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Abstract: This research is a natural continuation of the recent paper “Exact solutions
of the simplified Keller–Segel model” (Commun Nonlinear Sci Numer Simulat 2013, 18,
2960–2971). It is shown that a (1+2)-dimensional Keller–Segel type system is invariant
with respect infinite-dimensional Lie algebra. All possible maximal algebras of invariance
of the Neumann boundary value problems based on the Keller–Segel system in question
were found. Lie symmetry operators are used for constructing exact solutions of some
boundary value problems. Moreover, it is proved that the boundary value problem for the
(1+1)-dimensional Keller–Segel system with specific boundary conditions can be linearized
and solved in an explicit form.
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1. Introduction

In 1970–1971, E.F. Keller and L.A. Segel published a remarkable papers [1,2], which they constructed
the mathematical model for describing the chemotactic interaction of amoebae mediated by the chemical
(acrasin) in. Nowadays their model is called the Keller–Segel model and used for modeling a wide range
of processes in biology and medicine. The one-dimensional (with respect to the space variable) version
of the Keller–Segel model reads as

Nt = [D1(N,P )Nx − χ(P )NPx]x,
Pt = [D2(P )Px]x + α(P )N − β(P )

(1)
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where unknown functions N(t, x) and P (t, x) describe the densities of cells (species) and chemicals,
respectively, t and x denote the time and space variables, respectively, D1(N,P ) and D2(P ) are the
diffusivities of cells (species) and chemicals, while α(P ) and β(P ) are known non-negative smooth
functions. The function χ(P ) (usually a constant χ0) is called the chemotactic sensitivity. Nowadays a
wide range of simplifications of the Keller–Segel model are used for modeling processes in biology and
medicine. Here we restrict ourselves on the (1+2)-dimensional Keller–Segel system of the form [3–6]

Nt(t, x, y) = d14N(t, x, y)− χ0∇(N(t, x, y)∇P (t, x, y)),
0 = 4P (t, x, y) + αN(t, x, y)− βP (t, x, y)

(2)

where the parameters d1, χ0,α and β are non-negative constants, moreover, χ0α 6= 0 (otherwise the
model loses its biological meaning). Nowadays, System (2), including the special case β = 0, is
extensively examined by means of different mathematical techniques, in particular, several talks were
devoted to this model at a special session within 10th AIMS Conference [7,8].

However, to the best of our knowledge, there are no papers devoted to application of the Lie symmetry
method for investigation of System (2), notably for construction of exact solutions. In this paper, we show
that this nonlinear system with β = 0 is invariant with respect infinite-dimensional Lie algebra generated
by the operators involving three arbitrary functions, which depend on the time variable. Moreover, the
corresponding Neumann boundary-value problems also admit infinite-dimensional Lie algebras. Using
these algebras we find exact solutions for (1+1) and (1+2)-dimensional BVPs. This research is a natural
continuation of the recent paper [9].

The paper is organized as follows: in Section 2 maximal algebras of invariance (MAIs) of the
Keller–Segel system and corresponding Neumann boundary-value problems are presented. Section 3
is devoted to the application of the Lie symmetry operators for finding exact solutions of some Neumann
boundary-value problems with correctly specified parameters. It is also proved that the boundary
value problem for the (1+1)-dimensional Keller–Segel system with specific boundary conditions can
be linearized and solved in an explicit form. The results are summarized in Conclusions.

2. Lie Symmetry of the Neumann Boundary-Value Problem

First of all, one notes that all the parameters, excepting β, can be dropped in System (2) if
one introduces non-dimensional variables using the standard re-scaling procedure, i.e., this simplified
Keller–Segel system is equivalent to

ρt(t, x, y) = 4ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 = 4S(t, x, y) + ρ(t, x, y)− β∗S(t, x, y)

(3)

where β∗ = βd1/α. Obviously, one may set β∗ = 0 provided βd1/α = ε << 1 in (2), hence the
nonlinear system

ρt(t, x, y) = 4ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 = 4S(t, x, y) + ρ(t, x, y)

(4)

is obtained.
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Theorem 1. Maximal algebra of invariance (MAI) of the (1+2) KS System (4) is the infinite-dimensional
Lie algebra generated by the operators

G∞1 = f1(t)
∂
∂x

+ xf ′1(t)
∂
∂S
, G∞2 = f2(t)

∂
∂y

+ yf ′2(t)
∂
∂S
,

X∞S = g(t) ∂
∂S
, Pt =

∂
∂t
, J12 = −x ∂

∂y
+ y ∂

∂x
,

D = 2t ∂
∂t
+ x ∂

∂x
+ y ∂

∂y
− 2ρ ∂

∂ρ

(5)

where f1(t), f2(t) and g(t) are arbitrary function, which possess derivatives of any order.

Proof of the theorem is obtained by straightforward calculations using the well-known technique
created by Sophus Lie in 80s of 19 century. Nowadays this routine can be done using computer algebra
packages therefore we used Maple 16.

Remark. Maximal algebra of invariance of System (3) with β∗ 6= 0 is the trivial Lie algebra with the
basic Lie symmetry operators

Pt =
∂

∂t
, Px =

∂

∂x
, Py =

∂

∂y
, J12 = −x

∂

∂y
+ y

∂

∂x

It should be noted that the infinite-dimensional Lie algebra generated by Operators (5) contains as a
subalgebra the well-known Galilei algebra AG(1, 2) (see, e.g., [10]) with the basic operators

Pt, Px, Py, Gx = tPx + x ∂
∂S
,

Gy = tPy + y ∂
∂S
, J12

and its extension AG1(1, 2) with the additional operator D. Here the operators Gx and Gy produce the
celebrated Galilei transformations.

Commutators of the MAI (5) are presented in Table 1.

Table 1. Commutators of the maximal algebras of invariance (MAI) (5).

G∞
1 G∞

2 X∞
S Pt J12 D

G∞1 0 0 0 −f ′1(t) ∂∂x − xf ′′1 (t)
∂
∂S −f1(t) ∂∂y − yf ′1(t)

∂
∂S G∗1

G∞2 0 0 −f ′2(t) ∂∂y − yf ′′2 (t)
∂
∂S f2(t)

∂
∂x + xf ′2(t)

∂
∂S G∗2

X∞S 0 −g′(t) ∂∂S 0 −2tg′(t) ∂∂S

Pt 0 0 2 ∂∂t

J12 0 0

D 0

G∗1 = (f1(t)− 2tf ′1(t))
∂
∂x

+ x(−f ′1(t)− 2tf ′′1 (t))
∂
∂S

= f ∗1 (t)
∂
∂x

+ xf ∗′1 (t)
∂
∂S
,

G∗2 = (f2(t)− 2tf ′2(t))
∂
∂y

+ y(−f ′2(t)− 2tf ′′2 (t))
∂
∂S

= f ∗2 (t)
∂
∂y

+ yf ∗′2 (t)
∂
∂S

It is well-known that a PDE (system of PDEs) cannot model any real process without additional
condition(s) on unknown function(s). Thus, boundary-value problems (BVPs) based on the chemotaxis
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systems of the form (1) are usually studied (see [2,3,11,12] and papers cited therein). In most of these
papers authors investigate Neumann problems with zero-flux boundary conditions. Here we examine the
Neumann problem for System (4) in half-plane

ρt(t, x, y) = 4ρ(t, x, y)−∇(ρ(t, x, y)∇S(t, x, y)),
0 = 4S(t, x, y) + ρ(t, x, y),
y = 0 : ρy = q1(t), Sy = q2(t),

y = +∞ : ρy = Sy = 0

(6)

where q1(t) and q2(t) are arbitrary functions, which possess derivatives of any order.
Obviously, Lie algebra (5) cannot be MAI of the BVP (6) for arbitrary functions q1(t) and q2(t).

Moreover, BVP (6) involves conditions at infinity, so one cannot apply the definition [13,14] in order to
examine Lie invariance of this problem. Here we adapt for such purpose the definition proposed in [15].

First, let us calculate the linear combination for all the operators listed in (5).

X = a1G
∞
1 + a2G

∞
2 + a3X

∞
S + a4Pt + a5J12 + a6D =

(a4 + 2ta6)
∂
∂t
+ (a1f1(t) + a5y + a6x)

∂
∂x

+ (a2f2(t)− a5x+ a6y)
∂
∂y
+

(a3g(t) + a1f
′
1(t)x+ a2f

′
2(t)y)

∂
∂S
− 2a6ρ

∂
∂ρ

(7)

and its first prolongation

X
1
= X + σ1

0

∂

∂ρt
+ σ1

1

∂

∂ρx
+ σ1

2

∂

∂ρy
+ σ2

0

∂

∂St
+ σ2

1

∂

∂Sx
+ σ2

2

∂

∂Sy

where a1, ..., a6 to be determined parameters.
Using Definition 2 [15] we formulate the following invariance criteria.

Definition 1. BVP (6) is invariant w.r.t. the Lie operator (7) if:

(a) Operator (7) is a Lie symmetry operator of System (4);

(b) X(y) = 0 when y = 0;

(c) X
1
(ρy − q1(t)) = 0 when y = 0, ρy = q1(t) and X

1
(Sy − q2(t)) = 0 when y = 0, Sy = q2(t);

(d) there exists a smooth bijective transform T mapping M = {y = +∞, ρy = 0, Sy = 0} into
M∗ = {y∗ = 0, B1(ρ

∗, ρ∗y∗) = 0, B2(S
∗, S∗y∗) = 0} of the same dimensionality;

(e) X∗(y∗) = 0 when y∗ = 0;

(f) X
k

∗
(B1) = 0 when y∗ = 0, B1 = 0 and X

k

∗
(B2) = 0 when y∗ = 0, B2 = 0, k = 0 or k = 1. Where

y∗, ρ∗, S∗ are new variables, X∗ is operator X expressed via the new variables and the functions
B1 and B2 are defined by T .

Let us apply this definition to BVP (6).
Taking into account item (b) one immediately obtains the condition a2f2(t)− a5x = 0 which means

that a2 = a5 = 0.
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Now we apply the operator X
1

to the manifolds {y = 0, ρy = q1(t)} and {y = 0, Sy = q2(t)}
(item (c))

X
1
(ρy − q1(t))

∣∣
y=0, ρy=q1(t) = −3a6q1(t)− (a4 + 2a6t) q̇1(t) = 0,

X
1
(Sy − q2(t))

∣∣
y=0, Sy=q2(t) = −a6q2(t)− (a4 + 2a6t) q̇2(t) = 0

Thus two conditions are obtained:

3a6q1(t) + (a4 + 2a6t)q̇1(t) = 0,

a6q2(t) + (a4 + 2a6t)q̇2(t) = 0
(8)

Let us consider the following change of variables, which was used in [15] for the similar purposes, in
order to examine items (d)–(f)

τ = t, x∗ = x, y∗ =
1

y
, U =

ρ

y
, V =

S

y
(9)

By direct calculations we have proved that Transform (9) maps M = {y = +∞, ρy = 0, Sy = 0}
into M∗ = {y∗ = 0, U = 0, V = 0}. Since both manifolds have the same dimensionality, item (d) is
fulfilled. Transform (9) maps Operator X (7) (here we take into account that a2 = a5 = 0) to the form

X∗ = (a4 + 2a6τ)
∂
∂τ

+ (a1f1(τ) + a6x
∗) ∂
∂x∗
− a6y∗ ∂

∂y∗
+

(a1f
′
1(τ)x

∗y∗ + a3g(τ)y
∗ − a6V ) ∂

∂V
− 3a6U

∂
∂U

Now it is easy to check items (e)–(f)

X∗(y∗) |y∗=0 = −a6y∗ |y∗=0 ≡ 0,

X∗(U) |y∗=0, U=0 = −3a6U |y∗=0, U=0 ≡ 0,

X∗(V ) |y∗=0, V=0 = (a1f
′
1(τ)x

∗y∗ + a3g(τ)y
∗ − a6V ) |y∗=0, V=0 ≡ 0

Thus we only need to satisfy Conditions (8). It can be noted that these conditions lead to four different
possibilities only:

1. if q1(t) and q2(t) are arbitrary function, which possess derivatives of any order, then a4 = a6 = 0,
i.e., X = a1G

∞
1 + a3X

∞
S ;

2. if q1(t) =
q01√

(t+
a4
2a6

)3
, q2(t) =

q02√
t+

a4
2a6

, where q01, q
0
2 ∈ R, then X = a1G

∞
1 + a3X

∞
S + a4Pt + a6D

(here a4 and a6 6= 0 are no longer arbitrary);
3. if q1(t) = q01 = const, q2(t) = q02 = const then a6 = 0, i.e., X = a1G

∞
1 + a3X

∞
S + a4Pt;

4. if q1(t) = q2(t) = 0 then X = a1G
∞
1 + a3X

∞
S + a4Pt + a6D.

Let us formulate the result as follows (we set t+ a4
2a6
→ t without losing a generality).

Theorem 2. All possible MAIs of the (1+2)-dimensional Neumann boundary-value problem (6)
depending on the form of the functions q1(t) and q2(t) are presented in Table 2. In Table 2 q01, q

0
2 ∈ R

and (q01)
2 + (q02)

2 6= 0.
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Table 2. MAIs and restrictions for Neumann BVP (6).

q1(t) q2(t) MAI

1 ∀ ∀ G∞1 , X∞S

2 q01√
t3

q02√
t

G∞1 , X∞S , D

3 q01 q02 G∞1 , X∞S , Pt

4 0 0 G∞1 , X∞S , Pt, D

3. Exact Solutions of Neumann Problems

This section is devoted to the applying of Lie symmetry operators obtained in Theorem 2 in order to
reduce the Neumann BVP (6) to BVPs of lower dimensionality and find exact solutions.

In the most general case we apply a linear combination of operatorsG∞1 andX∞s (case 1, Theorem 2):

G∞1 + a3X
∞
s = f1(t)

∂

∂x
+ (xf ′1(t) + a3 g(t))

∂

∂S

This operator generates ansatz

ρ(t, x, y) = %(t, y),

S(t, x, y) = ϕ(t, y) +
f ′1(t)

2f1(t)
x2 + a3

g(t)
f1(t)

x
(10)

Ansatz (10) reduces BVP (6) to the (1+1)-dimensional BVP

%t(t, y) = %yy(t, y)− (%(t, y)ϕy(t, y))y − f ′1(t)

f1(t)
%(t, y),

0 = ϕyy(t, y) + %(t, y) +
f ′1(t)

f1(t)
,

y = 0 : %y = q1(t), ϕy = q2(t),

y = +∞ : %y = ϕy = 0

(11)

Let us consider special case of BVP (11): f1(t) = 1 and q1(t) = q01 , q2(t) = q02 . In this case the
Nonlinear problem (11) can be presented as follows

%t(t, y) = %yy(t, y)− (%(t, y)ϕy(t, y))y,

0 = ϕyy(t, y) + %(t, y)
(12)

y = 0 : %y = q01, ϕy = q02,

y = +∞ : %y = ϕy = 0
(13)

In reality (12) and (13) is the (1+1)-dimensional analog of the (1+2)-dimensional BVP (6) with
qk(t) = q0k, k = 1, 2. System (12) can be reduced to the 3-rd order PDE

ϕty = ϕyyy − ϕyyϕy + ϑ(t)

where ϑ(t) is an arbitrary function. Setting ϑ(t) = 0, using the Cole–Hopf substitution

ϕy(t, y) = −2
Vy(t, y)

V (t, y)
(14)
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and taking into account the Boundary conditions (13), we obtain BVP problem for the heat equation

Vt = Vyy,

y = 0 : Vy +
q02
2
V = 0,

y = +∞ : Vy = 0

(15)

In order to solve (15) by using the classical technique, we should specify an initial profile. Let
us set for simplicity V (0, y) = V0 = const. Now one may use Laplace transform VL(s, y) =∫ +∞
0

V (t, y)e−stdt to reduce heat equation to the 2nd order ODE

V′′L − sVL(s, y) + V0 = 0 (16)

with boundary conditions
y = 0 : V′L +

q02
2
VL = 0,

y = +∞ : V′L = 0
(17)

The general solution of BVP (16) and (17) is

VL(s, y) =
q02V0

s(2
√
s− q02)

e−
√
sy +

V0
s

By using the inverse Laplace transform (see for example [16]) and the relevant simplifications one
obtains the general solution of the Linear BVP (15)

V (t, y) = V0

(
1− erfc(

y

2
√
t
) + e

(q02)
2

4
t− q

0
2
2
y erfc(

y

2
√
t
− q02

2

√
t)

)
Now, by using Cole–Hopf substitution (14), one finds the exact solution for the Nonlinear problem

(12) and (13)

%(t, y) = q02
1√
πt
e−

y2

4t erf( y

2
√
t
)+e

(q02)
2

4 t−
q02
2 y erfc( y

2
√
t
− q

0
2
2

√
t)(

q02
2

erf( y

2
√
t
)+ 1√

πt
e−

y2

4t )(
erf( y

2
√
t
)+e

(q02)
2

4 t−
q02
2 y erfc( y

2
√
t
−
q02
2

√
t)

)2 ,

ϕ(t, y) = −2 ln
(
erf( y

2
√
t
) + e

(q02)
2

4
t− q

0
2
2
y erfc( y

2
√
t
− q02

2

√
t)

)
+ h(t)

(18)

where h(t) is an arbitrary smooth function. Plots of Solution (18) are presented on Figure 1. It should
be noted that the very similar profile of the function ρ which describes density of cells was presented
in many papers (see, e.g., [2,17–19]). However, in papers [2,17,18] the traveling wave solutions were
found, and in [19] the numerical ones. So the exact Solution (18) is new because it is neither traveling
wave solution nor numerical. It possesses much more complicated structure. Nevertheless this profile
of the function ρ represents the traveling band of cells. This phenomenon was studied by J. Adler in his
experiments which were described in [20].
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Figure 1. Plots of functions %(t, y) and ϕ(t, y) with q02 = 1, h(t) = 0 and t = 50 (dot line),
t = 100 (dash line), t = 150 (solid line).

Consider Case 2 in Table 2. The linear combination of operators a1G∞1 + a3X
∞
S + D produces the

following ansatz
ρ(t, x, y) = 1

t
ψ(ω1,ω2),

S(t, x, y) = φ(ω1,ω2) +
a1x
2
√
t

∫ f ′1(t)√
t
dt+ κ(t),

ω1 =
x√
t
− a1

2

∫ f1(t)

t
3
2
dt,

ω2 =
y√
t

(19)

where κ(t) is an arbitrary smooth function.
This ansatz reduces BVP (6) to the elliptic BVP

4ψ −∇(ψ∇φ) + ω1

2
ψω1 +

ω2

2
ψω2 + ψ = 0,

ψ +4φ = 0
(20)

ω2 = 0 : ψω2 = q01, φω2 = q02,

ω2 = +∞ : ψω2 = φω2 = 0
(21)

It can be easily established that System (20) is invariant w.r.t. the 4-dimensional MAI generated by
the operators

P1 =
∂

∂ω1

+
ω1

2

∂

∂φ
, P2 =

∂

∂ω2

+
ω2

2

∂

∂φ
, P3 =

∂

∂φ
, P4 = ω2

∂

∂ω1

−ω1
∂

∂ω2

In quite a similar way as it was done for BVP (6) we have proved that only operators P1 and P3 are
the Lie symmetry operators of BVP (20) and (21). The linear combination of these operators P1+λP3 =
∂
∂ω1

+ (λ+ ω1

2
) ∂
∂φ
, λ ∈ R produces ansatz:

ψ(ω1,ω2) = ψ∗(ω2),

φ(ω1,ω2) = φ∗(ω2) +
ω2

1

4
+ λω1
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which reduces the Elliptic BVP (20) and (21) to the problem for the second-order ODEs

ψ′′∗ − (ψ∗φ
′
∗)
′ + ω2

2
ψ′∗ +

1
2
ψ∗ = 0,

φ′′∗ + ψ∗ +
1
2
= 0,

ω2 = 0 : ∂ψ∗
∂ω2

= q01,
∂φ∗
∂ω2

= q02,

ω2 = +∞ : ∂ψ∗
∂ω2

= ∂φ∗
∂ω2

= 0

(22)

Unfortunately we were unable to solve BVP (22) because the governing system of ODEs is
non-integrable. Happily we noted that BVP (20) and (21) is invariant w.r.t. the Q-conditional symmetry
operator ∂

∂ω1
(in the sense of Definition 2 [15]). The ansatz generated by the operator ∂

∂ω1
has the form

ψ(ω1,ω2) = ψ̂(ω2),

φ(ω1,ω2) = φ̂(ω2)
(23)

In contrast to the previous ansatz, this one reduces BVP (20) and (21) to the simpler system of ODEs

ψ̂′′ − (ψ̂φ̂′)′ + ω2

2
ψ̂′ + ψ̂ = 0,

ψ̂ + φ̂′′ = 0
(24)

with boundary conditions
ω2 = 0 : ψ̂ω2 = q01, φ̂ω2 = q02,

ω2 = +∞ : ψ̂ω2 = φ̂ω2 = 0
(25)

System (24) can be reduced to the 4-th order ODE

φ̂(4) +
ω2

2
φ̂(3) − (φ̂′′φ̂′)′ + φ̂′′ = 0

By integrating this equation twice and then using substitution φ̂′(ω2) = µ(ω2), one can obtain the
first order ODE

µ′ − 1

2
µ2 +

ω2

2
µ+ µ0

1ω2 + µ
0
2 = 0 (26)

where µ1
0,µ

2
0 ∈ R.

In order to construct the general solution of Equation (26), we apply the substitution (see, e.g., [21])

U(ω2) = e−
1
2

∫
µ(ω2) dω2

Now the linear ODE
U
′′
+
ω2

2
U
′
+ (

1

2
µ0
1ω2 +

1

2
µ0
2)U = 0 (27)

is obtained with the general solution:

U(ω2) = Ae−µ
0
1ω2K

(
(µ0

1)
2 +

1

2
µ0
2,
1

2
,−1

4
(ω2 − 4µ0

1)
2

)
+

B (ω2 − 4µ0
1)e
−µ01ω2 K

(
(µ0

1)
2 +

1

2
µ0
2 +

1

2
,
3

2
,−1

4
(ω2 − 4µ0

1)
2

)
where A,B ∈ R and K(a, b, z) is Kummer’s function

K(a, b, z) = 1 +
∞∑
k=1

(a)k
(b)k

zk

k!
, (a)k = a(a+ 1)...(a+ k − 1), (a)0 = 1
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Because Kummer’s functions lead to a very cumbersome solution of BVP in question, we consider
the special case µ0

1 = µ
0
2 = 0 (let us note that more general case µ0

2 = −2(µ0
1)

2 leads to the same result
because of the Boundary conditions (25). In this case Equation (26) has the general solution

µ(ω2) =
e−

ω2
2
4

A−
√
π
2
erf(ω2

2
)

From the Boundary condition (25) follows µ(0) = 1
A
= q02 , hence

µ(ω2) = q02
e−

ω2
2
4

1− q02
√
π
2
erf(ω2

2
)

Now one obtains the general solution of BVP (24) and (25)

φ̂(ω2) = −2 ln(1− q02
√
π

2
erf(ω2

2
)),

ψ̂(ω2) = q02
ω2
2
e−

ω2
2
4 (1−q02

√
π
2

erf(
ω2
2

))−q02e
−

ω2
2
2

(1−q02
√
π
2

erf(
ω2
2

))2

(28)

Since ψ′(0) = q01 one can calculate that q01 =
q02
2
− 2(q02)

3. Thus, the exact solution of BVP (6) with

q1(t) =
q02
2
−2(q02)3√
t3

and q2(t) =
q02√
t

has the form

ρ(t, x, y) =
q02
t
·

y

2
√
t
e−

y2

4t (1−q02
√
π
2

erf( y

2
√
t
))−q02e

− y
2

2t

(1−q02
√
π
2

erf( y

2
√
t
))2

y√
t
,

S(t, x, y) = −2 ln(1− q02
√
π

2
erf( y

2
√
t
)) + a1x

2
√
t

∫ f ′1(t)√
t
dt+ κ(t)

(29)

where κ(t) is an arbitrary smooth function. Solution (29) is continuous when q02 <
2√
π

.

4. Conclusions

In this work we studied a simplified version of (1+2)-dimensional Keller–Segel model. It is
well-known that Keller–Segel model is widely used for modeling a wide range of processes in biology
and medicine (especially for the tumour growth modeling) therefore one is extensively examined by
means of different mathematical techniques.

It was established that MAI of System (4) is the infinite-dimensional Lie algebra. Moreover we have
proved that different Neumann BVPs for this system of the form (6) still admit infinite-dimensional Lie
algebras depending on the form of fluxes q1(t) and q2(t). Using the definition from [15], all inequivalent
problems of the form (6) were found, which admit different MAIs (see Theorem 2).

In order to construct the exact solutions of some Neumann problems, the Lie symmetry operators
were applied. In particular, we have proved that the BVP for the one-dimensional (in space) Keller–Segel
system in question can be linearized. As result, the exact solution of the BVP was constructed in explicit
form (18). It should be stressed that this solution has a remarkable properties, which allow a biological
interpretation.

Finally, the exact solution for the (1+2)-dimensional BVP with the correctly specified boundary
conditions was found (see Formula (29)).
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