, we obtain

B = −(3− 2m)B+
∗

(
a+∗
a

)2

+ 2(2−m)B+
∗

(
a+∗
a

)3/2

(30)

where a ≥ a+∗ . When m = 2 the second term on the right-hand side vanishes, leaving the adiabatic
(i.e., B ∝ a−2) mode only. For m 6= 2, however, the second mode of solution (30) survives and the
magnetic decay-rate slows down to B ∝ a−3/2. A straightforward calculation confirms that this pattern
is repeated at the subsequent transitions to the radiation and the dust eras. Consequently, in the
absence of thin shells on the transition hypersurfaces, only magnetic fields that decay adiabatically
during a certain cosmological epoch will continue to do so for their subsequent evolution. When there
is no adiabatic decay prior to the transit, the B-field is superadiabatically amplified after the transition
(provided w+

∗ > −1/3).
The implications of scenario B for inflationary magnetogenesis are fairly straightforward to deduce.

Primordial magnetic fields that happen to decay adiabatically throughout inflation will continue to do
so for the rest of the lifetime. This is essentially the “standard” conventional scenario of primordial
magnetogenesis, which produces B-fields with astrophysically irrelevant residual strengths. However,
large-scale magnetic fields that did not obey the B ∝ a−2 law during the de Sitter phase will experience
superadiabatic amplification after the end of inflation. This result can affect the non-conventional
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scenarios of primordial magnetogenesis that superadiabatically amplify their B-fields during inflation
(see Section 5.2 below).

4. The Residual Magnetic Field

Following our discussion so far, depending on the initial conditions, conventional large-scale
B-fields can be superadiabatically amplified throughout the post-inflationary evolution of a flat FRW
universe. Next, we will estimate the residual strength of such fields.

4.1. The Time of Second Horizon Crossing

To begin with, recall that imposing the adiabatic decay-law at all times and on all scales has
lead to magnetic fields of approximately 10−53 G today, when their current comoving size is close
to 10 Kpc (see Equation (1) in Section 2.2). Also, during the de Sitter regime, superhorizon-sized
magnetic fields decay adiabatically as expected (see solution (8) in Section 3.2). The situation changes
after inflation, when the magnetic decay-rate slows down (see solutions (12) and (13) in Section 3.3).
Throughout reheating, in particular, we have B ∝ a−2/3. This slows down further (to B ∝ a−1) in the
radiation era, before returning to the B ∝ a−2/3 law during the subsequent dust epoch [50]. As a result,
the residual magnetic strength can be considerably larger than expected. The overall amplification
depends on the scale of the magnetic mode in question, which determines the time of horizon entry.
Recall that once inside the Hubble radius the adiabatic decay is restored. This occurs because on
subhorizon scales the electric currents take over, eliminate the electric fields and freeze their magnetic
counterparts into the highly conductive medium. Put another way, we can apply the ideal-MHD limit
only after the second horizon crossing. Then onwards, the magnetic flux remains conserved and the
B-field decays adiabatically (at the linear perturbative level).

Suppose that the current comoving scale of the magnetic seed is λB ' 10 Kpc, which is the
minimum required for the dynamo to work. Fields of this size have (λH/λB)† ' 3× 105, where the
†-suffix denotes the present, assuming that λH ' 3× 103 Mpc is the Hubble radius today. Given that
λH ∝ t and λB ∝ a, we deduce that λH/λB ∝ a1/2 during the dust era (when t ∝ a3/2) and λH/λB ∝ a
throughout the preceding radiation epoch (when t ∝ a2). Putting these together, one finds that
scales close to 10 Kpc today entered the horizon at aHC ' 1/3× 10−3aEQ. The latter translates into
THC ' 3× 10−6 GeV, since T ∝ a−1 at all times and TEQ ' 10−9 GeV. Until then, the B-field was lying
outside the Hubble radius and it was superadiabatically amplified.

4.2. The Final Magnetic Strength

As mentioned above, magnetic fields decay adiabatically during the de Sitter phase and once they
are back inside the horizon after inflation. Therefore, the superadiabatic amplification occurs from the
end of inflation proper until the second horizon crossing. Suppose that ρB = B2 is the magnetic energy
density and ρ that of the dominant matter component. Then, at the end of the de Sitter regime we have(

ρB
ρ

)
DS
' 10−94

(
M

1017

)4/3 (TRH

1010

)−4/3
λ−4

B (31)

Note that M is the scale of inflation, TRH is the reheat temperature (both measured in GeV) and
λB is the current physical scale (measured in Mpc) of the magnetic mode in question. During reheating,
ρB ∝ a−3 and ρ ∝ a−3 as well. Therefore, throughout this phase, the dimensionless ratio ρB/ρ remains
unchanged, which means that (ρB/ρ)RH ' (ρB/ρ)DS. Once into the radiation era, however, ρB ∝ a−2

and ρ ' ργ ∝ a−4, with ργ representing the energy density of the radiative component. Hence, for
a magnetic mode that crosses inside the Hubble horizon before equipartition,(

ρB
ργ

)
HC
'
(

ρB
ρ

)
RH

(
TRH
THC

)2
' 10−94

(
M

1017

)4/3 (TRH

1010

)−4/3 (TRH
THC

)2
λ−4

B (32)
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After horizon crossing ρB, ργ ∝ a−4, ensuring that their ratio remains constant until today.
In other words (

ρB
ργ

)
†
' 10−94

(
M

1017

)4/3 (TRH

1010

)−4/3 (TRH
THC

)2
λ−4

B (33)

today (recall that the †-suffix corresponds to the present). As we have seen in the previous section,
magnetic fields with current comoving size close to 10 Kpc, re-enter the horizon at THC ' 3× 10−6 GeV.
Substituting this value into the right-hand side of Equation (33) and recalling that (ργ)† ' 10−51 GeV4, gives

B† ' 10−33
(

M
1017

)2/3 (TRH

1010

)1/3
G (34)

Therefore, when M ' 1017 GeV and TRH ' 1010 GeV, the present magnitude of a cosmological
magnetic field with current physical size around 10 Kpc is close to 10−33 G, instead of 10−53 G. In other
words, by simply appealing to causality, one can increase the final strength of conventional inflationary
magnetic seeds by roughly 20 orders of magnitude.

5. Implications for Cosmic Magnetogenesis

Our results solely affect superhorizon-sized magnetic fields. This means that they do not interfere
at all with the mechanisms of post-inflationary magnetogenesis, which produce subhorizon-sized
B-fields only (for the aforementioned causal reasons). There are potentially pivotal consequences,
however, for the inflationary scenarios, both the non-conventional and the conventional (see also [42]
and [43] respectively).

5.1. Conventional Scenarios

Conventional inflationary magnetic fields decay adiabatically during the de Sitter phase, but
deplete at a slower pace after inflation. Here, this happens within scenario A (see Section 3.4 earlier).
In general, any scenario that allows the second magnetic mode on the right-hand side of solution (12) to
survive at the start of reheating will lead to the same result. Then, the residual comoving (pre-collapse)
magnitude of a B-field (with physical scale close to 10 Kpc today) will be approximately 10−33 G.
The magnetic strengths required for the dynamo to work are estimated at the time of completed galaxy
formation (see Section 2.2 earlier). The magnitude quoted above is comoving, which means that it
does not include the magnetic amplification that occurs during the collapse of the proto-galactic cloud.
Assuming an idealistic spherically symmetric collapse, we may add up to four orders of magnitude
to the comoving magnetic strength. Adopting the more realistic scenario of anisotropic protogalactic
collapse leads to further increase by one or two orders of magnitude [51–53]. All these can bring
the final magnetic strength close to 10−27 G by the time the galaxy is formed. This is stronger than
10−30 G, which is the minimum magnetic strength quoted in the literature as capable of seeding
the dynamo [17]. Hence, astrophysically relevant magnetic fields are theoretically possible without
violating conventional electromagnetism or abandoning standard cosmology.

Additional magnetic amplification may be possible as well. The literature contains mechanisms
that could enhance cosmological B-fields during both the earlier and the later stages of their evolution.
Turbulent motions, for example, can increase the final magnitude of the field, once the latter is well
inside the Hubble horizon. Here, we would like to draw the reader’s attention to an alternative
possibility, which is directly related to our discussion. In line with solution (11), the stiffer the equation
of state of the cosmic medium, the slower the magnetic decay and the stronger its superadiabatic
amplification. In fact, for stiff-matter (i.e., at the p = ρ and w = 1 limit) we obtain

B = constant (35)
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for the dominant magnetic mode (see also solutions (11) and (14)). Given that the energy density of
a stiff medium drops as ρ ∝ a−6, we deduce that ρB/ρ ∝ a6 as long as p = ρ is the equation of state
of the dominant matter component. This implies that a very brief stiff-matter epoch before the start
of the radiation era could lead to a substantial magnetic amplification without necessarily affecting
the observational constraints [54]. In terms of temperature, the radiation epoch typically spans from
TRH ' 1010 GeV up to Teq ' 10−9 GeV. Therefore, if the universe is dominated by stiff matter between,
say, TRH ' 1010 GeV and T = TSM ' 107 GeV, the residual magnetic strength will increase from
10−27 G to 10−21 G (see [43] for the details), which lies within the typical galactic-dynamo requirements.
A longer phase of stiff-matter domination, say up to TSM ' 104 GeV, will boost the final magnitude
of the B-field close to 10−15 G, that is very close to the recently reported magnetic strengths in empty
intergalactic space [5–8]. We also note that during the final stages of inflation, when the inflaton rolls
down its potential, the effective equation of state is that of stiff matter. Thus, in principle at least, one
might be able to take advantage of this brief period to further enhance the magnetic field’s strength.

5.2. Non-Conventional Scenarios

The vast majority of the inflationary magnetogenesis mechanisms operate outside conventional
electromagnetic theory, or introduce some other kind of new physics. There is a very long list of
non-conventional scenarios and for this reason we direct the reader to [9,10] for recent reviews and
specific references, while a relatively brief discussion can be found in [57]. In most of the proposed
mechanisms the B-field is superadiabatically amplified (i.e., B ∝ a−m, with 0 < m < 2) during the
de Sitter phase. After that, standard electromagnetism is usually restored and the final magnetic
strength is estimated by assuming that B-fields decay adiabatically until today. This assumption
does not a priori hold, however, given that all the astrophysically relevant modes remain outside
the horizon at least until late into the radiation era. On these scales, the aforementioned magnetic
fields are superadiabatically amplified throughout their post-inflationary evolution within both of
our initial-condition scenarios (see Section 3.4 earlier). Therefore, residual magnitudes based on the
adiabatic-decay law after inflation need to be revised. As we will argue next, the revision will affect
(to a larger or lesser degree) essentially all the mechanisms of primordial magnetogenesis that amplify
their B-fields during inflation (see also [42] for an extensive discussion).

Scenarios of inflationary magnetic amplification are often susceptible to backreaction problems.
In other words, the Maxwell field can get strong enough to start interfering with the background
kinematics. Even when there are no backreaction issues, however, there might be problems with the
observational constrains. The large-scale magnetic fields observed in galaxies and in galactic clusters,
for example, are close to 10−6 G and 10−7 G respectively. Also, the results of primordial nucleosynthesis
and the high isotropy of the cosmic microwave background (CMB), seem to exclude B-fields with
current strengths larger than ∼10−7 G and ∼10−9 G respectively [9,10]. None of the aforementioned
non-conventional scenarios of primordial magnetogenesis violates the above constraints, but only after
assuming that the adiabatic decay-law holds from the end of inflation until today. When the B-field
remains superadiabatically amplified throughout its entire post-inflationary evolution, however, one
should probably revise the residual magnetic strengths and check whether they comply or not with
the observations. In what follows we will consider two characteristic alternative scenarios to illustrate
our argument. The first will allow for a rather strong superadiabatic amplification during the de Sitter
regime (e.g., B ∝ a−m, with 0 < m < 1), while in the second the amplification will be relatively mild
(e.g., B ∝ a−m, with 1 < m < 2).

Suppose that B ∝ a−1/2 throughout inflation, which implies relatively strong amplification during
that period. Then, at the end of the de Sitter phase, the relative magnetic strength will be given
by the ratio (

ρB
ρ

)
DS
' 10−30

(
M

1017

)10/3 (TRH

1010

)−1/3
λ−1

B (36)
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where M and TRH are the energy scale and the reheat temperature of the inflationary model respectively
(both measured in GeV), while λB is the current comoving scale of the field (in Mpc). For a magnetic
mode that crosses inside the horizon at recombination we may set λB ' 3× 103/2 Mpc at present.
Ignoring reheating for simplicity, the above magnetic mode is superadiabatically amplified during the
radiation era and for the brief period between equipartition and decoupling. In that case we have

B† ' 10−2
(

M
1017

)5/3 (TRH

1010

)5/6
G (37)

today. For typical values of the inflationary parameters, for instance when M ∼ 1017 GeV and
TRH ∼ 1010 GeV, the above gives B† � 10−9 G, in violation of the CMB constraints. Therefore,
causality and the resulting absence of superhorizon-sized electric currents can essentially rule out
a host of primordial magnetogenesis mechanisms.

The situation changes drastically when the inflationary amplification of the B-field is relatively
weak. For instance, let us assume that B ∝ a−3/2 throughout the de Sitter phase. Then, proceeding as
before we find (

ρB
ρ

)
DS
' 10−73

(
M

1017

)2 (TRH

1010

)−1
λ−3

B (38)

and subsequently

B† ' 10−25
(

M
1017

)(
TRH

1010

)1/2
G (39)

for a magnetic mode that crossed the horizon around decoupling. Fields with the above (comoving)
strength today are too weak to affect the CMB isotropy but strong enough to seed the galactic dynamo.
Recall that a comoving magnitude of approximately 10−25 G can increase to roughly ∼10−19 G
by the time the galaxy is formed. So, in this case, the absence of large-scale electric currents and
the resulting superadiabatic magnetic amplification on super-Hubble lengths appears to assist the
associated scenarios of cosmic magnetogenesis, thus making them more promising candidates.

Overall, mechanisms of primordial magnetic generation leading to a substantial (superadiabatic-type)
amplification of the B-field during inflation are likely to be in conflict with the observations. On the
other hand, scenarios that achieve relatively mild enhancement during the de Sitter regime can
produce magnetic seeds of real astrophysical relevance. For example, in [58] the authors discuss
two (non-conventional) mechanisms of primordial magnetogenesis. One achieves strong magnetic
enhancement during inflation, producing a B-field of approximately 1046 G on all scales by the end of
the de Sitter expansion. In the other case, the amplification is mild and it only manages a magnetic field
around 1022 G on lengths close to 1 Mpc (the scale has been redshifted to the present). The former field
is too strong and triggers the aforementioned backreaction problems, while in our scenario its current
magnitude violates all the available observational constrains. The latter magnetic field, however,
has no such problems and, according to our scenario, its residual strength is capable of seeding the
galactic dynamo (see [42] for the details). All these suggest that the current limits put on inflationary
magnetogenesis can be relaxed considerably. In particular, inflation-produced B-fields that are stronger
than ∼1017 G by the end of the de Sitter phase should be capable of seeding the galactic dynamo today
(see [42] for further discussion and more numerical results).

6. The Case of Nearly Flat FRW Universes

Although we have so far confined our analysis to Friedmann universes with Euclidean spatial
geometry, the same results also apply to FRW models with nearly flat spacelike hypersurfaces.
To a large extent this may be intuitively obvious, but it can be shown analytically as well.
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6.1. Marginally Open FRW Models

We begin by recalling that, at the ideal-MHD limit, magnetic fields decay adiabatically irrespective
of the background spatial curvature. Thus, in the presence of highly conductive electric currents,
B ∝ a−2 at all times and in all three FRW spacetimes. When there are no currents, however, the
magnetic evolution also depends on the geometry of the background universe. Throughout inflation,
for example, or on superhorizon scales after the end of the accelerated expansion phase, the magnetic
field obeys the wave-like equation [26]

B′′(n) +
(

n2 + 2K
)
B(n) = 0 (40)

where K = 0,±1 is the 3-curvature index [59]. In Friedmann models with negative spatial curvature
(i.e., for K = −1), the above takes the form

B′′(n) +
(

n2 − 2
)
B(n) = 0 (41)

with the comoving eigenvalue being positive and continuous (i.e., n > 0). Equation (41) accepts two
qualitatively different families of solutions, depending on the range of the associated eigenvalues.
When n2 < 2, in particular, we find hyperbolic behaviour with

B(n) = C1 cosh
[(√

2− n2
)

η
]
+ C2 sinh

[(√
2− n2

)
η
]

(42)

On the other hand, as we move to smaller scales (those with n2 > 2), we recover the more familiar
oscillatory evolution,

B(n) = C3 cos
[(√

n2 − 2
)

η
]
+ C4 sin

[(√
n2 − 2

)
η
]

(43)

When dealing with open Friedmann models, the scale factor and the curvature contribution to
the total energy density are conveniently expressed in terms of the conformal time as

a = a0

[
sinh(βη)

sinh(βη0)

]1/β

and ΩK =
1

(aH)2 = tanh2(βη) (44)

respectively. Note that the β-parameter is decided by the equation of state of the matter and is given
by β = (1 + 3w)/2 6= 0. Here, we will consider the post-inflationary evolution of the universe, which
means that w ≥ 0 and β ≥ 1/2 always. We are also interested in magnetic fields with super-Hubble
correlations. Following Equation (44a), if n is the (comoving) eigenvalue of a mode, its (physical) size
relative to the Hubble scale is determined by the ratio

λH
λn

=
n

aH
= n tanh(βη) (45)

since H = a′/a2.
Let us now confine to marginally open FRW universes. According to Equation (44b), these

spacetimes are characterised by very small values of the conformal time (i.e., ΩK � 1 implies η � 1
and vice versa) [40]. It is then straightforward to show that, during the reheating and the dust eras
(i.e., when β = 1/2), marginally open Friedmann models have a ∝ η2, ΩK ' η2/4 and λH/λn ' nη/2.
Throughout the radiation epoch, on the other hand, β = 1 and relations (44) and (45) lead to a ∝ η,
ΩK ' η and λH/λn ' nη respectively. All these mean that superhorizon-sized modes in marginally
open FRW universes satisfy the constraint nη � 1, just like in their spatially flat counterparts. The
difference is that now η � 1 as well. This ensures that, in marginally open Friedmann models, even
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small-scale modes with fairly large eigenvalues (i.e., with n � 1) can lie outside the Hubble radius
(i.e., satisfy the condition nη � 1).

Superhorizon-sized magnetic fields evolving on spatially open Friedmannian backgrounds obey
solution (42) or (43), depending on their wavelength (i.e., on the range of the associated eigenvalues).
On these scales, nη � 1 and η � 1, when the FRW background is marginally open. Then, both (42)
and (43) reduce to the power-law [60]

B(n) = a2B(n) = C1 + C2

(√
|n2 − 2|

)
η (46)

as long as (√
|n2 − 2|

)
η � 1 (47)

Given that η � 1 in marginally open FRW universes, there is an extensive range of wavelengths
that satisfy both nη � 1 and (

√
|n2 − 2| )η � 1 at the same time. These include all the modes with

n2 < 2 as well as many having n2 > 2. For example, a magnetic mode with n2 = 102 lies outside the
Hubble radius (i.e., has nη � 1) and also satisfies condition (47), as long as η � 1/10. In that case, the
associated B-field evolves according to solution (46).

We have therefore arrived to an evolution law identical to that of the flat FRW case (compare
Equation (46) to solution (7) in Section 3.2). Moreover, evaluating the integration constants of (46) and
dropping the mode-index (n) for simplicity, we obtain

B =
[
B0 − η0

(
2H0a0B0 + B′0

)] ( a0

a

)2
+ η0

(
2H0a0B0 + B′0

) ( a0

a

)2
(

η

η0

)
(48)

which is identical to solution (9). Hence, by simply repeating the process of Section 3.3, we find
that B ∝ a−3/2 during the reheating and dust eras and B ∝ a−1 throughout the radiation epoch (see
solutions (12) and (13) in Section 3.3). More specifically, recalling that a ∝ η2 and H = 2/aη during
reheating and dust, we may recast (48) into

B = −
(
3B0 − η0B′0

) ( a0

a

)2
+
(
4B0 + η0B′0

) ( a0

a

)3/2
(49)

Similarly, when radiation dominates the energy density of the universe, we have a ∝ η and
H = 1/aη. In that case, solution (48) becomes

B = −
(
B0 − η0B′0

) ( a0

a

)2
+
(
2B0 + η0B′0

) ( a0

a

)3/2
(50)

All these confirm that magnetic fields on marginally open Friedmann backgrounds can be
superadiabatically amplified throughout their post-inflationary evolution. This happens as long
as the B-fields remain outside the Hubble horizon and the initial conditions allow the second modes
on the right-hand side of (49) and (50) to dictate the magnetic evolution (see Section 3.4 for further
discussion). It is then straightforward to show that the residual comoving strength of such a magnetic
field, with current coherence scale around 10 Kpc, is close to 10−33 G (see Section 4.2 and Equation (34)
there). This value can increase to 10−27 G by the time the galaxy is fully formed, while additional
growth might possible as well (see Section 5.1 earlier).

Following a series of articles on the magnetic evolution in open FRW universes [36–39], is
was recently claimed that superadiabatic amplification is impossible in marginally open Friedmann
models [40]. The authors reached this conclusion after arriving at Equation (46). Once there, however,
they dropped the second mode from the right-hand side of that solution. The authors did so based
on the fact that η � 1, but without evaluating the integration constants first. As we have shown
here, that was not the right decision. This oversight prevented the authors of [40] from noticing the
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importance of their “redundant” mode and then from realising that marginally open FRW universes
can superadiabatically amplify magnetic fields during their post-inflationary evolution.

Before closing this section, we should briefly comment on the nature of the magnetic modes
involved. As we have explained above, solution (46) applies to magnetic modes with n2 < 2 and
also to those having n2 > 2, provided they satisfy the conditions nη � 1 and (

√
|n2 − 2| )η � 1

simultaneously. In quantum mechanical terms, modes with n2 < 2 are termed “supercurvature” and
they have been claimed to suffer from normalisation problems that make them physically ambiguous.
Modes with n2 > 2, on the other hand, are known as “subcurvature” and are physically unambiguous.
The range of the subcurvature magnetic modes that experience superadiabatic amplification depends
on the value of the conformal time, which in turn is decided by the “amount” of spatial curvature.
For example, current observations indicate a nearly flat universe with |ΩK| . 10−3 today. Assuming
negative curvature and setting ΩK ' 10−4 at present, suggests that η ' 2 × 10−2 today (see
Equation (44b) and recall that β = 1/2 for dust). Then, at least some of the (subcurvature) magnetic
modes with 2 < n2 . 502 are currently superadiabatically amplified (i.e., they satisfy both nη � 1
and (

√
|n2 − 2| )η � 1 simultaneously). Clearly, as we go back in time the values of ΩK and η

drop significantly, ensuring that many more subcurbature magnetic modes were superadiabatically
amplified in the past.

6.2. Marginally Closed FRW Models

Let us now turn our attention to Friedmann models with positive spatial curvature. In terms of
conformal time, the scale factor and the curvature contribution to the total energy density of a spatially
closed FRW universe are given by

a = a0

[
sin(βη)

sin(βη0)

]1/β

and ΩK = − 1
(aH)2 = − tan2(βη) (51)

respectively. Note that β = (1 + 3w)/2 and w ≥ 0, as with the open models discussed in the previous
section. Similarly, the relative size of a mode is decided by the ratio λH/λn = n/aH = n tan(βη).
Here, however, the commoving eigenvalue is discrete with n2 ≥ 3. On this background and in the
absence of electric currents, magnetic fields obey the differential equation

B′′(n) +
(

n2 + 2
)
B(n) = 0 (52)

which accepts the oscillatory solution

B(n) = C1 cos
[(√

n2 + 2
)

η
]
+ C2 sin

[(√
n2 + 2

)
η
]

(53)

The above monitors the post-inflationary evolution of large-scale B-fields on FRW backgrounds
with positive spatial curvature.

Let us now focus upon the marginally closed Friedmann universes. Following (51b), these models
are characterised by very small values of the conformal time (i.e., |ΩK| � 1⇔ η � 1), in exact analogy
with their marginally open counterparts. In this case we have a ∝ η2, ΩK ' −η2/4 and λn/λH ' nη/2
during the reheating and the dust eras (i.e., when β = 1/2). Throughout the radiation epoch, on the
other hand, β = 1, a ∝ η, ΩK = −η2 and λn/λH ' nη. Consequently, superhorizon-sized modes
on marginally closed Friedmann backgrounds have nη � 1 and η � 1 simultaneously. Therefore,
for magnetic modes that also satisfy the constraint (

√
n2 + 2 )η � 1, solution (53) reduces to the

power-law [61]
B(n) = a2B(n) = C1 + C2

(√
n2 + 2

)
η (54)

As with the marginally open Friedmann universes of the previous section, the above is essentially
identical to solution (7) of the flat FRW models. In fact, after evaluating the integration constants
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of (54), one recovers solutions (9) and (11) and all the evolution laws obtained in Section 3.3 earlier.
More specifically, we find that the dominant magnetic mode decays as B ∝ a−3/2 during both
the reheating and the dust eras and like B ∝ a−1 when radiation dominates the energy density
of the universe. Consequently, large-scale B-fields in marginally closed Friedmann universes can be
superadiabatically amplified throughout their post-inflationary evolution, just like their counterparts
in the spatially flat and the marginally open models.

7. Discussion

Finding an answer to the question of cosmic magnetism has proved a rather difficult theoretical
task. The scenarios of primordial magnetogenesis, in particular, have mainly focused on slowing down
the so-called adiabatic magnetic decay and thus increase the residual strength of the seed-field to
astrophysically relevant values. So far, almost all of the proposed solutions work outside what we
might call “standard physics”. By breaking away from Maxwellian electromagnetism, for example,
it is possible to achieve magnetic magnitudes much larger that the “conventional” final strength of
∼10−53 G. The latter value, however, has been obtained after assuming that primordial magnetic fields
decay adiabatically during the whole of their post-inflationary evolution on all scales. Here, we have
taken another look into this assumption.

The adiabatic magnetic decay after inflation has been attributed to the high electrical conductivity
of the matter during most of reheating and throughout the subsequent eras of radiation and dust.
This has been thought enough to guarantee that the magnetic flux remains conserved at all times and
on all scales. Nevertheless, the magnetic flux-freezing cannot be achieved without the electric currents.
These currents, however, are formed after inflation by local physical processes and their coherence size
can never exceed that of the Hubble horizon. The same is also true for the process of magnetic-flux
freezing, which is also causal and therefore it can never affect B-fields with superhorizon correlations,
without violating causality. In other words, the time required to freeze a superhorizon-sized magnetic
field in, is longer than the age of the universe. Therefore, B-fields that left the horizon during inflation
cannot readjust themselves to their new (post-inflationary) environment and freeze-in, until they have
crossed back inside the Hubble radius and have come again into full causal contact. Put another
way, applying the ideal-MHD approximation on superhorizon scales violates causality. After all, the
ideal-MHD limit is the macroscopic outcome of causal microphysical processes, none of which can
affect superhorizon-sized perturbations.

Motivated by the above, we have adopted a current-free treatment, where the magnetic evolution
remains unaffected by local physics until the time of horizon re-entry. We found that, as long as they
stay outside the Hubble radius, these B-fields obey a power-law solution. The latter contains two
modes, the second of which decays at a pace slower than the adiabatic after inflation. Depending on
the initial conditions, this slowly decaying mode can dominate and thus dictate the post-inflationary
magnetic evolution. When this happens superhorizon-sized magnetic fields deplete as B ∝ a−3/2

throughout the reheating and the dust eras. During the intermediate radiation epoch, on the other
hand, the decay rate slows down further to B ∝ a−1. In general, the “stiffer” the equation of state of
the matter, the slower the magnetic decay rate.

The initial conditions for the post-inflationary magnetic evolution are set by the field’s evolution
during the de Sitter phase and by the nature of the transition from inflation to reheating and later to the
radiation and the dust eras. Here, following Israel’s work on junction conditions, we have employed
two qualitatively different but complementary initial-condition scenarios. Alternative approaches are
also likely of course. Scenario A allows for an abrupt change in the background equation of state on
the transition hypersurface and for the presence of a thin shell there. Within this scenario, primordial
B-fields are superadiabatically amplified throughout their post-inflationary evolution as long as they
remain outside the Hubble radius. Moreover, for all practical purposes, the amplification occurs
irrespectively of the magnetic evolution during the de Sitter phase. This scenario can in principle
produce astrophysically relevant B-fields, with residual strengths close (or even within) the typical
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galactic dynamo requirements, without abandoning neither classical electromagnetism nor standard
cosmology. Scenario B also allows for a sudden change in the cosmic equation of state, but assumes
that there is no thin shell on the matching hypersurface. Here, we found that primordial B-fields
that decayed adiabatically during the de Sitter regime will continue to do so for the rest of their
lifetime. This essentially reproduces the typical scenario of conventional magnetogenesis that leads to
astrophysically irrelevant B-fields at present. However, scenario B also allows for the superadiabatic
amplification after inflation of primordial magnetic fields that did not decay adiabatically in the de
Sitter phase. This can have serious implications for the non-conventional mechanisms of cosmic
magnetogenesis that amplify their B-fields during inflation. More specifically, in connection with
the CMB limits on the anisotropy of the universe, scenario B severely constrains models that achieve
relatively strong inflationary amplification for their magnetic fields. On the other hand, when the de
Sitter enhancement is mild, scenario B can help to produce astrophysically promising B-fields.

To summarise, causality ensures that there is no a priori flux-freezing on super-Hubble scales,
even after inflation. On these wavelengths, primordial B-fields are only affected by the background
expansion and can be superadiabatically amplified throughout their post-inflationary evolution
depending on the initial conditions. Here, we have discussed two simple but complementary
initial-condition scenarios. In general, the superadiabatic amplification will (sooner or later) occur, as
long as the initial conditions at the start of reheating allow the slowly decaying (i.e., the second) modes
in solutions (9) and (11) to survive. Naturally, once back inside the horizon, the electric currents take
over and freeze the B-fields into the highly conductive cosmic medium. Then onwards, the magnetic
flux remains conserved and the adiabatic decay-law is restored.

The aforementioned phase of superadiabatic amplification can increase the residual strength of
conventional inflationary produced B-fields by many orders of magnitude. For example, a magnetic
mode with current comoving (pre-collapse) scale close to 10 Kpc, which is the minimum required
by the galactic dynamo, re-enters the horizon a little before equipartition. This mode has been
superadiabatically amplified during reheating and most of the radiation era. As a result, the
residual magnetic strength is not the “standard” ∼10−53 G but the much larger ∼10−33 G. The latter
increases further during the protogalactic collapse and can reach strengths within the general dynamo
requirements. Additional amplification may also occur during the earlier or the later stages of the
field’s evolution. Consequently, conventional electromagnetism and standard cosmology can produce
magnetic fields of astrophysically relevant magnitudes. The same is also true for the non-conventional
scenarios of cosmic magnetogenesis that mildly amplify their B-fields during inflation. Those achieving
strong amplification during the de Sitter phase, on the other hand, may require revision to avoid
potential conflict with the observations.

It is also worth pointing out that our analysis and our results are not confined to the spatially flat
Friedmann models, but extend naturally to their marginally open and marginally closed counterparts.
Thus, superhorizon-sized magnetic fields of cosmological origin can be superadiabatically amplified in
FRW universes with mildly curved (positive or negative) spatial sections as well. To a large extent, this
is also intuitively plausible. What is less straightforward and more interesting is that the marginally
open models can superadiabatically amplify both supercurvature and subcurvature magnetic modes.
The former have been claimed to suffer from normalisation problems that make them physically
ambiguous, although the whole issue may merely reflect the absence as yet of a quantum theory of
gravity. Nevertheless, the fact that a wide range of the physically unambiguous subcurvature magnetic
modes are also superadiabatically amplified, means that the mechanism discussed here works in all
the cosmologically relevant Friedmann models

We would like to close with some thoughts on the question of cosmic magnetism and the ongoing
efforts to address it. As we have already pointed out, the overwhelming majority of the proposed
theoretical solutions operate outside classical Maxwellian theory, or conventional cosmology (or
both). In fact, non-conventional magnetogenesis has become a big industry, over the years. This has
established in the community the belief that it is not possible to produce cosmological magnetic fields of
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astrophysical relevance within what we call standard physics. All these are to be expected, to a certain
extent at least, since long standing beliefs develop their own inertia as time goes by. Nevertheless,
there has been work in the recent literature suggesting that the study of classical electromagnetism
on conventional FRW models has not been exhausted yet and the present work takes another step
in this direction. The underlying point is that, if a mere appeal to causality can increase the final
magnetic strength by 20 or so orders of magnitude, then it might be worth reconsidering the necessity
of introducing new physics to address the question of cosmic magnetism.
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