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Abstract: We facilitate the editing of hierarchical B-spline curves at multiple resolutions by expressing
a displacement function at each level in rotation minimizing frames (RMFs) on the curve at the next
lower level. When the curve is edited at a particular level, RMFs at all the higher levels are updated,
and the control points of the displacement function at each higher level are obtained from these new
RMFs. This transfers details created at the current level to higher levels. Our method presents a
hundred-fold faster way to reflect editing results compared to the traditional approach using Frenet
frames. We demonstrate the effectiveness of our technique by showing several examples of editing
curves with fine details.

Keywords: hierarchical B-spline curve; multiresolution editing; displacement function; rotation
minimizing frames (RMF)

1. Introduction

Thanks to useful properties of B-spline, it has been considered the de factor standard for modeling
freeform curves and surfaces in computer-aided design and computer graphics [1,2]. Knot insertion
property provides an additional degree of freedom for refining B-spline curves and surfaces without
any change in their shape. Figure 1 shows an example of designing a B-spline curve using knot
insertion technique.

(a) (b) (c)

Figure 1. (a) A cubic B-spline curve with initial knots {0, 0, 0, 0, 1, 1, 1, 1}; (b) inserting three knots
{0.25, 0.5, 0.75} produces additional control points without shape change; (c) a curve edited by moving
additional control points.

Hierarchical B-splines [3] support the editing of curves and surfaces at multiple levels of detail
using knot insertion or refinement. Figure 2 illustrates typical multilevel editing processes. Figure 2a
shows a cubic B-spline curve represented at a low level (i.e., with few knots) and Figure 2b shows the
result of editing the same curve at a higher level (i.e., after extra knots have been inserted). If a user
goes back to the lower level, edits the curve in the way shown in Figure 2c, and then returns to the
higher level, we would expect the curve to have the shape shown in Figure 2d. However, the actual
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result is the same as Figure 2e because the edited displacements at the higher level are represented in
a fixed coordinate system. If we expect to maintain the orientation of the details made at the higher
level, the edited displacements should be represented in certain coordinate frames on the curve at the
lower level.

(a) (b) (c)

(d) (e) (f)

Figure 2. Multilevel curve editing: (a) a cubic B-spline curve; (b) editing the curve at the higher level in
a fixed coordinate system; (c) re-editing the curve at the original level; (d) the desired result after (c);
(e) the real result after (c); and (f) the result using Frenet frames in (b).

One obvious choice for the local coordinate systems can be the Frenet frames. Finkelstein and
Salesin [4] discussed the orientation of details in this type of editing. They used the Frenet frames
(i.e., tangent, normal and bi-normal to a curve) to define a local coordinate system. However, the
normal vectors are obtained from the second derivatives of a curve, and thus they can suddenly flip at
inflection points while generating undesired effects. Figure 2f illustrates this problem in which the
edited displacements are added to a curve in the opposite direction.

In this paper, we extend the traditional method for multilevel editing of B-spline curves to have
correct orientation of details at each editing level. For this, we employ the rotation minimizing frames
(RMFs) [5] of a curve as the reference coordinate system. RMFs are obtained from only tangent
vectors in a way that minimizes the rotation between successive frames. Tangent vectors are the first
derivatives of a curve, and thus they do not suffer from the flipping problems caused by the Frenet
frames. The use of RMFs guarantees stable local frames regardless of the shape or degree of a curve.
Displacements introduced at a level j are represented in RMFs at a level j− 1, and thus changes made
at higher levels are accurately retained, as shown in Figure 2d.

Our multilevel editing technique can effectively be used for modeling planar or spatial B-spline
curves with highly detailed shapes. A user can easily change the overall shape of a curve, while
preserving the orientation of details edited at higher levels. We also apply our technique to the
multilevel editing of camera motions, which can easily be achieved by editing the associated
curve component.

The main contributions of this work can be summarized as follows:

• We present a robust and effective method for preserving orientation of details in the multilevel
editing of B-spline curves.

• We choose RMFs as the reference coordinate system and show that they are stable and suitable
for preserving orientation of details rather compared to other reference frames.

• Our technique can easily be applied to the multilevel editing of 3D camera motions by editing its
curve component.

The rest of this paper is organized as follow. In Section 2 we briefly summarize related recent
work on multilevel editing of B-spline curves and surfaces. Section 3 defines a multilevel B-spline
curve with orientation of details. In Section 4, the multilevel editing of B-spline curves is explained in
details, and experimental results are then presented in Section 5. Finally, we conclude this paper in
Section 6 and suggest future work.
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2. Related Work

Forsey and Bartel [3] introduced a hierarchical B-spline representation which uses a knot
refinement and overlay technique. This representation allows a user to edit a B-spline surface at
different levels of detail by specifying offset displacements which are represented relatively to a local
frame. For regular surfaces, a tangent plane can provide the reference coordinate system. However,
it is difficult for curves to choose reference coordinate frames which are defined smoothly over the
entire curve. Finkelstein and Salesin [4] proposed a multiresolution representation of a curve using
wavelets that allows the curve to be edited while its details are preserved. However, the reference
frames required for local editing are not stable since they can flip at inflection points of a curve.
Recently, hierarchical B-splines have been widely used not only in geometry modeling but also
geometry analysis. Vuong et al. [6] employed hierarchical B-splines for local refinement in isogeometry
analysis and Bornemann and Cirak [7] presented a subdivision scheme for easy implementation of
hierarchical B-splines and succeeded to integrate them into existing finite element software.

Elber and Gotsman [8] extended the multiresolution representation of uniform B-spline curves
to non-uniform rational B-splines, and presented a technique for converting NURBS curves to
their multiresolution representation, with an error that is minimized. Prusinkiewicz et al. [9] and
Poon et al. [10] presented a multiresolution representation in which a curve is subdivided by means
of an L-system. Dreger et al. [11] proposed a multiresolution representation of triangular B-spline
surfaces of arbitrary degree.

Recently, a variety of multiresolution editing techniques satisfying given geometric constraints
have been proposed. Elber [12] introduced a multiresolution editing technique that satisfies
a symmetric linear constraint. Hahmann et al. [13] proposed a multiresolution editing technique
for preserving the area of a closed planar curves, while Sauvage et al. [14] preserved the length of
a curve. Olsen et al. [15] showed how to construct a multiresolution local filter for B-splines based
on subdivision curves. This technique can be applied efficiently to the subdivision of meshes with
arbitrary topologies. Li el al. [16] constructed multiresolution curves using constrained B-spline
wavelets. For polygonal meshes, Kobbelt and Botsch [17] proposed a new multiresolution model
based on volume elements. The details between different levels are encoded by displacement volumes
and they are added to the base surface without self-intersections when the base surface is edited.
However, none of these methods except our previous work [18] deal with the problem of preserving
the orientation of details.

In this paper, we deal with the orientation of details in multilevel editing of B-spline curves.
For this end, we need a reference coordinate system in which the edited details can be represented
robustly. A moving frame that does not rotate about the instantaneous tangent of a curve is called
a rotation minimizing frame (RMF). RMFs are widely used in many applications in computer graphics,
sweep surface modeling [19], generalized cylinder modeling [20,21] and motion design and control [22].
However, exact RMF (i.e., closed form) computation is non-trivial and thus a number of approximation
techniques [5,23–25] have been proposed. We employ RMFs as a reference coordinate system and
represent the edited details in RMFs.

3. Multilevel Representation of B-Spline Curves

3.1. Multilevel B-Spline Curves

A B-spline curve of degree p is defined as follows:

C0(u) =
n

∑
i=0

pi N
p
i (u) up ≤ u ≤ um−p (1)

where {pi} are control points and Np
i (u) is the i-th B-spline basis function of degree p defined on the

knot vector U0 = {u0, u1, · · · , up, · · · , um−p, · · · , um}.
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We construct the refined knot vector U1 by inserting a midpoint between consecutive knot values
ui and ui+1 (p ≤ i ≤ m− p− 1) in U0 as follows:

U1={u0, u1, · · · , up,
up + up+1

2
, up+1, · · · , um−p−1,

um−p−1 + um−p

2
, um−p, um−p+1, · · · , um}.

We can define a displacement function D1(u) on the refined knot vector U1 as follows:

D1(u) =
|U1|−1

∑
i=0

d1
i Np

i (u) (2)

where |U1| is the number of B-spline basis functions defined on the refined knot vector U1, and {d1
i }

are control points, all initialized to ~0. We construct various levels of displacement functions
Dj(u), j = 1, 2, · · · , k by repeating this midpoint refinement process and obtain a multilevel B-spline
curve Ck(u) with level k (> 0) as follows:

Ck(u) = C0(u) + D1(u) + D2(u) + · · ·+ Dk(u) = C0(u) +
k

∑
j=1

Dj(u) (3)

We can edit the B-spline curve Ck(u) at any level j (0 ≤ j ≤ k) by editing the corresponding
displacement function Dj(u) or C0(u). At lower levels, this displacement function affects a large region
of the curve, but at higher levels it has a much more local effect. This allows us to create fine details on
the curve, which will be preserved during subsequent global changes.

3.2. Multilevel B-Spline Curves with Orientation of Details

In general, the control points dj
i of the displacement function Dj(u) are represented in a fixed

coordinate system, producing the undesired results shown in Figure 2e, that we have already discussed.
To obtain the expected results, the displacement function Dj(u) must be represented in appropriate
coordinate systems defined on the curve Cj−1(u). In this paper, we extend the definition of a multilevel
B-spline curve in Equation (3) so that it can include the orientation of details as follows:

Ck(u) = C0(u) + F0(u)D1(u) + F1(u)D2(u) + · · ·+ Fk−1(u)Dk(u) (4)

where Fj−1(u) is a one-parameter family of rotational matrices in SO(3), describing the orientation
of Dj(u) and will be referred to as reference frames for Dj(u) for j = 1, 2, · · · , k. There might exist
several candidates for reference frames. For example, Frenet frames can be chosen for this purpose,
but they depend on the second derivatives of a curve, making the Frenet frames undefined at inflection
points, as shown in Figure 3b. Moreover, computing the Frenet frames is computationally inefficient
since it involves the computations of second derivatives of a curve. Therefore, the reference frames are
required to satisfy the following conditions:

• Fj−1(u) should smoothly change on Cj−1(u).
• Fj−1(u) should minimize its variations when Cj−1(u) is edited.
• Fj−1(u) should be computed efficiently.

We choose rotation minimizing frames (RMFs) [5,23–25] for the requirement above. However,
finding the explicit form of exact RMFs on general B-spline curves is known to be a non-trivial problem
and thus many approximation techniques have been proposed in practice. Among these techniques,
we employ the double reflection method [5] for both accuracy and efficiency. If we are given n
sample points pi and their tangent vectors ti on a curve C(u), we can easily compute a sequence of
rotation minimizing frames Fi =

[
ti si ri

]
at the points pi for i = 1, 2, · · · , n, where si and ri are

determined so that the rotation between Fi and Fi+1 is minimized. Figure 3c shows RMFs computed
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on the points pi on a spatial curve C(u), which smoothly change their orientations on a curve C(u),
compared to the Frenet frames flipping at an inflection point (see Figure 3b). For more details on
construction of RMFs, please refer to the reference [5].

tt
r

s

(a) (b) (c)

Figure 3. Comparison of local reference frames: (a) at points on the curve; (b) based on Frenet frames;
and (c) based on rotation minimizing frames (RMFs).

Now we explain how to represent the displacement function Dj(u) in Fj−1(u). Instead of finding
the explicit form of Fj−1(u), we simply represent the control points dj

i of Dj(u) in the RMFs sampled
from Cj−1(u) as follows:

Fj−1(ûi) =
[

ti(ûi) si(ûi) ri(ûi)
]

for i = 0, 1, · · · , |U j| − 1 (5)

where {ûi} are the node parameters specially chosen from the knot vector U j of Dj(u). Even though
this is an approximation to Fj−1(u)Dj(u), it could be a practical technique for presenting the orientation
of the displacement function Dj(u) in RMFs on Cj−1(u). Our multilevel B-spline curve with orientation
of details can then be represented as follows:

Ck(u) = C0(u) + D̂1(u) + D̂2(u) + · · ·+ D̂k(u) (6)

where D̂j(u) = ∑
|U j |−1
i=0

(
Fj−1(ûi)d

j
i

)
Np

i (u) for j = 1, 2, · · · , k. Finally, the node parameters ûi in

Equation (5) are chosen at which the B-spline basis function Np
i (u) associated with the control point dj

i
has the maximum. The reason that we take such node parameters is that the corresponding Fj−1(ûi)

has maximum influence on dj
i . Figure 4 shows an example of determining the node parameter for

a cubic B-spline basis function N3
i (u). Figure 4a,b show the basis function N3

i (u) and its derivative
d(N3

i (u))/du constructed on a non-uniform knot vector. The node parameter ûi can be computed by
finding the root of the following equation:

d(N3
i (u))
du

= 0. (7)

ui ui+1 ui+2 ui+3 ui+4

ui ui+1 ui+2 ui+3 ui+4û

ûi

i

(a)

(b)

Figure 4. Determination of node parameters: (a) a cubic B-spline basis function N3
i (u) and node

parameter ûi, and (b) the derivatives of d(N3
i (u))/du and ûi such that d(N3

i (ûi))/du = 0.
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4. Multilevel Editing with Orientation of Details

For an intuitive curve editing, our system supports a direct manipulation of curve points [1].
For example, a user can select an arbitrary point p on Cj(u) and move it to a new position p′, which
produces the edited displacement ∆p = p′ − p. Depending on the editing level j, the displacement
∆p can be interpreted as the corresponding changes ∆dj

i in the control points dj
i of the displacement

function Dj(u). Note that ∆dj
i is computed in the fixed coordinate system and thus must be expressed

in the RMF Fj−1(ûi). This process updates the control points as follows:

dj
i = dj

i +
(

Fj−1(ûi)
)−1

∆dj
i (8)

where the inverse matrix
(

Fj−1(ûi)
)−1 can be replaced with the transpose matrix

(
Fj−1(ûi)

)T since
Fj−1(ûi) is an orthogonal matrix.

Figure 5 illustrates examples of editing a B-spline curve with and without orientation of details.
Let D1(u) = (0, h(u), 0) be a displacement function to be added to a curve C0(u). Figure 5a shows
the graph of h(u), for u ∈ [0, 1]. Figure 5b–d show the results when D1(u) is added to three different
reference frames on C0(u) (in black), respectively. Figure 5d shows that D1(u) is added to C0(u) while
keeping its orientation correctly, whereas it flips at the origin where the second derivative of C0(u)
vanishes in Figure 5c.

(a) (b)

(c) (d)

Figure 5. Adding a displacement function D1(0, h(u), 0) to different reference frames: (a) a graph of
h(u); (b) D1(u) is added to C0(u) in a fixed coordinate system; (c) D1(u) is added to the Frenet frames
on C0(u) and (d) D1(u) is added to the RMFs on C0(u).

Algorithm 1 shows the pseudo code for multilevel editing of a B-spline curve while preserving
the orientation of details. Note that if the displacement function Dj(u) at level j is edited, then all
RMFs in the next levels from j to k should be updated (in lines 3–11 in Algorithm 1). The complexity
of Algorithm 1 can be measured by counting the number of times that the lines 5 and 9 are executed.
Suppose that a cubic B-spline curve C0(u) is defined on the knot vector U0 = {0, 0, 0, 0, 1, 1, 1, 1}
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and the knot vectors are repeatedly refined at midpoints as explained in Section 3. At editing level
j (> 0), the lines 5 and 9 are executed (3 + 2j) times, respectively. The upper bound can be determined
from ∑k

j=1 2(3 + 2j), which results in total (6k− 4 + 2k+2) times. Although the complexity increases
exponentially, i.e., O(2k), it would be an inevitable result because the number of control points increase
exponentially at each level by the midpoint refinement of knot vectors.

Algorithm 1 : Multilevel editing of a B-spline curve at level j.
INPUT:
j : editing level (1 ≤ j ≤ k)
∆dj

i : edited displacements of control points dj
i

OUTPUT:
Ck(u): curve edited at level j

1: BEGIN
2: dj

i := dj
i +
(

Fj−1(ûi)
)T ∆dj

i ;
3: FOR l = j TO k
4: FOR m = 0 TO |Ul | − 1
5: dl

m := Fl−1(ûm)dl
m;

6: END FOR
7: Cl(u) := Cl−1(u) + D̂l(u);
8: FOR m = 0 TO |Ul | − 1
9: Update RMFs at node parameters ûm of Cl(u);
10: END FOR
11: END FOR
12: END BEGIN

9: RETURN Ck(u);

5. Experimental Results

We implemented our algorithm in C++ on an Intel(R) Core(TM) i7 2.00 GHz CPU with a 16 Gb
main memory and an Intel(R) Iris(TM) Pro Graphics 5200 video card. Figure 6 shows an example of
multilevel editing of a B-spline curve. Figure 6a shows a cubic B-spline curve C0(u) at level 0 defined
on the clamped knot vector U0 = {0, 0, 0, 0, 1, 1, 1, 1}, and Figure 6b shows the result of editing the
curve at level 5, which means the displacement function D5(u) changes. Figure 6d shows the curve
at level 5 after it has been edited globally at level 0, as shown in Figure 6c. The final curve shown in
Figure 6d confirms that the displacements D5(u) generated at level 5 (Figure 6b) have correctly been
applied to the result of globally edited the curve at level 0.

(a) (b) (c) (d)

Figure 6. Results of multilevel editing: (a) initial curve at level 0; (b) the curve edited at level 5;
(c) the curve edited globally at level 0; and (d) the resulting curve at level 5.

Figure 7 shows a more sophisticated example in which the initial B-spline curve (Figure 7a) is
modeled by using 30 control points and it is edited at higher levels for adding fine details of a crocodile
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shape in Figure 7b. Figure 7c,d show the results of editing the initial curve at level 0 in which we can
see that fine details made at higher levels are correctly applied to editing results at level 0.

(a) (b) (c) (d)

Figure 7. Results of multilevel editing: (a) initial curve at level 0; (b) the curve edited at higher levels;
(c) and (d) the resulting curves at higher levels after the initial curve (in black) is edited at level 0.

Since the displacement function Dj(u) must be applied to the curve produced at the lower level
Cj−1(u), the RMFs at the node points Cj−1(ûi) should be computed efficiently. That is, the performance
of our technique depends on not only the complexity of Algorithm 1 but also the computational costs
for computing references frames. In this section, we analyz the computational costs for computing
a RMF and a Frenet frame at a node parameter ûi. For this, we assume a cubic polynomial curve

C(u) = p0 + p1u + p2u2 + p3u3, where pi =
[

xi yi zi

]T
∈ R3. The Frenet frame at a node

parameter ûi is computed as follows:

T =
C′(ûi)

‖C′(ûi)‖
, B =

C′(ûi)× C′′(ûi)

‖C′(ûi)× C′′(ûi)‖
, N = B× T (9)

Table 1 lists the total operation counts for computing a Frenet frame and a RMF, respectively.
The detailed counting for a RMF is referred to the double reflection method [5]. Note that a sqrt or a
division is about six times more time-consuming than a multiplication since they are approximated by
a truncated series in arithmetic hardware. Table 1 just compares the operation counts for one node
parameter. Multiple node parameters at higher level would produce a huge difference of the total
operation counts. Table 2 lists the actual computation times for computing RMFs and Frenet frames
with a different number of reference frames at each level of the curve in Figure 6. The last column of
Table 2 shows that computing RMFs are 145 to 400 times faster than Frenet frames.

Table 1. Operation counts to compute a RMF and a Frenet Frame.

Method # of adds # of mults # of divs # of sqrt

Frenet frame 19 42 6 2
RMF 28 32 2 0
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Table 2. Times to compute RMFs and Frenet Frames for the curve of Figure 6.

Level Num. of Frames Time (ms) Ratio (b) to (a)RMF (a) Frenet (b)

1 5 0.027949 4.07133 145.6699703
2 7 0.0400458 7.48952 187.0238577
3 11 0.06561 17.68624 269.5662247
4 19 0.1188456 36.12243 303.9441931
5 35 0.211788 85.059 401.6233214

Figure 8b shows another example in which the displacement function D4(u) is applied to the
curve at level 0 of Figure 8a. Figure 8c,d are curves (in black) edited at level 1 and level 2, maintaining
the orientation of the displacement function D4(u). The curve can easily be edited to a spatial curve as
shown in Figure 8e,f.

(a) (b) (c)

(d) (e) (f)

Figure 8. Results of multilevel editing: (a) initial curve at level 0; (b) edited curve at level 4; (c) edited
curve at level 1; (d) edited curve at level 2; (e) and (f) edited curve to be a space curve.

An obvious application for our multilevel curve editing technique is three-dimensional camera
motion control. A camera motion is defined by a rigid-body transformation that consists of a translation
and a rotation. A B-spline curve t(u) = (tx(u), ty(u), tz(u)) can be used as a trajectory for defining
the position of camera at time u, and a quaternion curve q(u) = (qw(u), qx(u), qy(u), qz(u)) can
specify the orientation of the camera at time u. The translation matrix T(u) is determined by a point
on the trajectory curve t(u), and the rotation matrix R(u) is determined by the orientation curve
q(u)/‖q(u)‖. The rigid-body transformation of the camera M(u) is then readily expressed as the
product M(u) = T(u)R(u). In this case, our multilevel curve editing technique enables precise
modification of the trajectory and orientation curves at different levels, providing the sophisticated
camera control needed for creating desired camera motion.
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Figure 9a shows an example of camera control. The trajectory of the camera (shown in yellow)
is a cubic B-spline curve with six control points. Figure 9b shows the image captured by the camera
when it is at the position marked by the red box. Figure 9c shows detailed editing of the trajectory and
orientation curves at level 2 (compare the yellow curve in Figure 9c with that of Figure 9a). The camera
motion is edited so that it passes through the sequence of tori. Figure 9d shows the image captured by
the camera at the position marked by the red box in Figure 9c.

(a) (b)

(c) (d)

Figure 9. Camera motion control: (a) camera trajectory and orientation curves at level 0; (b) image
captured by the camera at the position of the red box in (a); (c) edited camera curves at level 2;
and (d) image captured by the camera at the position of the red box in (c).

Besides from 3D camera control, our technique can easily be applied to various applications
making use of curve components such as modeling sweep surfaces and hierarchical editing of human
motion, where trajectory curves and joint angle curves can effectively be controlled by our technique
while preserving orientation of details.

6. Conclusions

We have presented a new technique for editing multilevel B-spline curves by using RMFs [5] as
local reference frames. The displacement function at each level is represented in RMFs on the next
lower level curve, and this preserves the orientation of local details between levels. Our method can
effectively be used for editing a B-spline curve globally, while maintaining its orientation of local
details. To the best of our knowledge, this is the first work to deal with the orientation of details in
editing curves (except the approaches using Frenet frames). Moreover, the proposed technique is quite
stable regardless of the shape or degree of a curve, and many times faster than the Frenet frames.
We have demonstrated the effectiveness of our technique by showing several examples of multilevel
editing B-spline curves. In future work, we plan to extend our technique to other representations such
as B-spline surfaces, subdivision surfaces and implicit surfaces so that they can preserve the orientation
of details and also plan to find other sophicated reference frames that can substitute for RMFs.
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