

Symmetry 2015, 7, 1945-1980; doi:10.3390/sym7041945

symmetry
ISSN 2073-8994

www.mdpi.com/journal/symmetry

Article

New Security Development and Trends to Secure the SCADA

Sensors Automated Transmission during Critical Sessions

Aamir Shahzad 1, Malrey Lee 1,*, Hyung Doo Kim 2,*, Seon-mi Woo 3 and Naixue Xiong 4

1 Center for Advanced Image and Information Technology, School of Electronics & Information

Engineering, Chon Buk National University, 664-14, 1Ga, Deokjin-Dong, Jeonju,

Chon Buk 561-756, Korea; E-Mail: aamirshahzad@gmail.com or malikaamirawan2@hotmail.com
2 Department of Fire Service Administration, Wonkwang University, Iksan 570-749, Korea
3 JINI Co. Ltd., B-102, Technobill, 109 banryong-load, Deokjin Gu, JeonJu si, Jeollabuk-do 561-756,

Korea, E-Mail: smwoo@jbnu.ac.kr
4 School of Computer Science, Colorado Technical University, CO 80907, USA;

E-Mail: xiongnaixue@gmail.com

* Authors to whom correspondence should be addressed; E-Mails: mrlee@chonbuk.ac.kr (M.L.)

khd4064@naver.com (H.D.K.); Tel.: +82-10-3611-8004 (M.L.); +82-63-270-3993 (H.D.K.).

Academic Editor: Sergei Odintsov

Received: 30 May 2015 / Accepted: 13 October 2015 / Published: 23 October 2015

Abstract: Modern technology enhancements have been used worldwide to fulfill the

requirements of the industrial sector, especially in supervisory control and data acquisition

(SCADA) systems as a part of industrial control systems (ICS). SCADA systems have

gained popularity in industrial automations due to technology enhancements and

connectivity with modern computer networks and/or protocols. The procurement of new

technologies has made SCADA systems important and helpful to processing in oil lines,

water treatment plants, and electricity generation and control stations. On the other hand,

these systems have vulnerabilities like other traditional computer networks (or systems),

especially when interconnected with open platforms. Many international organizations and

researchers have proposed and deployed solutions for SCADA security enhancement, but

most of these have been based on node-to-node security, without emphasizing critical

sessions that are linked directly with industrial processing and automation. This study

concerns SCADA security measures related to critical processing with specified sessions of

automated polling, analyzing cryptography mechanisms and deploying the appropriate

explicit inclusive security solution in a distributed network protocol version 3 (DNP3) stack,

as part of a SCADA system. The bytes flow through the DNP3 stack with security

OPEN ACCESS

Symmetry 2015, 7 1946

computational bytes within specified critical intervals defined for polling. We took critical

processing knowledge into account when designing a SCADA/DNP3 testbed and deploying

a cryptography solution that did not affect communications.

Keywords: supervisory control and data acquisition; distributed network protocol; dynamic

cryptography buffer; integrity and event polling

1. Introduction

Supervisory control and data acquisition (SCADA) systems have been playing crucial roles in

industrial automation and control. SCADA systems contribute to several processes including industrial

production, refining, filtration, manufacturing and electric or power generation in industries such as

automotive; heating, ventilating, and air conditioning (HVAC) and heat recovery (HR) ventilation/energy

recovery ventilators (ERVs); oil and gas; water pumping, treatments, and distribution; aircraft and trains;

and electricity generation, transmission and distribution [1–4]. The SCADA systems employ several

protocols such as Modbus, IEC protocol series, Fieldbus, Profibus, Omnibus, DNP3, and Conitel, and

each of these protocols has been designed for a specific industry, although a few of them are employed

in multiple industries or industrial processes [1,2,4]. Figure 1 graphically depicts the general architecture

of a SCADA system with its major components.

Figure 1. Supervisory control and data acquisition (SCADA) system architecture.

This study focuses on DNP3 and its open interconnectivity, and the major vulnerabilities that have

been arising in SCADA/DNP3 communication. The DNP3 is an important SCADA communication

protocol that is employed and designed for electric and water industries. In the SCADA system, DNP3

performs several operations followed by functions (codes), such as transfer functions, control functions,

freeze functions and time synchronization functions, and file transferring functions [5]. Now-a-days,

DNP3 is employed to interconnect field devices or remote sensors, located in various geographical

locations and controlled from central controller(s) [6–8]. With the acquisition of modern technologies

and connectivity over the Internet, SCADA/DNP3 communication has been vulnerable to cyber security

threats which can be tremendously harmful to industrial systems [7–9].

SCADA/DNP3 uses the concept of polling, which is usually classified into two polling sections:

integrity polling and event polling. In integrity polling, configured field devices (or remote stations)

Symmetry 2015, 7 1947

respond to all static points, which have been observed most recently; while event polling is designated

for significant changes occurring within the system or during the last integrity poll and report by

exception [2,5]. The time factor has been considered as the most important concern during SCADA

critical processing or polling. During polling, the session has been specified between network nodes, in

which bytes are transmitted. Each node in the SCADA network should send/receive the bytes

at a specified time interval. Therefore, a specified time is crucial for each node during SCADA

transmission [6,10]. Several security designs for that type of transmission are inappropriate due to time

limitations [6,10–12].

Security is an important aspect for all types of networks or systems in the arena of computer science

and information technology. Several security mechanisms, including security pattern approaches,

TLS/SSL, Internet Protocol Security (IPSec), Secure Shell (SSH), hardware/software firewalls, demilitarized

zones (DMZs), authentication protocols, and cryptography solutions, have been designed and deployed

to protect industrial communication against vulnerabilities and potential attacks [6,7,13–15]. Among

these security approaches, cryptography based mechanisms are suggested as the best security

approaches, due to their independence and implementation evaluation [8,16–19]. SCADA security via

cryptography mechanisms has been considered as a vital approach during transmission [19–22]. On the

other hand, cryptography based approaches are deemed to be complex and heavy computational

approaches during security design and development—especially, in industrial processing [8,10,19,22–25].

The proposed study has analyzed the cryptography approaches, and then, employed the inclusive

security solution in DNP3 which significantly increased the security of the SCADA system. The main

contribution of this study is twofold:

(i) The SCADA/DNP3 polling scenario called automated polling is addressed and, according to

communication requirements, security is deployed to secure the sensitive information. The sensitive

information would be secured before travelling to non-proprietary protocols over the Internet.

(ii) To achieve security, the DNP3 stack is designed with an open source library, the original stack

bytes are controlled and manipulated by new 56-byte dynamic development called a dynamic

cryptography buffer (DCB), without changing the original protocol design.

The rest of the research paper is organized as follows. The DNP3 and its layers are explained in

Section 2. We discuss the problem statement and research objectives in Section 3. In Section 4, the

detailed DNP3 model is designed with security development and formal proofs are employed for

validation purposes. DCB is deployed in Section 5. The testbed is setup in Section 6 and protocol bytes

are flowed in Section 7. Measurements are observed and discussed in Section 8. Section 9 conducts a

detailed survey of existing studies and Section 10 concludes our proposed research and future trends.

2. DNP3

In the SCADA system, DNP3 is the most demanding telecommunications standard based protocol,

which provides communication facilities between main or supervisory stations, remote terminal units,

and other intelligent equipment, in water and electric companies [1]. The DNP3 protocol was designed

as a proprietary protocol and provides interoperability between various types of equipment. Seventy

percent of DNP3 has been employed in North America, and the remaining 30% in the rest of the world,

Symmetry 2015, 7 1948

notably South America, Africa, Australia, Asia and Europe [1,2]. Due to growing demands, DNP3 is

now also connected with the Internet, and sends/receives the information that may be available

geographically at remote sites through connected field devices. In addition, the non-proprietary protocols,

such as TCP/IP (Transmission Control Protocol/Internet Protocol) and User Datagram Protocol (UDP),

are used. These protocols provide interconnectivity with DNP3 over the Internet. Therefore, this protocol

is also defined as an open or non-proprietary protocol in SCADA systems [1–3,6–11].

The enhanced performance architecture (EPA) model is a three-layer model, defined by the

International Electrotechnical Commission (IEC) and the DNP3 design is also based on this EPA model.

The EPA model is based on the Open Systems Interconnection (OSI) model that is a seven-layer model,

and contains an application layer, data link layer and physical layer. DNP3 also uses these three layers,

plus an additional layer called the pseudo-transport layer which performance the limited functions of

transport layer and network layer of OSI model [1,2].

In DNP3, the application layer is a top layer that is designed to take the information from the upper

layer (or user application layer). The user layer could form a human machine interface (HMI) or other

SCADA/DNP3 supported software. Information passes from the user application layer to the application

layer of DNP3. Here, variable sized data is managed in fixed sized blocks (or manageable sized data)

and the addition of the application header forms fragments. The number of blocks or application service

data units (ASDUs) is not limited in a fragment, but the size of fragment or application protocol data

unit (APDU) is limited to 2048 bytes, which is also specified by original DNP3 documentation. The

send or receive message is also specified at an application layer by means of the application protocol

control information (APCI) or header fields. Sending APCI contains two bytes of information. This

information includes application control (AC) and function code (FC) while the response APCI adds an

additional field of two bytes called internal indication (IIN). The DNP3 protocol message contains

various function codes that would be performed by the sub-controller, and would reply to the main

controller [5]. Table 1 shows the number of application layer function codes that are performed in the

SCADA/DNP3 system.

Table 1. Application layer function codes [3].

Function Type Function Code Function Perform

Request Function Codes

Transfer Function

0 Confirm

1 Read

2 Write

Control Function 3–6 –

Freeze Function 7–12 –

Application Control Function 13–18 –

Configuration Function 19–22 –

Time Synchronization 23 –

Reserved 24–128 –

Response Function Codes

Response Function

0 Confirm

129 Read

130 Write

Symmetry 2015, 7 1949

In the pseudo-transport layer, APDU bytes are assembled as a transport service data unit (TSDU) and

TSDU is disassembled into fixed sized data blocks, except in the case of the last block of 56 bytes, when

the maximum bytes are received from the application layer or 2048 bytes of APDU. The transport layer

adds one byte of header with each data block, and transport protocol data unit (TPDU) or a segment is

formed. Each TPDU size is limited to a maximum of 250 bytes, which would be further employed in the

link layer frame. The data link layer assembles each upcoming TPDU as a link service data unit (LSDU),

and adds a header field of 10 bytes, which is also called link protocol control information (LPCI). A link

protocol data unit (LPDU) (or frame) is formed by adding the LPCI with an LSDU block. In the data

link layer, source and destination addresses are defined and a 32 bytes cyclic redundancy checker (CRC)

code is employed to detect the transmission errors [1–3]. More detail of DNP3 and its related layer fields

is illustrated in Figure 2.

Figure 2. DNP3 protocol stack and related fields [3].

The link layer frames are then transmitted to the physical layer. As defined, DNP3 is a non-proprietary

protocol. Therefore, the frames are directly encapsulated into TCP/IP protocols which provide a pathway

to DNP3 frames to travel over the Internet. At the receiver side, frames are reassembled into TPDU

(blocks), by a stripped of link header or LPCI. After this, the transport header or TPCI is also removed

from each TPDU or segment, and then, the TSDU blocks are reformed. Each TSDU block will assemble

as APDU or an application layer fragment. The header bytes are verified and removed, and the ASDU

blocks are reformed and these blocks would be used at the user application layer [3]. Figure 3 shows the

SCADA/DNP3 stack and its connectivity with TCP/IP protocols.

Symmetry 2015, 7 1950

Figure 3. SCADA/DNP3 connectivity with TCP/IP protocols.

3. Problem Statement

3.1. Background Study

In the initial structure of DNP3, there is no security mechanism that can protect sensitive information

from security threats [5,7,21,23]. Due to the evolution of technology, the advanced version of DNP3

provides interconnectivity over the Internet; the information travels through non-proprietary protocols,

which reside below DNP3 [5,19]. Due to open connectivity, DNP3 has been vulnerable to Internet

attacks; most DNP3 devices are configured, and communicate without any proper authentication

mechanism or have little protection in the SCADA network against vulnerabilities [23–30]. Cryptography

based security mechanisms [31] have been proposed for DNP3 by DNP3 users group, in which

symmetric and asymmetric methods are defined and a detailed description of challenge-response

technique is made to examine the security goals (or parameters), such as authentication and integrity, and

to protect the transmission against attacks, such as replay, spoofing, and modification attacks [8,32,33], at

the application layer. However, many limitations are accounted for in DNP3 security design and

development, and most of the work is in initial phases or still in the development phases.

DNP3 provides three main communication facilities (or modes) to connect the field devices in

SCADA networks including unicasting (or master or outstation mode), broadcasting mode and unsolicited

mode. A unicasting mode is also designated for a peer-to-peer mode, in which the main controller

requests information, and the sub-controller will reply. In broadcasting, the main controller broadcasts

the information to all connected sub-controllers in the SCADA/DNP3 network(s). When necessary,

sub-controllers are authorized to send unsolicited responses to the main controller. The message may be

an alternative message to the main controller. In communication modes, DNP3 used TCP/IP protocols

to communicate over the Internet, as well as the available security protocols (i.e., TLS/SSL and IPSec)

to protect against unauthorized threats. There is no proper authentication mechanism in DNP3.

Therefore, DNP3 frames are encapsulated in other security protocols including TLS/SSL and IPSec. A

survey has been conducted on SCADA/DNP3 vulnerabilities [24–27,31], and mechanisms [32–34], such

as anomaly detection and attacks detection, are used to detect the attacks, such as flooding attacks,

DoSattack, spoofing, data modification, data reply, and man-in-the-middle attack, in SCADA/DNP3

communication [12,33,35,36]. A number of attacks is investigated [20,33,35–40] by employing attack

scenarios in the SCADA/DNP3 system, and the existence and potential influence of attacks are also

Symmetry 2015, 7 1951

measured. Another study [27] incorporated 28 potential attacks in the SCADA/DNP3 system due to

protocol deficiencies.

3.2. Study Motivation

The existing work [6,7,15–21] of SCADA security has employed the end-to-end developments to

secure the communication of SCADA systems. A number of limitations and dependencies are found

during end-to-end developments [8,19,27]. More specifically, the DNP3 frames are encapsulated in other

lower layer protocols, such as SSH, IPSec, and SSL/TLS [23,41], which protect the sensitive information

of the SCADA/DNP3 system against Internet vulnerabilities and attacks [20,39,42–47]. In conclusion,

DNP3 relies on other open protocols, such as TCP/IP and UDP, in terms of transmission over the Internet

and on protocols (such as SSH, IPSec, and SSL/TLS) for security purposes, but these open protocols

(such as TCP/IP and UDP) have several vulnerabilities, and the protocols (such as SSH, IPSec, and

SSL/TLS) also have limitations [8,36], because they depend on other security protocols, such as

cryptography protocols [19,23].

Research [16–23] has been conducted on the vulnerable aspects of SCADA systems. Specifically,

cryptography mechanisms have been developed to enhance the security of these critical systems, and most

of these developments have been successful. Few cryptography mechanisms [12,23,24,48] are proposed

for SCADA/DNP3 systems in case of one-to-one communication, and are inappropriated while employing

public key cryptography in broadcasting communication. Public key cryptography based mechanisms

required much time during key generation, distribution, and algorithm computation [16,17,22,48–50]. On

the other side, symmetric cryptography solutions are unable to protect SCADA communication against

non-repudiation attacks [8,16,23].

From the above SCADA/DNP3 security analysis, we can conclude that DNP3 lacks security, even

when employing and depending on other protocols, which we examine in order to better understand the

current security of DNP3. Therefore, this study proposes work trends to secure the SCADA/DNP3

system, and highlights and addresses the potential security measurements such as authentication,

integrity and confidentiality during polling scenarios. To achieve the desired goals, the proposed study

fulfills the following main objectives:

(i) The SCADA/DNP3 stack has been designed using an open source library with explicit codes

in C#, and security is implemented within the stack, before it communicates with open protocols.

(ii) A new automated polling scenario has been designed that combines the balanced and

unbalanced systems of DNP3, according to the requirements of the organization in a water

pumping system.

(iii) In the original DNP3 stack, bytes are constructed followed by layer(s) specifications, and

security is deployed, and then, bytes are placed in a dynamic cryptography buffer (DCB) for

further development. In security development, well-known security algorithms are selected

from the arena of cryptography, such as advanced encryption standard (AES) and SHA-2,

which significantly enhance SCADA/DNP3 security without interrupting the communication

(or polling) specifications.

Symmetry 2015, 7 1952

(iv) A simulation environment is designed for the SCADA system by employing DNP3; bytes are

constructed with security development, and are transmitted a number of times between

controllers in the SCADA/DNP3 network.

(v) Formal proofs are used which validate the proposed research, including the validation of the

bytes construction processes within the stack, validation of security implementation and

validation of DCB design and development.

(vi) Well-known tools (or attacking tools) are used that interrupt the normal communication of the

SCADA/DNP3 system that we can use to measure and evaluate performance.

(vii) An evaluation process is performed based on three measurements phases:

(a) The DNP3 bytes are constructed without security concerns, and transmitted to an open

network. Attacking tools are used to interrupt the normal communication, and security

performance is measured.

(b) In the second phase, proposed security is implementing via DCB, and performance results

are computed.

(c) In the last phase, cryptography algorithms such as AES and SHA-2 are deployed and tested

at each end of SCADA/DNP3 system and performances are computed that would be helpful

during the comparison process.

The above three measurements are helpful during the comparison process, as well as at the

time of evaluation. The measured results of the second phase are further compared with

existing developments (results) that would show the difference between them.

The scope of this study is limited to SCADA/DNP3 security designed and deployed during a critical

scenario called automated polling. The most prominent cryptography algorithms are considered to secure

the communication against attacks, including confidentiality, integrity and authentication. The proposed

security development is selected on the basis of polling specifications. The security keys are locally

stored and are distributed (or exchanged) statically among the participated nodes in the testbed, which

are considered as the limitations of this study. Therefore, in future, certificate authority (CA) is required

for digital certification in the case of public key cryptography, and a key distribution center (KDC)

(i.e., Kerberos) is required in the case of symmetric key cryptography where keys are exchanged among

participated nodes using secure channel(s).

4. Model Design and Development

The polling is an important concept used in SCADA/DNP3 systems: balanced systems and unbalanced

systems [3,5]. In this study, we review the existing polling scenarios and then we change the logical polling

(or polling) to automated polling to address the security of a water pumping system. A simulation

environment is designed for a SCADA water pumping system, in which several sub-controllers are used

to receive the information from a pumping system through sensors, such as pressure sensors, heating

sensors, cooling sensors, level sensors, and other equipment.

In automated polling, explicit parameters are set with time constraints at specific intervals. In other

words, the SCADA/DNP3 main controller polls once each time and sub-controllers respond according

to parameters at specified intervals. After completing an interval, the SCADA/DNP3 main controller

Symmetry 2015, 7 1953

will again poll in the event of new command execution, otherwise, only the interval will be changed.

During automated polling, security is an important issue. Therefore, a reliable security mechanism is

required that significantly prevents the system against potential attacks.

For example, the main controller polls the sub-controller(s) to send the status of the water level, and

the corresponding heating measured points at an interval of 7 min. This means that the parameters are

as follows: an integrity poll response is issued every 45 s, a response to a normal event is sent every 20 s,

and a reply to an abnormal event is sent depending on the situation.

In this study, the event polling is divided into two parts: normal event polling and abnormal event

polling. In normal event polling, a message such as the delivery time of the first integrity poll and then

the time difference between integrity polls and the sequence number and transmission status are

employed in the functional field called non-critical. At the other side, abnormal event polling acts as an

unsolicited response event, in which the response would be sent any time. The response events are:

exception report, alter message, change measured in the last integrity poll response, and the status of the

unknown entity that interrupts in the polling. These events are also called critical response events (or

critical response events bytes).

The DNP3 model and its security development are thoroughly explained in the section below. Formal

definitions and postulates are employed, which validate the proposed design and development. After

this, DCB is employed to track and control model bytes, and other special operations of security

development.

4.1. DNP3 Model Design and Security Development

In security development, constructed protocol bytes are treated as user bytes. Two cryptography

algorithms are employed; the Advanced Encryption Standard (AES) and SHA-2 are deployed at the data

link layer and an SHA-2 hashing algorithm is deployed at the pseudo-transport layer and application

layer of DNP3. The cryptography algorithms and related design are selected based on communication

requirements. As security development is dynamic, we can change the design according to the end user

and SCADA system demands.

In Figure 4, there are logical bytes, which are constructed at each layer in the DNP3 stack. Each cell

has one byte, represented in a hexadecimal format. At the application layer, the bytes in black are

application service data unit (ASDU) constructed bytes, and an empty cell shows application protocol

control information (APCI) such that, red bytes: “C3” is the application code, “01” is the function code,

and the remaining bytes, such as “00” and “00”, represent the Internet Indication (IIN), in case of a

response message. The bytes such as “1A” and “EE” are security development bytes; employing the

SHA-2 hashing function provides security against integrity attacks.

In the pseudo-transport layer, the application layer bytes are assembled into transport service data

unit (TSDU) and a one-byte header field is added with TSDU bytes, which made the full transport

protocol data unit (TPDU). Each TPDU contains a maximum of 250 bytes. Therefore, the upper layer

bytes (or application layer bytes) easily fit into one TPDU, as visualized in Figure 4. The black bytes are

TSDU bytes. The empty cell shows the transport protocol control information (TPCI), and is represented

by red byte “OB”. The SHA-2 hash digest of TPDU bytes is calculated and represented by red bytes,

such as “2A” and “EE”, which provide byte verification and protect the contents from unknown entities.

Symmetry 2015, 7 1954

Figure 4. Logical bytes in the DNP3 stack.

In the data link layer, the upper layer bytes are assembled as link service data unit (LSDU) and a

10 bytes header is added, which forms the link protocol data unit (LPDU). The maximum of LPDU is

260 bytes, plus 32 CRC bytes. In this study, 32 CRC bytes are treated as optional bytes, or could be

required as additional bytes for DCB. In Figure 4, in the LPDU buffer, the bytes in black are link service

data unit (LSDU) constructed bytes, and the empty cell shows the link protocol control information

(LPCI). Details of the red bytes are as follows: “05”and “64” are a start of link header, “05” is length,

“C0” is control byte, “01” is the destination address, “0C” is the source address, and the remaining

bytes such as “CF” and “A0” represent the optional CRC bytes, in the event of sending/responding to a

message. The remaining bytes, such as “3A” and “EE”, represent the security development bytes by

employing an SHA-2 hashing function while the bytes, such as “1E” and “EE”, are computed by an AES

algorithm, which provides security against integrity, authentication, and confidentiality attacks.

The bytes are encrypted by employing an AES algorithm rather than by appending the secret code

(or key) with protocol constructed bytes. The bytes’ encryption is a good approach, and this cannot affect

the other bytes in the protocol stack [8]. In DNP3, upper layer bytes are counted as user bytes in the

lower layer [3].

Symmetry 2015, 7 1955

In each layer, security bytes are computed and represented by codes of two bytes, including “1AEE”

in APDU, “2AEE” in TPDU and “3AEE” and “1EEE” in LPDU. In other words, these are short codes

that designate the security algorithms employed from cryptography, and at the receiver side, security

development will be required. The proposed study also scrutinizes the deployment of a symmetric

algorithm at the application layer. This is a good approach to secure the information, in case the attacker

aims to target the application layer (buffer). However, due to communication specifications (or polling

specifications) such as time limitations, the AES algorithm is only deployed at the data link layer.

However, the attack scenarios are employed to launch the attacks by considering the whole protocol

stack rather than taking into account the specific layer of DNP3. In the future, an attacks scenario will

be designed, and launched at each layer of DNP3; this would be a good alternative approach to test

the vulnerabilities of the desired layer(s). Figure 5 shows the security development in the DNP3

protocol stack.

Figure 5. Security development within the DNP3 stack.

In conclusion, security is deployed within the stack so the proposed security development acts as an

additional security layer(s), which performs a security test before assembling, reassembling and

disassembling bytes in the protocol stack. In other words, three additional security layers are embedded

inside the stack, which protects the sensitive information from unauthorized users. This would also be

helpful if the attacker individually attacks DNP3 layers, such as the application layer, pseudo-transport

layer and data link layer, to retrieve the sensitive information; for example, if the attacker has planned

to retrieve the sensitive information of the application layer, without concern for the other layers. The

security layer (at the application layer) protects the bytes against attackers. This situation would also

arise in the other layers.

4.2. Model Definitions

DNP3 is designed without any security concerns. Therefore, a new DNP3 stack model is designed

with security development. The security is achieved; if there is a protocol, constructed bytes flow

through the stack (i.e., DNP3 stack) to non-proprietary protocols (i.e., TCP/IP).

Symmetry 2015, 7 1956

Definition 1 (Manageable Bytes). A set of bytes “X” or user payload is observed from the user

application layer using function 𝑓μ; such that 𝑓μ0 ∈ 𝑓μ is an independent function for each transmission

by employing distinguishing identifiers.

A function 𝑓μ0 gets the bytes from the user layer or user application layer and grants them to the

application layer of DNP3, x ∈ X at runtime. The total size of X is limited according to the protocol

design and specifications. The size is limited up to 1992 bytes, and the remaining bytes are employed

for DCB.

∀𝑋. μ(𝐸[𝑘]), the μ takes the numbers of user specified bytes X and processes these bytes as protocol

useable bytes, in the application layer. The detailed description of keys (𝑘) has been added later, by

employing 𝐸[𝑘]. The function 𝑓μ0 is executed for both the sender and receiver payload, while identifiers

are used to distinguish them.

Definition 2 (Header Bytes). Two explicit functions: 𝑓(μ1) and 𝑓(μ2) are used to specify the protocol

descriptors, which would be further employed in lower layers. Such that: 𝑓(μ1, μ2) ∈ 𝑓μ.

𝑓(μ1, μ2) ⟺ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑))
𝑛

𝑘=0

⇒ (𝑓μ(1.1,1.2): 𝑋𝑎𝑐
ℎ , 𝑋𝑓𝑐

ℎ) ∈ 𝑓(μ1)(Xℎ) ⋀ (𝑓μ(1.1) , 𝑓μ(1.2)) ∈ 𝑓(μ1), In-case of sending payload.

⋁ (𝑓μ(1.1,1.2,1.3): 𝑋𝑎𝑐
ℎ , 𝑋𝑓𝑐

ℎ , 𝑋𝑖𝑖𝑛
ℎ) ∈ 𝑓(μ1)(Xℎ) ⋀ (𝑓μ(1.1) , 𝑓μ(1.2)𝑓μ(1.3)) ∈ 𝑓(μ1), In-case of response payload.

⋀(𝑓μ(2.1,2.2,2.3): 𝑋𝑜ℎ
𝑑 , 𝑋𝑑𝑜

𝑑) ∈ 𝑓(μ2)(X𝑑) ⋀ (𝑓μ(2.1) , 𝑓μ(2.2)𝑓μ(2.3)) ∈ 𝑓(μ2), data blocks within the application

layer stack.

⇒ 𝑋 ≤ X𝑑 ≥ Xℎ ⋀ (h, d) ≤ Limit

The application protocol data unit (APDU) is generated by combining two functions. Such

that:𝑓: 𝑓(μ1)(Xℎ), 𝑓(μ2)(X𝑑). The header (h) and data (d) bytes are processed according to the application

layer stack specifications and limitations, while the APDU size has decreased due to security

information storage.

∃ 𝑓: 𝑓(μ1)(Yℎ), 𝑓(μ2)(Y𝑑) ⋀ ∃ 𝑓: 𝑓(μ1)(Zℎ), 𝑓(μ2)(Z𝑑)⋀ 𝑓(μ1, μ2) ∈ 𝑓𝜇.

The values, (Yℎ, Y𝑑) and (Zℎ, Z𝑑) are specified for the transport protocol data unit (TPDU) and link

protocol data unit (LPDU).

Definition 3 (Flow of Bytes in Stack). A function 𝑓(μ3) has been employed to manage the flow of bytes

within the stack during protocol message construction and the security development process. Such that:

𝑓(μ3) ∈ 𝑓μ.

𝑓(μ3) ⟺ ∀𝑋. ∑ 𝑋𝑏𝑑𝑦
limit

value
⟺ 𝑏 ≤ value ≤ Limit ⋀ value ≤ 𝑑𝑦 ≤ Limit

⇒ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) ||
𝑛

𝑘=0
∀𝑋. =∑ 𝑋𝑏𝑑𝑦

limit

value
 ≤ Limit, Single APDU

⇒ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) ||
𝑛

𝑘=0
∀𝑋. =∑ 𝑋𝑏𝑑𝑦

limit

value
 ≥ Limit, Multiple APDU

Symmetry 2015, 7 1957

⇒ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) ||
𝑛

𝑘=0
∀𝑋. =∑ 𝑋𝑏𝑑𝑦

limit

value
 == 0, No APDU

The application layer bytes are limited and the remaining 56 bytes are employed for function 𝑓(μ3).

Such that: 𝑓(μ3) = 𝑋𝑏𝑑𝑦, this function controls the bytes utilization within the whole stack, and contained

bytes are dynamically employed for security storage purposes. The size of the dynamic buffer is

increased and deceased according to the size of the application layer buffer such as single and multiple

APDUs. However, the dynamic buffer size is enough during the deployment, and storage of security

information and stack information [51].

Definition 4. The security development functions: 𝑓(e1), 𝑓(e2), 𝑓(e3): 𝑓(𝑆𝑦𝑚), 𝑓(𝐴𝑦𝑚), 𝑓(𝐻) are a

hybrid function 𝑓(𝐸/𝐷)𝐻𝑦: (𝑓𝐸𝐻𝑦 , 𝑓𝐷𝐻𝑦) ∈ 𝑓(μ4) ∈ 𝑓μ, which are deployed against stack vulnerability.

∀𝑋. 𝑓(e1, e2, e3)𝐸[𝑘] { ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑))
𝑛

𝑘=0
} ||∀𝑋. =∑ 𝑋𝑏𝑑𝑦

𝑙𝑖𝑚𝑖𝑡

𝑣𝑎𝑙𝑢𝑒
,

𝑓(e1), 𝑓(e2), 𝑓(e3) ∈ 𝑓𝐸𝐻𝑦 ∈ 𝑓(μ4) ∈ 𝑓𝜇

∀𝑋. 𝑓(e1, e2, e3)𝐷[𝑘] { ∀𝑋. 𝑓(e1, e2, e3)𝐸[𝑘](∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑))
𝑛

𝑘=0
} ||∀𝑋. =∑ 𝑋𝑏𝑑𝑦

𝑙𝑖𝑚𝑖𝑡

𝑣𝑎𝑙𝑢𝑒
,

𝑓(e1), 𝑓(e2), 𝑓(e3) ∈ 𝑓𝐷𝐻𝑦 ∈ 𝑓(μ4) ∈ 𝑓𝜇

The security development is proportional to the communication requirements. Therefore, symmetric

(Sym), asymmetric (𝐴𝑦𝑚) (as an optional function) and hashing (H) are employed. At the other side,

the dynamic buffer has sufficient space during the deployment of hybrid function.

Definition 5 (Bytes alignment). The number “n” bytes are aligned with lower layer bytes. The function

𝑓(μ5) ∈ 𝑓μ is employed to form alignments between the bytes from the upper layer to the lower layer

and vice versa.

⟺ 𝑋 ≤ X𝑑 ≥ Xℎ ⋀ (h, d) ≤ Limit

⇒ ∃ 𝑓(μ5):

∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
→ ∀𝑌.∑ (𝑓(μ1,μ2): (Yℎ), (Y𝑑))

max

𝑘=0

𝑛

𝑘=0

|| ∀𝑋𝑌.

⇒∑ 𝑋𝑌𝑏𝑑𝑦
limit

value
⋀max ≤ Limit ≥ 𝑛

The “n” bytes are received from the upper layer and the function 𝑓(μ5) stand between these bytes to

align with lower layer bytes. If APDU is constructed and total size is limited as the protocol specified,

then APDU bytes are fully aligned with lower layer bytes, including the last pseudo-transport layer

block. The rest of the layers remain the same, without any change.

Definition 6 (Security, Bytes Reassemble). The function 𝑓(μ6) ∈ 𝑓μ is employed to reassemble the

bytes from the lower layer to the upper layer with security development.

⟺ ∃[(Xℎ, X𝑑); (Yℎ, Y𝑑); (Zℎ, Z𝑑)] ⇒ 𝑓(μ6): (Xℎ, X𝑑) 𝐴𝑠𝑠/𝑅𝑒𝐴𝑠𝑠
⇔ (Yℎ, Y𝑑) 𝐴𝑠𝑠/𝑅𝑒𝐴𝑠𝑠

⇔ (Zℎ, Z𝑑)

Symmetry 2015, 7 1958

The “n” bytes are transmitted from the upper layer to the lower layer; these bytes are assembled

(𝐴𝑠𝑠) according to lower layer requirements for further processing. On the other side, the bytes are

received from the lower layer to the upper layer; these bytes are reassembled (𝑅𝑒𝐴𝑠𝑠) toward the user

application layer.

To finalize and validate the security design, several implicit functions are employed from DNP3

sources (or from DNP3 open library), and explicit functions are deployed and encapsulated. To achieve

this, formal postulates are employed that prove the proposed design and development. In these postulates,

we use a dynamic cryptography buffer (DCB) as dynamic buffer (dB).

Postulate 1. Processing and computation of payload within the protocol (stack) flow (valuesEncrypt vE,

numBytes nB, stackFlow sF, dynamicBuffer dB, offsets oS).

Determine the payload “P”, the preceding bytes “B”, the cryptography value and dynamicBuffer “dB”

corresponding to manipulate bytes “mB” within the stack.

∑ X(𝑛,𝑑𝐵)

Limit

𝑘=0

, 𝑛 = 𝑘, 1,2,3,… . , limit − 1, limit Definition (1)

The number of bytes “B” initialized with the initialization of dynamicBuffer “dB”. While at the start,

the offsets of the stack and “dB” are employed with empty bytes (cells) in the designed fields. The

keyword “limit” specified the range of each field, and occupied bytes within the whole stack.

𝐴𝑝𝑝𝑗 . 𝐶𝑜𝑚𝑝(oH(𝑛,𝑑𝐵), dO(𝑛,𝑑𝐵))
𝑙𝑖𝑚𝑖𝑡

 ⇒

𝑜𝐻. 𝑉𝑎𝑙(O[bytes], Q[bytes], R[bytes]) ⋀ 𝑂. 𝑉𝑎𝑙(oG[bytes], oV[bytes])
Definition (2)

The user bytes are received and further treated to determine the application service data unit (ASDU)

bytes. The ASDU bytes are computed by computing the objectHeader (oH) and dataObject (“dO”: user

defined name). During computing, the size of ASDU is limited up to 1990/1888 bytes, in the case of

sending/responding bytes.

𝐴𝑝𝑝𝑖 . 𝐶𝑜𝑚𝑝(𝑎𝐻(𝑛,𝑑𝐵))
𝑙𝑖𝑚𝑖𝑡

⟹ 𝑎𝐻.𝑉𝑎𝑙(aC[bytes], fC[bytes]

⋁ 𝑎𝐻. 𝑉𝑎𝑙(aC[bytes], fC[bytes], iiN[bytes])
Definition (2)

Application header (aH) is computed, with the computing value of application control “aC” and

function code “fC”, in case of bytes’ transmission. An additional value is computed, and designated as

the internal indication “iiN” during the response bytes.

𝑖𝑓 {

𝐶𝑜𝑚𝑝(𝐴𝑝𝑝(𝑖,𝑗)) ≤ limit , Single APDU

𝐶𝑜𝑚𝑝(𝐴𝑝𝑝(𝑖,𝑗)) ≥ limit,Multiple APDUs

𝐶𝑜𝑚𝑝(𝐴𝑝𝑝(𝑖,𝑗)) = 0, Header bytes only.

The application protocol data unit (APDU) is computed by computing the ASDU bytes, and header

bytes that are also designated as application protocol control information (APCI). If 𝐶𝑜𝑚𝑝(𝐴𝑝𝑝(𝑖,𝑗)) = 0,

only APCI information is transmitted, without any data (or information bytes).

Then,

Symmetry 2015, 7 1959

payLoad1.Crypt{𝐶𝑜𝑚𝑝(𝐴𝑝𝑝(𝑖,𝑗))} ⟹ (𝐴𝑦𝑚/𝑆𝑦𝑚|𝐻𝑎𝑠ℎ){𝐶𝑜𝑚𝑝(𝐴𝑝𝑝(𝑖,𝑗))}

 || 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] ⋀ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠]
Definition (3; 4)

The payLoad1 is computed by deploying the cryptography function (or algorithms); asymmetric and

symmetric functions are optional and used according to communication demands. The buffer employed

56 bytes from the application layer and the available security information is updated correspondingly in

dynamicBuffer “dB”. The buffer keeps track of security deployment and related information about bytes

from the stack [51].

𝑖𝑓 {

payLoad1 ≤ limit ≥ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] , Process information

payLoad1 ≤ limit ≤ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] , Memory Initialization

payLoad1; 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] = 0 , No security function.

Then, during security development, the buffer is full (indicated by exception). Then, additional

memory has been located from the data link layer stack. A CRC field occupied 34 bytes in the data link

layer stack. In case bytes are transmitted without implementation of security or security functions

are not available then, 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] = 0, which shows that the payload is not manipulated with

security (functions).

Postulate 2. Determine and disassemble the bytes with alignment, and compute the function for further

security deployment (EncryptDecryptValues V, numBytes nB, stackFlowBytes FB, dynamicBuffer dB,

dynamicBufferFlow BF, offsets oS).

Suppose “Y” is the sum of bytes received from upper layer. The application layer (level) stack has

been filled with number of bytes “B” and dynamicBuffer “dB” is updated with corresponding

information. Therefore, “dB” occupied space, while the offsets in the pseudo-transport layer stack are

empty bytes (cells) in designed fields during initialization.

⟺ ∑ Y(𝑛,𝑑𝐵) ⟹

𝐿𝑖𝑚𝑖𝑡

𝑘=0

(𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖)
𝑛
= ∑ (

𝑛

𝑘
)𝑌𝑇𝑟𝑗

𝑘𝑌𝑇𝑟𝑖
𝑛−𝑘

𝑛=𝑙𝑖𝑚𝑖𝑡

𝑘=0

 Definition (5; 6)

The bytes are being aligned and disassembled into pseudo-transport layer stack, with specifications

in mind. The upper layer bytes are disassembled in to fixed blocks, and each block has 249 bytes with

one byte of header field or transport protocol control information (TPCI). Each transport protocol data

unit (TPDU) size is limited up to 250 bytes, which included the meaningful data (from upper layer) and

header bytes.

𝑖𝑓

{

 𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖) ≠ 0, Single TPDU

𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖)
𝑛
≥ limit,Multiple TPDUs

𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖) = 0, Header bytes only.

Then,

payLoad2.Crypt{𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟(𝑖,𝑗))} ⟹ (𝐻𝑎𝑠ℎ) {𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟(𝑖,𝑗))}

|| 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] ∧ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] ∧ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠]
Definition (3; 4)

Symmetry 2015, 7 1960

The TPDU bytes are constructed and security is deployed and computed using the hashing function

or algorithm. At this stage, corresponding information is updated in the buffer. The bytes’ flow has been

verified to ensure the sufficient memory space as well as tracking of each layer of bytes and deployed

security information.

𝑖𝑓 {

payLoad2 ≤ limit ≥ 𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]|| 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Process information

payLoad2 ≤ limit ≤ 𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Memory Initialized

payLoad2; 𝑑𝐵. 𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] = 0 , No security function.

The security function using hashing is deployed on TPDU bytes if the buffer size is sufficient.

Otherwise, additional space is initialized from the link layer. The “0” indicated that security function is

not available, after processing of TPDU bytes. In case, if only header bytes have been received from

upper layer then, TPCI is transmitted with a security layer check.

Postulate 3. The bytes are assembled/reassembled corresponding with link layer frame, and the security

function is computed within proprietary stack (valuesEncryptDecryptValues V, numBytes nB,

assembledBytes aB, reassembledBytes rB, stackFlowBytes FB, dynamicBufferFlow BF,

dynamicUpdateBuffer UB, offsets oS).

The bytes “Z” are received from the upper layer and are assembled. The stack fields have been

updated with upcoming bytes and corresponding information. The situated updated bytes and related

flow of information in dynamicBuffer “dB” have been checked and a special field designated as

“dynamic flow checker” is used, which follows the flow of bytes in buffer and shows the

indication/exception when buffer memory is full.

𝑍𝐷𝑙𝑗 . 𝐶𝑜𝑚𝑝(𝑍𝑖 + 𝑍𝑗)
𝑛=𝑙𝑖𝑚𝑖𝑡

, 𝑍𝑖⋀ 𝑍𝑗 ∉ 𝑍⋀ ∈ 𝑍𝐷𝑙𝑖 Definition (2)

Here, “limit” shows the number of blocks employed during processing of thw frame.

The upper layer bytes are employed and expended into 16 blocks (𝑍𝑖 : assembled bytes having

250 bytes) with CRC (𝑍𝑗: optional field having 32 bytes). Each block has limited size, while final block

is processed with 10 bytes.

𝑍𝐷𝑙𝑖 ⟹ 𝑍𝐷𝑙𝑖 . 𝑉𝑎𝑙(S[bytes], L[bytes], C[bytes], DA[bytes], CRC[bytes]) Definition (2)

The value of 𝑍𝐷𝑙𝑖 (having subfields: two bytes of start “S”; 1 byte of length “L”, one byte of control

“C”, two bytes of destination address “DA” and two bytes of cyclic redundancy check “CRC”) is added

with 𝑍𝐷𝑙𝑗, which made the complete link layer frame. In 𝑍𝐷𝑙𝑖, the CRC function has been employed, but

in case of 𝑍𝐷𝑙𝑗, this function is treated as an optional field.

⟹ (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖)
𝑛
= ∑ (

𝑛

𝑘
)𝑍𝐷𝑙𝑗

𝑘𝑍𝐷𝑙𝑖
𝑛−𝑘

𝑛=𝑙𝑖𝑚𝑖𝑡

𝑘=0

 Definition (5; 6)

𝑖𝑓

{

 𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖) ≠ 0, Single LPDU

𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖)
𝑛
≥ limit,Multiple LPDUs

𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖) = 0, Header bytes only.

Symmetry 2015, 7 1961

The disassembling/reassembling process from transport level made the bytes convenient for the data

link frame. In case of “0”, link protocol control information (LPCI) bytes are transmitted, rather than the

complete frame or LPDU.

Then,

payLoad3.Crypt{𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙(𝑖,𝑗))} ⟹ (𝐴𝑦𝑚/𝑆𝑦𝑚|𝐻𝑎𝑠ℎ) {𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙(𝑖,𝑗))}

|| 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] ∧ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] ∧ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠]
Definition (3; 4)

The security has been deployed with two optional functions designated as payLoad3 . A few

experimental tests observed that the deployed security is inappropriate for LPCI bytes at the data link

layer. Because LPCI has source and destination fields, if these fields have encrypted values, then this

will be complex to compute at the destination side during the sender/receiver identification process.

Therefore, LPCI bytes are not encrypted; only the hash value is generated to verify the bytes’ integrity.

In this case, encrypting the LPCI as part of a LPDU would be required, and external (or additional)

source and destination addresses are added (as explained in Section 5).

The bytes’ flow has been checked and, simultaneously, security information is updated within the

buffer. This would be further employed during verification of security or the decryption process at the

destination. During measurement, a few experimental tests concluded that the buffer is full, and required

additional memory space. Therefore, this exception has been resolved by utilization of 32 byte CRC

from the data link layer.

𝑖𝑓 {

payLoad3 ≤ limit ≥ 𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Process information

payLoad3 ≤ limit ≤ 𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Memory Initialized

payLoad3 ; 𝑑𝐵 ∙ 𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] = 0 , No security function.

Then, if the payLoad3 is limited up to 260 bytes and the buffer is updated with security information,

then the desired bytes are processed to the physical layer. Otherwise, extra memory would be occupied

by a buffer that conveniently provided the security information for a security level check.

Postulate 4. Compute, compile and verify the security (totalPayload tP, checkSecurity cS,

encryptdecryptValues V, numBytes nB, assembledBytes aB, reassembledBytes rB, stackFlowBytes FB,

dynamicBufferFlow BF, dynamicUpdateBuffer UB, offsets oS).

The 𝑓(tP) is an explicit function that combines and manipulates the security at each layer and

retrieves the desired information from the buffer.

𝑓(tP) = Val{payLoad1; payLoad2; payLoad3} Definition (3; 4; 6)

⟹Decrypt[𝑓(tP)] || 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] ∧ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] ∧ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠]

The security has been deployed and integrated as an additional layer (or three-layer security) with

desired layers within the stack. At the destination, the security using cryptography has been validated

and verified, before transmitting bytes to the upper layer.

Symmetry 2015, 7 1962

5. Protocol Bytes and DCB

The application layer is the most sensitive layer compared with other layers of DNP3 because it

generates and distinguishes between messages at that layer [3,23,32]. The original size of the application

layer fragment is 2048 bytes, which is also specified by original DNP3 documentation [5]. In the

proposed study, the application protocol data unit (APDU) size is limited up to 1992 bytes, and the

remaining 56 bytes are employed to deploy the DCB [51]. Moreover, Figure 6 shows the DCB bytes

against APDU bytes during security development. The DCB is a dynamic bytes buffer, which

dynamically stores and tracks DNP3 generated bytes and related information. Dynamic fields are

deployed in DCB, and the “Bytes Selected” field is used to control and track the original DNP3

manipulated bytes. Further details related to each field of DCB are illustrated in Figure 7 and explained

as follows:

User Bytes: Bytes Selected: This is the dynamic length field in DCB which keeps the information

about protocol manipulated bytes and the security implementation bytes. Dynamic means that the

additional bytes are used from dynamic storage, depending on requirements. This field is composed of

five main subfields: length, security checker, local acknowledgment, local padding and optional.

This field is individually employed to perform the relative functions and to keep and monitor the

information on the application layer development. Then, this field is ready to measure the information

of the lower layer(s). In the application layer, APDU (with security) bytes are computed and the

remaining memory is dynamically allocated to DCB, which would be further utilized. However, we have

not conceded if the additional memory is available in TPDU and LPDU buffers. The remaining bytes

are treated as padding bytes, which ensure that the development ends; the shaded area in each buffer

including the APDU buffer, TPDU buffer and LPDU buffer in Figure 4 represents the padding bytes.

1–4 bytes I Byte 1 Byte 1 Byte 1 Byte

Length
Security

Checker

local

Acknowledgment
local Padding Option

Initially, eight bytes are occupied by this field, but this number would be increased according to

the requirements.

Length: Count of protocol constructed bytes and security development bytes. The range is 0–65,535,

which would be convenient if maximum bytes are received by the application layer. Basically, this range

is allocated individually to count the bytes, and the dynamic assigned to lower layer(s) after completion

of the upper layer length (or bytes). This means that first APDU bytes are counted. Then, the range is

defined for the lower layer(s).

Security Checker: Ensures that security has been deployed in each layer and checks which

algorithm(s) are used during development.

Local Acknowledgment: This is an exceptional message followed by security checker status.

Local Padding: The remaining bytes are padded, and status is shifted to dynamic padding (field)

in DCB.

Option: This field contains one byte, which is significant. It keeps information, such as data type,

maximum APDU size, polling and timestamp.

Symmetry 2015, 7 1963

Cryptography Key Sequence

This is a one-byte field, which keeps the information about cryptography keys, and it is employed in

security development. A single byte of “cryptography key sequence” is distributed as: two bits identify

the first key and last key that are employed in security development, one bit identifies the key option

that performs a special security function on demand, one bit is used to select the security method and

four bits act as a key sequence counter.

In security development, two bits are used to select the cryptography method(s), such as hashing and

symmetric methods, and then corresponding information is collected. The key option subfield occupied

one bit that is designated as the optional algorithm used from the arena of cryptography. The hash

(function) digest is calculated, defined as the hash key and added into the key sequence counter.

1 bit 1 bit 1 bit 1–5 bits

Key Option (KO) Hash Key(HK) Symmetric Key (SK) Key Sequence (KS)

Polling Sequence

Two bytes are defined for integrity and event polling in DCB. In polling, one bit indicates initiating

the polling: integrity and event, two bits are used to identify the first and last polls, after initialization of

polling and a five bits polling counter is added in a sequence of 0–31. In the proposed study, the sequence

0–31 is used during integrity polling, and the sequence is changed as 32–63 in event polling. During

polling, integrity/event polls can start from a value within specified ranges and increment the polls in

sequences thereafter. The sequences roll as 31–0 and 63–32 during a response or/and decryption process.

1 bit 1 bit 1 bit 1–5 bits

Integrity Poll

(InP)
First Poll (FP) Last Poll (LP) Polling Sequence (KS)

1 bit 1 bit 1 bit 1–5 bits

Event Poll (EP) First Poll (FP) Last Poll (LP)
Polling Sequence

(KS)

Cryptography: Dynamic Storage

This is a special field, which contains variable bytes of DCB. At the initialization stage, this field

contains 20–56 bytes, and would be changed to dynamic. For example, event polling is not performed.

Thus, the field occupied bytes are shifted to dynamic storage. On the other side, the bytes are

dynamically shifted to the polling sequence in case additional bytes are required by event polling.

Dynamic Padding

This field is part of dynamic storage. APDU bytes are constructed with security development and

remaining bytes are padded and then added in DCB. This field may inherit the padding operational bytes

of local padded from “User Bytes: Bytes Selected”.

Symmetry 2015, 7 1964

Optional

This field contains one byte, which verifies the content of polling, before transmitting it to

the recipient(s).

Non-Critical

A one-byte field that shows normal polling status in SCADA/DNP3 transmission. This byte travels

along polling, and analyzes the communication status.

Critical

This field also contains one-byte information, travels along polling and analyzes the abnormal

(or critical) communication status. In terms of analysis, one to two bits are enough to analyze the normal

or abnormal scenario of polling, but one byte is occupied by each field including critical and non-critical,

and the remaining bits are reserved for future development.

Solution: Select Method

This field contains one byte, which identifies the methods (or cryptography methods) currently

employed in security development. This field may inherit the approach of “security checker” (subfield

in “User Bytes: Bytes Selected”), but performance is limited. This field performs additional functions

compared to “security checker” performance. For example, abnormal transmission is observed by a

“critical byte” and non-repudiation function is required to perform. Therefore, a digital signature is

accounted for by this field (or “solution: select method”). This type of security is performed at the time

of initialization (or polling initialization).

Figure 6. DCB bytes against APDU bytes during security development: The blue lines show

the computed APDU bytes along the y-axis and the remaining bytes visualized in purple are

employed in DCB, plus the original 56 bytes. The bytes are constructed in the application

layer stack and the remaining bytes are padded and further assigned to DCB, which ensures

the completion of the APDU process.

Symmetry 2015, 7 1965

Acknowledgment Sequence

This field contains one byte and is usually employed by the main controller. During polling, the

response has been transmitted from the sub-controller, and the main controller will reply with

acknowledgment corresponding to polls (or integrity and event polls), while six bits are employed in

that case. The remaining two bits are employed during the time of polling initialization.

Source and Destination Addresses

Four bytes are allocated for source and destination addresses so that each one has two bytes each.

When a frame (or LPDU) is ready to transmit to open protocols (or TCP/IP) the additional source and

destination addresses are added. Because, in a few cases, the receiver cannot identify the addresses due

to security development (or encryption), additional source/destination addresses are added with an

encrypted message. It will also be worthwhile to compare the addresses with link layer specified

source/destination addresses after decryption.

Figure 7. The DCB contained numbers of fields, and each field occupied specific/dynamic

space to retain the information during development. The desired protocol bytes are

generated, and represented in a hexadecimal notation. The empty cells with corresponding

solid arrows in message blocks, including the APDU block, TPDU block, and LPDU block,

represent the header fields, and arrows are directed toward header bytes. The red bytes at

each block represent the security implementation bytes.

6. Testbed Setup

In the automated SCADA/DNP3 testbed, eight remote terminal units (RTUs) or sub-controllers are

configured with the mater terminal unit (MTU) or main controller, with the bandwidth of 5 Mbps. Each

remote station is connected directly with a water pumping system, and designed to collect information

from the system through sensors. At the start, the main controller initiates the communication, and

remote station(s) will reply with a message with simple status information, acknowledgement and

polling information.

Preliminarily, three intervals are specified for automated polling. These are intervals of four, seven

and 10 min, but afterwards the interval time will be increased. Performance is observed in both cases of

the testbed including normal transmission (without attack scenario) and abnormal transmission (with

Symmetry 2015, 7 1966

attack scenario) in distinguished time variations to validate the security development. Figure 8 shows

the simulation environment of where the experiments and measurements are conducted [35].

In automated polling, the sub-controller will send the integrity poll response every 45 s and a normal

event is transmitted every 20 s at specified intervals. If we divide the four-minute interval, integrity polls

will respond five times to the main controller and the remaining 15 s remain unused or a dummy poll,

such as an exception message, is transmitted. Frequently, 12 normal events are generated which show

the transmission status followed by critical/non-critical functions, while the abnormal event will be

transmitted any time and may be in the form of report-by-exception or changes accounted for in the last

integrity poll.

For example, we have initialized the interval for automated polling, in which the integrity poll

occurred every 45 s and normal event poll occurred every 20 s, after the initiation of the transmission.

In automated polling, every time integrity and normal event polls occur, they are counted in distinct

sequence numbers as 0–31 and 32–63. More details are illustrated in figure 8.

Figure 8. Simulation design and environment.

In the section below, the number of logical states is defined which show the overall development.

Overall development includes the number of integrity/event polls in automated polling corresponding to

intervals, security development during automated polling, normal/abnormal transmission, and security

achievements (or proposed security achievements).

Symmetry 2015, 7 1967

7. Automated Polling Design and Flow

Here, we first divide the security development into two phases: S-Solution1 and S-Solution2.

S-Solution1 follows the same method of Section 4, while the S-Solution2 also computes a digital

signature at the data link layer to verify the non-repudiation security [8,19]. At the start, the master node

initiates the automated polling and a confirmation message is sent from the sub-controller(s). However,

the S-Solution2 is deployed at the time of initialization.

In automated polling, the sub-controller (or RTU) should send an integrity poll response every 45 s,

and a normal event poll is transmitted every 20 s at specified intervals of four, seven and 10 min. The

abnormal event poll will be transmitted without following the specific time. However, the S-Solution2

is deployed during polling.

During the initialization process, and acknowledgement from the sub-controller, the message also

contained all requirements parameters including interval, number of integrity and event poll occurrences

at the specified interval, security solution, and other requirements. A special explicit field designated as

“solution: select method” has been employed in DCB which should identify security development, such

as the S-Solution1 and S-Solution2. This field also changes the status of security development, by

analyzing the level of security indicated or measured from the critical functional field.

In Figure 9, several states are used which designate the communication flow that occurs in automated

polling. The state 803 shows the master node encryption process, while state 804 and state 805 show the

remote node decryption process, and state 806 for acknowledgement. At state 807, the remote node sends

the integrity poll response continuously to the master station every 45 s, and a normal event is transmitted

every 20 s at specified intervals. The sub-states included state (807, 0_0) __ (S.., St..._ Fn…) of state

807 represent the response integrity polls against the master controller request (or polling request). The

state 808, state 809 and onward states represent the remote node encryption process, while these states

are optional; the state 810, state 811 and onward states represent the master node decryption process;

and forward states show that communication has been continued. More detail of automated polling in

normal transmission is depicted in Table 2.

Figure 9. Automated polling in normal communication.

Symmetry 2015, 7 1968

Table 2. Logical states: automated polling in normal communication.

State (Logical) Process Security Via

803 Master station initiates the communication with encryption (bytes). Security Via

804, 805 Remote station decrypted the message (bytes) and bytes received. S-Solution2

806 Acknowledgement: From RTU to MTU. S-Solution2

807 The Integrity Poll: Remote station generates continuously response. S-Solution1

(807, 0_0) __ The Integrity Poll: Generate continuously response. S-Solution1

808…, 809,… RTU: Encryption process. S-Solution1

810…, 811,… MTU: Decryption process. S-Solution1

This is a simulation-based work, and developed in C#; to check incoming/outgoing water flow

to/from water tank, sensors reading points, and status. At the start, static points are slotted at the passage

of time in automated polling; the points are interchanged with abnormal points, which interrupt the

normal sequence of polling. The normal event occurred every 20 s which usually shows configuration

and connectivity status, points’ status, session key time out (optional) and security status, followed by

DCB fields. Meanwhile, an abnormal event will occur at any time if significant change is observed from

field devices; for example, the tank water level increased from its normal flow, the power consumption

point suddenly increased, the device status changed to unknown, and the detection of an unknown entity

occurred in the automated polling channel.

In some cases (or critical cases), when the main controller or remote node wants to authenticate

each other, or unknown entities are continuously interrupting automated polling, then the S-Solution2 is

employed to replace the S-Solution1. Typically, S-Solution2 utilization is time consuming because of the

asymmetric encryption (i.e., RSA algorithm) but security is successfully achieved, even in the case of

critical/abnormal polling because the digital signature is computed and this signature evaluates the

non-repudiation security in SCADA transmission.

In Figure 10, automated polling has been continued at state 906 to state 909. The state A0, state A11,

and state A30 show the abnormal communication. This means that attacks, such as authentication,

integrity, and confidentiality attacks, are successfully launched, detected and the SCADA/DNP3 main

controller is unaware of these during this abnormal scenario. The abnormal scenario is designed to

measure the impact level of the attacks in automated polling, as a part of SCADA/DNP3 system and to

validate the security development. A field called “critical” is used to identify the abnormal communication.

If abnormal transmission has continuously occurred, then an abnormal event is transmitted from the

main controller to the remote terminal unit (RTU) by the employment of the S-Solution2. At state A41,

the non-repudiation function (or security) is tested between SCADA/DNP3 nodes.

Figure 11 shows that the attacks, such as authentication, integrity, and confidentiality attacks, are

successfully launched. They are detected at state A207, state A312, and state A375, and the SCADA/DNP3

remote node is unaware during abnormal communication. The sub states, state (A207, 0_0) to state

(S..., TSt_....Tfn) of state A207; state (A312, 0_0)__ state (S..., TSt_....Tfn) of state A312; and state

(A375, 0_0) to state (S..., TSt _....Tfn) of state A375,represent the polling (or communication sequence).

They also indicate the status of the security level with an optional function that can be employed against

non-repudiation attacks. More detail related to attacks’ detection at the main-controller/sub-controller(s)

sides and the related communication sequence are depicted in Table 3.

Symmetry 2015, 7 1969

Figure 10. Automated Polling in abnormal communication at main controller side.

Figure 11. Automated polling in abnormal communication at the sub-controller(s) side.

Symmetry 2015, 7 1970

Table 3. Logical states: automated polling in abnormal communication.

MTU: State

(Logical)
MTU: Process

RTU: State

(Logical)
RTU: Process

906 MTU Request: Encryption process (bytes). A206 Unknown bytes.

907 RTU Decryption process (bytes). A207 Authentication Attacks: Verification.

908 RTU has received MTU request. A211 RTU: Decryption process.

909 Acknowledgement. A212 Acknowledgement.

910
The Integrity Poll: Remote station

generates continuously response.
(A207, 0_0)__

Generate continuous response:

Verification process

(910, 0_0)__
The Integrity Poll: Generate

continuously response.
A213 Continuous response

A0
Abnormal Communication: Detection of

Authentication Attacks.
A311 Unknown bytes.

A11
Abnormal Communication: Detection of

Confidentiality Attacks.
A312

Integrity Attacks: Verification

and Continuous

A30
Abnormal Communication: Detection of

Integrity Attacks.
(A312, 0_0)__

Generate continuous response:

Verification process.

A41
Abnormal Communication: Detection of

Non-Repudiation Attacks (Optional).
A375

Confidentiality Attacks: Verification

and continuous

A97
MTU Request: Event (in-case, RTU does

not reply or in Abnormal scenario).
(A375, 0_0)__

Generate continuous response:

Verification process.

A98
RTU Decryption: Event (Incase, RTU does

not reply or Abnormal scenario).
A403

Non-Repudiation Attacks:

Verification and continuous.

A99
RTU has received MTU request and

process continuous…….
(A403, 0_0)__

Generate continuous response:

Verification process.

911…, 912,.. RTU: Encryption process – –

913…, 914,.. MTU: Decryption process – –

8. Performance Measurement and Discussion

In this section, performance results are measured to validate the security development. To validate

the security of automated polling, attack scenarios have been designed to act as un-authorized entities in

communication. This study aims to achieve the security functions including authentication, integrity and

confidentiality, as well as non-repudiation functions in a few critical cases. To achieve the security

functions, related attacks are launched using built-in-tools, and are successful in warning and

interrupting the automated polling. Table 4 depicts the number of tools that are used in abnormal

scenarios and corresponding attacks.

To evaluate performance, we categorize and compute the results into three scenarios:

 In the first scenario, the attacks are launched but DNP3 model is designed without security;

 In the second scenario, the attacks are launched and the DNP3 model is designed with security

development, and

 In the third scenario, security is deployed at each end of the automated polling, and performance

is observed against attacks. These scenarios are also useful to compare the overall computed

performances.

Symmetry 2015, 7 1971

Table 4. Tools and related attacks.

Security Functions Tools Attacks

Authentication
Cracking Tools, Sniffer, Dsniff,

Winsniffer and Password Dictionary

Guessing Shared Key, Brute Force and

Password Guessing

Confidentiality
Ethereal, Ettercap, Kismet, Aircrack,

Airsnort, Dsniff, and Ettercap

Eavesdropping, Key Cracking

and Man-in-the-Middle

Integrity

Airpwn, File2air, Dinject/Reinject,

Capture and Injection Tools, Jamming

and Injection Tools

Frame Injection, Data Replay and

Data Deletion

In each scenario in the testbed, successful experiments are performed 229 times and performance

results are measured at specified intervals. Total attack detection and computed impact on automated

polling act as a mirror to compute security performance results and the validation of development. The

numbers of experiments show the most significant computed attack detection in automated polling and

are helpful in computing the corresponding security.

In the testbed, the maximum size of the user payload is limited to 1992 bytes. This means that the

APDU size is limited to 1992 bytes in security development. The integrity poll response is transmitted

every 45 s, and the maximum size of the payload is 1992 bytes, plus security bytes. On the other side,

the normal event is polled every 20 s, and the specified time is sufficient because a normal event is just

a message or an exception message of a few bytes, such as the first or last integrity poll transmitted and

normal polling status and other acknowledgement messages. The number of times random bytes are

polled to measure the total time of polling, which is under 45 s in the case of integrity polls and 20 s in

the case of normal event polls. To enhance the security within a specified time, two changes are made

in the testbed. In the first change, the session is added with a symmetric key. Therefore, the lifetime of

the keys is 45 s and 20 s in case of integrity and the normal event. However, the total interval and polling

sessions would change according to the requirements. However, the interval is increased but polling

sessions are fixed in the testbed. In the event that the numbers of bytes are increased from the maximum

limit, the polling session will also be changed. In the second change, the symmetry key is used to perform

encryption at a data link layer and a hashing function is employed on a symmetry key, not on LPDU

bytes. The session time is also decreased and the symmetric key is protected from unknown entities.

For example, if an attacker has stolen the symmetric key and the hash digests match, the main

controller computes the hash of the symmetric key shared securely among the participated nodes. This

key is employed to perform encryption, otherwise bytes are rejected and a new poll will be transmitted

from the sub-controller. Each poll (such as integrity and event poll) is counted by a polling sequence

counter at both sides.

Attack Detection and Security

A total of 229 experiments are employed to compute the overall performance. In total, an initial

experiment (or experiment No. 0) is tested to verify the testbed configuration, and connectivity between

nodes; while experiment No. 26 and No. 17 of the second and third scenarios are tested for

non-repudiation security verification.

Symmetry 2015, 7 1972

In the first scenario, Figure 12 indicates that attacks are launched to interrupt the sensitive information

of automated polling. In each experiment, attacks are launched and corresponding behaviors are

measured. During attack detection, there are no security mechanisms, such as OS security, firewalls and

others, which are configured to provide security in automated polling. The detected attacks are

represented by color markers: red shows the authentication attacks, black shows the confidentiality

attacks, and orange shows the integrity attacks. The blue lines show the random data rates along the

y-axis corresponding to experiments in the x-axis, and green lines show automated polling flow as

normal (or without attack case) and abnormal (or with attack case). As shown in Figure 12, large numbers

of attacks are detected in absence of security mechanisms, which shows that DNP3 is designed to protect

against potential vulnerabilities and attacks.

Figure 12. Automated polling (Scenario 1): Attack detection at specified intervals.

Similar experiments are repeated in Figures 13 and 14, which show attack detection in automated

polling with security development. However, security design is changed in both performance tests,

followed by the second scenario and third scenario. After computing the performance results of the first

scenario, DNP3 bytes are polled without security concerns, while security has been developed in the

second scenario and attack detection is measured in Figure 13. In the second scenario, security is

deployed inside the DNP3 stack model, which is one of the main contributions of this study. In the third

scenario, security development is made at each end of the poll or the message, and the total detected

attacks are visualized in Figure 14.

Symmetry 2015, 7 1973

Figure 13. Automated polling (Scenario 2): Attack detection at specified intervals.

Figure 14. Automated polling (Scenario 3): Attack detection at specified intervals.

In each scenario, 229 experiments were individually performed at intervals of four, seven and ten

minutes, to compute the level of attack detection. From the total number of experiments, one experiment

was optionally employed to test the non-repudiation function. Therefore, a total of 228 experiments were

performed at each interval during the calculation of attack detection percentage(s). The formula and

other experimental details that are used to compute the attack detection percentage are as follows:

Symmetry 2015, 7 1974

Attack Detection (%) = ∑ (𝐶𝑜𝑚𝑝(𝑥𝑘𝑖), 𝐶𝑜𝑚𝑝(𝑦𝑘𝑗), 𝐶𝑜𝑚𝑝(𝑧𝑘𝑙))
𝑛

𝑘=0
∑ 𝑎𝑒𝑛
𝑒=1⁄ × 100

The values ′𝑥, 𝑦, 𝑧 ′ compute the attacks which are detected at specified intervals, and added to compute the

total. The value ′𝑎 ′ computes and adds the number of experiments performed at each interval. Where, ′𝑘 ′and ′𝑒 ′
show the sequence with limit ′𝑛′.

For example, experiments per interval and total experiments per scenario are: 228 and 684.

As the performance results show in Figure 15, total attack detection percentages of performance

Figures 12–14 are calculated, and corresponding securities are measured. In the first scenario, the total

attack detection percentage is computed as 95% and the corresponding security is 5%. These results

show the lack of security design in DNP3. On the other side, in the second and third scenarios, total

attack detection percentages are computed as 3% and 24% and corresponding computed securities are

97% and 76%. The security percentage is computed from the second scenario and this shows the

significant enhancements of DNP3 security in automated polling during open connectivity with

protocols such as TCP/IP. This also shows great enhancements compared to the first scenario and third

scenario and with existing end-to-end developments [8–14,16–19,22,24,34,50,52].

Figure 15. Performance comparison.

9. Related Work

A simulation has been designed, and two modules are proposed for SCADA/DNP3 system security

enhancement [16,17]. The first module is tested without any security concerns in order to measure the

level of SCADA security and compare it with other security enhancement modules. The second module

is employed which uses a digital signature technique during the transmission of bytes between SCADA

nodes. A security method called authentication octets is appended with bytes that are transmitted

from the master node to the remote node in the SCADA testbed [16,17,21]. Upon receiving a message,

the remote node uses a private key to decrypt the message. It then calculates and compares a hash

value with the send hash digest. The third module was designated as a challenge response with random

key sessions, which protect communication against attacks including data replay and modification and

spoofing [8,16,17,51,53]. As analyzed, the security approach is not convenient for SCADA multicasting

and broadcasting communications, because asymmetric encryption takes much time during processing

and number of keys are also acquired during bytes’ security. However, the above security approaches

are relevant for SCADA unicasting or one-to-one communication [8,23,54,55].

Symmetry 2015, 7 1975

The SCADA platform is more vulnerable than traditional or informative networks due to its connectivity

with proprietary and non-proprietary protocols. The existing SCADA systems were not designed with

cyber security in mind, but today these systems are interlinked with corporate networks as well as open

protocols and ready to access information/data from distant places via the Internet [8,56,57]. While

connected with open IP networks, SCADA systems are facing a number of challenges in the absence of

a security mechanism that provides protection against cyber-attacks. Several security solutions have

been employed to enhance the level of SCADA security but these solutions also have disadvantages

while providing protection against Internet attacks [9,37,52,57–66]. Therefore, a security solution that

provides protection while SCADA interacts with advanced networks or/and protocols (such as

LAN/WAN) should be acquired [6,52,59–62,67–69].

10. Conclusions and Future Work

SCADA systems are gaining popularity in modern technology day-by-day; these systems are in most

demand in industrial processing. However, such advances in technology development create

vulnerabilities, which are dangerous for SCADA communication platforms. Thus, a cryptography

solution was implemented within DNP3 protocol as part of a SCADA system during automated polling.

The design and computed measurements act as symbols to examine and prove the validity of the

proposed development, but the scope is limited to simulation. In this study, the word “critical” has been

used to designate the automated polling because, in a polling scenario, an attacker has several chances

to worm the SCADA traffic. This study outlines new research trends for SCADA automated polling and

its security enhancements.

In future work, certificate authority (CA) is required, and the cryptography based security

developments will be analyzed and, subsequently, cryptography algorithms will be selected as a potential

solution for SCADA broadcasting/multicasting communication vulnerabilities where a number of nodes

are configured and connected to the main controller(s). The network nodes would also be followed by

both SCADA/DNP3 bounded and unbounded communication methods.

Acknowledgments

This paper was supported by the research funds of Wonkwang University in 2015.

Author Contributions

In this research, Aamir Shahzad and Malrey Lee conceived and designed the experiments;

Aamir Shahzad and Hyung Doo Kim performed the experiments; Aamir Shahzad and Seon-mi Woo

analyzed the data; Aamir Shahzad, Malrey Lee and Naixue Xiong contributed materials/analysis tools;

Aamir Shahzad and Malrey Lee wrote the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Symmetry 2015, 7 1976

References

1. Stouffer, J.; Kent, K. Guide to Supervisory Control and Data Acquisition (SCADA) and Industrial

Control Systems Security; Recommendations of the National Institute of Standards and Technology;

NIST: Gaithersburg, MD, USA, 2006; pp. 2–13.

2. National Communications System. Supervisory Control and Data Acquisition (SCADA) Systems;

Technical Information Bulletin 04-1; National Communications System: Arlington, TX, USA,

2004; pp. 8–12

3. Clarke, G.; Reynders, D.; Wright, E. Practical Modern SCADA Protocols; DNP3, 60870.5 and

Related Systems; Elsevier: New York, NY, USA, 2004; pp. 73–129.

4. Susanto, I.; Jackson, R.; Paul, D.L. Industrial Process Control System Security. Wiley Handbook of

Science and Technology for Homeland Security; John Wiley & Sons: Hoboken, NJ, USA, 2009;

pp. 1–15.

5. DNP Users Group. DNP3 Application Layer Specification, Version 2.00; DNP Organization:

Washington, WA, USA, 2005; Volume 2.

6. Gao, J.; Liu, J.; Rajan, B.; Nori, R. SCADA Communication and Security Issues. Secur. Commun. Netw.

2014, 7, 175–194.

7. Kim, H.J. Security and Vulnerability of SCADA Systems over IP-Based Wireless Sensor Networks.

Int. J. Distrib. Sens. Netw. 2012, 2012, doi:10.1155/2012/268478.

8. Musa, S.; Shahzad, A.; Aborujilah, A. Secure Security Model Implementation for Security Services

and Related Attacks Based on End-to-End, Application Layer and Data Link Layer Security. In

Proceedings of the 7th International Conference on Ubiquitous Information Management and

Communication, Kota Kinabalu, Malaysia, 17–19 January 2013.

9. Hong, S.; Lee, M. Challenges and Direction toward Secure Communication in the SCADA System.

In Proceedings of the 2010 Eighth Annual Communication Networks and Services Research

Conference (CNSR), Montreal, QC, Canada, 11–14 May 2010.

10. Hieb, J.L.; Graham, J.H.; Patel, S.C. Cyber Security Enhancements for SCADA and DCS Systems;

Intelligent Systems Research Laboratory; Technical Report ISRL-TR-07-02; University of Louisville:

Louisville, KY, USA, 2007.

11. Hieb, J.; Graham, J.; Patel, S. Security Enhancements for Distributed Control Systems. In Critical

Infrastructure Protection, IFIP International Federation for Information Processing; Springer US:

New York, NY, USA, 2008; Volume 253, pp. 133–146, doi:10.1007/978-0-387-75462-8_10.

12. Kang, D.-J.; Kim, H.-M. A Proposal for Key Policy of Symmetric Encryption Application to Cyber

Security of KEPCO SCADA Network. In Proceedings of the Future Generation Communication

and Networking, (FGCN 2007), Jeju, Korea, 6–8 December 2007; Volume 2.

13. Moral-Garcia, S.; Moral-Rubio, S.; Rosado, D.G.; Fernandez, E.B.; Fernandez-Medina, E. Enterprise

Security Pattern: A New Type of Security Pattern. Secur. Commun. Netw. 2014, 7, 1670–1690.

14. Khelil, A.; Germanus, D.; Suri, N. Protection of SCADA communication channels. In Critical

Infrastructure Protection, Proceedings of the Critical Infrastructure Protection Lecture Notes in

Computer Science; Springer Berlin Heidelberg: Berlin, Germany, 2012; Volume 7130, pp. 177–196.

15. Ali, M.; Khan, S.U.; Vasilakos, A.V. Security in Cloud Computing: Opportunities and Challenges.

Inf. Sci. 2015, 305, 357–383.

Symmetry 2015, 7 1977

16. Irshad, A.; Sher, M.; Faisal, M.S. A Secure Authentication Scheme for Session Initiation Protocol

by Using ECC on the Basis of the Tang and Liu Scheme. Secur. Commun. Netw. 2014, 1210–1218.

17. Lim, S.; Lee, E.; Park, C.-M. Equivalent Public Keys and a Key Substitution Attack on the Schemes

from Vector Decomposition. Secur. Commun. Netw. 2014, 1274–1282.

18. Patel, S.C. Secure Internet-Based Communication Protocol for SCADA Networks. Ph.D. Thesis,

University of Louisville, Louisville, KY, USA, 2006.

19. Patel, S.C.; Bhatt, G.D.; Graham, J.H. Improving the Cyber Security of SCADA Communication

Networks. Commun. ACM 2009, 52, 139–142.

20. Igure, V.M.; Laughter, S.A.; Williams, R.D. Security Issues in SCADA Networks. Comput. Secur.

2006, 25, 498–506.

21. Elsaid, W.H. Enhanced Cryptographic Approaches for SCADA Network Security. Ph.D. Thesis,

University of Louisville, Louisville, KY, USA, 2010.

22. Saxena, A.; Pal, O.; Saquib, Z. Public Key Cryptography Based Approach for Securing SCADA

Communications. In Computer Networks and Information Technologies; Communications in Computer

and Information Science; Springer Berlin Heidelberg: Berlin, Germany, 2011; Volume 142,

pp. 56–62.

23. Shahzad, A.; Musa, S.; Irfan, M. N-Secure Cryptography Solution for SCADA Security Enhancement.

Trends Appl. Sci. Res. 2014, 9, 381–395.

24. Drahansky, M.; Balitanas, M. Cipher for Internet-based Supervisory Control and Data Acquisition

Architecture. J. Secur. Eng. 2011, 8, 337–348.

25. Shbib, R.; Zhou, S.; Alkadhimi, K. SCADA System Security, Complexity, and Security Proof.

In Proceedings of the ICPCA-SWS 2012, LNCS 7719, Istanbul, Turkey, 28–30 November 2012;

pp. 405–410.

26. Ryu, D.H.; Kim, H.; Um, K. Reducing Security Vulnerabilities for Critical Infrastructure. J. Loss

Prev. Process Ind. 2009, 22, 1020–1024.

27. Shyamasundar, R.K. Security and Protection of SCADA: A Big Data Algorithmic Approach. In

Proceedings of the 6th International Conference on Security of Information and Networks (SIN’13),

Aksaray, Turkey, 26–28 November 2013; ACM: New York, NY, USA, 2013; pp. 20–27.

28. Cardenas, A.A.; Amin, S.; Lin, Z.-S.; Huang, Y.-L.; Huang, C.-Y.; Sastry, S. Attacks against

Process Control Systems: Risk Assessment, Detection, and Response. In Proceedings of the 6th

ACM Symposium on Information, Computer and Communications Security (ASIACCS’11),

Hongkong, China, 22–24 March 2011; ACM: New York, NY, USA, 2011; pp. 355–366.

29. Ralston, P.A.S.; Graham, J.H.; Hieb, J.L. Cyber Security Risk Assessment for SCADA and DCS

networks. ISA Trans. 2007, 46, 583–594.

30. Gold, S. The SCADA Challenge: Securing Critical Infrastructure. Netw. Secur. 2009, 2009, 18–20.

31. DNP Users Group. DNP3 Specification, Secure Authentication; DNP Organization: Washington,

WA, USA, 2010; Supplement to Volume 2.

32. Majdalawieh, M.; Parisi-Presicce, F.; Wijesekera, D. DNPSec: Distributed Network Protocol

Version 3 (DNP3) Security Framework. In Advances in Computer, Information, and Systems

Sciences, and Engineering, Proceedings of IETA 2005, TeNe 2005, EIAE 2005; Springer: Houten,

The Netherlands, 2006; pp. 227–234.

Symmetry 2015, 7 1978

33. East, S.; Butts, J.; Papa, M.; Shenoi, S. A Taxonomy of Attacks on the DNP3 Protocol. In Critical

Infrastructure Protection III; Springer Berlin Heidelberg: Berlin, Germany, 2009; pp. 67–81.

34. Mander, T.; Cheung, R.; Nabhani, F. Power System DNP3 Data Object Security Using Data Sets.

Comput. Secur. 2010, 29, 487–500.

35. Shahzad, A.; Kalum, P.U.; Young, K.L.; Soojin, P.; Malrey, L. The Sensors Connectivity within

SCADA Automation Environment and New Trends for Security Development during Multicasting

Routing Transmission. Int. J. Distrib. Sens. Netw. 2015, in press.

36. Lee, D.; Kim, H.; Kim, K.; Yoo, P.D. Simulated Attack on DNP3 Protocol in SCADA System. In

Proceedings of the The 31th Symposium on Cryptography and Information Security, Kagoshima,

Japan, 21–24 January 2014.

37. Mohammadi, N.B.; Misic, J.; Misic, V.B.; Khazaei, H. A Framework for Intrusion Detection System

in Advanced Metering Infrastructure. Secur. Commun. Netw. 2014, 7, 195–205.

38. Mirkovic, J.; Reiher, P. A Taxonomy of DDoS Attack and DDoS Defense Mechanisms.

ACM SIGCOMM Comput. Commun. Rev. 2004, 34, 39–53.

39. Jin, D.; Nicol, D.M.; Yan, G. An Event Buffer Flooding Attack in DNP3 Controlled SCADA

Systems. In Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA,

11–14 December 2011; pp. 2614–2626.

40. Shahzad, A.; Xiong, N.; Irfan, M.; Lee, M.; Hussain, S.; Khaltar, B. A SCADA intermediate simulation

platform to enhance the system security. In Proceedings of the 2015 17th International Conference

on Advanced Communication Technology (ICACT), Seoul, Korea, 1–3 July 2015; pp. 368–373.

41. Graham, J.; Patel, S. Security Considerations in SCADA Communication Protocols; Technical

Report TR-ISRL-04-01; Intelligent Systems Research Laboratory: Louisville, KY, USA, 2004

42. Rrushi, D.; di Milano, U. SCADA Intrusion Prevention System. In Proceedings of the 1st CI2RCO

Critical Information Infrastructure Protection Conference, Hampshire, UK, 14 March 2006.

43. Bompard, E.; Gao, C.; Napoli, R.; Russo, A.; Masera, M.; Stefanini, A. Risk Assessment of

Malicious Attacks Against Power Systems. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 2009, 39,

1074–1085.

44. Fernandez, J.; Fernandez, A. SCADA Systems: Vulnerabilities and Remediation. J. Comput. Sci.

Coll. 2005, 20, 160–168.

45. Patel, S.; Yu, Y. Analysis of SCADA Security models. Int. Manag. Rev. 2007, 3, 68–76.

46. Faruk, A. Testing & Exploring Vulnerabilities of the Applications Implementing DNP3

Protocol. Masters’ Dissertation. Royal Institute of Technology, Stockholm, Sweden, 2008.

47. Hong, S.; Lee, S. Challenges and Perspectives in Security Measures for the SCADA System.

In Proceedings of the 5th Myongji-Tsinghua University Joint Seminar on Protection & Automation,

Korea, 2008.

48. Fujisaki, E.; Okamoto, T. Secure Integration of Asymmetric and Symmetric Metric Encryption

Schemes. In Advances in Cryptology—CRYPTO’99; LNCS; Springer Berlin Heidelberg: Berlin,

Germany, 1999; Volume 1666, pp. 537–554.

49. Rivest, R.L.; Shamir, A.; Adleman, L. A method for Obtaining Digital Signatures and Public-Key

Cryptosystems. Commun. ACM 1978, 21, 120–126.

50. He, D.; Chen, J.; Chen, Y. A Secure Mutual Authentication Scheme for Session Initiation Protocol

Using Elliptic Curve Cryptography. Secur. Commun. Netw. 2012, 5, 1423–1429.

Symmetry 2015, 7 1979

51. Shahzad, A.; Musa, S.; Irfan, M.; Asadullah, S. Deployment of New Dynamic Cryptography Buffer

for SCADA Security Enhancement. J. Appl. Sci. 2014, 14, 2487–2497.

52. Liyanage, M.; Gurtov, A. Securing Virtual Private LAN Service by Efficient Key Management.

Secur. Commun. Netw. 2014, 7, 1–13.

53. Chandia, R.; Gonzalez, J.; Kilpatrick, T.; Papa, M.; Shenoi, S. Security Strategies for SCADA

Networks. IFIP Int. Fed. Inf. Process. 2008, 253, 117–131.

54. Rong, C.; Nguyen, S.T.; Jaatun, M.G. Beyond Lightning: A Survey on Security Challenges in Cloud

Computing, Special Issue on Recent Advanced Technologies and Theories for Grid and Cloud

Computing and Bio-Engineering. Comput. Electr. Eng. 2013, 39, 47–54.

55. Riaz, R.; Naureen, A.; Akram, A.; Akbar, V.; Kim, K.H.; Farooq Ahmed, H. A Unified Security

Framework with Three Key Management Schemes for Wireless Sensor Networks. Comput. Commun.

2008, 31, 4269–4280.

56. Mohamed, F.A.; Hemayed, E.E. Using Trusted Computing in Trusted Mail Transfer Protocol.

Secur. Commun. Netw. 2014, 7, 926–933.

57. Li, J.; Lin, Y.; Wang, G.; Li, R.; Yin, B. Privacy and Integrity Preserving Skyline Queries in Tiered

Sensor Networks. Secur. Commun. Netw. 2014, 7, 1177–1188.

58. Chen, Y.; Dong, Q. RCCA Security for KEM + DEM Style Hybrid Encryptions and a General

Hybrid Paradigm from RCCA-secure KEMs to CCA-secure encryptions. Secur. Commun. Netw.

2014, 7, 1219–1231.

59. Raza, S.; Duquennoy, S.; Höglund, J.; Roedig, U.; Voigt, T. Secure Communication for the Internet

of Things—A Comparison of Link-layer Security and IPsec for 6LoWPAN. Secur. Commun. Netw.

2014, 7, 2654–2668.

60. Morris, T.H.; Gao, W. Industrial control system cyber attacks. In Proceedings of the 1st International

Symposium on ICS & SCADA Cyber Security Research, 2013; BCS: UK; pp. 22–29.

61. Robles, R.J.; Balitanas, M.; Kim, T. Security Encryption Schemes for Internet SCADA: Comparison

of the Solutions. Commun. Comput. Inf. Sci. 2011, 223, 19–27.

62. Loutchkina, I.; Jain, L.C.; Nguyen, T.; Nesterov, S. Systems’ Integration Technical Risks’

Assessment Model (SITRAM). IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 342–352.

63. Wang, L.; Ren, S.; Korel, B.; Kwiat, K.A.; Salerno, E. Improving System Reliability against

Rational Attacks Under Given Resources. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 446–456.

64. Lin, C.-H.; Song, K.-T. Probability-Based Location Aware Design and on-Demand Robotic

Intrusion Detection System. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 705–715.

65. Jiang, Y.; Jiang, J.C. Diffusion in Social Networks: A Multiagent Perspective. IEEE Trans. Syst.

Man Cybern. Syst. 2015, 45, 198–213.

66. Ko, J.; Lim, H.; Lee, S.; Shon, T. AVQS: Attack Route-Based Vulnerability Quantification Scheme

for Smart Grid. Sci. World J. 2014, 2014, 1–6.

67. Robles, R.-J.; Balitanas, M.; Caytiles, R.; Gelogo, Y.; Kim, T. Comparison of Encryption Schemes

as Used in Communication between SCADA Components. In Proceedings of the 2011 International

Conference on Ubiquitous Computing and Multimedia Applications (UCMA), Daejeon, Korea,

13–15 April 2011; pp. 115–118.

Symmetry 2015, 7 1980

68. Scacchioli, A.; Rizzoni, G.; Salman, M.A.; Li, W.; Onori, S.; Zhang, X. Model-based Diagnosis of

an Automotive Electric Power Generation and Storage System. IEEE Trans. Syst. Man Cybern. Syst.

2014, 44, 72–85.

69. Eirinaki, M.; Louta, M.D.; Varlamis, I. A Trust-Aware System for Personalized User

Recommendations in Social Networks. IEEE Trans. Syst. Man Cybern. Syst. 2014, 44, 409–421.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

