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Abstract: Harmonic polynomials of type A are polynomials annihilated by the Dunkl Laplacian
associated to the symmetric group acting as a reflection group on RN . The Dunkl operators are
denoted by Tj for 1 ≤ j ≤ N, and the Laplacian ∆κ = ∑N

j=1 T2
j . This paper finds the homogeneous

harmonic polynomials annihilated by all Tj for j > 2. The structure constants with respect to the
Gaussian and sphere inner products are computed. These harmonic polynomials are used to produce
monogenic polynomials, those annihilated by a Dirac-type operator.
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1. Introduction

The symmetric group SN acts on x ∈ RN as a reflection group by permutation of
coordinates. The group is generated by reflections in the mirrors

{
x : xi = xj, i < j

}
. The function

wκ (x) = ∏
1≤i<j≤N

∣∣xi − xj
∣∣2κ with parameter κ is invariant under this action, and, for κ > − 1

N ,

there are several measures that incorporate wκ and give rise to interesting orthogonality structures.
The corresponding measure on the N-torus is related to the Calogero–Sutherland quantum-mechanical
model of N identical particles on the circle with 1/r2 interaction potential, and the measure
wκ (x) e−|x|

2/2dx is related to the model of N identical particles on the line with 1/r2 interactions
and harmonic confinement (see [1] (Section 11.6)). This paper mainly concerns the measure on the unit
sphere in RN for which there is an orthogonal decomposition involving harmonic polynomials. In the
present setting, harmonic refers to the Laplacian operator ∆κ produced by the type-A Dunkl operators.

For x ∈ RN and {i, j} ⊂ {1, 2, . . . , N} set x (i, j) =
(

. . . ,
i

xj, . . . ,
j

xi, . . .
)

, that is, entries #i and #j

are interchanged.

Definition 1. For a polynomial f and 1 ≤ i ≤ N

Ti f (x) :=
∂

∂xi
f (x) + κ

N

∑
j=1,j 6=i

f (x)− f (x (i, j))
xi − xj

,

∆κ f (x) :=
N

∑
i=1

T2
i .

The (Dunkl) operators Ti mutually commute and map polynomials to polynomials.
The background for the theory can be found in the treatise ([1] (Chapter 6, Chapter 10.2)). An orthogonal
basis for L2

(
RN , wκ (x) e−|x|

2/2dx
)

can be defined in terms of products f (x) Lλ
n

(
|x|2 /2

)
where f

comes from an orthogonal set of harmonic homogeneous polynomials and the Laguerre polynomial
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index λ = deg f − 1 + N
2 ((N − 1) κ + 1) (for the theory of Laguerre polynomials, see Szegö [2]

(Section 5.1)). However, attempts to explicitly construct harmonic polynomials run into technical
complications, presumably due to the fact that the sign-changes (example: x 7→ (−x1, x2, . . . , xN))
are not elements of the symmetry group and thus the +/− symmetry of T2

i can not be used.
To start on the construction problem, we will determine all the harmonic homogeneous polynomials
annihilated by Tj for 2 < j ≤ N. They are the analogues of ordinary harmonic polynomials in
two variables and thus we call them planar. In this situation, there is a natural symmetry based on
the transposition (1, 2): polynomials f satisfying f (x (1, 2)) = f (x) are called symmetric and those
satisfying f (x (1, 2)) = − f (x) are called antisymmetric. Then, T1 + T2 preserves the symmetry type
and T1 − T2 reverses it. This property is relevant since T2

1 + T2
2 = 1

2 (T1 + T2)
2 + 1

2 (T1 − T2)
2.

Section 2 describes the basis of polynomials used in the construction, sets up and solves the
recurrence equations required to produce symmetric and antisymmetric harmonic polynomials.
In addition, the formulae for the actions of T1 ± T2 on the harmonics are derived. In Section 3,
the inner product structures involving the weight function wκ are defined and the structural constants
for the harmonic polynomials are computed. By means of Clifford algebra techniques, one can define
an operator of Dirac type and Section 4 describes this theory and produces the planar monogenic
polynomials. Finally, Section 5 contains technical material providing proofs for some of the results
appearing in Sections 2 and 3.

2. The p-Basis and Construction of Harmonic Polynomials

The natural numbers {0, 1, 2, 3 . . .} are denoted by N0. The largest integer ≤ t ∈ R is denoted by
btc. Suppose f is a polynomial in x ∈ RN then (1, 2) f denotes the polynomial f (x (1, 2)). To facilitate
working with generating functions, we introduce the notation coef

(
f , gj

)
:= cj for the designated

coefficient of f in the expansion f = ∑i cigi in terms of a basis {gi}. Throughout the paper κ is a fixed
parameter, implicit in {Ti}, generally subject to κ > − 1

N .
The p-basis associated with the operators {Ti} is constructed as follows: for 1 ≤ i ≤ N,

the polynomials pn(xi; x) are given by the generating function

∞

∑
n=0

pn(xi; x)rn = (1− rxi)
−1

N

∏
j=1

(1− rxj)
−κ ;

then, for α = (α1, . . . , αN) ∈ NN
0 (the multi-indices), define pα := ∏N

i=1 pαi (xi; x). The set
{

pα : α ∈ NN
0
}

is a basis for the polynomials for generic κ. The key property is that Tj pn(xi; x) = 0 for j 6= i. From [1]
(Section 10.3), we find

Ti pα = (Nκ + αi)pαi−1(xi; x) ∏
m 6=i

pαm(xm; x) (1)

+κ ∑
j 6=i

αj−1

∑
m=0

(pαi+αj−1−m(xi; x)pm(xj; x)

−pm(xi; x)pαi+αj−1−m(xj; x))× ∏
n 6=i,j

pαn(xn; x),

if αi > 0, and Ti pα = 0 if αi = 0.
Set up a symbolic calculus by letting pn

j denote pn
(
xj; x

)
; more formally, define a linear

isomorphism from ordinary polynomials to polynomials in the variables {p1, . . . , pN}:

Ψpα = pα1
1 pα2

2 · · · p
αN
N , α ∈ NN

0 ,
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extended by linearity. Thus, Ψ ∑∞
n=0 pn(xi; x)rn = (1− pir)

−1. In this form, the action of Ti (technically
ΨTiΨ−1) on a function of (p1, . . . , pN) is given by

Ti f (p) =
∂ f
∂pi

+ Nκ
f − (pi → 0) f

pi

+ κ
N

∑
j=1,j 6=i

(
pi → pj

)
f +

(
pj → pi

)
f − f −

(
pj ←→ pi

)
f

pi − pj
.

The operators (pi → 0) and
(

pi → pj
)

replace pi by 0 and pj respectively, while
(

pj ←→ pi
)

is
the transposition. It suffices to examine the effect of the formula on monomials pα1

1 pα2
2 . . . pαN

N and for
i = 1. The first two terms produce (α1 + Nκ) if α1 > 0, else 0. In the sum, the (typical) term for j = 2 is
(pα1+α2

1 + pα1+α2
2 − pα1

1 pα2
2 − pα2

1 pα1
2 )∏N

m=3 pαm
m /(p1 − p2). A simple calculation shows that this is the

image under Ψ of the corresponding term in Equation (1) . This method was used in [3] to find planar
harmonics of type B (the group generated by sign-changes and permutation of coordinates).

From here on, we will be concerned with polynomials in p1, p2, that is, exactly the set of
polynomials annihilated by Tj for 2 < j ≤ N. Set pi,j := pi (x1; x) pj (x2; x) so that Ψpi,j = pi

1 pj
2.

For each degree ≥ 1, there are two independent harmonic polynomials, that is,
(
T2

1 + T2
2
)

f = 0,
and a convenient orthogonal decomposition is by the action of (1, 2); symmetric: (1, 2) f = f ,
and antisymmetric: (1, 2) f = − f , to be designated by + and − superscripts, respectively. We use
the operators T1 + T2 and T1 − T2 (note

(
T2

1 + T2
2
)
= 1

2 (T1 + T2)
2 + 1

2 (T1 − T2)
2). The harmonic

polynomials will be expressed in the basis functions (symmetric) φnj and (antisymmetric) ψnj with
generating functions u1, u2 (and s := 1

2
(
z + z−1)) given by

w1 := (1− ztp1)
−1(1− z−1tp2)

−1,

w2 := (1− z−1tp1)
−1(1− ztp2)

−1,

u1 :=
1
2
(w1 + w2) =

1− st(p1 + p2) + t2 p1 p2

(1− 2stp1 + t2 p2
1)(1− 2stp2 + t2 p2

2)
,

u2 :=
(

z− 1
z

)−1

(w1 − w2) =
t(p1 − p2)

(1− 2stp1 + t2 p2
1)(1− 2stp2 + t2 p2

2)
,

u1 =
∞

∑
n=0

tn
n

∑
j=0

sjφnj,

u2 =
∞

∑
n=1

tn
n

∑
j=0

sjψnj.

There are parity conditions: φnj 6= 0 implies j ≡ n mod 2 and ψnj 6= 0 implies
j ≡ (n− 1)mod 2. These are formal power series and convergence is not important (but is
assured if max (|zt| , |t/z|) < (maxi |xi|)−1). The polynomials φnj and ψnj are homogeneous of
degree n. The ordinary harmonic polynomials arise for κ = 0; however, the following formulae
remain complicated for this specialization. The polynomial pi,j reduces to xi

1xj
2. By using complex

variables, the derivation goes quickly: the real and imaginary parts of {(x1 + x2) + i (x1 − x2)}n

are the symmetric and antisymmetric harmonic homogenous polynomials of degree n, respectively.
The expression expands to

n

∑
j=0

(
n
j

)
xn−j

1 xj
2 (1 + i)n−j (1− i)j =

n

∑
j=0

(
n
j

)
xn−j

1 xj
2 (1 + i)n−2j 2j.
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The formulae for the desired polynomials can be obtained from the equation (1+ i)4m+k = (−4)m,
(−4)m (1+ i), (−1)m 22m+1i, (−1)m+1 22m+1 (1− i) for k = 0, 1, 2, 3 respectively. The noticeable
difference between even and odd degrees n will appear again in the general κ case.

The following expressions are derived in Section 5: (the Pochhammer symbol is given by (v)0 := 1

and (v)m :=
m
∏
j=1

(v + j− 1) for m ≥ 1) for 0 ≤ j ≤
⌊ n

2
⌋

φn,n−2j = 2n−1−2j
j

∑
i=0

(n + 1− 2j)2i
i! (1− n + 2j− 2i)i

(
pn−j+i,j−i + pj−i,n−j+i

)
= 2n−1−2j (pn−j,j + pj,n−j

)
+ 2n−1−2j

×
j

∑
i=1

(n− 2j + 2i)
(n + 1− 2j)i−1

i!
(−1)i (pn−j+i,j−i + pj−i,n−j+i

)
;

and, for 0 ≤ j ≤
⌊

n−1
2

⌋
,

ψn,n−1−2j = 2n−1−2j
j

∑
i=0

(n− 2j)i
i!

(−1)i (pn−j+i,j−i − pj−i,n−j+i
)

.

The reason for the use of this basis is that the actions of T1 + T2 and T1− T2 have relatively simple
expressions. It is easy to verify that (set ∂v := ∂

∂v for a variable v):

∂p1 w1 = zt(w1 +
t
2

∂tw1) +
z2t
2

∂zw1, ∂p2 w1 =
t
z
(w1 +

t
2

∂tw1)−
t
2

∂zw1,

∂p1 w2 =
t
z
(w2 +

t
2

∂tw2)−
t
2

∂zw2, ∂p2 w2 = zt(w2 +
t
2

∂tw2) +
z2t
2

∂zw2.

After some calculations involving ∂
∂z = 1

2
(
1− z−2) ∂

∂s , we obtain

(
∂p1 + ∂p2

)
u1 = 2stu1 + st2∂tu1 +

(
s2 − 1

)
t∂su1,(

∂p1 − ∂p2

)
u1 =

(
3s2 − 2

)
tu2 +

(
s2 − 1

)
t2∂tu2 + s

(
s2 − 1

)
t∂su2,(

∂p1 + ∂p2

)
u2 = 3stu2 + st2∂tu2 +

(
s2 − 1

)
t∂su2,(

∂p1 − ∂p2

)
u2 = 2tu1 + t2∂tu1 + st∂su1.

Applying

T1 + T2 − ∂p1 − ∂p2 = Nκ
1− (p1 → 0)

p1
+ Nκ

1− (p2 → 0)
p2

,

T1 − T2 − ∂p1 + ∂p2 = Nκ
1− (p1 → 0)

p1
− Nκ

1− (p2 → 0)
p2

+ 2κ
(p1 → p2) + (p2 → p1)− 1− (p1 ←→ p2)

p1 − p2
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to u1 and u2 yields (
T1 + T2 − ∂p1 − ∂p2

)
u1 = 2stNκu1,(

T1 − T2 − ∂p1 + ∂p2

)
u1 = 2t2

(
N
(

s2 − 1
)
+ 1
)

κu2,(
T1 + T2 − ∂p1 − ∂p2

)
u2 = 2tsNκu2,(

T1 − T2 − ∂p1 + ∂p2

)
u2 = 2tNκu1.

Applying these to the generating functions results in

(T1 + T2)φnj = − (j + 1)φn−1,j+1 + (2Nκ + n + j)φn−1,j−1, (2)

(T1 − T2)φn,j = − (2Nκ− 2κ + n + j + 1)ψn−1,j + (2Nκ + n + j)ψn−1,j−2, (3)

(T1 + T2)ψnj = − (j + 1)ψn−1.j+1 + (2Nκ + n + j + 1)ψn−1,j−1, (4)

(T1 − T2)ψnj = (2Nκ + n + j + 1)φn−1,j. (5)

We will state the expressions for the harmonic polynomials before their derivations; however, it is
necessary to define two families of polynomials via three-term relations. The motivation comes later.

Definition 2. For n = 0, 1, 2, . . . define two families of polynomials by

go
0 (v) = 1, go

n+1 (v) = (v + 3n + 1) go
n (v)− n (2n− 1) go

n−1 (v) ,

ge
0 (v) = 1, ge

n+1 (v) = (v + 3n + 2) ge
n (v)− n (2n + 1) ge

n−1 (v) .

The first few polynomials are

go
1 (v) = v + 1,

go
2 (v) = v2 + 5v + 3,

go
3 (v) = v3 + 12v2 + 32v + 15,

and

ge
1 (v) = v + 2,

ge
2 (v) = v2 + 7v + 7,

ge
3 (v) = v3 + 15v2 + 53v + 36.

The three-term recurrences and Favard’s theorem imply that both
{

g0
n : n ≥ 0

}
and {ge

n : n ≥ 0}
are families of orthogonal polynomials for some (unknown) measures supported on (−∞, 0), but they
do not appear to be of Askey tableau type. There are relations between the two families, stated without
proof: ge

n (v) = go
n (v)− go

n−1 (v) and vgo
n−1 (v) = ge

n (v)− (2n− 1) ge
n−1 (v).
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Definition 3. For m = 0, 1, 2, . . . let

h−2m+1 :=
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 2)j
ψ2m+1,2j,

h−2m :=
m−1

∑
j=0

2−j
ge

j (Nκ− κ + m)

(Nκ + m + 2)j
ψ2m,2j+1,

h+2m+1 :=
m

∑
j=0

2−j
ge

j (Nκ− κ + m + 1)

(Nκ + m + 2)j
φ2m+1,2j+1,

h+2m :=
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 1)j
φ2m,2j;

each h±n is homogeneous of degree n.

First, we show that the antisymmetric polynomials h−n are harmonic. We will use the relations
(3) and (5) to produce symmetric harmonic polynomials from the antisymmetric ones. Combining
Equations (3)–(5) obtains(

(T1 + T2)
2 + (T1 − T2)

2
)

ψnj

= (j + 1) (j + 2)ψn−2,j+2 − (2Nκ + n + j + 1) (2Nκ− 2κ + n + 3j + 1)ψn−2,j

+ 2 (2Nκ + n + j + 1) (2Nκ + n− j + 1)ψn−2,j−2.

Suppose h−n = ∑
b(n−1)/2c
j=0 cn−1−2jψn,n−1−2j is harmonic; then, the coefficient of ψn−2,n−2j−1 in

2∆κh−n is

0 = 8 (Nκ + n− j + 1) (Nκ + n− j) cn+1−2j

− 4 (Nκ− κ + 2n− 1− 3j) (Nκ + n− j) cn−1−2j

+ (n− 2j− 2) (n− 2j− 1) cn−3−2j.

The range of j is derived from the inequality 0 ≤ n− 2j− 1 ≤ n− 3, which is 1 ≤ j ≤ n−1
2 . Two

sets of formulae arise depending on the parity of n. The equations are considered as recurrences.
Suppose n = 2m + 1 then the starting point is for j = m

8 (Nκ + m + 2) (Nκ + m + 1) c2 − 4 (Nκ− κ + m + 1) (Nκ + m + 1) c0 = 0,

thus
c2 =

1
2

Nκ− κ + m + 1
Nκ + m + 2

c0.

Set j = m− i to obtain

c2i+2

=
1
2
(Nκ− κ + m + 1+ 3i)

Nκ + m + 2+ i
c2i −

1
4

(2i− 1) i
(Nκ + m + 2+ i) (Nκ + m + 1+ i)

c2i−2.

To simplify the recurrences, let γo
i = 2ic2i (Nκ + m + 2)i /c0; then, γo

0 = 1 and

γo
i+1 = (Nκ− κ + m + 1+ 3i)γo

i − i (2i− 1)γo
i−1,

which agrees with the recurrence for go
i with v = Nκ− κ + m.
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Thus, the antisymmetric harmonic polynomial of degree 2m + 1 (normalized by c0 = 1) is

h−2m+1 =
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 2)j
ψ2m+1,2j.

Suppose n = 2m; then, the starting point is for j = m− 1

8 (Nκ + m + 2) (Nκ + m + 1) c3 − 4 (Nκ− κ + m + 2) (Nκ + m + 1) c1 = 0,

so that
c3 =

1
2

Nκ− κ + m + 2
Nκ + m + 2

c1.

Set j = m− 1− i to obtain

c2i+3

=
1
2
(Nκ− κ + m + 2+ 3i)

Nκ + m + 2+ i
c2i+1 −

1
4

(2i + 1) i
(Nκ + m + 2+ i) (Nκ + m + 1+ i)

c2i−1.

Similarly to the previous calculation, let γe
i := 2ic2i+1 (Nκ + m + 2)i /c1; then, γe

o = 1 and

γe
i+1 = (Nκ− κ + m + 2+ 3i)γe

i − i (2i + 1)γe
i−1.

This agrees with the recurrence for ge
i with v = Nκ− κ + m. Thus, the antisymmetric harmonic

polynomial of degree 2m (normalized by c1 = 1) is

h−2m =
m−1

∑
j=0

2−j
ge

j (Nκ− κ + m)

(Nκ + m + 2)j
ψ2m,2j+1.

Applying (T1 − T2) to a harmonic polynomial clearly produces another harmonic polynomial;
thus, by Equation (5):

1
2 (Nκ + m + 1)

(T1 − T2) h−2m+1

=
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 1)j+1
(Nκ + m + j + 1)φ2m,2j

=
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 1)j
φ2m,2j = h+2m

and

1
2 (Nκ + m + 1)

(T1 − T2) h−2m

=
m−1

∑
j=0

2−j
ge

j (Nκ− κ + m)

(Nκ + m + 1)j+1
(Nκ + m + j + 1)φ2m−1,2j+1

=
m−1

∑
j=0

2−j
ge

j (Nκ− κ + m)

(Nκ + m + 1)j
φ2m−1,2j+1 = h+2m−1.

We have proven:
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Proposition 1. The polynomials h+n and h−n are harmonic.

For use in the sequel, we find expressions for T1 ± T2 applied to h+n and h−n .

Proposition 2. The actions of T1 ± T2 on the antisymmetric polynomials h−n are

(T1 − T2) h−2m+1 = 2 (Nκ + m + 1) h+2m,

(T1 − T2) h−2m = 2 (Nκ + m + 1) h+2m−1,

(T1 + T2) h−2m+1 = (Nκ− κ + m) h−2m,

(T1 + T2) h−2m = 2 (Nκ + m + 1) h−2m−1,

and the actions on the symmetric polynomials h+n are

(T1 − T2) h+2m+1 = − (Nκ− κ + m) h−2m,

(T1 − T2) h+2m = − (Nκ− κ + m) h−2m−1,

(T1 + T2) h+2m+1 = 2 (Nκ + m + 1) h+2m,

(T1 + T2) h+2m = (Nκ− κ + m) h+2m−1.

Since the resulting polynomials are harmonic, it suffices to consider just one term in
their expansions. The coefficients of the lowest index term (φ2m−1,1, φ2m,0, ψ2m−1,0, ψ2m,1 for
h+2m−1, h+2m, h−2m−1, h−2m, respectively) on the right sides arise from at most two terms on the left.
The details are in Section 5.

3. Inner Products and Structure Constants

Let µ denote the Gaussian measure (2π)−N/2 e−|x|
2/2dx on RN , (where dx is the Lebesgue

measure), and let m denote the normalized surface measure on SN−1 :=
{

x ∈ RN : |x| = 1
}

. The weight
function is wκ (x) := ∏

1≤i<j≤N

∣∣xi − xj
∣∣2κ. The constants cκ and c

′
k are defined by cκ

∫
RN wκdµ = 1 and

c
′
κ

∫
SN−1

wκdm = 1. It is known (the Macdonald–Mehta–Selberg integral) that cκ =
N
∏
j=2

(
Γ(κ+1)
Γ(jκ+1)

)
;

this integral appeared in the probability distribution of eigenvalues of random Hermitian matrices in
Mehta’s investigations, and conjectures by Macdonald for integrals related to root systems—a proof
using an integral of Selberg’s was eventually found (see Askey [4]). There is an elegant proof applying
to all finite reflection groups due to Etingof [5]. There are three inner products for polynomials
associated with ∆κ. For polynomials f , g define

1. 〈 f , g〉κ := f (T1, . . . , TN) g (x) |x=0 (evaluated at x = 0);
2. 〈 f , g〉G := cκ

∫
RN f gwκdµ, the Gaussian inner product;

3. 〈 f , g〉S := c′κ
∫

SN−1
f gwκdm.

The details can be found in [1] (Chapter 7.2). There are important relations among them:

〈 f , g〉κ =
〈

e−∆κ/2 f , e−∆κ/2g
〉

G
(note that the series ∑j≥0

1
j!

(
−∆κ

2

)j
f terminates for any polynomial

f ) and if f is homogeneous of degree 2n, then

∫
RN

f wκdµ = 2n+N(N−1)κ/2
Γ
(

N
2 ((N− 1) κ + 1) + n

)
Γ
(

N
2

) ∫
SN−1

f wκdm.
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Specialized to f = 1, this shows that

c
′
κ = 2N(N−1)κ/2

Γ
(

N
2 ((N− 1) κ + 1)

)
Γ
(

N
2

) cκ,

and thus

cκ

∫
RN

f wκdµ = 2N(N−1)κ/2
(

N
2
((N− 1) κ + 1)

)
n

c
′
κ

∫
SN−1

f wκdm.

As a consequence, if f and g are harmonic and homogeneous of degrees m, n, respectively, then

〈 f , g〉κ = 〈 f , g〉G = 2n
(

N
2
((N− 1) κ + 1)

)
n

δmn 〈 f , g〉S . (6)

It is a fundamental result that deg f 6= deg g implies 〈 f , g〉S = 0.
To find 〈 f , f 〉κ for the harmonic polynomials h+n , h−n , we will need the values of φnj and ψnj at

x = (x1, x2, 0, . . . , 0). In terms of the generating functions,

Ψ−1 (1− rp1)
−1 = Ψ−1

∞

∑
n=0

pn
1rn = (1− rx1)

−κ−1 (1− rx2)
−κ ,

thus

w1 (x) := (1− ztx1)
−1−κ (1− ztx2)

−κ (1− z−1tx2)
−1−κ

(
1− z−1tx1

)−κ
,

w2 (x) := (1− ztx2)
−1−κ (1− ztx1)

−κ (1− z−1tx1)
−1−κ

(
1− z−1tx2

)−κ
,

and

u1 (x) =
1
2
(w1 (x) + w2 (x))

=
(1− ztx2)

(
1− z−1tx1

)
+ (1− ztx1)

(
1− z−1tx2

)
2
{(

1− 2stx1 + x2
1t2
) (

1− 2stx2 + x2
2t2
)}κ+1

=
1− (x1 + x2) st + x1x2t2{(

1− 2stx1 + x2
1t2
) (

1− 2stx2 + x2
2t2
)}κ+1 ,

u2 (x) =
(

z− 1
z

)−1

(w1 (x)−w2 (x))

=
(x1 − x2) t{(

1− 2stx1 + x2
1t2
) (

1− 2stx2 + x2
2t2
)}κ+1

because
(
z− z−1)−1 {

(1− ztx2)
(
1− z−1tx1

)
− (1− ztx1)

(
1− z−1tx2

)}
= (x1 − x2) t. Thus, φnj (x) =

coef
(
u1 (x) , tnsj) and ψnj (x) = coef

(
u2 (x) , tnsj) .

By the (1, 2) symmetry (both wκand h+n are invariant and h−n changes sign), the inner products
〈h+n , h−n 〉 = 0. Next, we compute the pairing 〈 f , f 〉κ for the harmonic polynomials. Since they are
annihilated by Tj for j > 2, these values are given by f (T1, T2, 0, . . .) f . We use the harmonicity of f ,
that is, (T1 − T2)

2 f = − (T1 + T2)
2 f . The same relation holds when f is replaced by q (T1, T2) f for any

polynomial q. Suppose deg f = n and express

f (x1, x2, 0 . . .) =
n

∑
j=0

cj (x1 + x2)
n−j (x1 − x2)

j .
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If (1, 2) f = f , then cj = 0 for odd j and

f (T1, T2, 0 . . .) f =
bn/2c

∑
j=0

c2j (T1 + T2)
n−2j (T1 − T2)

2j f

=
bn/2c

∑
j=0

c2j (−1)j (T1 + T2)
n f .

Set x1 = 1+ i, x2 = 1− i, and then

f (x) =
bn/2c

∑
j=0

c2j2n−2j (2i)2j = 2n
bn/2c

∑
j=0

c2j (−1)j ;

thus,
f (T1, T2, 0 . . .) f = 2−n f (1+ i, 1− i, 0. . .) (T1 + T2)

n f .

Proceeding similarly for (1, 2) f = − f , where cj = 0 for even j, we obtain

f (T1, T2, 0 . . .) f =
b(n−1)/2c

∑
j=0

c2j+1 (T1 + T2)
n−1−2j (T1 − T2)

2j+1 f

=
b(n−1)/2c

∑
j=0

c2j+1 (−1)j (T1 − T2) (T1 + T2)
n−1 f ,

and

f (1+ i, 1− i, 0. . .) =
b(n−1)/2c

∑
j=0

c2j+12n−1−2j (2i)2j+1 = i2n
b(n−1)/2c

∑
j=0

c2j+1 (−1)j .

Thus,
f (T1, T2, 0 . . .) f = −i2−n f (1+ i, 1− i, 0. . .) (T1 + T2)

n−1 (T1 − T2) f .

First, the symmetric case (by Proposition 2):

(T1 + T2)
2 h+2m = (T1 + T2) (Nκ− κ + m) h+2m−1 = 2 (Nκ− κ + m) (Nκ + m) h+2m−2,

and it follows by induction that

(T1 + T2)
2m h+2m = 2m (Nκ− κ + 1)m (Nκ + 1)m ,

(T1 + T2)
2m+1 h+2m+1 = 2 (Nκ + m + 1) (T1 + T2)

2m h+2m,

= 2m+1 (Nκ− κ + 1)m (Nκ + 1)m+1 .

For the antisymmetric case:

(T1 + T2)
2m−1 (T1 − T2) h−2m

= 2 (Nκ + m + 1) (T1 + T2)
2m−1 h+2m−1

= 2m+1 (Nκ + m + 1) (Nκ− κ + 1)m−1 (Nκ + 1)m

= 2m+1 (Nκ− κ + 1)m−1 (Nκ + 1)m+1 ,



Symmetry 2016, 8, 108 11 of 16

and

(T1 + T2)
2m (T1 − T2) h−2m+1

= 2 (Nκ + m + 1) (T1 + T2)
2m h+2m

= 2m+1 (Nκ + m + 1) (Nκ− κ + 1)m (Nκ + 1)m

= 2m+1 (Nκ− κ + 1)m (Nκ + 1)m+1 .

The values φnj (1+ i, 1− i, 0 . . .) and ψnj (1+ i, 1− i, 0 . . .) are found by computing the
generating functions:

u1 (1+ i, 1− i, 0 . . .) =
1− 2st + 2t2

(1− 4st + 8s2t2 − 8st3 + 4t4)
κ+1

(the term in the denominator is
(
1− 2st + 2t2)2 − 4

(
1− s2) t2) and

u2 (1+ i, 1− i, 0 . . .) =
2it

(1− 4st + 8s2t2 − 8st3 + 4t4)
κ+1 .

Definition 4. For n = 0, 1, 2, . . ., 0 ≤ j ≤
⌊ n

2
⌋

and parameters α, β, let

S (n, j; α, β)

:=
bn/2c

∑
`=0

min(`,j)

∑
i=max(0,`+j−bn/2c)

(α + 1)` (2α + β + 2`)n−2`−j+i

i! (`− i)! (j− i)! (n− 2`− 2j + 2i)!
(−1)`+j 2n−j+i.

Proposition 3. For 0 ≤ j ≤
⌊ n

2
⌋
,

φn,n−2j (1+ i, 1− i, 0, . . .) = S (n, j; κ, 1) ,

ψn+1,n−2j (1+ i, 1− i, 0, . . .) = 2iS (n, j; κ, 2) .

The proof is in Proposition 4.
Thus, 〈

h+2m, h+2m
〉

κ
= 2−2mh+2m (1+ i, 1− i, 0. . .) (T1 + T2)

2m h+2m

= 2−m
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 1)j
S (2m, m− j; κ, 1)

× (Nκ− κ + 1)m (Nκ + 1)m ,〈
h+2m+1, h+2m+1

〉
κ
= 2−2m−1h+2m+1 (1+ i, 1− i, 0. . .) (T1 + T2)

2m+1 h+2m+1

= 2−m
m

∑
j=0

2−j
ge

j (Nκ− κ + m + 1)

(Nκ + m + 2)j
S (2m + 1, m− j; κ, 1)

× (Nκ− κ + 1)m (Nκ + 1)m+1 ,
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and 〈
h−2m, h−2m

〉
κ
= −i2−2mh−2m (1+ i, 1− i, 0. . .) (T1 + T2)

2m−1 (T1 − T2) h−2m

= 2−m+2
m−1

∑
j=0

2−j
ge

j (Nκ− κ + m)

(Nκ + m + 2)j
S (2m, m− j− 1; κ, 2)

× (Nκ− κ + 1)m−1 (Nκ + 1)m+1 ,〈
h−2m+1, h−2m+1

〉
κ
= −i2−2mh−2m+1 (1+ i, 1− i, 0. . .) (T1 + T2)

2m (T1 − T2) h−2m+1

= 22−m
m

∑
j=0

2−j
go

j (Nκ− κ + m)

(Nκ + m + 2)j
S (2m + 1, m− j; κ, 2)

× (Nκ− κ + 1)m (Nκ + 1)m+1 .

The values of 〈h+n , h+n 〉S and 〈h−n , h−n 〉S can now be found by Equation (6). The expressions are
complicated due to the fact that sign-changes are not in the symmetry group.

4. The Dirac Operator and Monogenic Polynomials

We use the Clifford algebra C`N over R generated by {e1, e2, e3, . . . , eN} with relations e2
i = −1

(that is, negative signature) and eiej = −ejei for i 6= j. The type-A Dirac operator acting on polynomials
in x ∈ RN with coefficients in C`N is defined by

D f :=
N

∑
i=1

eiTi f ;

this implies D2 = −∑N
i=1 T2

i = −∆κ . A polynomial f is said to be monogenic if D f = 0. The situation
where the underlying symmetry group is ZN

2 has been investigated by De Bie, Genest and Vinet [6,7].
The planar harmonic polynomials found in the previous sections can be used to construct monogenic
polynomials. They are of the form fn = h+n + εh−n with ε ∈ C`N . By construction Ti f = 0 for
all i > 2. To fit with the formulae in Proposition 2, write e1T1 + e2T2 = 1

2 (e1 + e2) (T1 + T2) +
1
2 (e1 − e2) (T1 − T2). Even and odd n are handled separately:

(e1T1 + e2T2)
(
h+2m+1 + εh−2m+1

)
= (e1 + e2) (Nκ + m + 1) h+2m −

1
2
(e1 − e2) (Nκ − κ + m) h−2m

+ (e1 − e2) ε (Nκ + m + 1) h+2m +
1
2
(e1 + e2) ε (Nκ − κ + m) h−2m;

the coefficients of (Nκ + m + 1) h+2m and 1
2 (Nκ − κ + m) h−2m are (e1 + e2) + (e1 − e2) ε and

− (e1 − e2)+ (e1 + e2) ε, respectively. Both of these vanish for ε = e1e2. Thus, D
(
h+2m+1 + e1e2h−2m+1

)
= 0.

Since D commutes with T1 + T2, the polynomial (T1 + T2)
(
h+2m+1 + e1e2h−2m+1

)
is also monogenic,

and (T1 + T2)
(
h+2m+1 + e1e2h−2m+1

)
= 2 (Nκ + m + 1) h+2m + e1e2 (Nκ − κ + m) h−2m. This proves

D
(
h+2m+1 + e1e2h−2m+1

)
= 0,

D
(

h+2m + e1e2
Nκ − κ + m

2 (Nκ + m + 1)
h−2m

)
= 0.
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5. Derivations of Various Formulae

This section contains the derivations of some of the formulae appearing in the paper. The formulae
for φn,j and ψn,j are found by means of the Chebyshev polynomials Tk and Uk (see [2] (Section 4.1):

u1 =
1
2

∞

∑
k=0

∞

∑
m=0

tk+m pk
1 pm

2

(
zk−m + zm−k

)
=

1
2

∞

∑
n=0

tn
n

∑
m=0

pn−m
1 pm

2

(
zn−2m + z2m−n

)
=

∞

∑
n=0

tn
n

∑
m=0

pn−m
1 pm

2 cos ((n− 2m) θ)

=
∞

∑
n=0

tn
n

∑
m=0

pn−m
1 pm

2 T|n−2m| (s) ,

where z is replaced by eiθ and thus s = cos θ. The last inner sum can be written as

∑
bn/2c
m=0 εn,m

(
pn−m

1 pm
2 + pm

1 pn−m
2

)
Tn−2m (s) , where εn,m = 1 except ε2m,m = 1

2 . Then, use the expansion

Tk (s) =
bk/2c

∑
j=0

(−k)2j

j! (1− k)j
2k−1−2jsk−2j for k ≥ 1 and extract the coefficient of sn−2j to determine φn,n−2j.

Applying the same technique to u2, we obtain

u2 =
1

z− z−1

∞

∑
n=0

tn
n

∑
m=0

pn−m
1 pm

2

(
zn−2m − z2m−n

)
=

∞

∑
n=0

tn
n

∑
m=0

pn−m
1 pm

2
sin ((n− 2m) θ)

sin θ

=
∞

∑
n=0

tn
bn/2c

∑
m=0

(
pn−m

1 pm
2 − pm

1 pn−m
2

) sin ((n− 2m) θ)

sin θ

=
∞

∑
n=0

tn
bn/2c

∑
m=0

(
pn−m

1 pm
2 − pm

1 pn−m
2

)
Un−1−2m (s) .

Then, extract the coefficient of sn−1−2j by means of the expansion Uk (s) =
bk/2c

∑
j=0

(−k)2j

j! (−k)j
2k−2jsk−2j

for k > 0 to find ψn,n−1−2j.

Proof. (of Proposition 2). The formulae for (T1 − T2) h−n have already been proven. For (T1 + T2) h−n ,
substitute n = 2m and j = 1 in Formula (4) to obtain coef

(
(T1 + T2) h−2m, ψ2m−1,0

)
= (2Nκ + 2m + 2)

and thus (T1 + T2) h−2m = 2 (Nκ + m + 1) h−2m−1. Next, substitute n = 2m+ 1 and j = 0, 2 in Formula (4)
to show that

coef
(
(T1 + T2) h−2m+1, ψ2m,1

)
= −coef

(
h−2m+1, ψ2m+1,0

)
+ (2Nκ + 2m + 4) coef

(
h−2m+1, ψ2m+1,2

)
= −1 + (Nκ + m + 2)

go
1 (Nκ − κ + m)

Nκ + m + 2
= Nκ − κ + m.

For (T1 + T2) h+n , substitute n = 2m + 1, j = 1 in Formula (2) to show

coef
(
(T1 + T2) h+2m+1, φ2m,0

)
= (2Nκ + 2m + 2) coef

(
h+2m+1, φ2m+1,1

)
= 2 (Nκ + m + 1) .
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Next, substitute n = 2m, j = 0, 2 in Formula (2) to show that

coef ((T1 + T2) h=2m, φ2m−1,1)

= −coef
(
h+2m, φ2m,0

)
+ (2Nκ + 2m + 2) coef

(
h+2m, φ2m,2

)
= −1 + (Nκ + m + 1)

go
1 (Nκ − κ + m)

Nκ + m + 1
= Nκ − κ + m.

For (T1 − T2) h+n , substitute n = 2m + 1, j = 1, 3 in Formula (3) to show

coef
(
(T1 − T2) h+2m+1, ψ2m,1

)
= − (2Nκ − 2κ + 2m + 3) coef

(
h+2m+1, φ2m+1,1

)
+ (2Nκ + 2m + 4) coef

(
h+2m+1, φ2m+1,3

)
= − (2Nκ − 2κ + 2m + 3) + (Nκ + m + 2)

ge
1 (Nκ − κ + m + 1)

Nκ + m + 2
= − (Nκ − κ + m) .

Next, substitute n = 2m, j = 0, 2 in Formula (3) to show

coef
(
(T1 − T2) h+2m, ψ2m−1,0

)
= − (2Nκ − 2κ + 2m + 1) coef

(
h+2m, φ2m,0

)
+ (2Nκ + 2m + 2) coef

(
h+2m, φ2m,2

)
= − (2Nκ − 2κ + 2m + 1) + (Nκ + m + 1)

go
1 (Nκ − κ + m)

Nκ + m + 1
= − (Nκ − κ + m) .

This completes the proof of Proposition 2.

To prove Proposition 3, note that the expressions for u1 and u2/ (2it) have the form

(
1− 2st + 2t2

)−2κ−β
(

1−
4
(
1− s2) t2

(1− 2st + 2t2)
2

)−κ−1

,

with β = 1 and 2, respectively.

Proposition 4. For any α, β and |t| < 1√
2

min
{∣∣∣s±√s2 − 1

∣∣∣},

(
1− 2st + 2t2)2−β

(1− 4st + 8s2t2 − 8st3 + 4t4)
α+1 =

∞

∑
n=0

bn/2c

∑
j=0

S (n, j; α, β) tnsn−2j,

where S (n, j; α, β) is given in Definition 4.

Proof. Denote the left hand side by G (s, t; α, β). The expansion process begins with

(
1− 2st + 2t2

)−2α−β
(

1−
4
(
1− s2) t2

(1− 2st + 2t2)
2

)−α−1

=
∞

∑
`=0

(α + 1)`
`!

22`
(

1− s2
)`

t2`
(

1− 2st + 2t2
)−2α−β−2`

.



Symmetry 2016, 8, 108 15 of 16

By a variant of the generating function for Gegenbauer polynomials (see [2] (4.7.23)) with λ > 0,

(
1− 2st + 2t2

)−λ
=
(

1 + 2t2
)−λ ∞

∑
k=0

(λ)k
k!

(2st)k
(

1 + 2t2
)−k

=
∞

∑
k=0

∞

∑
m=0

(λ)k
k!

(2st)k (λ + k)m
m!

(
−2t2

)m

=
∞

∑
n=0

tn
bn/2c

∑
m=0

(λ)n−m
(n− 2m)!m!

(−1)m 2n−msn−2m,

changing the summation index k = n− 2m. Combining the expressions results in

G (s, t; α, β)

=
∞

∑
`=0

(α + 1)`
`!

(2t)2`
(

1− s2
)` ∞

∑
k=0

tk
bk/2c

∑
m=0

(2α + β + 2`)k−m
(k− 2m)!m!

(−1)m 2k−msk−2m

=
∞

∑
n=0

tn
bn/2c

∑
`=0

(α + 1)`
`!

(
1− s2

)` bn/2c−`

∑
m=0

(2α + β + 2`)n−2`−m
(n− 2`− 2m)!m!

(−1)m 2n−msn−2m−2`,

changing the summation indices to k = n− 2`. Expand
(
1− s2)` = `

∑
i=0

(`i)
(
−s2)`−i and change indices

replacing m by j− i. Then,

G (s, t; α, β) =
∞

∑
n=0

tn
bn/2c

∑
j=0

sn−2j

×
bn/2c

∑
`=0

min(`,j)

∑
i=max(0,`+j−bn/2c)

(α + 1)` (2α + β + 2`)n−2`−j+i

i! (`− i)! (j− i)! (n− 2`− 2j + 2i)!
(−1)`+j 2n−j+i.

The summation limits on i are derived from the bounds 0 ≤ i ≤ `, 0 ≤ i ≤ j, and n − 2` −
2j + 2i ≥ 0. The last bound implies i ≥ `+ j− n

2 (if n = 2m + 1, the bound is i ≥ `+ j− m and
m = bn/2c). The bounds for s, t imply that the two factors

(
1− 2xst + x2t2) for x = 1± i do not vanish

for
∣∣∣√2t

∣∣∣ < min
∣∣∣s±√s2 − 1

∣∣∣, and this is sufficient for convergence of the series (if s = 1
2
(
z + z−1) ,

then the convergence requirement is
∣∣∣√2t

∣∣∣ < min
(
|z| , |z|−1

)
). This completes the proof for the

formula for S (n, j; α, β).

Investigating harmonic polynomials in p1, p2, p3 that are 〈·, ·〉κ-orthogonal to the planar
polynomials might be a plausible topic for further research.

6. Conclusions

There is a well-developed theory of nonsymmetric and symmetric Jack polynomials associated
with the symmetric groups. They provide an orthogonal basis for the inner product 〈 f , g〉κ , described
in Section 3. However these polynomials do not have straightforward formulas for the action of ∆κ

and thus the problem of constructing harmonic polynomials appears to require a different approach.
The harmonic polynomials would be used to provide an orthogonal basis of polynomials for the
Gaussian-type inner product 〈 f , g〉G. The present paper has described the beginnings of a method for
this construction.
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