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Abstract:

 We define the operation of Petrie duality for maps, describing its general properties both geometrically and algebraically. We give a number of examples and applications, including the construction of a pair of regular maps, one orientable of genus 17, the other non-orientable of genus 52, which embed the 40-vertex cage of valency 6 and girth 5 discovered independently by Robertson and Anstee. We prove that this map (discovered by Evans) and its Petrie dual are the only regular embeddings of this graph, together with a similar result for a graph of order 40, valency 6 and girth 3 with the same automorphism group.
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1. Introduction

Anyone who has studied the theory of maps on surfaces, or that of polytopes, will be familiar with the classical duality operation D, which transposes the roles of vertices and faces. It leaves the underlying surface of a map invariant, preserving such properties as orientability, genus and boundary components, so it is very useful when studying maps on a given surface. It also preserves the automorphism group of a map, so it is even more useful when studying the most symmetric maps: these are the regular maps, those maps for which the automorphism group acts transitively (and hence regularly) on flags.

This duality operation is less useful when one studies the regular embeddings of a given graph, or family of graphs, since it may (and often does) change the graph embedded by a map. In this situation, there is a more useful but slightly less well-known duality operation, called the Petrie duality P, which has the advantage of preserving the embedded graph. The aim of this note is to define this operation, to describe a little of its history and its general properties, and to show its effectiveness by using it to study some regular graphs which have arisen in a purely graph-theoretic context, namely that of cages.

The cage of valency 6 and girth 5, that is, the smallest graph with these parameters, was described by Robertson in his thesis [1], and was subsequently independently discovered by Anstee [2], Evans [3], and O’Keefe and Wong [4]. This graph, which has 40 vertices, has been further studied by Klin, Muzychuk and Ziv-Av [5], and by Wong [6], the latter giving a proof of its uniqueness. Following [5] we will call this the Anstee–Robertson graph, and denote it by [image: there is no content].

Evans [3] showed that [image: there is no content] can be embedded in an orientable surface as a map [image: there is no content] with pentagonal faces. Our aim here is to show that this map [image: there is no content], which we will call the Evans map, is a regular map of genus 17, a double covering of the regular map [image: there is no content] of genus 9 described by Coxeter and Moser in Section 8.6 and Table 8 of [7]; we will also describe the Petrie dual [image: there is no content]′=P([image: there is no content]) of [image: there is no content], a regular embedding of [image: there is no content] with octagonal faces on a non-orientable surface of genus 52. We will prove in Theorem 2 that these are the only regular maps which embed this graph, together with a similar result (Corollary 3) for another graph [image: there is no content]† of order 40 and valency 6 (but girth 3) which has the same automorphism group as [image: there is no content]. We will also consider various quotients of [image: there is no content] and [image: there is no content]′, showing that they are isomorphic to various maps which have already appeared in the literature.



2. The Petrie Dual of a Map

One can think of a map as a road-map, with edges representing roads, and vertices representing roundabouts. One can then travel around each face by starting a journey along one edge, and consistently turning first left at each vertex. Even if the surface is non-orientable, one can carry a local orientation along the edges, so that “first left” is always well-defined. Replacing “first left” with “first right” gives the other face incident with the initial edge (in some cases these two faces may coincide).

Suppose that instead we decide to turn alternately first left and first right, following a zigzag path through the map. In a finite map, such a path must eventually close up, giving what is called a Petrie polygon. (Coxeter [8] named these polygons after his lifelong friend, the geometer John Flinders Petrie (1907–1972), who was the son of the great Egyptologist Sir William Flinders Petrie.) As in the case of faces, each edge is in general contained in two Petrie polygons, depending on whether one starts by turning left or right, but again there are examples in which the two polygons coincide.

The Petrie dual P([image: there is no content]) of a map [image: there is no content] is the map formed by retaining the vertices and edges of [image: there is no content], but removing its faces, and replacing them with new faces bounded by the Petrie polygons of [image: there is no content]. Thus the embedded graph is unchanged, but the surface may be totally different.

For example, if we regard the tetrahedron as a map [image: there is no content] on the sphere, with four triangular faces, then its Petrie polygons have length 4: one is indicated with thick red lines in the map on the left of Figure 1. Then P([image: there is no content]) is a map on the real projective plane, with three quadrilateral faces. It is, in fact, the antipodal quotient of the cube, as shown on the right in Figure 1, where antipodal points on the boundary of the disk, shown as a broken line, are identified. Note that in both cases the embedded graph is the complete graph [image: there is no content], and the automorphism group of the map is isomorphic to [image: there is no content], acting naturally on the four vertices.

Figure 1. The tetrahedron, with a Petrie polygon, and its Petrie dual.



[image: Symmetry 07 02206 g001 1024]







If we regard the cube [image: there is no content] as a map on the sphere, then its Petrie polygons, such as that indicated with thick red lines in Figure 2, have length 6. The six quadrilateral faces of [image: there is no content] are replaced in P([image: there is no content]) with four hexagonal faces; this map is shown on the right in Figure 2, where opposite sides of the outer hexagon are identified to form a torus, so that there are just two vertices at the corners. Again, the graph ([image: there is no content] in this case) and the automorphism group ([image: there is no content]×[image: there is no content]) are unchanged.

Figure 2. The cube, with a Petrie polygon, and its Petrie dual.
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The difference between the Euler characteristics of a map and its Petrie dual can be arbitrarily large. For example, let [image: there is no content] be the regular map on the sphere with two vertices joined by n edges, so that there are n digonal faces. If n is odd there is a single Petrie polygon; since P([image: there is no content]) has two vertices, n edges and one face, it has characteristic [image: there is no content] and genus [image: there is no content]; in fact, it can be formed by orientably identifying opposite sides of a [image: there is no content]-gon (see Figure 3 for the case [image: there is no content]).

Figure 3. A planar map and its Petrie dual.
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This means that Petrie duality can be very useful in creating maps of large genus from those of smaller genus, while preserving the embedded graph and the symmetry properties of the maps. For example, James [9] showed that the complete graph [image: there is no content] has a regular embedding in a non-orientable surface if and only if [image: there is no content] or 6. There are three obvious examples on the real projective plane, namely the antipodal quotients of the spherical embeddings of a circuit of length 6, the cube (see Figure 1), and the icosahedron. There is, however, a fourth example, the self-dual map N5.3 in Conder’s list of regular maps [10], which is much harder to describe or to visualise since it has genus 5. It is perhaps most easily constructed as the Petrie dual of the last of these three maps, or alternatively as the antipodal quotient of the great dodecahedron (R5.6 in [10], see Section 6.2 in [8]), an orientable map of genus 4 with 12 vertices of valency 5 and 12 pentagonal faces.



3. The Group of Map Operations

Clearly the classical vertex-face duality D and the Petrie duality P are operations of order 2, so they satisfy



[image: there is no content]



(1)




where I denotes the identity operation on maps. One might hope that the dual of the Petrie dual of a map is the same as the Petrie dual of its dual, but in fact the operations D and P do not commute: Wilson [11], building on earlier work of Coxeter in Section 8.6 of [7] and in [12], showed that they satisfy


PDP=DPD,orequivalently(DP)3=I,



(2)




so they generate a group Ω of operations isomorphic to the symmetric group [image: there is no content]. (See the slightly later paper [13] by Lins for a similar idea.) For example, by applying different operations in this group to the cube we obtain six non-isomorphic maps: there are two each on the sphere and the torus (the maps in Figure 2 and their duals), and a dual pair on a non-orientable surface of genus 4, corresponding to entry N4.2 in [10].
In addition to D and P there is a third involution in Ω, the operation [image: there is no content], giving another duality for maps. Wilson called this the “opposite” operation, since it acts by cutting the faces of a map apart along the edges, and then rejoining adjacent faces with the opposite identifications of their common edges. This preserves the set of faces of a map, but transposes vertices and Petrie polygons, so it generally changes both the surface and the embedded graph. Similarly, there are two triality operations on maps, namely the elements [image: there is no content] and [image: there is no content] of order 3 in Ω.

The group Ω thus acts as the symmetric group [image: there is no content], permuting the three sets consisting of the vertices, faces and Petrie polygons of each map. Only the sets of edges and of flags, together with the automorphism group, remain invariant. This suggests a symmetry between these three features of a map, giving them equal status. This is partially recognised in the notation [image: there is no content] introduced by Coxeter to indicate the extended type of a map: the abbreviated notation [image: there is no content] indicates that all faces are p-gons and all vertices have valency q, while the subscript r, indicating that the Petrie polygons all have length r, admits them as at least a junior member of the family.

For each subgroup [image: there is no content], one can find examples of maps [image: there is no content] which are invariant only under the operations in [image: there is no content], so that they lie in an orbit of length 6/|[image: there is no content]|: this is easy when |[image: there is no content]|=1 or 2, and not difficult for [image: there is no content]=Ω, as in the recent papers by Cunningham [14] and by Richter, Širáň and Wang [15] (the simplest example in this case is the embedding of a circuit of length 2 in the sphere), but it is quite hard when [image: there is no content] is the subgroup of order 3 generated by the triality operations, so that D([image: there is no content])≅P([image: there is no content])≇[image: there is no content]. Indeed, Wilson originally thought that no such maps could exist. He eventually produced an example in [11], and this was generalised to three infinite families by Poulton and the first author in [16], but none of the constructions is straightforward. According to Conder [17], Wilson’s example, a non-orientable map N72.9 of type [image: there is no content] and genus 72, with automorphism group [image: there is no content], is the smallest such map, while the smallest orientable example has genus 193 and type [image: there is no content], with an automorphism group of order 2048.

In the next section we will introduce a group-theoretic description of maps on surfaces, which we will then use to explain this group of operations, together with its analogues in other geometric and combinatorial categories.



4. Maps and Permutations

Let [image: there is no content] be any map. For simplicity, let us assume that the underlying surface is without boundary. (Here, this is no great loss of generality, since maps with non-empty boundary are rarely highly symmetric.) Let Φ be the set of flags [image: there is no content] of [image: there is no content], where [image: there is no content] and f are a mutually incident vertex, edge and face. For each [image: there is no content] and each [image: there is no content], there is one other flag [image: there is no content] sharing the same j-dimensional components as [image: there is no content] for each [image: there is no content]. Let us define [image: there is no content] to be the permutation of Φ transposing all such pairs [image: there is no content],[image: there is no content]. Figure 4 shows how these three permutations [image: there is no content] and [image: there is no content] act on a typical flag [image: there is no content].

Figure 4. The permutations [image: there is no content] acting on a flag [image: there is no content].
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Let us define the monodromy group of [image: there is no content] to be the subgroup



G:=⟨[image: there is no content],[image: there is no content],[image: there is no content]⟩








of the symmetric group SymΦ on Φ generated by the permutations [image: there is no content] and [image: there is no content]. By their construction, these permutations satisfy


ri2=([image: there is no content][image: there is no content])2=1,








so let us define Γ to be the abstract group with presentation (in terms of generators and relations)


[image: there is no content]



(3)




Then there is an epimorphism [image: there is no content], that is, a permutation representation of Γ on Φ, given by


[image: there is no content]↦[image: there is no content](i=0,1,2).








Conversely, given any (not necessarily transitive) permutation representation of Γ on a set Φ, one can construct a map [image: there is no content] by taking the vertices, edges and faces to correspond to the orbits on Φ of the subgroups [image: there is no content], [image: there is no content] and [image: there is no content], mutually incident when these orbits have non-empty intersection. More specifically, one can construct the barycentric subdivision B([image: there is no content]) of [image: there is no content] by taking a set of triangles in bijective correspondence with Φ, each with edges labelled [image: there is no content] and 2, and joining two triangles along their edges labelled i whenever [image: there is no content] transposes the corresponding elements of Φ; the embedded graph is the union of all the edges labelled 2 in B([image: there is no content]).

The connected components of this map [image: there is no content] correspond to the orbits of G on Φ, so we will assume that [image: there is no content] is connected, or equivalently that Γ acts transitively on Φ. In this case the stabilisers of flags form a conjugacy class of subgroups [image: there is no content], called the map subgroups corresponding to [image: there is no content]. These all have index [image: there is no content] in Γ, so finite maps correspond to subgroups of finite index in Γ. Oriented maps without boundary correspond to map subgroups contained in the even subgroup [image: there is no content] of index 2 in Γ, consisting of the words of even length in the generators [image: there is no content].

The automorphism group A=Aut[image: there is no content] of [image: there is no content] can be regarded as the group of all permutations of the flags commuting with [image: there is no content] and [image: there is no content], or equivalently as the centraliser



A=CSymΦ(G)








of G in SymΦ. A simple argument then shows that


A≅NG(G[image: there is no content])/G[image: there is no content]≅NΓ(M)/M,








where N denotes “normaliser”, and G[image: there is no content] is the subgroup of G fixing a flag [image: there is no content]. We say that the map [image: there is no content] is regular if A acts transitively on Φ. Since the centraliser of a transitive group must act semi-regularly (that is, fixed-point freely), another simple argument shows that this is equivalent to G being a regular permutation group, in which case M is a normal subgroup of Γ and


[image: there is no content]








This allows us to identify G and A as abstract groups, though as permutation groups on Φ they are distinct, and can be regarded as the right and left regular representations of the same group.
It is clear from its presentation that Γ decomposes as a free product



[image: there is no content]








where [image: there is no content] and [image: there is no content] denote a cyclic group of order 2 and a Klein four-group [image: there is no content]×[image: there is no content]. This decomposition allows various techniques from combinatorial group theory (see [18,19]) to be applied to maps, as in [20] for example.
The elements [image: there is no content] and [image: there is no content] of Γ induce rotations of flags around their incident faces and vertices, so if a map has type [image: there is no content] we have ([image: there is no content][image: there is no content])p=([image: there is no content][image: there is no content])q=1. When studying maps of a given type [image: there is no content] one can therefore add the relations



[image: there is no content]








to the presentation of Γ, giving the extended triangle group


[image: there is no content]








which plays the role of Γ for this category of maps. Within this category, the oriented maps without boundary are those whose map subgroups M are contained in the ordinary triangle group


[image: there is no content]








the subgroup of index 2 in [image: there is no content] consisting of the words of even length in the generators [image: there is no content].


5. Operations and Automorphisms

The faces of a map [image: there is no content] correspond to the orbits of the dihedral subgroup [image: there is no content] of Γ on Φ, with the boundary circuit of each face obtained by starting with an incident flag [image: there is no content] and alternately applying the permutations [image: there is no content] and [image: there is no content]. Similarly, the Petrie polygons of [image: there is no content] correspond to the orbits of the dihedral subgroup [image: there is no content] of Γ, now obtained by starting with an incident flag [image: there is no content] and alternately applying [image: there is no content][image: there is no content] and [image: there is no content]. To put this another way, if [image: there is no content] corresponds to a conjugacy class of subgroups M of Γ, then the Petrie dual P([image: there is no content]) corresponds to the conjugacy class consisting of their images under the automorphism



π:[image: there is no content]↦[image: there is no content][image: there is no content],R1↦R1,[image: there is no content]↦[image: there is no content]








of Γ transposing [image: there is no content] and [image: there is no content][image: there is no content]. In a similar way the duality operation D corresponds to the automorphism


δ:[image: there is no content]↦[image: there is no content],R1↦R1,[image: there is no content]↦[image: there is no content]








of Γ, transposing [image: there is no content] and [image: there is no content], while the group Ω generated by D and P corresponds to the automorphism group of the Klein four-group ⟨[image: there is no content],[image: there is no content]⟩, permuting the three involutions [image: there is no content],[image: there is no content] and [image: there is no content][image: there is no content] and inducing a group [image: there is no content] of automorphisms of Γ isomorphic to [image: there is no content].
In [20], Thornton and the first author used the free product structure of Γ to show that AutΓ is the semidirect product of the inner automorphism group InnΓ, isomorphic to Γ, and this group Σ. Since inner automorphisms leave conjugacy classes of map subgroups, and hence their associated maps, invariant, we have an induced action of the outer automorphism group



OutΓ=AutΓ/InnΓ≅Σ≅[image: there is no content].








This gives a group-theoretic interpretation of the six operations on the category of all maps, and also explains why there are no others.
With this machinery available, it is easy to construct regular maps which are invariant under P: take any normal subgroup N of Γ, corresponding to some regular map [image: there is no content], and define [image: there is no content] to be the map corresponding to the normal subgroup [image: there is no content]. This is the smallest map covering both [image: there is no content] and P([image: there is no content]). For example, the icosahedron is a regular map [image: there is no content] of type [image: there is no content], so P([image: there is no content]) is a regular map of type [image: there is no content] with the same automorphism group [image: there is no content]×[image: there is no content] (it is the dual of the non-orientable map N14.3 of genus 14 in [10]), and a straightforward calculation shows that the resulting self-Petrie-dual map [image: there is no content] is an orientable regular map of type [image: there is no content] and genus 961 with automorphism group ([image: there is no content]×[image: there is no content])2.

Similarly, by taking M to be intersection of the images of N under all six automorphisms in Σ we obtain an Ω-invariant orientable regular map of type [image: there is no content] and genus 187201 with automorphism group ([image: there is no content]×[image: there is no content])3, the smallest covering [image: there is no content] of the icosahedron [image: there is no content] such that [image: there is no content]≅D([image: there is no content])≅P([image: there is no content]). There are six distinct images of N, each of the form [image: there is no content] for unique normal subgroups A and B of Γ with quotients [image: there is no content] and [image: there is no content]; there are three distinct subgroups A and three distinct subgroups B which arise, each set permuted by Σ as [image: there is no content], but the images of N correspond to an orbit of Σ of length 6 on the nine ordered pairs [image: there is no content], giving six non-isomorphic images of [image: there is no content] under Ω. The three subgroups A and the three subgroups B intersect in normal subgroups with quotients [image: there is no content] and [image: there is no content] respectively, so this calculation, which has been confirmed with the aid of GAP [21], explains why [image: there is no content] has automorphism group ([image: there is no content]×[image: there is no content])3 and not, as one might expect, ([image: there is no content]×[image: there is no content])6. See [14] for generalisations to polyhedra.

As shown by the first author in [22], there are many other categories in which geometric or combinatorial objects can be identified with the permutation representations of a particular group Δ, so that OutΔ acts as a group of operations. For maps of a given valency k, for example, the permutations [image: there is no content] satisfy ([image: there is no content][image: there is no content])k=1, so we can add the relation (R1[image: there is no content])k=1 to the presentation for Γ, giving the extended triangle group [image: there is no content]. In this case, if [image: there is no content] then OutΔ≅Zk*/{±1}×[image: there is no content], with the generator of [image: there is no content] induced by π, corresponding to the Petrie operation on k-valent maps. The case [image: there is no content], for cubic maps, is of particular interest, since the corresponding group Δ is the extended modular group [image: there is no content], with OutΔ≅[image: there is no content]; the non-identity outer automorphism was discovered by Dyer [23], correcting an error in [24]. Uludaǧ and Ayral [25] give a wide range of applications and manifestations of this outer automorphism, ranging from number theory to dynamical systems.

In contrast with these finite groups of operations, James [26] has shown that for the categories of hypermaps and of oriented hypermaps, where Δ is a free product [image: there is no content]*[image: there is no content]*[image: there is no content] or a free group [image: there is no content], the groups of operations are infinite, isomorphic to [image: there is no content] and [image: there is no content] respectively. Maps can also be generalised to abstract polytopes of higher rank n, with the role of Δ played by the string Coxeter group



⟨[image: there is no content],…,Rn∣Ri2=1,([image: there is no content]Rj)2=1whenever|i−j|>1⟩








of rank n with Schläfli symbol [image: there is no content]. James [27] has shown that for polytopes of each rank [image: there is no content], the group of operations is isomorphic to the dihedral group OutΔ≅D4 of order 8, generated by involutions D and P corresponding to automorphisms


[image: there is no content]↦Rn−i(i=0,…,n)








and


Rn−2↦Rn−2Rn,[image: there is no content]↦[image: there is no content](i≠n−2).








In the rest of this paper we will focus on the regular maps which embed a particular graph, the Anstee–Robertson graph, together with their regular quotients, showing how Petrie duality can be used to understand them.



6. The Graph [image: there is no content] and Its Group G

It is easy to see that a graph of valency 6 and girth 5 must have at least 37 vertices. In fact the smallest such graph, the [image: there is no content]-cage first discovered by Robertson [1], has order 40. There are various constructions of this graph. Here we will use one based on [5] which is particularly useful for studying the automorphism group of the graph.

Let [image: there is no content] denote the 2-dimensional vector space over the field [image: there is no content] of order 5, and let T be the set of unordered triples {v1,v2,v3}⊂[image: there is no content] which span [image: there is no content] and satisfy [image: there is no content]. These conditions imply that each [image: there is no content], so [image: there is no content]. The natural action of [image: there is no content] on [image: there is no content] induces a faithful action of this group on T. This action is transitive, since each triple in T is an image of the standard triple



ω={e1=(1,0),e2=(0,1),e3=(−1,−1)}.








The stabiliser of ω in [image: there is no content] is a subgroup S≅[image: there is no content], permuting the three vectors [image: there is no content].
There is a unique subgroup [image: there is no content] of index 2 in [image: there is no content], consisting of the elements with non-zero square determinant. (Here “H” stands for “half”.) This group K contains the group



[image: there is no content]








of scalar matrices as a cyclic central subgroup of order 4, with quotient group


K/Z≅PSL2(5)≅[image: there is no content].








The six matrices in S have determinant [image: there is no content], so [image: there is no content], and hence K has two orbits on T, each of size [image: there is no content]. The orbit [image: there is no content] containing ω consists of those triples [image: there is no content] such that [image: there is no content] is a square for one (equivalently each) pair [image: there is no content]. (Here [image: there is no content] denotes the [image: there is no content] matrix formed by using the coordinates of [image: there is no content] and [image: there is no content] with respect to the standard basis [image: there is no content] as its rows.)




Lemma 1. 
The stabiliser [image: there is no content]of ω in K fixes four elements of V, and has six orbits of length 6 on the remaining elements of V.






Proof. 
The orbits of S on V must have lengths dividing [image: there is no content]. Those of length 1 are the four sets [image: there is no content] where [image: there is no content]; such triples [image: there is no content] all lie in V since [image: there is no content]. (This shows that the actions of K on its orbits V and [image: there is no content] are inequivalent, since they have different conjugacy classes of point-stabilisers; these actions differ by an outer automorphism of K, induced by conjugation in [image: there is no content].)



A non-trivial orbit of S has length 2 if and only if it contains a triple fixed by the matrix [image: there is no content] of order 3, i.e. of the form [image: there is no content] where [image: there is no content] (to avoid triples [image: there is no content] fixed by S); such a triple is in V if and only if [image: there is no content] is a non-zero square. By inspection of [image: there is no content], there are no such orbits.

Similarly, a non-trivial orbit of S has length 3 if and only if it contains a triple [image: there is no content] fixed by the matrix [image: there is no content] of order 2, with [image: there is no content]; such a triple is in V if and only if [image: there is no content] is a non-zero square. Again, there are no such orbits.

Any other orbits of S must have length 6, so there are four orbits of length 1, and six of length 6. ☐

The fixed points of S are the triples [image: there is no content] for [image: there is no content], and the orbits of length 6 are represented by the following triples τi(i=4,…,9):



{(0,1),(1,1),(4,3)},{(0,1),(1,2),(4,2)},{(0,2),(2,1),(3,2)},










{(0,2),(2,2),(3,1)},{(0,3),(2,1),(3,1)},{(0,4),(1,4),(4,2)}.








These give ten orbitals (K-orbits on [image: there is no content]) [image: there is no content]⊂[image: there is no content](i=0,…,9) for K, with (ω,τi)∈[image: there is no content]. The corresponding orbital graphs [image: there is no content]i, with vertex set V and arc set [image: there is no content], have valency 1 or 6 as [image: there is no content] or [image: there is no content]. (See [5] for background on orbital graphs.) We will concentrate on the graph [image: there is no content]:=[image: there is no content]5; this graph is undirected, corresponding to a self-paired orbital [image: there is no content], since the involution


A=4201∈K








transposes ω and its neighbour


[image: there is no content]








By listing the neighbours of the vertices ω and τ, one can check that these two adjacent vertices have no common neighbours; since K acts transitively on the edges of [image: there is no content] it follows that this graph is triangle-free. Similarly, no neighbour of ω has a common neighbour with τ, other than ω, so there are no cycles of length 4 in [image: there is no content]. However, the matrix



B=0142∈K








of order 5 sends ω to τ, giving a pentagon, i.e., a cycle [image: there is no content] of length 5 in [image: there is no content]. Thus [image: there is no content] has girth 5, so having 40 vertices it must be the unique cage of girth 5 and valency 6 (see [6]). Following [5] we will call [image: there is no content] the Anstee–Robertson graph. It is shown in Figure 5 as a Hamiltonian graph, with a pentagon (appearing here as a pentagram) drawn in thick red lines.


The action of Z partitions the triples in V into ten blocks of size 4, forming a system of imprimitivity for K. Identifying vertices within each block gives a quotient graph [image: there is no content]/Z of order 10 and valency 6, with [image: there is no content] acting arc-transitively on it. Now K/Z≅PSL2(5)≅[image: there is no content], so the action of [image: there is no content] on vertices of [image: there is no content]/Z can be identified with the unique transitive action of [image: there is no content] of degree 10, namely on unordered pairs from [image: there is no content], showing that [image: there is no content]/Z is isomorphic to the line graph [image: there is no content] of [image: there is no content]. The full automorphism group of [image: there is no content] is isomorphic to [image: there is no content], and as shown by Anstee [2] (by treating the adjacency matrix of [image: there is no content] as a [image: there is no content] block matrix) the elements of [image: there is no content] all lift back to automorphisms of [image: there is no content]. This shows that the automorphism group



G:=Aut[image: there is no content]








of [image: there is no content] has order [image: there is no content], and is an extension of a normal subgroup [image: there is no content] by [image: there is no content], with K, an extension of Z by [image: there is no content], as a subgroup of index 2. However, Anstee’s assertion that G is a direct product of Z and [image: there is no content] is incorrect (see [5]): the extension does not split.
(In a slightly different but related context, K is described in [28] as a central product [image: there is no content] of Z and [image: there is no content], amalgamating central subgroups Y of order 2. It arises as the automorphism group of a locally icosahedral graph on V formed by merging the orbitals [image: there is no content] and [image: there is no content] of K in Section 9.5 of [5].)

As a permutation group on V, G has rank 7, with suborbits of lengths [image: there is no content] and 12; in particular, the orbitals [image: there is no content] and [image: there is no content] are merged in G, as are [image: there is no content] and [image: there is no content], whereas [image: there is no content] and [image: there is no content] are unmerged.



Since G/SL2(5)≅[image: there is no content], there are three subgroups [image: there is no content] and M of index 2 in G containing [image: there is no content]. The lattice of normal subgroups of G and of [image: there is no content] is shown in Figure 6, with [image: there is no content]: short edges denote index 2 inclusions, long edges denote index 60 inclusions, with quotient group [image: there is no content].

Figure 6. The lattice of normal subgroups of G and [image: there is no content].



[image: Symmetry 07 02206 g006 1024]





In order to understand the structure of G, it is important to note that although this group is closely related to [image: there is no content], they are not isomorphic. For instance, [image: there is no content] has centre [image: there is no content], but this group is inverted in G, so that the centre of G is the subgroup Y of order 2 in Z. Similarly, both [image: there is no content] and G are extensions of K by [image: there is no content], but G is a split extension whereas [image: there is no content] is not, since there are no involutions in [image: there is no content]. (There are more details of the structure of G, based on the construction of the regular maps, at the end of the next section.)

The graph [image: there is no content] is a Cayley graph, as shown in Propositions 9.2 and 9.11 of [5], although its quotient [image: there is no content]/Z≅L([image: there is no content]) is well known not to have this property: the six subgroups of G/Z≅[image: there is no content] isomorphic to [image: there is no content] lift back to subgroups of order 80 in G, the normalisers of its six Sylow 5-subgroups; their intersections with L and with M form two conjugacy classes of six subgroups



[image: there is no content]








acting regularly on the vertices of [image: there is no content]. These are non-split double covers of [image: there is no content] with common intersection Y=R∩Z=⟨y4⟩≅[image: there is no content].


Figure 5. The Anstee-Robertson graph [image: there is no content].



[image: Symmetry 07 02206 g005 1024]





7. Construction of the Maps

There is a single conjugacy class of elements of order 5 in G, consisting of the 24 non-identity matrices in [image: there is no content] with trace 2. A simple matrix argument shows that there are two such matrices sending ω to its neighbour τ: the matrix B given earlier, together with



C=1201.








This means that the edge [image: there is no content] of [image: there is no content] is contained in two pentagons, [image: there is no content] and [image: there is no content]. By the transitivity of G on arcs, the same applies to each ordered pair of neighbours in [image: there is no content]. There are 240 such pairs, so each of the 24 elements of order 5 acts in this way on [image: there is no content] such pairs of neighbours; these lie in [image: there is no content] pentagons, forming an orbit under Z. Each of the twelve mutually inverse pairs of elements of order 5 in G thus yields 4 pentagons, so we obtain [image: there is no content] pentagons in [image: there is no content], each invariant under a Sylow 5-subgroup of G. We call these the useful pentagons: one of them is shown using thick red lines in Figure 5. Any other pentagon in [image: there is no content] must have a stabiliser in G of order dividing 2, and hence must lie in an orbit of G of length 240 or 480. (In fact, GAP shows there are 528 pentagons in [image: there is no content], the rest of them forming two G-orbits of length 240.)
The neighbours of ω in the pentagon [image: there is no content] are the vertices



ωB=τ={(0,1),(1,2),(4,2)}andωB−1={(1,0),(2,1),(2,4)}.








These are transposed by the involution


D=0110∈K,








so this pentagon is invariant under a dihedral subgroup of K of order 10, and by the arc-transitivity of K the same applies to every useful pentagon (such a subgroup is clearly visible for the red pentagon in Figure 5). The useful pentagons therefore form two orbits of size [image: there is no content] under K. The dihedral subgroup [image: there is no content] must also be the stabiliser in G of the pentagon [image: there is no content], for if this stabiliser were larger then a non-identity element of G would fix this pentagon, whereas the stabiliser in G of ω fixes only one other vertex. It follows that this pentagon lies in an orbit of G of size [image: there is no content], so G acts transitively on the useful pentagons.
Following Evans [3] we now embed [image: there is no content] in a 2-dimensional complex [image: there is no content] by attaching a pentagonal face to each useful pentagon. We need to show that [image: there is no content] is a surface. Since each edge of [image: there is no content] is contained in two useful pentagons, and is therefore incident with two faces, it is sufficient to check that a neighbourhood of each vertex is a disc. By listing the useful pentagons containing a particular vertex v (either by hand as in [3] or by using GAP) one can verify that the faces incident with v form a cycle of length 6 around v, so that a small open neighbourhood of v in [image: there is no content] is homeomorphic to a disc. The transitivity of G on vertices implies that the same is true for every vertex, so [image: there is no content] is a surface (rather than a pseudo-surface, as would be the case if the faces around v formed more than one cycle). This embedding of [image: there is no content] in [image: there is no content] is a map [image: there is no content], which we will call the Evans map. It is a uniform map of type [image: there is no content], meaning that the faces are all pentagons and the vertices all have valency 6. This map is illustrated by Evans in Figure 10 of [3].

Any automorphism of [image: there is no content] is also an automorphism of the embedded graph [image: there is no content], so we have Aut[image: there is no content]≤Aut[image: there is no content]=G. On the other hand, since the faces of [image: there is no content] are bounded by the useful pentagons, which form a set invariant under automorphisms of [image: there is no content], we have Aut[image: there is no content]≤Aut[image: there is no content]. Thus



Aut[image: there is no content]=Aut[image: there is no content]=G.








Since [image: there is no content] has 120 edges, it has [image: there is no content] flags [image: there is no content], where [image: there is no content] and f denote an incident vertex, edge and face. In any map, these are permuted semi-regularly by the automorphism group; in this case, since [image: there is no content], this action is transitive, so [image: there is no content] is a regular map (reflexible in the terminology of [7]).
This implies that G is isomorphic to the monodromy group of [image: there is no content], so it is generated by automorphisms [image: there is no content](i=0,1,2) of [image: there is no content], each changing the i-dimensional component of a particular flag [image: there is no content] while preserving the others. These correspond to the monodromy generators introduced in Section 4 (but now acting as automorphisms by left rather than right multiplication on G), so they satisfy



ri2=([image: there is no content][image: there is no content])5=([image: there is no content][image: there is no content])2=([image: there is no content][image: there is no content])6=1,








where


⟨[image: there is no content],[image: there is no content]⟩=Gv≅D6,⟨[image: there is no content],[image: there is no content]⟩=Ge≅D2≅[image: there is no content]








and


⟨[image: there is no content],[image: there is no content]⟩=Gf≅D5.








(In fact, one can take [image: there is no content]=(ω,ωτ,[image: there is no content]), [image: there is no content]=A and [image: there is no content]=D here, so that [image: there is no content][image: there is no content]=B−1, with [image: there is no content]∈G\K.) The Euler characteristic of [image: there is no content] is


[image: there is no content]








so [image: there is no content] is either orientable of genus 17 or non-orientable of genus 34. As shown by Evans [3] one can assign consistent orientations to the useful pentagons, so that [image: there is no content] is orientable. (Alternatively, one can use GAP to show that G has a subgroup [image: there is no content] of index 2, the image of [image: there is no content], with each [image: there is no content]∈G\[image: there is no content], or equivalently that the Cayley graph for G with respect to these generators is bipartite; then [image: there is no content] is the group Aut+[image: there is no content] of orientation-preserving automorphisms of [image: there is no content]. In fact, Conder’s list of regular maps [10] shows that there is no non-orientable regular map of genus 34 and type [image: there is no content], giving a third proof.)
Inspection of Conder’s list [10] shows that [image: there is no content] must be the map R17.16, the only orientable regular map of genus 17 and type [image: there is no content]. This map has Petrie length 8, so the Petrie dual [image: there is no content]′=P([image: there is no content]) is a map of type [image: there is no content]. As explained earlier, this is another regular map, also embedding the Anstee-Robertson graph [image: there is no content], with Aut[image: there is no content]′=G. It has Euler characteristic



[image: there is no content]








so inspection of [10] shows that it must be the vertex-face dual of one of the two non-orientable regular maps N52.3 and N52.4 of genus 52 and type [image: there is no content]. These have Petrie lengths 10 and 5 respectively, and since the Petrie polygons of [image: there is no content]′ correspond to the faces of [image: there is no content], it follows that [image: there is no content]′ is the dual of N52.4 (we will return to N52.3 and its dual later). The entry for N52.4 in [10] includes the comment “mV = 2”, meaning that each pair of adjacent vertices have two edges in common; equivalently, each pair of adjacent faces of [image: there is no content]′, or of adjacent Petrie polygons of [image: there is no content], also share two common edges.
In addition to K, there are two other subgroups of index 2 in G, denoted by L and M in [5], of ranks 9 and 11 on V; any two of these intersect in [image: there is no content]. The stabiliser [image: there is no content] of ω, a cyclic group of order 6, has the following orbits on V: [image: there is no content], an orbit of length 6 consisting of the neighbours of ω, five orbits of length 6 consisting of the vertices at distance 2 from ω, and orbits of length 1 and 2 on the three vertices at distance 3 from ω. Thus [image: there is no content] has rank 9 on Ω, so one can identify this subgroup with L, rather than M.

If H denotes either L or M then [image: there is no content] and [image: there is no content], the unique subgroup of order 2 in Z, so H/Y≅G/Z≅[image: there is no content]. Thus H is a double cover of [image: there is no content]. This cannot be a direct product, for if it were then [image: there is no content] would have a subgroup of index 2, whereas it is perfect. Thus H must be isomorphic to one of the two nontrivial double covers [image: there is no content] of [image: there is no content]. Now [image: there is no content] has a unique involution (generating the centre), whereas [image: there is no content] has non-central involutions. The half-turn [image: there is no content][image: there is no content] lies in L and the reflection [image: there is no content] lies in M: neither can be in K since [image: there is no content],[image: there is no content]∈K and G=⟨[image: there is no content],[image: there is no content],[image: there is no content]⟩. It follows that each [image: there is no content]. Thus G is a product of [image: there is no content] and H(=LorM)≅[image: there is no content]^=2.S5+ amalgamating a common subgroup SL2(5)=[image: there is no content]^=2.[image: there is no content] of index 2 in each.

Our investigations lead to the following uniqueness theorem:


Theorem 2. 
The only regular maps embedding the Anstee-Robertson graph [image: there is no content]are the orientable Evans map [image: there is no content]of type [image: there is no content]8and its Petrie dual, the non-orientable map [image: there is no content]′of type [image: there is no content]5. In Conder’s lists these are the maps R17.16 and the dual of N52.4.




Proof. 
Since [image: there is no content] has automorphism group G of order twice the number of arcs, any regular map which embeds [image: there is no content] must also have automorphism group G. Now the 6-valent regular maps with automorphism group G correspond to the orbits of AutG on generating triples [image: there is no content],[image: there is no content],[image: there is no content] of G satisfying



ri2=([image: there is no content][image: there is no content])2=([image: there is no content][image: there is no content])6=1.








A search with GAP shows that there are four such orbits: for one pair of orbits the elements [image: there is no content][image: there is no content] and [image: there is no content][image: there is no content][image: there is no content] have orders 5 and 8 or vice versa, so these orbits correspond to the maps [image: there is no content] and [image: there is no content]′ of types [image: there is no content]8 and [image: there is no content]5. For the other two orbits these elements have orders 10 and 8 or vice versa, giving a Petrie dual pair of maps [image: there is no content] and [image: there is no content]′ of types [image: there is no content] and [image: there is no content]10. However, the graph [image: there is no content]† embedded by [image: there is no content] and [image: there is no content]′ is not isomorphic to [image: there is no content], since reconstructing it from the corresponding generators [image: there is no content] shows that [image: there is no content]† has girth 3 rather than 5. □


This graph [image: there is no content]† is, in fact, the graph [image: there is no content]9 corresponding to the orbital [image: there is no content] for G defined earlier. (The notation [image: there is no content]† commemorates a splendid performance of Verdi’s Macbeth, seen by one of the authors while writing this paper.) By inspection of [10], the maps [image: there is no content] and [image: there is no content]′ are the duals of the orientable map R29.12 and the non-orientable map N52.3. As an immediate corollary to the above proof, we have the following:


Corollary 3. 
The only regular maps embedding the graph [image: there is no content]†are the dual of the orientable map R29.12, of type [image: there is no content], and its Petrie dual of type [image: there is no content]10, the dual of the non-orientable map N52.3.




Remark 
The four orbits on generating triples discussed above all have length |AutG|=960: the inner automorphism group InnG≅G/Y has order 240, and the outer automorphism group OutG=AutG/InnG is a Klein four-group.





8. Quotient Maps

In this section we will describe the quotient maps of [image: there is no content] and [image: there is no content]′ by the groups Y and Z. Since these are normal subgroups of G, the corresponding quotient maps are all regular.

Let Y denote the unique subgroup of order 2 in Z. Then Y is a characteristic subgroup of Z, and Z is normal in G, so Y is a normal (in fact central) subgroup of G. The central involution generating Y is a half-turn around the centres of the Petrie polygons of [image: there is no content], or equivalently around the face-centres of [image: there is no content]′, transposing pairs of edges separating common pairs of Petrie polygons or faces. In fact Y is the kernel of the action of G on the Petrie polygons of [image: there is no content], or equivalently the faces of [image: there is no content]′. The quotient maps [image: there is no content]/Y and [image: there is no content]′/Y are regular maps with automorphism groups of order 240 isomorphic to



G/Y≅PGL2(5)×[image: there is no content]≅[image: there is no content]×[image: there is no content],








while [image: there is no content]/Z and [image: there is no content]′/Z are regular maps with automorphism groups of order 120 isomorphic to


G/Z≅PGL2(5)≅[image: there is no content].








We will now describe these maps, showing that some of them are well-known objects.
Since Y has trivial intersections with the stabilisers in G of the vertices, edges and faces of [image: there is no content], the covering [image: there is no content]→[image: there is no content]/Y is unbranched, so [image: there is no content]/Y has the same type [image: there is no content] as [image: there is no content] and has Euler characteristic [image: there is no content]. Since Y is contained in the commutator subgroup [image: there is no content] of G it preserves the orientation of [image: there is no content], so [image: there is no content]/Y is orientable, of genus 9. Inspection of [10] shows that it is R9.16, with Petrie length 4 (the map R9.15, with the same genus and type, is excluded since its Petrie length 10 does not divide that of [image: there is no content]). In Table 8 of [7] it is shown that the regular map [image: there is no content], the largest map of type [image: there is no content] with Petrie length 4, has an automorphism group of order 240; all other regular maps with this type and Petrie length are quotients of it, so comparing orders gives [image: there is no content]/Y≅[image: there is no content]. (One can construct [image: there is no content] by applying Wilson’s “opposite” operation [image: there is no content] (see Section 3) to the median map [image: there is no content] of the great dodecahedron, a map of type [image: there is no content] and genus 4.)

Now [image: there is no content]′/Y must be the Petrie dual [image: there is no content] of [image: there is no content]/Y=[image: there is no content], that is, the largest regular map of type [image: there is no content] with Petrie length 5. This is non-orientable, of genus 12, isomorphic to N12.1 in [10]. The covering [image: there is no content]′→[image: there is no content]′/Y is branched at the face-centres because [image: there is no content] for each face f of [image: there is no content]′.

Since Z contains Y the maps [image: there is no content]/Z and [image: there is no content]′/Z are quotients of [image: there is no content]/Y and [image: there is no content]′/Y, obtained by factoring out the central subgroups [image: there is no content] in their automorphism groups [image: there is no content]. The coverings [image: there is no content]/Y→[image: there is no content]/Z and [image: there is no content]′/Y→[image: there is no content]′/Z are both unbranched, so [image: there is no content]/Z and [image: there is no content]′/Z have Euler characteristic [image: there is no content] and [image: there is no content]. Inspection of [10] shows that [image: there is no content]/Z is the non-orientable map N10.6 of genus 10 and type [image: there is no content] (one of the dodecahedra considered by Brahana and Coble in [29], see Section 8.6 of [7]), while [image: there is no content]′/Z is its Petrie dual, the non-orientable map N7.1 of genus 7 and type [image: there is no content]. These are the two regular embeddings of the line graph [image: there is no content] of [image: there is no content], see Theorem 10 (c) of [30]. In fact, by Corollary 11 of [30], the only regular embeddings of line graphs L([image: there is no content]) of complete graphs [image: there is no content](n≥3) are these, together with the dihedron [image: there is no content] and its Petrie dual (the antipodal quotient of the dihedron [image: there is no content]) for [image: there is no content], and the octahedron [image: there is no content] and its Petrie dual (a non-orientable map of type [image: there is no content] and genus 4, the dual of N4.2 in [10]) for [image: there is no content].



9. Maps and Triangle Groups

As explained in Section 4, maps on surfaces can be interpreted in terms of subgroups of triangle groups, so here we will briefly outline how this applies to the maps constructed earlier. As a regular map of type [image: there is no content], [image: there is no content] corresponds to a normal subgroup M≅π1[image: there is no content] of the extended triangle group [image: there is no content], with



Δ/M≅Aut[image: there is no content]≅G.








Since [image: there is no content] is orientable, M is contained in the even subgroup of Δ, the ordinary triangle group [image: there is no content]. Now the abelianisations [image: there is no content] and [image: there is no content] of Δ and G are isomorphic (both are Klein four-groups), so M is contained in the commutator subgroup [image: there is no content] of Δ. This is the ordinary triangle group [image: there is no content], and the normal inclusion of M in [image: there is no content] (a subgroup of index 2 in Δ) corresponds to a regular hypermap [image: there is no content] of type [image: there is no content] and genus 17 on [image: there is no content] (a dual of RPH17.7 in [10]). The Walsh bipartite map [31] of [image: there is no content], a map of type [image: there is no content] with a 2-colouring of its vertices, is just the dual map D([image: there is no content]) of [image: there is no content]. This shows that [image: there is no content] is 2-face colourable, giving a partition of the 48 useful pentagons into two sets of 24. The quotient maps [image: there is no content]/Y and [image: there is no content]/Z correspond to normal subgroups of Δ containing M with index 2 and 4 respectively, with quotient groups isomorphic to [image: there is no content] and [image: there is no content]. Since Y and Z have trivial intersections with the stabilisers of vertices, edges and faces in G, these coverings are unbranched, and the quotient maps have the same type [image: there is no content] as [image: there is no content]. However, the element [image: there is no content][image: there is no content][image: there is no content] of order 8 has order 4 modulo Y and Z, so the Petrie length 8 of [image: there is no content] is reduced to 4 for [image: there is no content]/Y and [image: there is no content]/Z.
There is a parallel description of the sequence [image: there is no content]′→[image: there is no content]′/Y→[image: there is no content]′/Z of maps and coverings in terms of normal subgroups of the extended triangle group [image: there is no content], with the same quotient groups as above. The only significant differences are that these three maps are non-orientable, so that the corresponding normal subgroups are not contained in [image: there is no content], and that the first covering is branched over the faces, so that the type of the maps changes from [image: there is no content] to [image: there is no content].






Acknowledgments

We are very grateful to Misha Klin for suggesting the study of the maps associated with the Anstee–Robertson graph, and for his characteristic generosity with advice and encouragement. We also thank Marston Conder and Jozef Širáň for very useful advice about maps and cages, and the referees for their very helpful comments. We are grateful for support from the project Mobility-enhancing research, science and education at the Matej Bel University, ITMS code: 26110230082, under the Operational Program Education cofinanced by the European Social Fund.



Author Contributions

The text was written by both authors. Gareth Jones drew the diagrams, and Matan Ziv-Av carried out the GAP computations.



Conflicts of Interest

The authors declare no conflict of interest.



References and Notes


	1. 
Robertson, N. Graphs Minimal under Girth, Valency and Connectivity Constraints. Ph.D. Thesis, University of Waterloo, Ontario, Canada, 1969. [Google Scholar]

	2. 
Anstee, R.P. An analogue of group divisible designs for Moore graphs. J. Combin. Theory Ser. B 1981, 30, 11–20. [Google Scholar] [CrossRef]

	3. 
Evans, C.W. Net structure and cages. Discret. Math. 1979, 27, 193–204. [Google Scholar] [CrossRef]

	4. 
O’Keefe, M.; Wong, P.K. A smallest graph of girth 5 and valency 6. J. Combin. Theory Ser. B 1979, 26, 145–149. [Google Scholar] [CrossRef]

	5. 
Klin, M.; Muzychuk, M.; Ziv-Av, M. Higmanian rank-5 association schemes on 40 points. Mich. Math. J. 2009, 58, 255–284. [Google Scholar]

	6. 
Wong, P.K. On the uniqueness of the smallest graph of girth 5 and valency 6. J. Graph Theory 1979, 3, 407–409. [Google Scholar] [CrossRef]

	7. 
Coxeter, H.S.M.; Moser, W.O.J. Generators and Relations for Discrete Groups, 4th ed.; Springer-Verlag: Berlin, Germany, 1980. [Google Scholar]

	8. 
Coxeter, H.S.M. Regular Polytopes, 3rd ed.; Dover Publications: New York, NY, USA, 1973. [Google Scholar]

	9. 
James, L.D. Imbeddings of the complete graph. Ars Combin. 1983, 16, 57–72. [Google Scholar]

	10. 
Conder, M.D.E. Regular maps and hypermaps of Euler characteristic −1 to −200. J. Combin. Theory Ser. B 2009, 99, 455–459. [Google Scholar] Associated lists of computational data available at http:// www.math.auckland.ac.nz/conder/hypermaps.html.

	11. 
Wilson, S.E. Operators over regular maps. Pac. J. Math. 1979, 81, 559–568. [Google Scholar] [CrossRef]

	12. 
Coxeter, H.S.M. The abstract groups Gm,n,p. Trans. Amer. Math. Soc. 1939, 45, 73–150. [Google Scholar]

	13. 
Lins, S. Graph-encoded maps. J. Combin. Theory Ser. B 1982, 32, 171–181. [Google Scholar] [CrossRef]

	14. 
Cunningham, G. Self-dual, self-Petrie covers of regular polyhedra. Symmetry 2012, 4, 208–218. [Google Scholar] [CrossRef]

	15. 
Richter, R.B.; Širáň, J.; Wang, Y. Self-dual and self-Petrie-dual regular maps. J. Graph Theory 2012, 69, 152–159. [Google Scholar] [CrossRef]

	16. 
Jones, G.A.; Poulton, A. Maps admitting trialities but not dualities. Eur. J. Combin. 2010, 31, 1805–1818. [Google Scholar] [CrossRef]

	17. 
Conder, M.D.E.; The University of Auckland, Auckland, NZ. Private communication by email, 9 September 2009.

	18. 
Lyndon, R.C.; Schupp, P.E. Combinatorial Group Theory; Springer-Verlag: Berlin, Germany, 1977. [Google Scholar]

	19. 
Magnus, W.; Karrass, A.; Solitar, D. Combinatorial Group Theory; Dover Publications: New York, NY, USA, 1976. [Google Scholar]

	20. 
Jones, G.A.; Thornton, J.S. Operations on maps, and outer automorphisms. J. Combin. Theory Ser. B 1983, 35, 93–103. [Google Scholar] [CrossRef]

	21. 
Metadata: GAP—Groups, Algorithms and Programming, version 4.7.8; The GAP Group— Mathematical Institute: St. Andrews, UK, 2015.

	22. 
Jones, G.A. Combinatorial categories and permutation groups. 2013; arXiv:1309.6119. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1309.6119 (accessed on 16 December 2015). [Google Scholar]

	23. 
Dyer, J.L. Automorphism sequences of integer unimodular groups. Ill. J. Math. 1978, 22, 1–30. [Google Scholar]

	24. 
Hua, L.K.; Reiner, I. Automorphisms of the projective unimodular group. Trans. Amer. Math. Soc. 1952, 72, 467–473. [Google Scholar] [CrossRef]

	25. 
Uludaǧ, A.M.; Ayral, H. Jimm, a fundamental involution. 2015; arXiv:1501.03787. arXiv.org e-Print archive. Available online: http://arxiv.org/abs/1501.03787 (accessed on 16 December 2015). [Google Scholar]

	26. 
James, L.D. Operations on hypermaps, and outer automorphisms. Eur. J. Combin. 1988, 9, 551–560. [Google Scholar] [CrossRef]

	27. 
James, L.D. Complexes and Coxeter groups—Operations and outer automorphisms. J. Algebra 1988, 113, 339–345. [Google Scholar] [CrossRef]

	28. 
Blokhuis, A.; Brouwer, A.E.; Buset, D.; Cohen, A.M. The locally icosahedral graphs. In Finite Geometries (Winnipeg, Man., 1984); Dekker: New York, NY, USA, 1985; pp. 19–22. [Google Scholar]

	29. 
Brahana, H.R.; Coble, A.P. Maps on the twelve countries with five sides with a group of order 120 containing an icosahedral subgroup. Amer. J. Math. 1926, 48, 1–20. [Google Scholar] [CrossRef]

	30. 
Jones, G.A. Automorphisms and regular embeddings of merged Johnson graphs. Eur. J. Combin. 2005, 26, 417–435. [Google Scholar] [CrossRef]

	31. 
Walsh, T.R.S. Hypermaps versus bipartite maps. J. Combin. Theory Ser. B 1975, 18, 155–163. [Google Scholar] [CrossRef]





© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).







media/file4.png
O s
AN <~

\ 7
=<





nav.xhtml


  symmetry-07-02206


  
    		
      symmetry-07-02206
    


  




  





media/file5.png





media/file3.png





media/file0.png





media/file1.png





media/file2.png





