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Abstract: Modern technology enhancements have been used worldwide to fulfill the 

requirements of the industrial sector, especially in supervisory control and data acquisition 

(SCADA) systems as a part of industrial control systems (ICS). SCADA systems have 

gained popularity in industrial automations due to technology enhancements and 

connectivity with modern computer networks and/or protocols. The procurement of new 

technologies has made SCADA systems important and helpful to processing in oil lines, 

water treatment plants, and electricity generation and control stations. On the other hand, 

these systems have vulnerabilities like other traditional computer networks (or systems), 

especially when interconnected with open platforms. Many international organizations and 

researchers have proposed and deployed solutions for SCADA security enhancement, but 

most of these have been based on node-to-node security, without emphasizing critical 

sessions that are linked directly with industrial processing and automation. This study 

concerns SCADA security measures related to critical processing with specified sessions of 

automated polling, analyzing cryptography mechanisms and deploying the appropriate 

explicit inclusive security solution in a distributed network protocol version 3 (DNP3) stack, 

as part of a SCADA system. The bytes flow through the DNP3 stack with security 
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computational bytes within specified critical intervals defined for polling. We took critical 

processing knowledge into account when designing a SCADA/DNP3 testbed and deploying 

a cryptography solution that did not affect communications. 

Keywords: supervisory control and data acquisition; distributed network protocol; dynamic 

cryptography buffer; integrity and event polling 

 

1. Introduction 

Supervisory control and data acquisition (SCADA) systems have been playing crucial roles in 

industrial automation and control. SCADA systems contribute to several processes including industrial 

production, refining, filtration, manufacturing and electric or power generation in industries such as 

automotive; heating, ventilating, and air conditioning (HVAC) and heat recovery (HR) ventilation/energy 

recovery ventilators (ERVs); oil and gas; water pumping, treatments, and distribution; aircraft and trains; 

and electricity generation, transmission and distribution [1–4]. The SCADA systems employ several 

protocols such as Modbus, IEC protocol series, Fieldbus, Profibus, Omnibus, DNP3, and Conitel, and 

each of these protocols has been designed for a specific industry, although a few of them are employed 

in multiple industries or industrial processes [1,2,4]. Figure 1 graphically depicts the general architecture 

of a SCADA system with its major components. 

 

Figure 1. Supervisory control and data acquisition (SCADA) system architecture.  

This study focuses on DNP3 and its open interconnectivity, and the major vulnerabilities that have 

been arising in SCADA/DNP3 communication. The DNP3 is an important SCADA communication 

protocol that is employed and designed for electric and water industries. In the SCADA system, DNP3 

performs several operations followed by functions (codes), such as transfer functions, control functions, 

freeze functions and time synchronization functions, and file transferring functions [5]. Now-a-days, 

DNP3 is employed to interconnect field devices or remote sensors, located in various geographical 

locations and controlled from central controller(s) [6–8]. With the acquisition of modern technologies 

and connectivity over the Internet, SCADA/DNP3 communication has been vulnerable to cyber security 

threats which can be tremendously harmful to industrial systems [7–9]. 

SCADA/DNP3 uses the concept of polling, which is usually classified into two polling sections: 

integrity polling and event polling. In integrity polling, configured field devices (or remote stations) 
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respond to all static points, which have been observed most recently; while event polling is designated 

for significant changes occurring within the system or during the last integrity poll and report by 

exception [2,5]. The time factor has been considered as the most important concern during SCADA 

critical processing or polling. During polling, the session has been specified between network nodes, in 

which bytes are transmitted. Each node in the SCADA network should send/receive the bytes  

at a specified time interval. Therefore, a specified time is crucial for each node during SCADA 

transmission [6,10]. Several security designs for that type of transmission are inappropriate due to time 

limitations [6,10–12]. 

Security is an important aspect for all types of networks or systems in the arena of computer science 

and information technology. Several security mechanisms, including security pattern approaches, 

TLS/SSL, Internet Protocol Security (IPSec), Secure Shell (SSH), hardware/software firewalls, demilitarized 

zones (DMZs), authentication protocols, and cryptography solutions, have been designed and deployed 

to protect industrial communication against vulnerabilities and potential attacks [6,7,13–15]. Among 

these security approaches, cryptography based mechanisms are suggested as the best security 

approaches, due to their independence and implementation evaluation [8,16–19]. SCADA security via 

cryptography mechanisms has been considered as a vital approach during transmission [19–22]. On the 

other hand, cryptography based approaches are deemed to be complex and heavy computational 

approaches during security design and development—especially, in industrial processing [8,10,19,22–25]. 

The proposed study has analyzed the cryptography approaches, and then, employed the inclusive 

security solution in DNP3 which significantly increased the security of the SCADA system. The main 

contribution of this study is twofold: 

(i) The SCADA/DNP3 polling scenario called automated polling is addressed and, according to 

communication requirements, security is deployed to secure the sensitive information. The sensitive 

information would be secured before travelling to non-proprietary protocols over the Internet. 

(ii) To achieve security, the DNP3 stack is designed with an open source library, the original stack 

bytes are controlled and manipulated by new 56-byte dynamic development called a dynamic 

cryptography buffer (DCB), without changing the original protocol design. 

The rest of the research paper is organized as follows. The DNP3 and its layers are explained in 

Section 2. We discuss the problem statement and research objectives in Section 3. In Section 4, the 

detailed DNP3 model is designed with security development and formal proofs are employed for 

validation purposes. DCB is deployed in Section 5. The testbed is setup in Section 6 and protocol bytes 

are flowed in Section 7. Measurements are observed and discussed in Section 8. Section 9 conducts a 

detailed survey of existing studies and Section 10 concludes our proposed research and future trends. 

2. DNP3 

In the SCADA system, DNP3 is the most demanding telecommunications standard based protocol, 

which provides communication facilities between main or supervisory stations, remote terminal units, 

and other intelligent equipment, in water and electric companies [1]. The DNP3 protocol was designed 

as a proprietary protocol and provides interoperability between various types of equipment. Seventy 

percent of DNP3 has been employed in North America, and the remaining 30% in the rest of the world, 
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notably South America, Africa, Australia, Asia and Europe [1,2]. Due to growing demands, DNP3 is 

now also connected with the Internet, and sends/receives the information that may be available 

geographically at remote sites through connected field devices. In addition, the non-proprietary protocols, 

such as TCP/IP (Transmission Control Protocol/Internet Protocol) and User Datagram Protocol (UDP), 

are used. These protocols provide interconnectivity with DNP3 over the Internet. Therefore, this protocol 

is also defined as an open or non-proprietary protocol in SCADA systems [1–3,6–11]. 

The enhanced performance architecture (EPA) model is a three-layer model, defined by the 

International Electrotechnical Commission (IEC) and the DNP3 design is also based on this EPA model. 

The EPA model is based on the Open Systems Interconnection (OSI) model that is a seven-layer model, 

and contains an application layer, data link layer and physical layer. DNP3 also uses these three layers, 

plus an additional layer called the pseudo-transport layer which performance the limited functions of 

transport layer and network layer of OSI model [1,2]. 

In DNP3, the application layer is a top layer that is designed to take the information from the upper 

layer (or user application layer). The user layer could form a human machine interface (HMI) or other 

SCADA/DNP3 supported software. Information passes from the user application layer to the application 

layer of DNP3. Here, variable sized data is managed in fixed sized blocks (or manageable sized data) 

and the addition of the application header forms fragments. The number of blocks or application service 

data units (ASDUs) is not limited in a fragment, but the size of fragment or application protocol data 

unit (APDU) is limited to 2048 bytes, which is also specified by original DNP3 documentation. The 

send or receive message is also specified at an application layer by means of the application protocol 

control information (APCI) or header fields. Sending APCI contains two bytes of information. This 

information includes application control (AC) and function code (FC) while the response APCI adds an 

additional field of two bytes called internal indication (IIN). The DNP3 protocol message contains 

various function codes that would be performed by the sub-controller, and would reply to the main 

controller [5]. Table 1 shows the number of application layer function codes that are performed in the 

SCADA/DNP3 system. 

Table 1. Application layer function codes [3]. 

Function Type Function Code Function Perform 

Request Function Codes 

Transfer Function 

0 Confirm 

1 Read 

2 Write 

Control Function 3–6 – 

Freeze Function 7–12 – 

Application Control Function 13–18 – 

Configuration Function 19–22 – 

Time Synchronization 23 – 

Reserved 24–128 – 

Response Function Codes 

Response Function 

0 Confirm 

129 Read 

130 Write 
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In the pseudo-transport layer, APDU bytes are assembled as a transport service data unit (TSDU) and 

TSDU is disassembled into fixed sized data blocks, except in the case of the last block of 56 bytes, when 

the maximum bytes are received from the application layer or 2048 bytes of APDU. The transport layer 

adds one byte of header with each data block, and transport protocol data unit (TPDU) or a segment is 

formed. Each TPDU size is limited to a maximum of 250 bytes, which would be further employed in the 

link layer frame. The data link layer assembles each upcoming TPDU as a link service data unit (LSDU), 

and adds a header field of 10 bytes, which is also called link protocol control information (LPCI). A link 

protocol data unit (LPDU) (or frame) is formed by adding the LPCI with an LSDU block. In the data 

link layer, source and destination addresses are defined and a 32 bytes cyclic redundancy checker (CRC) 

code is employed to detect the transmission errors [1–3]. More detail of DNP3 and its related layer fields 

is illustrated in Figure 2. 

 

Figure 2. DNP3 protocol stack and related fields [3].  

The link layer frames are then transmitted to the physical layer. As defined, DNP3 is a non-proprietary 

protocol. Therefore, the frames are directly encapsulated into TCP/IP protocols which provide a pathway 

to DNP3 frames to travel over the Internet. At the receiver side, frames are reassembled into TPDU 

(blocks), by a stripped of link header or LPCI. After this, the transport header or TPCI is also removed 

from each TPDU or segment, and then, the TSDU blocks are reformed. Each TSDU block will assemble 

as APDU or an application layer fragment. The header bytes are verified and removed, and the ASDU 

blocks are reformed and these blocks would be used at the user application layer [3]. Figure 3 shows the 

SCADA/DNP3 stack and its connectivity with TCP/IP protocols. 
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Figure 3. SCADA/DNP3 connectivity with TCP/IP protocols. 

3. Problem Statement 

3.1. Background Study 

In the initial structure of DNP3, there is no security mechanism that can protect sensitive information 

from security threats [5,7,21,23]. Due to the evolution of technology, the advanced version of DNP3 

provides interconnectivity over the Internet; the information travels through non-proprietary protocols, 

which reside below DNP3 [5,19]. Due to open connectivity, DNP3 has been vulnerable to Internet 

attacks; most DNP3 devices are configured, and communicate without any proper authentication 

mechanism or have little protection in the SCADA network against vulnerabilities [23–30]. Cryptography 

based security mechanisms [31] have been proposed for DNP3 by DNP3 users group, in which 

symmetric and asymmetric methods are defined and a detailed description of challenge-response 

technique is made to examine the security goals (or parameters), such as authentication and integrity, and 

to protect the transmission against attacks, such as replay, spoofing, and modification attacks [8,32,33], at 

the application layer. However, many limitations are accounted for in DNP3 security design and 

development, and most of the work is in initial phases or still in the development phases. 

DNP3 provides three main communication facilities (or modes) to connect the field devices in 

SCADA networks including unicasting (or master or outstation mode), broadcasting mode and unsolicited 

mode. A unicasting mode is also designated for a peer-to-peer mode, in which the main controller 

requests information, and the sub-controller will reply. In broadcasting, the main controller broadcasts 

the information to all connected sub-controllers in the SCADA/DNP3 network(s). When necessary,  

sub-controllers are authorized to send unsolicited responses to the main controller. The message may be 

an alternative message to the main controller. In communication modes, DNP3 used TCP/IP protocols 

to communicate over the Internet, as well as the available security protocols (i.e., TLS/SSL and IPSec) 

to protect against unauthorized threats. There is no proper authentication mechanism in DNP3. 

Therefore, DNP3 frames are encapsulated in other security protocols including TLS/SSL and IPSec. A 

survey has been conducted on SCADA/DNP3 vulnerabilities [24–27,31], and mechanisms [32–34], such 

as anomaly detection and attacks detection, are used to detect the attacks, such as flooding attacks, 

DoSattack, spoofing, data modification, data reply, and man-in-the-middle attack, in SCADA/DNP3 

communication [12,33,35,36]. A number of attacks is investigated [20,33,35–40] by employing attack 

scenarios in the SCADA/DNP3 system, and the existence and potential influence of attacks are also 
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measured. Another study [27] incorporated 28 potential attacks in the SCADA/DNP3 system due to 

protocol deficiencies.  

3.2. Study Motivation 

The existing work [6,7,15–21] of SCADA security has employed the end-to-end developments to 

secure the communication of SCADA systems. A number of limitations and dependencies are found 

during end-to-end developments [8,19,27]. More specifically, the DNP3 frames are encapsulated in other 

lower layer protocols, such as SSH, IPSec, and SSL/TLS [23,41], which protect the sensitive information 

of the SCADA/DNP3 system against Internet vulnerabilities and attacks [20,39,42–47]. In conclusion, 

DNP3 relies on other open protocols, such as TCP/IP and UDP, in terms of transmission over the Internet 

and on protocols (such as SSH, IPSec, and SSL/TLS) for security purposes, but these open protocols 

(such as TCP/IP and UDP) have several vulnerabilities, and the protocols (such as SSH, IPSec, and 

SSL/TLS) also have limitations [8,36], because they depend on other security protocols, such as 

cryptography protocols [19,23]. 

Research [16–23] has been conducted on the vulnerable aspects of SCADA systems. Specifically, 

cryptography mechanisms have been developed to enhance the security of these critical systems, and most 

of these developments have been successful. Few cryptography mechanisms [12,23,24,48] are proposed 

for SCADA/DNP3 systems in case of one-to-one communication, and are inappropriated while employing 

public key cryptography in broadcasting communication. Public key cryptography based mechanisms 

required much time during key generation, distribution, and algorithm computation [16,17,22,48–50]. On 

the other side, symmetric cryptography solutions are unable to protect SCADA communication against 

non-repudiation attacks [8,16,23]. 

From the above SCADA/DNP3 security analysis, we can conclude that DNP3 lacks security, even 

when employing and depending on other protocols, which we examine in order to better understand the 

current security of DNP3. Therefore, this study proposes work trends to secure the SCADA/DNP3 

system, and highlights and addresses the potential security measurements such as authentication, 

integrity and confidentiality during polling scenarios. To achieve the desired goals, the proposed study 

fulfills the following main objectives: 

(i) The SCADA/DNP3 stack has been designed using an open source library with explicit codes 

in C#, and security is implemented within the stack, before it communicates with open protocols. 

(ii) A new automated polling scenario has been designed that combines the balanced and 

unbalanced systems of DNP3, according to the requirements of the organization in a water 

pumping system. 

(iii) In the original DNP3 stack, bytes are constructed followed by layer(s) specifications, and 

security is deployed, and then, bytes are placed in a dynamic cryptography buffer (DCB) for 

further development. In security development, well-known security algorithms are selected 

from the arena of cryptography, such as advanced encryption standard (AES) and SHA-2, 

which significantly enhance SCADA/DNP3 security without interrupting the communication 

(or polling) specifications. 
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(iv) A simulation environment is designed for the SCADA system by employing DNP3; bytes are 

constructed with security development, and are transmitted a number of times between 

controllers in the SCADA/DNP3 network. 

(v) Formal proofs are used which validate the proposed research, including the validation of the 

bytes construction processes within the stack, validation of security implementation and 

validation of DCB design and development. 

(vi) Well-known tools (or attacking tools) are used that interrupt the normal communication of the 

SCADA/DNP3 system that we can use to measure and evaluate performance. 

(vii) An evaluation process is performed based on three measurements phases: 

(a) The DNP3 bytes are constructed without security concerns, and transmitted to an open 

network. Attacking tools are used to interrupt the normal communication, and security 

performance is measured. 

(b) In the second phase, proposed security is implementing via DCB, and performance results 

are computed. 

(c) In the last phase, cryptography algorithms such as AES and SHA-2 are deployed and tested 

at each end of SCADA/DNP3 system and performances are computed that would be helpful 

during the comparison process. 

The above three measurements are helpful during the comparison process, as well as at the 

time of evaluation. The measured results of the second phase are further compared with 

existing developments (results) that would show the difference between them. 

The scope of this study is limited to SCADA/DNP3 security designed and deployed during a critical 

scenario called automated polling. The most prominent cryptography algorithms are considered to secure 

the communication against attacks, including confidentiality, integrity and authentication. The proposed 

security development is selected on the basis of polling specifications. The security keys are locally 

stored and are distributed (or exchanged) statically among the participated nodes in the testbed, which 

are considered as the limitations of this study. Therefore, in future, certificate authority (CA) is required 

for digital certification in the case of public key cryptography, and a key distribution center (KDC)  

(i.e., Kerberos) is required in the case of symmetric key cryptography where keys are exchanged among 

participated nodes using secure channel(s). 

4. Model Design and Development 

The polling is an important concept used in SCADA/DNP3 systems: balanced systems and unbalanced 

systems [3,5]. In this study, we review the existing polling scenarios and then we change the logical polling 

(or polling) to automated polling to address the security of a water pumping system. A simulation 

environment is designed for a SCADA water pumping system, in which several sub-controllers are used 

to receive the information from a pumping system through sensors, such as pressure sensors, heating 

sensors, cooling sensors, level sensors, and other equipment. 

In automated polling, explicit parameters are set with time constraints at specific intervals. In other 

words, the SCADA/DNP3 main controller polls once each time and sub-controllers respond according 

to parameters at specified intervals. After completing an interval, the SCADA/DNP3 main controller 
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will again poll in the event of new command execution, otherwise, only the interval will be changed. 

During automated polling, security is an important issue. Therefore, a reliable security mechanism is 

required that significantly prevents the system against potential attacks. 

For example, the main controller polls the sub-controller(s) to send the status of the water level, and 

the corresponding heating measured points at an interval of 7 min. This means that the parameters are 

as follows: an integrity poll response is issued every 45 s, a response to a normal event is sent every 20 s, 

and a reply to an abnormal event is sent depending on the situation. 

In this study, the event polling is divided into two parts: normal event polling and abnormal event 

polling. In normal event polling, a message such as the delivery time of the first integrity poll and then 

the time difference between integrity polls and the sequence number and transmission status are 

employed in the functional field called non-critical. At the other side, abnormal event polling acts as an 

unsolicited response event, in which the response would be sent any time. The response events are: 

exception report, alter message, change measured in the last integrity poll response, and the status of the 

unknown entity that interrupts in the polling. These events are also called critical response events (or 

critical response events bytes). 

The DNP3 model and its security development are thoroughly explained in the section below. Formal 

definitions and postulates are employed, which validate the proposed design and development. After 

this, DCB is employed to track and control model bytes, and other special operations of security 

development. 

4.1. DNP3 Model Design and Security Development 

In security development, constructed protocol bytes are treated as user bytes. Two cryptography 

algorithms are employed; the Advanced Encryption Standard (AES) and SHA-2 are deployed at the data 

link layer and an SHA-2 hashing algorithm is deployed at the pseudo-transport layer and application 

layer of DNP3. The cryptography algorithms and related design are selected based on communication 

requirements. As security development is dynamic, we can change the design according to the end user 

and SCADA system demands. 

In Figure 4, there are logical bytes, which are constructed at each layer in the DNP3 stack. Each cell 

has one byte, represented in a hexadecimal format. At the application layer, the bytes in black are 

application service data unit (ASDU) constructed bytes, and an empty cell shows application protocol 

control information (APCI) such that, red bytes: “C3” is the application code, “01” is the function code, 

and the remaining bytes, such as “00” and “00”, represent the Internet Indication (IIN), in case of a 

response message. The bytes such as “1A” and “EE” are security development bytes; employing the 

SHA-2 hashing function provides security against integrity attacks. 

In the pseudo-transport layer, the application layer bytes are assembled into transport service data 

unit (TSDU) and a one-byte header field is added with TSDU bytes, which made the full transport 

protocol data unit (TPDU). Each TPDU contains a maximum of 250 bytes. Therefore, the upper layer 

bytes (or application layer bytes) easily fit into one TPDU, as visualized in Figure 4. The black bytes are 

TSDU bytes. The empty cell shows the transport protocol control information (TPCI), and is represented 

by red byte “OB”. The SHA-2 hash digest of TPDU bytes is calculated and represented by red bytes, 

such as “2A” and “EE”, which provide byte verification and protect the contents from unknown entities. 



Symmetry 2015, 7 1954 

 

 

 

Figure 4. Logical bytes in the DNP3 stack. 

In the data link layer, the upper layer bytes are assembled as link service data unit (LSDU) and a  

10 bytes header is added, which forms the link protocol data unit (LPDU). The maximum of LPDU is 

260 bytes, plus 32 CRC bytes. In this study, 32 CRC bytes are treated as optional bytes, or could be 

required as additional bytes for DCB. In Figure 4, in the LPDU buffer, the bytes in black are link service 

data unit (LSDU) constructed bytes, and the empty cell shows the link protocol control information 

(LPCI). Details of the red bytes are as follows: “05”and “64” are a start of link header, “05” is length, 

“C0” is control byte, “01” is the destination address, “0C” is the source address, and the remaining  

bytes such as “CF” and “A0” represent the optional CRC bytes, in the event of sending/responding to a 

message. The remaining bytes, such as “3A” and “EE”, represent the security development bytes by 

employing an SHA-2 hashing function while the bytes, such as “1E” and “EE”, are computed by an AES 

algorithm, which provides security against integrity, authentication, and confidentiality attacks. 

The bytes are encrypted by employing an AES algorithm rather than by appending the secret code  

(or key) with protocol constructed bytes. The bytes’ encryption is a good approach, and this cannot affect 

the other bytes in the protocol stack [8]. In DNP3, upper layer bytes are counted as user bytes in the 

lower layer [3]. 
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In each layer, security bytes are computed and represented by codes of two bytes, including “1AEE” 

in APDU, “2AEE” in TPDU and “3AEE” and “1EEE” in LPDU. In other words, these are short codes  

that designate the security algorithms employed from cryptography, and at the receiver side, security 

development will be required. The proposed study also scrutinizes the deployment of a symmetric 

algorithm at the application layer. This is a good approach to secure the information, in case the attacker 

aims to target the application layer (buffer). However, due to communication specifications (or polling 

specifications) such as time limitations, the AES algorithm is only deployed at the data link layer. 

However, the attack scenarios are employed to launch the attacks by considering the whole protocol 

stack rather than taking into account the specific layer of DNP3. In the future, an attacks scenario will 

be designed, and launched at each layer of DNP3; this would be a good alternative approach to test  

the vulnerabilities of the desired layer(s). Figure 5 shows the security development in the DNP3 

protocol stack. 

 

Figure 5. Security development within the DNP3 stack. 

In conclusion, security is deployed within the stack so the proposed security development acts as an 

additional security layer(s), which performs a security test before assembling, reassembling and 

disassembling bytes in the protocol stack. In other words, three additional security layers are embedded 

inside the stack, which protects the sensitive information from unauthorized users. This would also be 

helpful if the attacker individually attacks DNP3 layers, such as the application layer, pseudo-transport 

layer and data link layer, to retrieve the sensitive information; for example, if the attacker has planned 

to retrieve the sensitive information of the application layer, without concern for the other layers. The 

security layer (at the application layer) protects the bytes against attackers. This situation would also 

arise in the other layers. 

4.2. Model Definitions 

DNP3 is designed without any security concerns. Therefore, a new DNP3 stack model is designed 

with security development. The security is achieved; if there is a protocol, constructed bytes flow 

through the stack (i.e., DNP3 stack) to non-proprietary protocols (i.e., TCP/IP). 
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Definition 1 (Manageable Bytes). A set of bytes “X” or user payload is observed from the user 

application layer using function 𝑓μ; such that 𝑓μ0 ∈ 𝑓μ is an independent function for each transmission 

by employing distinguishing identifiers. 

A function 𝑓μ0 gets the bytes from the user layer or user application layer and grants them to the 

application layer of DNP3, x ∈ X at runtime. The total size of X is limited according to the protocol 

design and specifications. The size is limited up to 1992 bytes, and the remaining bytes are employed 

for DCB. 

∀𝑋. μ(𝐸[𝑘]), the μ takes the numbers of user specified bytes X and processes these bytes as protocol 

useable bytes, in the application layer. The detailed description of keys (𝑘) has been added later, by 

employing 𝐸[𝑘]. The function 𝑓μ0 is executed for both the sender and receiver payload, while identifiers 

are used to distinguish them. 

Definition 2 (Header Bytes). Two explicit functions: 𝑓(μ1) and 𝑓(μ2) are used to specify the protocol 

descriptors, which would be further employed in lower layers. Such that: 𝑓(μ1, μ2) ∈ 𝑓μ. 

𝑓(μ1, μ2) ⟺ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) 
𝑛

𝑘=0
 

⇒ (𝑓μ(1.1,1.2): 𝑋𝑎𝑐
ℎ , 𝑋𝑓𝑐

ℎ )  ∈ 𝑓(μ1)(Xℎ) ⋀ (𝑓μ(1.1) , 𝑓μ(1.2)) ∈ 𝑓(μ1), In-case of sending payload. 

⋁ (𝑓μ(1.1,1.2,1.3): 𝑋𝑎𝑐
ℎ , 𝑋𝑓𝑐

ℎ , 𝑋𝑖𝑖𝑛
ℎ )  ∈ 𝑓(μ1)(Xℎ) ⋀ (𝑓μ(1.1) , 𝑓μ(1.2)𝑓μ(1.3)) ∈ 𝑓(μ1), In-case of response payload. 

⋀(𝑓μ(2.1,2.2,2.3): 𝑋𝑜ℎ
𝑑 , 𝑋𝑑𝑜

𝑑 )  ∈ 𝑓(μ2)(X𝑑) ⋀ (𝑓μ(2.1) , 𝑓μ(2.2)𝑓μ(2.3)) ∈ 𝑓(μ2), data blocks within the application 

layer stack. 

⇒  𝑋 ≤ X𝑑 ≥ Xℎ ⋀ (h, d) ≤ Limit 

The application protocol data unit (APDU) is generated by combining two functions. Such 

that:𝑓: 𝑓(μ1)(Xℎ), 𝑓(μ2)(X𝑑). The header (h) and data (d) bytes are processed according to the application 

layer stack specifications and limitations, while the APDU size has decreased due to security 

information storage. 

∃ 𝑓: 𝑓(μ1)(Yℎ), 𝑓(μ2)(Y𝑑) ⋀ ∃ 𝑓: 𝑓(μ1)(Zℎ), 𝑓(μ2)(Z𝑑)⋀ 𝑓(μ1, μ2) ∈ 𝑓𝜇. 

The values, (Yℎ, Y𝑑) and (Zℎ, Z𝑑) are specified for the transport protocol data unit (TPDU) and link 

protocol data unit (LPDU). 

Definition 3 (Flow of Bytes in Stack). A function 𝑓(μ3) has been employed to manage the flow of bytes 

within the stack during protocol message construction and the security development process. Such that: 

𝑓(μ3) ∈ 𝑓μ. 

𝑓(μ3) ⟺ ∀𝑋. ∑ 𝑋𝑏𝑑𝑦
limit

value
⟺ 𝑏 ≤ value ≤  Limit ⋀  value ≤ 𝑑𝑦 ≤  Limit  

⇒ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) || 
𝑛

𝑘=0
∀𝑋. =∑ 𝑋𝑏𝑑𝑦

limit

value
 ≤  Limit, Single APDU 

⇒ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) || 
𝑛

𝑘=0
∀𝑋. =∑ 𝑋𝑏𝑑𝑦

limit

value
 ≥  Limit, Multiple APDU 
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⇒ ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) || 
𝑛

𝑘=0
∀𝑋. =∑ 𝑋𝑏𝑑𝑦

limit

value
 == 0, No APDU 

The application layer bytes are limited and the remaining 56 bytes are employed for function 𝑓(μ3). 

Such that: 𝑓(μ3) = 𝑋𝑏𝑑𝑦, this function controls the bytes utilization within the whole stack, and contained 

bytes are dynamically employed for security storage purposes. The size of the dynamic buffer is 

increased and deceased according to the size of the application layer buffer such as single and multiple 

APDUs. However, the dynamic buffer size is enough during the deployment, and storage of security 

information and stack information [51]. 

Definition 4. The security development functions: 𝑓(e1), 𝑓(e2), 𝑓(e3): 𝑓(𝑆𝑦𝑚), 𝑓(𝐴𝑦𝑚), 𝑓(𝐻) are a 

hybrid function  𝑓(𝐸/𝐷)𝐻𝑦: ( 𝑓𝐸𝐻𝑦 , 𝑓𝐷𝐻𝑦) ∈  𝑓(μ4) ∈ 𝑓μ, which are deployed against stack vulnerability. 

∀𝑋. 𝑓(e1, e2, e3)𝐸[𝑘] { ∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑)) 
𝑛

𝑘=0
} ||∀𝑋. =∑ 𝑋𝑏𝑑𝑦

𝑙𝑖𝑚𝑖𝑡

𝑣𝑎𝑙𝑢𝑒
,  

𝑓(e1), 𝑓(e2), 𝑓(e3) ∈  𝑓𝐸𝐻𝑦 ∈ 𝑓(μ4) ∈ 𝑓𝜇 

∀𝑋. 𝑓(e1, e2, e3)𝐷[𝑘] { ∀𝑋. 𝑓(e1, e2, e3)𝐸[𝑘](∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑))
𝑛

𝑘=0
} ||∀𝑋. =∑ 𝑋𝑏𝑑𝑦

𝑙𝑖𝑚𝑖𝑡

𝑣𝑎𝑙𝑢𝑒
,  

𝑓(e1), 𝑓(e2), 𝑓(e3) ∈  𝑓𝐷𝐻𝑦 ∈ 𝑓(μ4) ∈ 𝑓𝜇 

The security development is proportional to the communication requirements. Therefore, symmetric 

(Sym), asymmetric (𝐴𝑦𝑚) (as an optional function) and hashing (H) are employed. At the other side, 

the dynamic buffer has sufficient space during the deployment of hybrid function. 

Definition 5 (Bytes alignment). The number “n” bytes are aligned with lower layer bytes. The function 

𝑓(μ5) ∈ 𝑓μ is employed to form alignments between the bytes from the upper layer to the lower layer 

and vice versa. 

⟺  𝑋 ≤ X𝑑 ≥ Xℎ ⋀ (h, d) ≤ Limit  

⇒ ∃ 𝑓(μ5):   

∀𝑋.∑ (𝑓(μ1,μ2): (Xℎ), (X𝑑))  𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡
→       ∀𝑌.∑ (𝑓(μ1,μ2): (Yℎ), (Y𝑑)) 

max

𝑘=0

𝑛

𝑘=0

|| ∀𝑋𝑌.  

⇒∑ 𝑋𝑌𝑏𝑑𝑦
limit

value
⋀max ≤ Limit ≥ 𝑛 

 

The “n” bytes are received from the upper layer and the function 𝑓(μ5) stand between these bytes to 

align with lower layer bytes. If APDU is constructed and total size is limited as the protocol specified, 

then APDU bytes are fully aligned with lower layer bytes, including the last pseudo-transport layer 

block. The rest of the layers remain the same, without any change. 

Definition 6 (Security, Bytes Reassemble). The function 𝑓(μ6) ∈ 𝑓μ is employed to reassemble the 

bytes from the lower layer to the upper layer with security development. 

⟺ ∃[(Xℎ, X𝑑); (Yℎ, Y𝑑); (Zℎ, Z𝑑) ] ⇒ 𝑓(μ6): (Xℎ, X𝑑) 𝐴𝑠𝑠/𝑅𝑒𝐴𝑠𝑠
⇔      (Yℎ, Y𝑑) 𝐴𝑠𝑠/𝑅𝑒𝐴𝑠𝑠

⇔       (Zℎ, Z𝑑) 
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The “n” bytes are transmitted from the upper layer to the lower layer; these bytes are assembled  

(𝐴𝑠𝑠) according to lower layer requirements for further processing. On the other side, the bytes are 

received from the lower layer to the upper layer; these bytes are reassembled (𝑅𝑒𝐴𝑠𝑠) toward the user 

application layer. 

To finalize and validate the security design, several implicit functions are employed from DNP3 

sources (or from DNP3 open library), and explicit functions are deployed and encapsulated. To achieve 

this, formal postulates are employed that prove the proposed design and development. In these postulates, 

we use a dynamic cryptography buffer (DCB) as dynamic buffer (dB). 

Postulate 1. Processing and computation of payload within the protocol (stack) flow (valuesEncrypt vE, 

numBytes nB, stackFlow sF, dynamicBuffer dB, offsets oS). 

Determine the payload “P”, the preceding bytes “B”, the cryptography value and dynamicBuffer “dB” 

corresponding to manipulate bytes “mB” within the stack. 

∑ X(𝑛,𝑑𝐵) 

Limit

𝑘=0

, 𝑛 = 𝑘, 1,2,3,… . , limit − 1, limit Definition (1) 

The number of bytes “B” initialized with the initialization of dynamicBuffer “dB”. While at the start, 

the offsets of the stack and “dB” are employed with empty bytes (cells) in the designed fields. The 

keyword “limit” specified the range of each field, and occupied bytes within the whole stack. 

𝐴𝑝𝑝𝑗 . 𝐶𝑜𝑚𝑝( oH(𝑛,𝑑𝐵), dO(𝑛,𝑑𝐵))
𝑙𝑖𝑚𝑖𝑡

 ⇒  

𝑜𝐻. 𝑉𝑎𝑙(O[bytes], Q[bytes], R[bytes]) ⋀ 𝑂. 𝑉𝑎𝑙(oG[bytes], oV[bytes]) 
Definition (2) 

The user bytes are received and further treated to determine the application service data unit (ASDU) 

bytes. The ASDU bytes are computed by computing the objectHeader (oH) and dataObject (“dO”: user 

defined name). During computing, the size of ASDU is limited up to 1990/1888 bytes, in the case of 

sending/responding bytes. 

𝐴𝑝𝑝𝑖 . 𝐶𝑜𝑚𝑝( 𝑎𝐻(𝑛,𝑑𝐵))
𝑙𝑖𝑚𝑖𝑡

⟹ 𝑎𝐻.𝑉𝑎𝑙(aC[bytes], fC[bytes]  

⋁ 𝑎𝐻. 𝑉𝑎𝑙(aC[bytes], fC[bytes], iiN[bytes]) 
Definition (2) 

Application header (aH) is computed, with the computing value of application control “aC” and 

function code “fC”, in case of bytes’ transmission. An additional value is computed, and designated as 

the internal indication “iiN” during the response bytes. 

𝑖𝑓 {

𝐶𝑜𝑚𝑝( 𝐴𝑝𝑝(𝑖,𝑗)) ≤ limit , Single APDU 

𝐶𝑜𝑚𝑝( 𝐴𝑝𝑝(𝑖,𝑗)) ≥ limit,Multiple APDUs 

𝐶𝑜𝑚𝑝( 𝐴𝑝𝑝(𝑖,𝑗)) = 0, Header bytes only.

  

The application protocol data unit (APDU) is computed by computing the ASDU bytes, and header 

bytes that are also designated as application protocol control information (APCI). If 𝐶𝑜𝑚𝑝( 𝐴𝑝𝑝(𝑖,𝑗)) = 0, 

only APCI information is transmitted, without any data (or information bytes). 

Then,  
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payLoad1.Crypt{𝐶𝑜𝑚𝑝( 𝐴𝑝𝑝(𝑖,𝑗))}  ⟹ (𝐴𝑦𝑚/𝑆𝑦𝑚|𝐻𝑎𝑠ℎ){𝐶𝑜𝑚𝑝( 𝐴𝑝𝑝(𝑖,𝑗))}  

 || 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] ⋀ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠] 
Definition (3; 4) 

The payLoad1 is computed by deploying the cryptography function (or algorithms); asymmetric and 

symmetric functions are optional and used according to communication demands. The buffer employed 

56 bytes from the application layer and the available security information is updated correspondingly in 

dynamicBuffer “dB”. The buffer keeps track of security deployment and related information about bytes 

from the stack [51]. 

𝑖𝑓 {

payLoad1 ≤ limit ≥ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] , Process information 

payLoad1 ≤ limit ≤ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] , Memory Initialization 

payLoad1; 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] = 0 , No security function.

  

Then, during security development, the buffer is full (indicated by exception). Then, additional 

memory has been located from the data link layer stack. A CRC field occupied 34 bytes in the data link 

layer stack. In case bytes are transmitted without implementation of security or security functions  

are not available then, 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠] = 0, which shows that the payload is not manipulated with 

security (functions). 

Postulate 2. Determine and disassemble the bytes with alignment, and compute the function for further 

security deployment (EncryptDecryptValues V, numBytes nB, stackFlowBytes FB, dynamicBuffer dB, 

dynamicBufferFlow BF, offsets oS). 

Suppose “Y” is the sum of bytes received from upper layer. The application layer (level) stack has 

been filled with number of bytes “B” and dynamicBuffer “dB” is updated with corresponding 

information. Therefore, “dB” occupied space, while the offsets in the pseudo-transport layer stack are 

empty bytes (cells) in designed fields during initialization. 

⟺ ∑ Y(𝑛,𝑑𝐵)  ⟹ 

𝐿𝑖𝑚𝑖𝑡

𝑘=0

(𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖)
𝑛
= ∑ (

𝑛

𝑘
)𝑌𝑇𝑟𝑗

𝑘𝑌𝑇𝑟𝑖
𝑛−𝑘

𝑛=𝑙𝑖𝑚𝑖𝑡

𝑘=0

 Definition (5; 6) 

The bytes are being aligned and disassembled into pseudo-transport layer stack, with specifications 

in mind. The upper layer bytes are disassembled in to fixed blocks, and each block has 249 bytes with 

one byte of header field or transport protocol control information (TPCI). Each transport protocol data 

unit (TPDU) size is limited up to 250 bytes, which included the meaningful data (from upper layer) and 

header bytes. 

𝑖𝑓

{
 
 

 
 𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖) ≠ 0, Single TPDU 

𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖)
𝑛
≥ limit,Multiple TPDUs 

𝐶𝑜𝑚𝑝 (𝑌𝑇𝑟𝑗 + 𝑌𝑇𝑟𝑖) = 0, Header bytes only.

  

Then,  

payLoad2.Crypt{𝐶𝑜𝑚𝑝 ( 𝑌𝑇𝑟(𝑖,𝑗))}  ⟹ (𝐻𝑎𝑠ℎ) {𝐶𝑜𝑚𝑝 ( 𝑌𝑇𝑟(𝑖,𝑗))}  

|| 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠]  ∧ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠]  ∧ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠] 
Definition (3; 4) 
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The TPDU bytes are constructed and security is deployed and computed using the hashing function 

or algorithm. At this stage, corresponding information is updated in the buffer. The bytes’ flow has been 

verified to ensure the sufficient memory space as well as tracking of each layer of bytes and deployed 

security information.  

𝑖𝑓 {

payLoad2 ≤ limit ≥  𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]|| 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Process information 

payLoad2 ≤ limit ≤ 𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Memory Initialized 

payLoad2; 𝑑𝐵. 𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] = 0 , No security function.

  

The security function using hashing is deployed on TPDU bytes if the buffer size is sufficient. 

Otherwise, additional space is initialized from the link layer. The “0” indicated that security function is 

not available, after processing of TPDU bytes. In case, if only header bytes have been received from 

upper layer then, TPCI is transmitted with a security layer check. 

Postulate 3. The bytes are assembled/reassembled corresponding with link layer frame, and the security 

function is computed within proprietary stack (valuesEncryptDecryptValues V, numBytes nB, 

assembledBytes aB, reassembledBytes rB, stackFlowBytes FB, dynamicBufferFlow BF, 

dynamicUpdateBuffer UB, offsets oS). 

The bytes “Z” are received from the upper layer and are assembled. The stack fields have been 

updated with upcoming bytes and corresponding information. The situated updated bytes and related 

flow of information in dynamicBuffer “dB” have been checked and a special field designated as 

“dynamic flow checker” is used, which follows the flow of bytes in buffer and shows the 

indication/exception when buffer memory is full. 

𝑍𝐷𝑙𝑗 . 𝐶𝑜𝑚𝑝(𝑍𝑖 + 𝑍𝑗  )
𝑛=𝑙𝑖𝑚𝑖𝑡

, 𝑍𝑖⋀ 𝑍𝑗 ∉ 𝑍⋀ ∈ 𝑍𝐷𝑙𝑖 Definition (2) 

Here, “limit” shows the number of blocks employed during processing of thw frame. 

The upper layer bytes are employed and expended into 16 blocks (𝑍𝑖 : assembled bytes having  

250 bytes) with CRC (𝑍𝑗: optional field having 32 bytes). Each block has limited size, while final block 

is processed with 10 bytes. 

𝑍𝐷𝑙𝑖 ⟹ 𝑍𝐷𝑙𝑖 . 𝑉𝑎𝑙(S[bytes], L[bytes], C[bytes], DA[bytes], CRC[bytes]) Definition (2) 

The value of 𝑍𝐷𝑙𝑖 (having subfields: two bytes of start “S”; 1 byte of length “L”, one byte of control 

“C”, two bytes of destination address “DA” and two bytes of cyclic redundancy check “CRC”) is added 

with 𝑍𝐷𝑙𝑗, which made the complete link layer frame. In 𝑍𝐷𝑙𝑖, the CRC function has been employed, but 

in case of  𝑍𝐷𝑙𝑗, this function is treated as an optional field. 

⟹ (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖)
𝑛
= ∑ (

𝑛

𝑘
)𝑍𝐷𝑙𝑗

𝑘𝑍𝐷𝑙𝑖
𝑛−𝑘

𝑛=𝑙𝑖𝑚𝑖𝑡

𝑘=0

 Definition (5; 6) 

𝑖𝑓

{
 
 

 
 𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖) ≠ 0, Single LPDU 

𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖)
𝑛
≥ limit,Multiple LPDUs 

𝐶𝑜𝑚𝑝 (𝑍𝐷𝑙𝑗 + 𝑍𝐷𝑙𝑖) = 0, Header bytes only.
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The disassembling/reassembling process from transport level made the bytes convenient for the data 

link frame. In case of “0”, link protocol control information (LPCI) bytes are transmitted, rather than the 

complete frame or LPDU. 

Then, 

payLoad3.Crypt{𝐶𝑜𝑚𝑝 ( 𝑍𝐷𝑙(𝑖,𝑗))}  ⟹ (𝐴𝑦𝑚/𝑆𝑦𝑚|𝐻𝑎𝑠ℎ) {𝐶𝑜𝑚𝑝 ( 𝑍𝐷𝑙(𝑖,𝑗))}  

|| 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠]  ∧ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠]  ∧ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠] 
Definition (3; 4) 

The security has been deployed with two optional functions designated as payLoad3 . A few 

experimental tests observed that the deployed security is inappropriate for LPCI bytes at the data link 

layer. Because LPCI has source and destination fields, if these fields have encrypted values, then this 

will be complex to compute at the destination side during the sender/receiver identification process. 

Therefore, LPCI bytes are not encrypted; only the hash value is generated to verify the bytes’ integrity. 

In this case, encrypting the LPCI as part of a LPDU would be required, and external (or additional) 

source and destination addresses are added (as explained in Section 5). 

The bytes’ flow has been checked and, simultaneously, security information is updated within the 

buffer. This would be further employed during verification of security or the decryption process at the 

destination. During measurement, a few experimental tests concluded that the buffer is full, and required 

additional memory space. Therefore, this exception has been resolved by utilization of 32 byte CRC 

from the data link layer. 

𝑖𝑓 {

payLoad3  ≤ limit ≥  𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Process information 

payLoad3  ≤ limit ≤ 𝑑𝐵.𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] , Memory Initialized 

payLoad3 ; 𝑑𝐵 ∙ 𝐻𝑎𝑠ℎ[𝑏𝑦𝑡𝑒𝑠]||𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠] = 0 , No security function.

  

Then, if the payLoad3 is limited up to 260 bytes and the buffer is updated with security information, 

then the desired bytes are processed to the physical layer. Otherwise, extra memory would be occupied 

by a buffer that conveniently provided the security information for a security level check. 

Postulate 4. Compute, compile and verify the security (totalPayload tP, checkSecurity cS, 

encryptdecryptValues V, numBytes nB, assembledBytes aB, reassembledBytes rB, stackFlowBytes FB, 

dynamicBufferFlow BF, dynamicUpdateBuffer UB, offsets oS). 

The 𝑓(tP) is an explicit function that combines and manipulates the security at each layer and 

retrieves the desired information from the buffer. 

𝑓(tP) = Val{payLoad1; payLoad2;  payLoad3} Definition (3; 4; 6) 

⟹Decrypt[𝑓(tP)] || 𝑑𝐵. 𝐹𝑙𝑜𝑤[𝑏𝑦𝑡𝑒𝑠]  ∧ 𝑑𝐵. 𝐶𝑟𝑝𝑡𝑜[𝑏𝑦𝑡𝑒𝑠]  ∧ 𝑑𝐵. 𝑢𝑝𝑑𝑎𝑡𝑒[𝑏𝑦𝑡𝑒𝑠]  

The security has been deployed and integrated as an additional layer (or three-layer security) with 

desired layers within the stack. At the destination, the security using cryptography has been validated 

and verified, before transmitting bytes to the upper layer. 
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5. Protocol Bytes and DCB 

The application layer is the most sensitive layer compared with other layers of DNP3 because it 

generates and distinguishes between messages at that layer [3,23,32]. The original size of the application 

layer fragment is 2048 bytes, which is also specified by original DNP3 documentation [5]. In the 

proposed study, the application protocol data unit (APDU) size is limited up to 1992 bytes, and the 

remaining 56 bytes are employed to deploy the DCB [51]. Moreover, Figure 6 shows the DCB bytes 

against APDU bytes during security development. The DCB is a dynamic bytes buffer, which 

dynamically stores and tracks DNP3 generated bytes and related information. Dynamic fields are 

deployed in DCB, and the “Bytes Selected” field is used to control and track the original DNP3 

manipulated bytes. Further details related to each field of DCB are illustrated in Figure 7 and explained 

as follows: 

User Bytes: Bytes Selected: This is the dynamic length field in DCB which keeps the information 

about protocol manipulated bytes and the security implementation bytes. Dynamic means that the 

additional bytes are used from dynamic storage, depending on requirements. This field is composed of 

five main subfields: length, security checker, local acknowledgment, local padding and optional. 

This field is individually employed to perform the relative functions and to keep and monitor the 

information on the application layer development. Then, this field is ready to measure the information 

of the lower layer(s). In the application layer, APDU (with security) bytes are computed and the 

remaining memory is dynamically allocated to DCB, which would be further utilized. However, we have 

not conceded if the additional memory is available in TPDU and LPDU buffers. The remaining bytes 

are treated as padding bytes, which ensure that the development ends; the shaded area in each buffer 

including the APDU buffer, TPDU buffer and LPDU buffer in Figure 4 represents the padding bytes. 

1–4 bytes I Byte 1 Byte 1 Byte 1 Byte 

Length 
Security 

Checker 

local 

Acknowledgment 
local Padding Option 

Initially, eight bytes are occupied by this field, but this number would be increased according to  

the requirements. 

Length: Count of protocol constructed bytes and security development bytes. The range is 0–65,535, 

which would be convenient if maximum bytes are received by the application layer. Basically, this range 

is allocated individually to count the bytes, and the dynamic assigned to lower layer(s) after completion 

of the upper layer length (or bytes). This means that first APDU bytes are counted. Then, the range is 

defined for the lower layer(s). 

Security Checker: Ensures that security has been deployed in each layer and checks which 

algorithm(s) are used during development. 

Local Acknowledgment: This is an exceptional message followed by security checker status. 

Local Padding: The remaining bytes are padded, and status is shifted to dynamic padding (field)  

in DCB. 

Option: This field contains one byte, which is significant. It keeps information, such as data type, 

maximum APDU size, polling and timestamp. 
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Cryptography Key Sequence 

This is a one-byte field, which keeps the information about cryptography keys, and it is employed in 

security development. A single byte of “cryptography key sequence” is distributed as: two bits identify 

the first key and last key that are employed in security development, one bit identifies the key option 

that performs a special security function on demand, one bit is used to select the security method and 

four bits act as a key sequence counter. 

In security development, two bits are used to select the cryptography method(s), such as hashing and 

symmetric methods, and then corresponding information is collected. The key option subfield occupied 

one bit that is designated as the optional algorithm used from the arena of cryptography. The hash 

(function) digest is calculated, defined as the hash key and added into the key sequence counter. 

1 bit 1 bit 1 bit 1–5 bits 

Key Option (KO) Hash Key(HK)  Symmetric Key (SK) Key Sequence (KS) 

Polling Sequence 

Two bytes are defined for integrity and event polling in DCB. In polling, one bit indicates initiating 

the polling: integrity and event, two bits are used to identify the first and last polls, after initialization of 

polling and a five bits polling counter is added in a sequence of 0–31. In the proposed study, the sequence 

0–31 is used during integrity polling, and the sequence is changed as 32–63 in event polling. During 

polling, integrity/event polls can start from a value within specified ranges and increment the polls in 

sequences thereafter. The sequences roll as 31–0 and 63–32 during a response or/and decryption process. 

1 bit 1 bit 1 bit 1–5 bits 

Integrity Poll 

(InP) 
First Poll (FP) Last Poll (LP) Polling Sequence (KS) 

1 bit 1 bit 1 bit 1–5 bits 

Event Poll (EP) First Poll (FP) Last Poll (LP) 
Polling Sequence 

(KS) 

Cryptography: Dynamic Storage 

This is a special field, which contains variable bytes of DCB. At the initialization stage, this field 

contains 20–56 bytes, and would be changed to dynamic. For example, event polling is not performed. 

Thus, the field occupied bytes are shifted to dynamic storage. On the other side, the bytes are 

dynamically shifted to the polling sequence in case additional bytes are required by event polling. 

Dynamic Padding 

This field is part of dynamic storage. APDU bytes are constructed with security development and 

remaining bytes are padded and then added in DCB. This field may inherit the padding operational bytes 

of local padded from “User Bytes: Bytes Selected”. 
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Optional 

This field contains one byte, which verifies the content of polling, before transmitting it to  

the recipient(s). 

Non-Critical 

A one-byte field that shows normal polling status in SCADA/DNP3 transmission. This byte travels 

along polling, and analyzes the communication status. 

Critical 

This field also contains one-byte information, travels along polling and analyzes the abnormal  

(or critical) communication status. In terms of analysis, one to two bits are enough to analyze the normal 

or abnormal scenario of polling, but one byte is occupied by each field including critical and non-critical,  

and the remaining bits are reserved for future development. 

Solution: Select Method 

This field contains one byte, which identifies the methods (or cryptography methods) currently 

employed in security development. This field may inherit the approach of “security checker” (subfield 

in “User Bytes: Bytes Selected”), but performance is limited. This field performs additional functions 

compared to “security checker” performance. For example, abnormal transmission is observed by a 

“critical byte” and non-repudiation function is required to perform. Therefore, a digital signature is 

accounted for by this field (or “solution: select method”). This type of security is performed at the time 

of initialization (or polling initialization). 

 

Figure 6. DCB bytes against APDU bytes during security development: The blue lines show 

the computed APDU bytes along the y-axis and the remaining bytes visualized in purple are 

employed in DCB, plus the original 56 bytes. The bytes are constructed in the application 

layer stack and the remaining bytes are padded and further assigned to DCB, which ensures 

the completion of the APDU process.  
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Acknowledgment Sequence 

This field contains one byte and is usually employed by the main controller. During polling, the 

response has been transmitted from the sub-controller, and the main controller will reply with 

acknowledgment corresponding to polls (or integrity and event polls), while six bits are employed in 

that case. The remaining two bits are employed during the time of polling initialization. 

Source and Destination Addresses 

Four bytes are allocated for source and destination addresses so that each one has two bytes each. 

When a frame (or LPDU) is ready to transmit to open protocols (or TCP/IP) the additional source and 

destination addresses are added. Because, in a few cases, the receiver cannot identify the addresses due 

to security development (or encryption), additional source/destination addresses are added with an 

encrypted message. It will also be worthwhile to compare the addresses with link layer specified 

source/destination addresses after decryption. 

 

Figure 7. The DCB contained numbers of fields, and each field occupied specific/dynamic 

space to retain the information during development. The desired protocol bytes are 

generated, and represented in a hexadecimal notation. The empty cells with corresponding 

solid arrows in message blocks, including the APDU block, TPDU block, and LPDU block, 

represent the header fields, and arrows are directed toward header bytes. The red bytes at 

each block represent the security implementation bytes.  

6. Testbed Setup 

In the automated SCADA/DNP3 testbed, eight remote terminal units (RTUs) or sub-controllers are 

configured with the mater terminal unit (MTU) or main controller, with the bandwidth of 5 Mbps. Each 

remote station is connected directly with a water pumping system, and designed to collect information 

from the system through sensors. At the start, the main controller initiates the communication, and 

remote station(s) will reply with a message with simple status information, acknowledgement and 

polling information. 

Preliminarily, three intervals are specified for automated polling. These are intervals of four, seven 

and 10 min, but afterwards the interval time will be increased. Performance is observed in both cases of 

the testbed including normal transmission (without attack scenario) and abnormal transmission (with 
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attack scenario) in distinguished time variations to validate the security development. Figure 8 shows 

the simulation environment of where the experiments and measurements are conducted [35]. 

In automated polling, the sub-controller will send the integrity poll response every 45 s and a normal 

event is transmitted every 20 s at specified intervals. If we divide the four-minute interval, integrity polls 

will respond five times to the main controller and the remaining 15 s remain unused or a dummy poll, 

such as an exception message, is transmitted. Frequently, 12 normal events are generated which show 

the transmission status followed by critical/non-critical functions, while the abnormal event will be 

transmitted any time and may be in the form of report-by-exception or changes accounted for in the last 

integrity poll. 

For example, we have initialized the interval for automated polling, in which the integrity poll 

occurred every 45 s and normal event poll occurred every 20 s, after the initiation of the transmission. 

In automated polling, every time integrity and normal event polls occur, they are counted in distinct 

sequence numbers as 0–31 and 32–63. More details are illustrated in figure 8. 

 

 

Figure 8. Simulation design and environment.  

In the section below, the number of logical states is defined which show the overall development. 

Overall development includes the number of integrity/event polls in automated polling corresponding to 

intervals, security development during automated polling, normal/abnormal transmission, and security 

achievements (or proposed security achievements). 
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7. Automated Polling Design and Flow 

Here, we first divide the security development into two phases: S-Solution1 and S-Solution2.  

S-Solution1 follows the same method of Section 4, while the S-Solution2 also computes a digital 

signature at the data link layer to verify the non-repudiation security [8,19]. At the start, the master node 

initiates the automated polling and a confirmation message is sent from the sub-controller(s). However, 

the S-Solution2 is deployed at the time of initialization. 

In automated polling, the sub-controller (or RTU) should send an integrity poll response every 45 s, 

and a normal event poll is transmitted every 20 s at specified intervals of four, seven and 10 min. The 

abnormal event poll will be transmitted without following the specific time. However, the S-Solution2 

is deployed during polling. 

During the initialization process, and acknowledgement from the sub-controller, the message also 

contained all requirements parameters including interval, number of integrity and event poll occurrences 

at the specified interval, security solution, and other requirements. A special explicit field designated as 

“solution: select method” has been employed in DCB which should identify security development, such 

as the S-Solution1 and S-Solution2. This field also changes the status of security development, by 

analyzing the level of security indicated or measured from the critical functional field. 

In Figure 9, several states are used which designate the communication flow that occurs in automated 

polling. The state 803 shows the master node encryption process, while state 804 and state 805 show the 

remote node decryption process, and state 806 for acknowledgement. At state 807, the remote node sends 

the integrity poll response continuously to the master station every 45 s, and a normal event is transmitted 

every 20 s at specified intervals. The sub-states included state (807, 0_0) __ (S.., St..._ Fn…) of state 

807 represent the response integrity polls against the master controller request (or polling request). The 

state 808, state 809 and onward states represent the remote node encryption process, while these states 

are optional; the state 810, state 811 and onward states represent the master node decryption process; 

and forward states show that communication has been continued. More detail of automated polling in 

normal transmission is depicted in Table 2. 

 

Figure 9. Automated polling in normal communication. 
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Table 2. Logical states: automated polling in normal communication. 

State (Logical) Process Security Via 

803 Master station initiates the communication with encryption (bytes). Security Via 

804, 805 Remote station decrypted the message (bytes) and bytes received. S-Solution2 

806 Acknowledgement: From RTU to MTU. S-Solution2 

807 The Integrity Poll: Remote station generates continuously response. S-Solution1 

(807, 0_0) __  The Integrity Poll: Generate continuously response. S-Solution1 

808…, 809,… RTU: Encryption process. S-Solution1 

810…, 811,… MTU: Decryption process. S-Solution1 

This is a simulation-based work, and developed in C#; to check incoming/outgoing water flow 

to/from water tank, sensors reading points, and status. At the start, static points are slotted at the passage 

of time in automated polling; the points are interchanged with abnormal points, which interrupt the 

normal sequence of polling. The normal event occurred every 20 s which usually shows configuration 

and connectivity status, points’ status, session key time out (optional) and security status, followed by 

DCB fields. Meanwhile, an abnormal event will occur at any time if significant change is observed from 

field devices; for example, the tank water level increased from its normal flow, the power consumption 

point suddenly increased, the device status changed to unknown, and the detection of an unknown entity 

occurred in the automated polling channel. 

In some cases (or critical cases), when the main controller or remote node wants to authenticate  

each other, or unknown entities are continuously interrupting automated polling, then the S-Solution2 is 

employed to replace the S-Solution1. Typically, S-Solution2 utilization is time consuming because of the 

asymmetric encryption (i.e., RSA algorithm) but security is successfully achieved, even in the case of 

critical/abnormal polling because the digital signature is computed and this signature evaluates the  

non-repudiation security in SCADA transmission. 

In Figure 10, automated polling has been continued at state 906 to state 909. The state A0, state A11, 

and state A30 show the abnormal communication. This means that attacks, such as authentication, 

integrity, and confidentiality attacks, are successfully launched, detected and the SCADA/DNP3 main 

controller is unaware of these during this abnormal scenario. The abnormal scenario is designed to 

measure the impact level of the attacks in automated polling, as a part of SCADA/DNP3 system and to 

validate the security development. A field called “critical” is used to identify the abnormal communication. 

If abnormal transmission has continuously occurred, then an abnormal event is transmitted from the 

main controller to the remote terminal unit (RTU) by the employment of the S-Solution2. At state A41, 

the non-repudiation function (or security) is tested between SCADA/DNP3 nodes. 

Figure 11 shows that the attacks, such as authentication, integrity, and confidentiality attacks, are 

successfully launched. They are detected at state A207, state A312, and state A375, and the SCADA/DNP3 

remote node is unaware during abnormal communication. The sub states, state (A207, 0_0) to state  

(S..., TSt_....Tfn) of state A207; state (A312, 0_0)__ state (S..., TSt_....Tfn) of state A312; and state  

(A375, 0_0) to state (S..., TSt _....Tfn) of state A375,represent the polling (or communication sequence). 

They also indicate the status of the security level with an optional function that can be employed against 

non-repudiation attacks. More detail related to attacks’ detection at the main-controller/sub-controller(s) 

sides and the related communication sequence are depicted in Table 3. 
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Figure 10. Automated Polling in abnormal communication at main controller side. 

 

Figure 11. Automated polling in abnormal communication at the sub-controller(s) side. 
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Table 3. Logical states: automated polling in abnormal communication. 

MTU: State 

(Logical) 
MTU: Process 

RTU: State 

(Logical) 
RTU: Process 

906 MTU Request: Encryption process (bytes). A206 Unknown bytes. 

907 RTU Decryption process (bytes). A207 Authentication Attacks: Verification. 

908 RTU has received MTU request. A211 RTU: Decryption process. 

909 Acknowledgement. A212 Acknowledgement. 

910 
The Integrity Poll: Remote station 

generates continuously response. 
(A207, 0_0)__ 

Generate continuous response: 

Verification process 

(910, 0_0)__ 
The Integrity Poll: Generate  

continuously response. 
A213 Continuous response 

A0 
Abnormal Communication: Detection of 

Authentication Attacks. 
A311 Unknown bytes. 

A11 
Abnormal Communication: Detection of 

Confidentiality Attacks. 
A312 

Integrity Attacks: Verification  

and Continuous 

A30 
Abnormal Communication: Detection of 

Integrity Attacks. 
(A312, 0_0)__ 

Generate continuous response: 

Verification process. 

A41 
Abnormal Communication: Detection of 

Non-Repudiation Attacks (Optional). 
A375 

Confidentiality Attacks: Verification 

and continuous 

A97 
MTU Request: Event (in-case, RTU does 

not reply or in Abnormal scenario). 
(A375, 0_0)__ 

Generate continuous response: 

Verification process. 

A98 
RTU Decryption: Event (Incase, RTU does 

not reply or Abnormal scenario). 
A403 

Non-Repudiation Attacks: 

Verification and continuous. 

A99 
RTU has received MTU request and 

process continuous……. 
(A403, 0_0)__ 

Generate continuous response: 

Verification process. 

911…, 912,.. RTU: Encryption process – – 

913…, 914,.. MTU: Decryption process – – 

8. Performance Measurement and Discussion 

In this section, performance results are measured to validate the security development. To validate 

the security of automated polling, attack scenarios have been designed to act as un-authorized entities in 

communication. This study aims to achieve the security functions including authentication, integrity and 

confidentiality, as well as non-repudiation functions in a few critical cases. To achieve the security 

functions, related attacks are launched using built-in-tools, and are successful in warning and 

interrupting the automated polling. Table 4 depicts the number of tools that are used in abnormal 

scenarios and corresponding attacks. 

To evaluate performance, we categorize and compute the results into three scenarios:  

 In the first scenario, the attacks are launched but DNP3 model is designed without security; 

 In the second scenario, the attacks are launched and the DNP3 model is designed with security 

development, and 

 In the third scenario, security is deployed at each end of the automated polling, and performance 

is observed against attacks. These scenarios are also useful to compare the overall computed 

performances. 
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Table 4. Tools and related attacks. 

Security Functions Tools Attacks 

Authentication 
Cracking Tools, Sniffer, Dsniff, 

Winsniffer and Password Dictionary 

Guessing Shared Key, Brute Force and 

Password Guessing 

Confidentiality 
Ethereal, Ettercap, Kismet, Aircrack, 

Airsnort, Dsniff, and Ettercap 

Eavesdropping, Key Cracking  

and Man-in-the-Middle 

Integrity 

Airpwn, File2air, Dinject/Reinject, 

Capture and Injection Tools, Jamming 

and Injection Tools 

Frame Injection, Data Replay and  

Data Deletion 

In each scenario in the testbed, successful experiments are performed 229 times and performance 

results are measured at specified intervals. Total attack detection and computed impact on automated 

polling act as a mirror to compute security performance results and the validation of development. The 

numbers of experiments show the most significant computed attack detection in automated polling and 

are helpful in computing the corresponding security. 

In the testbed, the maximum size of the user payload is limited to 1992 bytes. This means that the 

APDU size is limited to 1992 bytes in security development. The integrity poll response is transmitted 

every 45 s, and the maximum size of the payload is 1992 bytes, plus security bytes. On the other side, 

the normal event is polled every 20 s, and the specified time is sufficient because a normal event is just 

a message or an exception message of a few bytes, such as the first or last integrity poll transmitted and 

normal polling status and other acknowledgement messages. The number of times random bytes are 

polled to measure the total time of polling, which is under 45 s in the case of integrity polls and 20 s in 

the case of normal event polls. To enhance the security within a specified time, two changes are made 

in the testbed. In the first change, the session is added with a symmetric key. Therefore, the lifetime of 

the keys is 45 s and 20 s in case of integrity and the normal event. However, the total interval and polling 

sessions would change according to the requirements. However, the interval is increased but polling 

sessions are fixed in the testbed. In the event that the numbers of bytes are increased from the maximum 

limit, the polling session will also be changed. In the second change, the symmetry key is used to perform 

encryption at a data link layer and a hashing function is employed on a symmetry key, not on LPDU 

bytes. The session time is also decreased and the symmetric key is protected from unknown entities. 

For example, if an attacker has stolen the symmetric key and the hash digests match, the main 

controller computes the hash of the symmetric key shared securely among the participated nodes. This 

key is employed to perform encryption, otherwise bytes are rejected and a new poll will be transmitted 

from the sub-controller. Each poll (such as integrity and event poll) is counted by a polling sequence 

counter at both sides. 

Attack Detection and Security 

A total of 229 experiments are employed to compute the overall performance. In total, an initial 

experiment (or experiment No. 0) is tested to verify the testbed configuration, and connectivity between 

nodes; while experiment No. 26 and No. 17 of the second and third scenarios are tested for  

non-repudiation security verification. 
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In the first scenario, Figure 12 indicates that attacks are launched to interrupt the sensitive information 

of automated polling. In each experiment, attacks are launched and corresponding behaviors are 

measured. During attack detection, there are no security mechanisms, such as OS security, firewalls and 

others, which are configured to provide security in automated polling. The detected attacks are 

represented by color markers: red shows the authentication attacks, black shows the confidentiality 

attacks, and orange shows the integrity attacks. The blue lines show the random data rates along the  

y-axis corresponding to experiments in the x-axis, and green lines show automated polling flow as 

normal (or without attack case) and abnormal (or with attack case). As shown in Figure 12, large numbers 

of attacks are detected in absence of security mechanisms, which shows that DNP3 is designed to protect 

against potential vulnerabilities and attacks. 

 

Figure 12. Automated polling (Scenario 1): Attack detection at specified intervals. 

Similar experiments are repeated in Figures 13 and 14, which show attack detection in automated 

polling with security development. However, security design is changed in both performance tests, 

followed by the second scenario and third scenario. After computing the performance results of the first 

scenario, DNP3 bytes are polled without security concerns, while security has been developed in the 

second scenario and attack detection is measured in Figure 13. In the second scenario, security is 

deployed inside the DNP3 stack model, which is one of the main contributions of this study. In the third 

scenario, security development is made at each end of the poll or the message, and the total detected 

attacks are visualized in Figure 14. 
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Figure 13. Automated polling (Scenario 2): Attack detection at specified intervals. 

 

Figure 14. Automated polling (Scenario 3): Attack detection at specified intervals. 

In each scenario, 229 experiments were individually performed at intervals of four, seven and ten 

minutes, to compute the level of attack detection. From the total number of experiments, one experiment 

was optionally employed to test the non-repudiation function. Therefore, a total of 228 experiments were 

performed at each interval during the calculation of attack detection percentage(s). The formula and 

other experimental details that are used to compute the attack detection percentage are as follows:  
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Attack Detection (%) = ∑ (𝐶𝑜𝑚𝑝(𝑥𝑘𝑖), 𝐶𝑜𝑚𝑝(𝑦𝑘𝑗), 𝐶𝑜𝑚𝑝(𝑧𝑘𝑙) )
𝑛

𝑘=0
∑ 𝑎𝑒𝑛
𝑒=1⁄ × 100  

The values ′𝑥, 𝑦, 𝑧 ′ compute the attacks which are detected at specified intervals, and added to compute the 

total. The value ′𝑎 ′ computes and adds the number of experiments performed at each interval. Where, ′𝑘 ′and ′𝑒 ′ 
show the sequence with limit ′𝑛′. 

For example, experiments per interval and total experiments per scenario are: 228 and 684. 

As the performance results show in Figure 15, total attack detection percentages of performance 

Figures 12–14 are calculated, and corresponding securities are measured. In the first scenario, the total 

attack detection percentage is computed as 95% and the corresponding security is 5%. These results 

show the lack of security design in DNP3. On the other side, in the second and third scenarios, total 

attack detection percentages are computed as 3% and 24% and corresponding computed securities are 

97% and 76%. The security percentage is computed from the second scenario and this shows the 

significant enhancements of DNP3 security in automated polling during open connectivity with 

protocols such as TCP/IP. This also shows great enhancements compared to the first scenario and third 

scenario and with existing end-to-end developments [8–14,16–19,22,24,34,50,52]. 

 

Figure 15. Performance comparison. 

9. Related Work 

A simulation has been designed, and two modules are proposed for SCADA/DNP3 system security 

enhancement [16,17]. The first module is tested without any security concerns in order to measure the 

level of SCADA security and compare it with other security enhancement modules. The second module 

is employed which uses a digital signature technique during the transmission of bytes between SCADA 

nodes. A security method called authentication octets is appended with bytes that are transmitted  

from the master node to the remote node in the SCADA testbed [16,17,21]. Upon receiving a message, 

the remote node uses a private key to decrypt the message. It then calculates and compares a hash  

value with the send hash digest. The third module was designated as a challenge response with random 

key sessions, which protect communication against attacks including data replay and modification and 

spoofing [8,16,17,51,53]. As analyzed, the security approach is not convenient for SCADA multicasting 

and broadcasting communications, because asymmetric encryption takes much time during processing 

and number of keys are also acquired during bytes’ security. However, the above security approaches 

are relevant for SCADA unicasting or one-to-one communication [8,23,54,55]. 
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The SCADA platform is more vulnerable than traditional or informative networks due to its connectivity 

with proprietary and non-proprietary protocols. The existing SCADA systems were not designed with 

cyber security in mind, but today these systems are interlinked with corporate networks as well as open 

protocols and ready to access information/data from distant places via the Internet [8,56,57]. While 

connected with open IP networks, SCADA systems are facing a number of challenges in the absence of 

a security mechanism that provides protection against cyber-attacks. Several security solutions have 

been employed to enhance the level of SCADA security but these solutions also have disadvantages 

while providing protection against Internet attacks [9,37,52,57–66]. Therefore, a security solution that 

provides protection while SCADA interacts with advanced networks or/and protocols (such as 

LAN/WAN) should be acquired [6,52,59–62,67–69]. 

10. Conclusions and Future Work 

SCADA systems are gaining popularity in modern technology day-by-day; these systems are in most 

demand in industrial processing. However, such advances in technology development create 

vulnerabilities, which are dangerous for SCADA communication platforms. Thus, a cryptography 

solution was implemented within DNP3 protocol as part of a SCADA system during automated polling. 

The design and computed measurements act as symbols to examine and prove the validity of the 

proposed development, but the scope is limited to simulation. In this study, the word “critical” has been 

used to designate the automated polling because, in a polling scenario, an attacker has several chances 

to worm the SCADA traffic. This study outlines new research trends for SCADA automated polling and 

its security enhancements. 

In future work, certificate authority (CA) is required, and the cryptography based security 

developments will be analyzed and, subsequently, cryptography algorithms will be selected as a potential 

solution for SCADA broadcasting/multicasting communication vulnerabilities where a number of nodes 

are configured and connected to the main controller(s). The network nodes would also be followed by 

both SCADA/DNP3 bounded and unbounded communication methods. 
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