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Abstract: The most general second order irrotational vector field evolution equation is
constructed, that can be transformed to a single equation for the Cole–Hopf potential.
The exact solution to the radial Burgers equation, with constant mass influx through a
spherical supply surface, is constructed. The complex linear Schrödinger equation is
equivalent to an integrable system of two coupled real vector equations of Burgers type.
The first velocity field is the particle current divided by particle probability density. The
second vector field gives a complex valued correction to the velocity that results in the
correct quantum mechanical correction to the kinetic energy density of the Madelung fluid.
It is proposed how to use symmetry analysis to systematically search for other constrained
potential systems that generate a closed system of vector component evolution equations
with constraints other than irrotationality.
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1. Introduction

Generally speaking, integrable equations are related to linear equations either by a classical Darboux
transformation (c-integrable) or an inverse scattering transform (s-integrable) [1]. There are two main
pathways that use Lie symmetry groups to identify integrable equations. The first is the detection of
extended symmetries of order three or higher. Unlike first-order contact symmetries and their equivalent
second-order “vertical” symmetries, higher-order symmetry transformations cannot be closed at some
finite order [2]. While the very demanding condition of existence of a third-order symmetry is still not
a sufficient condition for integrability, it is a useful and practical sieve. Known examples of equations
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with higher-order symmetries, are often members of a hierarchy of commuting integrable symmetries
at successively higher orders, connected by a symmetry recursion operator (e.g., [3,4]). This approach
has the advantage that it may reveal equations that are integrable in either sense of being s-integrable
or c-integrable.

The second pathway involves detection of a general solution of a linear equation within the Lie point
symmetry group or the Lie group of potential symmetries of a Darboux integrable equation. That method
has the advantage of an inbuilt algorithm for finding the linearising transformation [5,6].

Classification of integrable scalar evolution equations in one space dimension, is well understood [7].
An inverse scattering transform has been found for some systems of N-waves in two and three
dimensions [8]. However, it remains challenging to apply symmetry methods to classify integrable
systems of parabolic evolution equations in more than one space dimension. As a test bed for such
methods, in the following sections, some directly integrable vector-valued extensions of Burgers’ scalar
equation in three spatial dimensions, are considered.

The only source of nonlinearity in the Navier–Stokes momentum transport equation is the deceptively
innocuous-looking quadratic inertial term within the convective time derivative

Duj

Dt
=
∂uj

∂t
+ u · ∇uj.

Naturally, one seeks to gain insight from simplified transport models that at least retain this
nonlinear term. For example, in gas dynamics it is common to assume the inviscid first-order Euler
equations [9,10]. In one space dimension, there is the integrable transport model, the Burgers equation

ut + uux = νuxx (1)

This equation resembles the momentum transport equation of incompressible Newtonian fluid but
of course one-dimensional incompressible flow is trivial. Therefore solutions are considered with
ux non-zero. In this sense, Equation (1) is often used as a prototype model for compressible gas
dynamics, but with the shocks smoothed by the non-zero viscosity [11,12]. The equation has found
direct applications also in other areas, such as sedimentation [13] and soil-water transport [14], in which
u represents a scalar concentration variable.

The one-dimensional Burgers equation has long been known to be exactly transformable to the
classical linear heat diffusion equation by the Cole–Hopf transformation [15,16], previously given
as an exercise in the text by Forsyth ([17], p. 102, Ex. 3). However this linearisation applies to
the three dimensional prototype transport equation only after an additional constraint is appended.
The Cole–Hopf transformation was applied in [18] to the three dimensional Burgers equation but
necessarily with the additional constraint of irrotational flow. Matskevich [19] investigated how the
Cole–Hopf transformation could simplify the Burgers equation in invariant form adapted to flow on
a pseudo-Riemannian manifold. The outcome was that on a manifold with constant non-zero Ricci
curvature scalar, Burgers’ equation transforms to a reaction-diffusion equation for scalar Cole–Hopf
potential ψ, with linear diffusion term but nonlinear reaction term proportional to ψ logψ. In Section 2
here, the reverse question is easily answered, namely after specifying that the Cole–Hopf potential
satisfies a general linear or semi-linear second-order reaction-diffusion equation. What is the most
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general form of the integrable nonlinear vector equation that results from the Cole–Hopf transformation
in the reverse direction ?

In fact any system of the following form is integrable:

uk,0 = αij(r)[uk,ij + c1uk,i uj + c1uiuk,j] + αij,k[c1uiuj + ui,j] +

+bi,kui + biuk,i +
1

c1

γ,k(r); k = 1, · · · 3 (2)

εijk∂juk = 0 (∇× u = 0) (3)

where α(r),b(r) and γ(r) are differentiable symmetric tensor-valued, vector-valued and scalar-valued
functions respectively, and c1 is a non-zero constant. Here, uj,k = ∂kuj = ∂uj/∂x

k, x0 is the time
coordinate, xj:j = 1 · · ·n are the space coordinates, repeated indices are summed and εijk is the
alternating symbol that is +1(−1) for even(odd) permutations (ijk) of (123). The n-dimensional version
of Equation (2) (n > 3) remains integrable when u is the gradient of some scalar potential, as shown
in the next section. Unlike in one dimension, in higher dimensions it is more convenient to use index
notation, especially when the coordinates are allowed to be non-Cartesian.

2. Extension of Cole–Hopf Transformation to n-Dimensions

Suppose that the scalar function ψ(r, t) is a classical solution of the general linear second-order
parabolic equation

ψ,0 = αij(r)ψ,ij + bi(r)ψ,i + γ(r)ψ − c2γ(r); (r, t) ∈ Ω×<+, (4)

with ψ > c2, defined on a closed subset Ω of <n. Define a velocity potential φ by

ψ = ec1φ + c2.

φ(r, t) is a generalisation of a scalar velocity potential, which as a consequence of Equation (4), satisfies

φ,0 = αij(r) [φ,ij + c1φ,iφ,j] + βi(r)φ,i +
γ(r)

c1

(5)

Then uk = φ,k satisfies the generalised Burgers Equation (2). Note that under this transformation,
the c2-dependent terms cancel, so that this parameter does not appear in Equation (2). For this reason
it is usually convenient to assume the homogeneous version of Equation (4) with c2 = 0. Note also
that Equation (2) is sufficiently general to allow the diffusion term to be an isotropic kinematic viscosity
coefficient multiplied by the Laplace-Beltrami operator for a Riemannian manifold, acting on ui. That
is the right hand side is

ν√
|g|
∂k

(√
|g|gkj∂jui

)
plus terms of order 1 and 0. Here, gkm is the inverse of the metric tensor, gkmgmp = δkp. This acts as a
raising operator from a covariant vector to a contravariant vector:

uk = gkmum.
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Even on a flat Euclidean space, when non-Cartesian coordinates are used, one needs to distinguish
between contravariant components of a vector (denoted by superscript indices) and covariant components
(denoted by subscript indices). In the usual Einstein summation convention, repeated indices (one
superscript and one subscript) are summed when a dyadic tensor product is contracted, contravariant
rank being reduced by 1 and covariant rank likewise being reduced by 1.

Similarly Equation (2) is sufficiently general to allow the partial derivative to be extended to a
covariant derivative

∇iuj = ∂iuj − Γkij(r)uk,

where Γkij is the Christoffel symbol for the usual Levi–Civita connection coefficients. This at least allows
one to express Burgers’ equation on flat space, in terms of a general coordinate system. For example,
in plane polar coordinates, the connection coefficients account for the centripetal acceleration component
of radial fluid acceleration, that is proportional to the square of the circumferential component of
fluid velocity.

As can be seen from [19], if a nonlinear source term of the form c3(ψ − c2) log(ψ − c2) is added
to Equation (4), the Cole–Hopf transformation results in an additional linear component c3uk in the
source term of Burgers’ equation. In the case of three spatial dimensions, a source term of this type in a
constant-coefficient reaction-diffusion equation for ψ, results in an 11-dimensional Lie point symmetry
algebra [20], spanned by the generators of common translations in space and time, the common rotations
in space, plus four other independent special symmetry generators. Coordinates xi and tmay be rescaled
so that without loss of generality, the free parameter c3 may be assumed to be either +1 or −1. Then the
ψ equation may be taken to be

ψ,t = ∇2ψ + c3ψ logψ; c3 = ±1, (6)

while the four independent generators may be taken to be

Γ8 = ec3t
∂

∂ψ
; Γ8+j = ec3t

∂

∂xj
− c3

2
xjec3tu

∂

∂u
; j = 1 · · · 3. (7)

It is a natural question to ask what is the image of other types of nonlinear source terms in the ψ
equation, under the reverse Cole–Hopf transformation. It is a fact that only a source of the above form
will lead to a closed system of equations for the vector components ui. When any other nonlinear source
term of the form Λ(r)R(ψ) is assumed, the additional potential variable φ will appear in the system of
equations for uk, with an additional forcing term of the form

d

dφ

[
e−c1φR(ec1φ + c2)

]
uk + e−c1φR(ec1φ + c2)Λ,k. (8)

Quadratic uiuj terms necessarily appear in Equation (2) whenever αij depends on xk. This
dependence may originate intrinsically from a curvilinear coordinate system or extrinsically from spatial
dependence of viscosity. That variation could be induced for example, by controlling the spatially
variable temperature.

The three-dimensional Cole–Hopf transformation has been applied in [21] to a quadratically forced
Burgers equation representing transport in a solid medium. In the following two sections, the limited
application to gas dynamics will be briefly revisited.
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3. Prototype Vector Transport Equations

Consider the prototype vector transport equation with an additional external conservative force:

uj,0 + ukuj,k = ν uj,kk + Ξ,j ; j, k = 1, · · · , n (9)

which follows from the choice,

α j
i = νδ ji ; c1 =

−1

2ν
; bi = 0; γ = c1Ξ.

With n = 3, Equation (9) is the same as the Navier-Stokes momentum equation for an incompressible
Newtonian fluid after we identify

Ξ,j = − 1

ρ
p,j − V ,j,

that is a pressure gradient plus an external conservative force. However instead of appending the
usual incompressibility condition, by analogy with the one-dimensional Burgers equation, we allow
the divergence of u to be non-zero.

It has been well known since the origins of fluid mechanics that the theory of incompressible
irrotational flow is linear since the velocity potential satisfies Laplace’s equation. In fact, the prototype
vector transport Equation (9) remains linearisable when it is supplemented by the potential condition
Equation (11) for all gradient solutions with compressible flow vectors uj . The prototype Equation (9)
is significantly different from the Navier-Stokes momentum equation for a compressible fluid

uj,0 + uk uj,k =
µ

ρ
uj,kk +

1

3

µ

ρ
∂j(uk,k)−

1

ρ
p,j − V ,j (10)

which combined with
ui = ∂iΦ, (11)

gives

Φ,j
0 + Φ,kΦ,j

k = νΦ,jk
k −

1

ρ
p,j − V ,j. (12)

where ν = 4
3
µ
ρ

(e.g., [22]). For compressible Newtonian fluid flow, ρ varies in space and time, and it
satisfies the equation of continuity

ρ,0 +
(
ρuj
)
,j

= 0. (13)

The system consisting of Equation (11) combined with prototype vector transport Equation (9) with
ν constant, implies by integration,

Φ,0 +
1

2
(Φ,kΦ,k) = νΦ,k

k + Ξ, (14)

with Ξ determined up to an additive function of x0. This integrable multi-dimensional integrable scalar
equation generalises Bernoulli’s law to the case of non-zero viscosity. By the change of variable

Ψ = e−Φ/2ν ; Φ = −2ν log Ψ, (15)

Equation (14) is equivalent to the linear heat equation with linear source,

Ψ,0 = νΨ,k
k −

1

2ν
ΞΨ. (16)
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The fact that the one-dimensional Burgers equation can still be linearised when the external
forcing term Ξ′(x) is included, has been discovered and re-discovered since the 1970s in various
contexts [23–25]. It has been used to investigate the effect of a random external force [26–28] and it
has been used to directly model flow in unsaturated soil with extraction by plant roots [29].

3.1. Radial Burgers Equation and Approach to a Spherical Shock

One standard type of irrotational solution is the radial solution of the form u = U(r)êr where r = ||r||
is the Euclidean norm and êr = r/r. Radial solutions of Equation (9) must satisfy the n-dimensional
radial forced Burgers equation

U,t + UU,r = ν∂r
[
r1−n∂r

(
rn−1U

)]
+ Ξ,r

= νU,rr + (n− 1)νr−1U,r + (1− n)νr−2U + Ξ,r. (17)

This is evidently an integrable equation. From any solution to the radial form of the linear
reaction-diffusion Equation (16), namely Ψ = R(r, t), with

R,t = νr1−n∂r
(
rn−1∂rR

)
− 1

2ν
Ξ(r, t)R, (18)

U = −2νR,r

R
is a solution to Equation (17).

One very important three-dimensional solution in gas dynamics is that of a gas at higher density and
higher radial velocity exploding radially outwards at t = 0 through a small two-dimensional spherical
surface r = a, displacing initially stationary fluid downstream [30]. As in the well-known travelling
wave solution to the one-dimensional Burgers equation, such a solution would introduce some viscous
smoothing to the shock front of gas dynamics. Assume that the velocity of the gas at r = a is
U(a) = Q/4πa2, where Q is the source strength. From the methods of Chapter 9 of [31], one such
solution for the radial Cole-Hopf potential is

R = 1 +

[
1

hr
− a

r

] [
erfc

(
r − a
2
√
νt

)
− eh(r−a)+h2νterfc

(
r − a
2
√
νt

+ h
√
νt

)]
, (19)

where h = 1
a
− Q

8πνa2
. As ν is taken to be small, this solution approaches a sharp shock with constant

radial speed. The radial solution, depicted in Figure 1, is in dimensionless units after rescaling by length
scale a and time scale ts = a/U(a) by which the supply surface has radius r/a = 1, the fluid speed at
(r/a = 1) is uts/a = 1, the asymptotic travelling wave speed is cts/a = 1/2, in agreement with the
Rankine-Hugoniot relations for a shock, and the Reynolds number is Re = aU(a)/ν.

This solution, like others that have been produced, is not consistent with the physics of gas
dynamics [32], in comparison with approximate analytical solutions of the full physical gas dynamics
system when pressure, density and entropy are properly taken into account [30]. However, the exact
radial Burgers solution does have some appealing features, such as a realistic inertial term in the
momentum equation, and its approach to a viscous shock, that make this exact solution a useful bench
test for computational fluids software packages.
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Figure 1. Solution to radial Burgers equation with constant mass supply.

4. Application of Cole–Hopf to the Schrödinger Equation

The single-particle Schrödinger wave function obeys a linear evolution equation that is analogous to
Equation (4) except that it is necessarily complex valued and wave-like after the viscosity coefficient is
replaced by a pure imaginary number:

∂tΨ =
i

2
∇2Ψ− iV (r)Ψ (20)

For convenience, Equation (20) has been rescaled so that the quantum of action is 1 and the mass is 1.
Then the real non-negative particle density satisfies the Liouville conservation equation

∂tρ+∇ · J = 0 (21)

where ρ = Ψ∗Ψ = |Ψ|2 and the particle current density is

Jk =
i

2
[Ψ∗Ψ,k −ΨΨ∗,k] = Im{ΨΨ∗,k}. (22)

Now the Cole–Hopf transformation is simply

uk = ∂kΦ; Ψ = eiΦ,

which results in the complex valued vector transport equation

∂tuj + u·∇uj =
i

2
∇2uj − V,j . (23)

Note that the force per unit mass correctly emerges as −∇V . From the real valued particle density
and real valued current density, one may construct a real valued fluid velocity

v = J/ρ = −Im{∇ log Ψ} = Re{∇Φ} = Re{u}.
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Note thatRe{Φ} is the quantum mechanical phase, whereas Im{Φ} = −1
2

log ρ. Then the imaginary
part of u is

w = −1

2
∇ log ρ. (24)

The velocity components vj do not satisfy a closed system of transport equations. Instead, they are
coupled to the components wj :

∂tvj + v · ∇vj =
−1

2
∇2wj + w·∇wj − V,j (25)

∂twj + v·∇wj =
1

2
∇2vj −w·∇vj (26)

When the supplementary conditions ∇ × v = 0 and ∇ × w = 0 are appended, this is a coupled
system of nonlinear transport equations. Presumably, similar integrable multi-component systems could
be constructed not only from a complex potential but from a quaternion potential or an octonian potential.

The Cole–Hopf transformation links the vector fields v and w as real and imaginary components of
a gradient vector ∇(−i log Ψ). Without further modifications to the model, w is uniquely determined
by ρ, as in Equation (24) so that ρ and v form a closed system. That system is Madelung’s original
hydrodynamic analogue [33] that followed soon after Schrödinger’s publication of the complex wave
equation. It has been pointed out [34] that although the quantum vector field w is not independent,
there is a use of it in classical fluid mechanics to refocus on the volume-weighted velocity rather
than the mass-weighted velocity [35]. The two velocity fields v and w that are linked by the
Cole–Hopf transformation, are also linked in the measurement of physical quantities. Using the Dirac
formalism [36], the expectation of the energy of a particle in a conservative force field, in a pure state
|Ψ > is

< E >=< Ψ|( p̂ · p̂
2

+ V )|Ψ >,

where p̂ ≡ −i∇ in the Schrödinger representation. This can be shown to be equal to∫
R3

ρ(r)[
1

2
(|v|2 + |w|2) + V (r)] dr (27)

Hence, 1
2
ρ|u|2 is the quantum mechanical correction to the classical kinetic energy density of the

Madelung fluid. It may be interesting to extend the irrotational vector fields v and w to be independent
fields by adding independent solenoidal contributions:

v = ∇Im{log Ψ}+∇×B,

w = −1

2
∇ log ρ+∇×C,

u = v + iw = ∇(−i log Ψ) +∇×A; A = B + iC.

After breaking the condition∇×u = 0, the system of equations for ui would no longer be equivalent
to a linear equation for Ψ but to a system of nonlinear equations for Ψ and Ai. The nonlinear interactions
would become negligible asymptotically if there were shear viscosity to dissipate the vorticity, so that
Ai could be neglected after some time.
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5. Some Relevant Questions in Symmetry Analysis

It is well known (e.g., [37]) that after neglecting linear superpositions, the generators of Lie point
symmetries of a linear PDE for ψ(r, t) take the restricted infinitesimal form

a(r, t)∂t + b(r, t) · ∇+ c(r, t)Ψ∂Ψ (28)

which has an equivalent vertical Lie contact symmetry (e.g., [37]), in infinitesimal form

Ψ̄ = Ψ + ε[c(r, t)Ψ− a(r, t)∂tΨ− b(r, t) · ∇Ψ] +O(ε2) (29)

The Lie point symmetry classification of the Schrödinger equation with a general potential energy
function in two and three dimensions, was completed by Boyer [38]. After applying such an invariance
transformation, the gradient of −i log Ψ̄ is still an irrotational vector that satisfies the complex valued
vector transport Equation (23). Conversely, if a point transformation leaves the system of complex
vector transport equation plus condition of irrationality invariant, then the new solution ū(r, t) may be
integrated to construct a potential Φ̄(r, t) that is unique up to an additive complex function of t, equivalent
to multiplying Ψ by an arbitrary spatially uniform gauge function Ψg(t) that has no effect on calculating
physical expectation values (e.g., [36]).

From the class of nonlinear scalar parabolic equations, integrability of the one-dimensional Burgers
equation hierarchy can be detected by an extended higher-order Lie symmetry analysis (e.g., [2]) or by
a potential Lie symmetry analysis associated with local conservation laws (e.g., [6]). The system (2)
and (3) of six partial differential equations for three functions ui(r, t) of four independent variables xj

and t, is integrable. That fact was found by extending the Cole–Hopf transformation that was known
from the one-dimensional version. It was not found from symmetry analysis. Using the Cole–Hopf
transformation, one may reconstruct Lie–Bäcklund symmetries of the integrable vector system from
those of the associated linear scalar equation. From the transformed solution Ψ̄(r, t) of the scalar
equation, the gradient operation u(r, t) = −2ν∇ log Ψ̄, preserves the irrotational condition of the vector
system. It also must preserve the governing transport equation of the vector transport equation for u. For
example, the linear heat equation ∂tΨ(r; t) = ∇2Ψ(r, t) is invariant under differentiation in any fixed
direction. An elementary third-order Lie–Bäcklund symmetry is

Ψ̄ = Ψ + ξijkΨ,ijk (30)

with ξijk the fixed components of a totally symmetric tensor. Then by the substitution Ψ,i = −1
2
Ψui ,

the corresponding transformation for u is

ū` = u` +
1

4
ξijk[ui,`ujuk + 2u`,iujuk (31)

−2ui,juk,` − 4u`,iuj,k − 4ui,j`uk − 2u`,ijuk + 4ui,`jk] (32)

In the one-dimensional case, all indices are 1 and this reduces to a known Lie–Bäcklund symmetry of
the standard Burgers equation (e.g., [7]):

ū = u+ ξ111[uxxx −
3

2
uuxx −

3

2
u2
x +

3

4
u2ux]. (33)
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In the case of the complex Burgers fluid representation of quantum particle dynamics, incorporation
of a solenoidal component of the complex fluid velocity u would extend wave mechanics to have not
only a scalar wave function, which is a function of the fluid velocity potential, but also a vector potential
Aj that satisfies a system of nonlinear PDE coupled to Ψ. Neither of the two principal founders of
wave mechanics, de Broglie and Schrödinger, accepted the Copenhagen interpretation of the probability
of outcomes of measurement [39,40]. Perhaps they would have found a supplementary classical
vector potential more palatable. Since the linear Schrödinger equation correctly describes an evolving
particle except when the wave function collapses to a single eigenstate during the decoherence effect of
observation by filtering, it can only possibly be the act of measurement that introduces vorticity to the
quantum fluid. The coupled nonlinear interaction between Aj and Ψ may have a complicated ergodic
dynamics. The probability density of an energy eigenstate may be the measure of a region in state space
that becomes the basin of attraction for a particular eigenstate when the filtering observation is carried
out. After the imposed vorticity decays, the state will again evolve according to the Schrödinger equation.

Symmetry classification of some Burgers type systems is carried out in [41] (higher-order symmetries)
and [42] (Lie and conditional symmetries).

A point symmetry classification of the potential system, with side constraints other than the
irrotational condition, looks to be within the capability of symbolic packages, perhaps after making
some reasonable ansätze on the functions Bi and Ci. However the complexity of the calculation grows
rapidly with the number of variables, for example when one proceeds to tensor transport equations.

In one space dimension, there are other integrable nonlinear diffusion equations that are obtainable
from a linear equation for the potential variable, by a change of variable. Under the group of contact
transformations, the equivalence classes of these integrable equations are represented by canonical
forms [7] that include the linear equations, the Burgers class,

ut = ∂x[u
−2∂xu] and (34)

ut = ∂x[u
−2∂xu] + 1. (35)

For example, if u = φx, then the linear equation xt = xφφ is sufficient for Equation (34).
In one dimension, the hodograph transformation is crucial [43] but in three dimensions it has no
simple analogue.

6. Conclusions

From any exact solution of the linearly forced linear heat equation in n spatial dimensions, one may
construct an exact compressible solution to the prototype vector transport equation via a generalisation
Equation (14) of the potential Burgers equation to higher dimensions. The linearisation procedure
applies in three dimensions to compressible irrotational flows but not to rotational incompressible flows.
For example, there is a simple integrable radial Burgers equation, for which the radial Cole–Hopf
potential R(r, t) obeys the radial heat diffusion equation. In three dimensions, rR(r, t) must satisfy the
classical one-dimensional diffusion equation (Chapter 9 of [31]). This fact has been used to construct
an exact radial viscous gas flow with a shock. The simple examples provided above have zero forcing
term. However, exact solutions may be constructed similarly for simple conservative force fields such
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as uniform gravity. Conceivably, hydrodynamic statistical distributions could be calculated from the
randomly forced 3D vector transport equation just as for the one-dimensional Burgers equation [44].
Just like the one-dimensional Burgers equation, this has limited relevance for the interesting physical
phenomena of fluid mechanics that involve evolution of vorticity.

By way of contrast, in wave mechanics it is a linear second-order evolution equation, the Schrödinger
equation, that is physically relevant. Just as for the case of the linear heat equation, one may apply
the reverse Cole–Hopf transformation to the Schrödinger equation, leading to a complex Burgers-type
equation that is physically relevant. This is an integrable system of nonlinear transport equations for
two real velocity-like vectors. Both the real and imaginary parts of the Burgers velocity have direct
physical interpretations, while the squared modulus of the complex velocity is the quantum mechanical
correction to kinetic energy density. However, the Cole–Hopf transformation suggests that the integrable
gradient flows that are well understood, be extended by adding a rotational component to the velocity-like
fields, then carrying out a symmetry classification of the equivalent systems of PDE for the potentials,
with additional side conditions other than that of zero vorticity.
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