
Symmetry 2015, 7, 1289-1332; doi:10.3390/sym7031289
OPEN ACCESS

symmetry
ISSN 2073-8994

www.mdpi.com/journal/symmetry

Article

Computing with Colored Tangles
Avishy Y. Carmi and Daniel Moskovich *

Faculty of Engineering Sciences & Center for Quantum Information Science and Technology,
Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
E-Mail: avcarmi@bgu.ac.il

* Author to whom correspondence should be addressed; E-Mail: dmoskovich@gmail.com;
Tel.: +972-58-6563724.

Academic Editor: Louis H. Kauffman

Received: 30 April 2015 / Accepted: 14 July 2015 / Published: 20 July 2015

Abstract: We suggest a diagrammatic model of computation based on an axiom of
distributivity. A diagram of a decorated colored tangle, similar to those that appear in low
dimensional topology, plays the role of a circuit diagram. Equivalent diagrams represent
bisimilar computations. We prove that our model of computation is Turing complete and
with bounded resources that it can decide any language in complexity class IP, sometimes
with better performance parameters than corresponding classical protocols.

Keywords: diagrammatic algebra; low dimensional topology; computation; Turing
machine; interactive proof

MSC classifications: 68Q05; 03D10; 57M25

1. Introduction

The present research represents a step in a program whose goal is to study topological aspects of
information and computation. Time is a metric notion, and so, any such topological aspects would
presumably have no internal notion of time. The present paper formulates a notion of computation
that is independent of time and that is natively formulated in terms of information. We formulate a
diagrammatic calculus whose elements we call tangle machines. These were first defined in [1]. A key
feature of tangle machines is that they come equipped with a natural notion of equivalence, which
originates in the beautiful diagrammatic algebra of low dimensional topology. Tangle machines serve
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in this paper as abstract flowcharts of information in computation. The computational paradigm that we
propose contains Turing machines and interactive proofs (thus, it does not “lose anything”), and it also
contains additional models (e.g., Section 8.1).

The world we observe around us evolves along a time axis, so a tangle machine could not be used as a
blueprint for a classical computer. Time is a more nebulous concept in the quantum realm, however, and
it might be that tangle machine constructions are relevant for adiabatic quantum computations or in other
quantum contexts. In particular, they naturally incorporate the axiom of uniform no-cloning (Remark 5).
The main relevance of our work would probably be to isolate and access natively topological aspects
of classical and quantum computation. We also speculate that tangle machine computations can emerge
physically via dynamical processes on a tangle machine, given a set of input colors, and that perhaps
something like this actually occurs in nature. After all, natural computers are not Turing machines.

How might tangle machines manifest themselves in nature? The authors make the following
speculation. Evolutionary biology provides an analogue to tangle machines in the notions of phenotype
versus genotype [2,3]. The external characteristics of an organism, such as its appearance, physiology,
morphology, as well as its behaviors are collectively known as the phenotype. The genotype, on the
other hand, refers to the inherent and immutable information encoded in the genome. Two phenotypes
may look entirely different, but may nevertheless share the same genotype. Could information about
an organism be encoded as a tangle machine, where equivalent machines represent different phenotypes
that share the same genotype? Might the process of evolution of an organism be described by a series
of basic transformations akin to the Reidemeister moves exerted by the environment on the organism,
which change its phenotype while preserving its genotype, along with occasional “violent” local moves
on a current configuration that change its genotype? Might tangle machines describe a way in which
nature processes its information primitives, that is its organisms?

There are two obvious advantages to a topological model of computation. The first is that it is
very flexible by construction. Bisimilar computations (Definition 10) are represented by topologically
equivalent objects, which are related in a simple way (Section 10). The second, which we do not discuss
in this paper, is that we have a notion of topological invariants, which are characteristic quantities that
are intrinsic to a bisimilarity class of computations.

In the Introduction, we briefly introduce tangle machines in Section 1.1 after which we state our main
results in Section 1.2 and give scientific context in Section 1.3.

1.1. What Is a Tangle Machine Computation?

A tangle machine is built up of registers, each of which may hold an element of a set Q. The set Q
comes equipped with a set B of binary operations representing basic computations. For . ∈ B, we read
x . y as “the result of running the program .y on input data x”. An alternative evocative image is that
x . y is a “fusion of information x with information y using algorithm .”. Our binary operations satisfy
the following axioms, which equip (Q,B) with what is called a quandle structure (see Section 3.2 for
this and extensions):

Idempotence: x . x = x for all x ∈ Q and for all . ∈ B. Thus, x cannot concoct any new information
from itself.
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Reversibility: The map .y : Q→ Q, which maps each color x ∈ Q to a corresponding color x . y ∈ Q,
is a bijection for all (y, .) ∈ (Q,B). In particular, if x . y = z . y for some x, y, z ∈ Q and for
some . ∈ B, then x = z. Thus, the input x of a computation may uniquely be reconstructed from
the output x . y together with the program .y.

Distributivity: For all x, y, z ∈ Q and for all .,I∈ B:

(x . y) I z = (x I z) . (y I z) . (1)

This is the main property. It says that carrying out a computation I z on an output x . y gives the
same result as carrying out that computation both on the input x and also on the state y and then
combining these as (x I z) . (y I z). In the context of information, this is a no double counting
property [4].

Later in this paper, in Remark 5, we show that uniform no-cloning and no-deleting, which are
fundamental properties of quantum information, follow from reversibility and distributivity for an
appropriate coloring by a generalization of a quandle called a quagma. This observation argues for
reversibility and distributivity as being nature’s most fundamental information symmetries.

The basic unit of computation in a tangle machine is an interaction representing multiple inputs
x1, . . . , xk independently fed into a program .y, as depicted in Figure 1. These are concatenated (perhaps
also with wyes) to form a tangle machine; see Section 3.

a x y

b
c

d u v

Figure 1. An interaction in a machine, where zi
def
= xi . y for i = 1, 2, . . . , k.

A tangle machine computation begins with an initialization of a specified set of input registers to
chosen colors in Q. A disjoint set of output registers is chosen. If the colors of the input registers
uniquely determine colors for the output registers, then the colors of the output registers are the result
of the computation. Otherwise, the computation cannot take place. (See Definition 6 and Figure 2).
This provides a model of computation.

a b c

d
e

f g

Figure 2. A sample computation. Determining colors for input registers In1 and In2 uniquely
and instantaneously determines the color for the output register Out.
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Remark 1. More generally, we may allow the result of the computation to be the (possibly empty) set of
all possible colors of output registers. This level of generality is not required in this paper.

A tangle machine computation has the following features:

1. Whereas the alphabet of a classical Turing machine is discrete (usually just zero and one and
maybe two), the alphabet Q of a tangle machine can be any set, discrete or not. Two values of
Q may be chosen to represent zero and one, while the rest may represent something else, perhaps
electric signals.

2. Whereas a Turing machine computation is sequential with each step depending only on the state
of the read/write head and on the scanned signal, a tangle machine computation is instantaneous
and is dictated by an oracle. Time plays no role in a tangle machine computation.

3. A tangle machine computation may or may not be deterministic (colors may represent random
variables and not their realizations), and it may or may not be bounded (contain a bounded number
of interactions). Quandles and tangle machines are flexible enough to admit several different
interpretations. In this paper, we use tangle machines to realize both logic gates (deterministic,
composing perhaps unbounded computations) and interactive proof computations (probabilistic,
bounded size).

4. A tangle machine is flexible. There is a natural and intuitive set of local moves relating bisimilar
tangle machine computations (Section 10).

5. A tangle machine representation is abstract. A tangle machine computation takes place on the
level of information itself, with no reference to time. The axioms of a quandle have intrinsic
interpretation in terms of the preservation and non-redundancy of information.

1.2. Results

The purpose of this note is to show the following theorems:

Theorem 1. Any binary Boolean function can be realized by a tangle machine computation.

This statement is not new: a previous such realization (not with tangle machines, but with colored
braids) is recalled in Section 4.3.

By Turing completeness of the Boolean circuit model, we have the following:

Corollary 2. Tangle machines (with an unbounded number of interactions) are Turing complete.

In Section 5, we further prove the following.

Theorem 3. Any Turing machine can be simulated by a tangle machine. Such a tangle machine is
colored by a quandle (Q,B) whose set of binary operations B has cardinality O(n) where n is the
number of states in the finite control of the underlying Turing machine.

Tangle machines, whose notion of computation is based on an oracle, which produces output colors
from input colors, can, in fact, perform super-Turing computations. See Remark 4.
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Colors of registers in tangle machines evolve at interactions. If we bound the number of interactions,
tangle machine computations include computations in a complexity class, which we call TangIP, which
includes inside it a class that we call BraidIP. Letting χ denote the number of interactions in the
machine, letting δ denote a “noise parameter” and letting c and s denote completeness and soundness
correspondingly (see Section 2.3), we have the following:

Theorem 4. IP ⊆ BraidIP {δ, χ} where:

I(cδ) < χ <
1

I(1− sδ)
, (2)

with I(p)
def
= −p−1 log p. The growth rate of χ is O(1

δ
) as δ → 0.

Thus, tangle machine computations with bounded interactions can decide any language in class IP,
which is known to equal PSPACE [5].

Moreover, in the special setting of non-adaptive three-bit probabilistically-checkable proofs (PCP),
there exists a tangle machine that achieves a better soundness parameter than the best known classical
single-verifier non-adaptive three-bit PCP algorithm (Section 9.1). Yet, the soundness parameter for this
tangle machine is above the conjectured lower limit. This suggests the possibility that tangle machines
behave like very good single verifiers.

Finally, in Section 10, we discuss the equivalence of machines. Machine equivalence formally
parallels the equivalence of tangled objects in low dimensional topology, and it gives us a formalism with
which to discuss bisimulation. After justifying the definition, we introduce a notion of zero knowledge
for machines, in which the proof is kept secure from untrusted verifiers at intermediate nodes.

Tangle machines are thus revealed to be a flexible model for computation.

1.3. Other Low Dimensional Topological Approaches to Computation

The first person to consider distributivity as an axiom of primary importance and to suggest
diagrammatic calculi for logic (and perhaps by extension to computation) was American philosopher
Charles Saunders Peirce. The following Peirce quotation was pointed out by Elhamdadi [6]: “These are
other cases of the distributive principle. . . These formulae, which have hitherto escaped notice, are not
without interest.” [7]

The idea to use diagrammatic calculi from low-dimensional topology to model computation was
pioneered by Louis Kauffman, who used knot and tangle diagrams to study automata [8], nonstandard
set theory and lambda calculus [9,10]. There is also a diagrammatic π calculus formulation of virtual
tangles [11]. The diagrammatic calculus of braids (braids are a special class of tangles) also underlies
topological quantum computing; see e.g., [12,13]. Universal logic gates (Toffoli gates) have been
realized using colored braids [14–16]. This has led to a proposal for circuit obfuscation, masking the
true purpose of a circuit, using braid equivalence [17]. Buliga has suggested to represent computations
using a calculus of colored tangles, which is different from ours [18]. In another direction, a different
diagrammatic calculus, originating in higher category theory, has been used in the theory of quantum
information; see e.g., [19–21].
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In our approach, the tangle diagrams themselves are computers, representing a flowchart of
information during a computation whose basic operations are distributive (compare [22]). This is not
a diagrammatic lambda calculus or pi calculus, but rather it is a natively low dimensional topological
approach to computation. In this note, we relate this approach to other approaches by showing that
tangle machine computation is Turing complete and in the bounded resource setting that it can decide
any language in the complexity class IP.

1.4. Contents of This Paper

We begin in Section 2 by recalling relevant models of computation, such as Turing machines, IP

and PCP. Then, in Section 3, we recall the formalism of tangle machines [1]. Our definition is more
general than the one used in that paper. Next, in Section 4, we show that tangle machines are Turing
complete, and we show in Section 5 how tangle machines may simulate Turing machines. Restricting
to a bounded resources setting, we construct networks of deformed IP verifiers in Section 6, defining
a complexity class BraidIP. In Section 7, we show that IP ⊆ BraidIP. Section 8 shows how to
make our network computations more efficient by getting rid of the global time axis, making use of a
machine we call the Hopf–Chernoff machine. Restricting further to PCP proofs, in Section 9, we show
that the Hopf–Chernoff machine gives us perfect completeness and a better soundness parameter than
the best-known non-adaptive three-bit PCP verifier. Finally, we define the equivalence of machines in
Section 10, where we also discuss the tangle machine analogue of a zero knowledge proof.

2. Models of Computation

In this section, mainly to fix terminology and notation, we recall the notion of a Turing machine
(Section 2.1), of decidable languages (Section 2.2), of an interactive proof (Section 2.3) and of a
probabilistically-checkable proof (Section 2.4).

2.1. Turing Machines

The theory of computation and complexity theory are based on the notion of a Turing machine [23,24].
We recall its definition, following [25].

Definition 5. A Turing machine is a triple (Σ,S, δ) where:

• Σ is a finite set of symbols called the alphabet, which contains a “blank” symbol.
• S is a finite set of “machine states” with q0 ∈ S and qh ∈ S being, respectively, the initial and

final (halting) states.
• δ : S × Σ −→ S × Σ× ε is a transition function.

The set ε = {0, 1, 2} indicates the movement of a tape (left, stationary, right) or, equivalently, indicates
the movement of a reading/writing (R/W) head following a writing operation. For convenience and
without loss of generality, we limit the alphabet to three colors, Σ = {0, 1, 2}, where 2 represents the
blank symbol.
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A Turing machine is composed of two primary units. A finite control unit remembers the current
state and determines the next state based on the current reading from a memory unit. The memory unit
records symbols on a finite, possibly unbounded tape. Reading and writing operations retrieve or modify
a symbol in the current position of the R/W head along the tape.

2.2. Computable Functions and Decidable Languages

Computable functions are the basic objects of study in computability theory. In the context of Turing
machines, a partial function f : Σk → Σ is computable if there exists a Turing machine that terminate on
the input x (input means tape content) with the value f(x) stored on the memory tape if f(x) is defined
and which never terminates on input x if f(x) is undefined.

A related notion is the notion of a decidable language. A set L ⊆ {0, 1}∗, called a language, is said to
be decided by Turing machine M if there exists a computable function f : Σk → Σ satisfying f(x) = 1

if x ∈ L and f(x) = 0 if x /∈ L for all x ∈ {0, 1}∗. A language is decidable if it is decided by some
Turing machine.

2.3. Interactive Proof

The interactive proof model of computation involves bounded resources, by which we mean that
computations are constrained to make use of only a finite number of steps, polynomial in the length |x|
of the word x ∈ {0, 1}∗ [26]. Again, the goal is to determine whether x ∈ L or x /∈ L for a language
L. A verifier V interrogates a prover P who claims to have a proof that x ∈ L. Both the prover and
the verifier are assumed to be honest, and queries are assumed to be independent. We are given two
parameters, completeness c and soundness s, with c, s ∈ [0, 1]. For the classical setting of IP, we set
c = 2/3 and s = 1/3. The verifier V believes that x ∈ L at time t with probability Vt. This belief is
updated each time P responds to a query, beginning from V0 = 0. We say that the statement x ∈ L is
decided at time t if:

(Completeness) x ∈ L −→ Pr(Vt = 1) ≥ c;

(Soundness) x /∈ L −→ Pr(Vt = 1) ≤ s.
(3)

The class IP (interactive polynomial time) consists of those languages L that are decidable in time χ
polynomial in |x|. A celebrated result in complexity theory states that IP equals PSPACE, the class of
problems solvable by a Turing machine in polynomial space [5].

The class IP can be expanded to the class MIP in which the verifier has access to not one, but many
provers, which can be interrogated independently [27]. It has been shown that MIP equals the large class
NEXPTIME [28].

2.4. Probabilistically-Checkable Proofs

The class PCPc,s(r(|x|), q(|x|)) is a restriction of IP in which the verifier is a polynomial-time Turing
machine with access to O(r(|x|)) uniformly random bits and the ability to query only O(q(|x|)) bits
of the proof, with completeness c and soundness s [29,30]. The celebrated PCP theorem states that
PCP[O(log |x|),O(1)] = NP [31]. For PCP, the prover is thought of as an oracle. We restrict to the
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case of three-bit PCP verifiers, i.e., to those for which q(|x|) = 3, and to those that are non-adaptive,
i.e., for which verifier queries are independent of previous responses by the oracle.

The ideal PCP verifier would have c = 1 with minimal soundness s. A simple and good three-bit
PCP verifier with s = 3

4
+ σ ≈ 0.75 for arbitrarily small σ > 0 was designed by Håstad [32]. The

current record is s = 20
27

+ σ ≈ 0.741 for an arbitrarily small σ > 0 [33]. It is conjectured that the lowest
possible value of s is 5

8
= 0.625 [34].

3. Tangle Machines

In this section, we define tangle machines, first ignoring colors (Section 3.1), and then, after defining
the sets, we color with (Section 3.2), then with colors (Section 3.3), where we also define tangle machine
computations.

3.1. Without Colors

We define here a tangle machine, without colors, to be a diagram that occurs by concatenating
(connecting endpoints) of a finite number of generators of the form in Figure 3. Thickened lines in
interactions (Figure 3b) are called agents, and each thin line is called a patient. Only agents are directed,
and their is no compatibility condition between the directions of different agents.

(a) (b) (c)

Figure 3. Generators for tangle machines are struts and interactions. Generators for trivalent
tangle machines are struts, interactions and wyes. (a) strut; (b) interaction; (c) wye.

Arcs in a tangle machine, ending as under-arcs passing under an agent or at a wye or at a
machine endpoint (thus “continuing right through agents”), are called registers. Later on, registers will
contain colors.

Tangle machines have struts and interactions as generators, whereas trivalent tangle machines have
struts, interactions and wyes as generators. An example of a machine constructed by concatenation is
presented in Figure 4. As in the theories of virtual knots and of w-knotted objects, concatenation lines
may intersect [35,36]. Furthermore, as in the theory of disoriented tangles, no compatibility condition is
imposed for directions of concatenated agents [37].
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Figure 4. Concatenation of tangle machines.

3.2. Colors

Let Q be a set equipped with a family B of binary operations that satisfy the following three axioms:

Idempotence: x . x = x for all x ∈ Q and for all . ∈ B.

Reversibility: The map .y : Q→ Q, which maps each color x ∈ Q to a corresponding color x . y ∈ Q,
is a bijection for all (y, .) ∈ (Q,B). In particular, if x . y = z . y for some x, y, z ∈ Q and for
some . ∈ B, then x = z.

Distributivity: For all x, y, z ∈ Q and for all . ∈ B:

(x . y) . z = (x . z) . (y . z) . (4)

Remark 2. Reversibility may be weakened by requiring only that .y be an injection for all y, but not
necessarily a surjection. This is indeed the case for the machines that we describe in the context of
interactive proofs.

The pair (Q,B) is called a quagma. It is called a quandle if the operations in B distribute over one
another, in the sense that:

(x . y) I z = (x I z) . (y I z) , (5)

for all .,I∈ B. This definition is a variant of definitions found in [38–40]. If we weaken reversibility
to require only that .y be an injection for all y ∈ Q and for all . ∈ B, the resulting structure is called a
quandloid [4]. Quagmas, quandloids and quandles serve as the content of registers in tangle machines.

Example 1 (Conjugation quandle). Colors might be elements of a group Γ, and the operation might be
conjugation:

x I y = y−1xy . (6)

The pair (Γ, {I}) is called a conjugation quandle. Such quandles feature in knot theory, e.g., [41].

Example 2 (Linear quandle). Colors might be real numbers, and the operations might be convex
combinations:

x .s y = (1− s)x+ sy s ∈ R \ {1} . (7)

The pair
(
Q, {.s}s∈R

)
is called a linear quandle.



Symmetry 2015, 7 1298

3.3. With Colors

A coloring of a tangle machine M is an assignment % of a binary operation in B to each agent and an
assignment ρ of an element of Q to each register, such that, at each interaction, the color z ∈ Q of the
patient to the right of the agent (according to the right-hand rule) equals the color of its corresponding
patient to the left of the agent x ∈ Q right-acted on by the color of the agent y ∈ Q via the operation of
the agent . ∈ B:

a

b

c

(8)

Thus, an interaction “realizes” the action of the quagma or of the quandle.
To color a trivalent tangle machines, Q has to come equipped with a complete ordering. We include

also an assignment of either max or min to each wye, so that the exiting register of the wye is the
maximum of the two inputs if the wye is labeled max and is their minimum otherwise. We graphically
denote a min label with a white circle at the branch-point of the wye and a max label by a black circle.
See Figure 5.

a

c

b

(a)

a

c

b

(b)

Figure 5. Coloring wyes colored by max and min.

Remark 3. The notion of the tangle machine given above is more general than in [1,4], in which all
tangle machines are quandle-colored and without wyes.

Finally, we come to the notion of a tangle machine computation.

Definition 6. A computation of a (trivalent) tangle machine M is:

1. A choice of a set Sin of input registers in M .
2. A choice of a set Sout of output registers in M with Sin ∩ Sout = ∅.
3. A coloring % of all agents in M (and an assignment of either max or min to each wye).
4. A coloring ρin of all registers in Sin.
5. A unique (oracle) determination of a coloring ρout of all registers in Sout. If ρin does not uniquely

determine ρout, the computation cannot take place.
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4. Tangle Machines Are Turing Complete

Our goal in this section is to realize the universal set of gates, NOT(¬) and AND(∧)}, as well as a
multiplexer that duplicates the content of a register, using tangle machines. This realizes the Boolean
circuit model, thus showing that tangle machines are Turing complete.

Remark 4. A tangle machine computation, which is based on an oracle, which tells us the colors of
output registers given colors of input registers, can carry out super-Turing computations. Consider the
conjugation quandle of a group Γ with unsolvable conjugacy problem and color agents In1 and In2 by
elements of Γ. The color of Out might not be Turing computable, but the tangle machine computation
computes it.

a

b

c

(9)

4.1. Quagma Approach

Choose the set of colors to be Q def
= Q2×2, equipped with a set B of binary operations whose elements

are the following:

X I Y =

{
Y −1XY, if det(Y ) 6= 0;
X, otherwise.

(10)

X .s Y = (1− s)X + sY, for s =
1

2
or s = 2. (11)

The structure (Q, {.0.5, .2,I}), henceforth referred to simply as Q, is a quagma.

To realize Boolean logic, let A0
def
=

(
0 1

1 0

)
and A1

def
=

(
1 0

0 −1

)
stand in for the digits zero and

one, correspondingly. Incidentally, these happen to coincide with the Pauli spin matrices of quantum
mechanics.

A NOT gate is described by a single interaction:

a

b

c

X ¬X
A0 A1

A1 A0

(12)

where the respective truth-table is shown to the right of the diagram. Explicitly,

¬X = X I (A0 + A1) =

(
1 1

1 −1

)−1

X

(
1 1

1 −1

)
=

1

2

(
1 1

1 −1

)
X

(
1 1

1 −1

)
(13)

The input is the register labeled X; the output is the register labeled ¬X; and the remaining register
is always colored by the constant value A0 + A1.
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Realizing an AND gate can be split into several successive computations, letX and Y be the inputs to

the gate, and write 0 for

(
0 0

0 0

)
. The following instructions end up with the desired operation X ∧ Y .

1. β1 = (A0 + A1) I (X .0.5 Y ) = (X + Y )−1(A0 + A1)(X + Y )

2. β2 = β1 .0.5 (A0 + A1) = 1
2
β1 + 1

2
(A0 + A1)

3. β3 = (β2 . A0) .0.5 β2 = 1
2
A0β2A0 + 1

2
β2

4. X ∧ Y = A1 I (β3 .0.5 A1) = (β3 + A1)−1A1(β3 + A1)

A tangle machine that realizes these steps is given below together with the respective truth-table.

a

b
1 2

1 1

3

0

2 1 1

2

s
t u

c
g

h

h

f

3

(14)

X Y β1 β2 β3 X ∧ Y
A0 A0 A0 −A1 A0 A0 A0

A0 A1 A0 +A1 A0 +A1 A0 A0

A1 A0 A0 +A1 A0 +A1 A0 A0

A1 A1 A1 −A0 A1 0 A1

(15)

In addition to the universal set of gates, we also need to be able to duplicate the content of a register.
The conventional Boolean circuit model includes junction points along wires. The tangle machine
analogue for such a junction is a multiplexer, that is a machine whose output colors are duplicates
of the color in one of its inputs. A multiplexer takes an input of the form {X, 0, . . . , 0︸ ︷︷ ︸

n−1 times

} and outputs

{X, . . . , X︸ ︷︷ ︸
n times

}. The operation of a multiplexer is captured by the machine in Figure 6.

a

1

b

2

b

b

2

Figure 6. A multiplexer.

Remark 5. Two fundamental properties of quantum information are no-cloning and no-deleting.
The uniform version of no-cloning states that there does not exist a unitary operator C for which
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C(A⊗ e)C† = A⊗ A for all states A, where e denotes the identity operator. The uniform version of
no-deleting states that there does not exist a unitary operator U for which U(A ⊗ A)U † = A ⊗ e

for all states A. Both of these statements are captured by the quagma axioms. Consider the quagma
(Q, {.0.5,I}) where Q is the set of invertible operators and I is any binary operation that distributes
over .0.5, e.g., conjugation. If U were a universal cloning operator with respect to I, i.e., if (A ⊗ e) I

U = A ⊗ A for all A, then for any state A, both machines in Figure 7 would carry out the same
computation and, in particular, Out1 = Out′1. However, then, (A .0.5 B) ⊗ (A .0.5 B) = Out1 =

Out′1 = (A⊗ A) .0.5 (B ⊗ B), which is false in general. Thus, universal cloning violates distributivity.
No-deleting follows from no-cloning, because if U were a universal deleting operator with respect to
I, then U would also be a universal cloning operator with respect its inverse operation J, which exists
thanks to reversibility. This would violate distributivity, because J also distributes over .0.5, as can be
seen by applying J Z to both sides of the equation:

X .0.5 Y =
(

(X J Z) .0.5 (Y J Z)
)
I Z .

We parenthetically note that no-cloning and no-deleting are also captured by a different diagrammatic
calculus, that of categorical quantum mechanics [42].
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xy

Figure 7. Universal cloning violates distributivity.

4.2. Wye Approach

Realizing a universal set of logic gates is easier if we allow wyes and may be realized with a
quandle coloring.

We color our machines by elements of the quandle Q def
= {0, 1, 2} subject to the quandle operation

x . y = 2y − x mod 3 (this is a Fox three-coloring). We totally order Q by 0 < 1 < 2. Color-code 0

as red, 1 as blue and 2 as green. For this particular quandle the direction of the agent does not matter
because the operation . is its own inverse. Let 0 stand in for the digit zero and 1 stand in for the digit
one. A universal set of logic gates and a multiplexer can be obtained as in Figure 8, where an incoming
arrow represents input and an outgoing arrow represents output.
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4.3. Nonabelian Simple Group Approach

The AND gate constructed in Section 4.1 was realized as a tangle machine colored by a quagma,
which is not a quandle, and the AND gate of Section 4.2 used a wye. In fact, it is possible to realize a
universal set of logic gates with a conjugation quandle colored tangle machine without using wyes.

a c

2

(a)

a

c

b

(b)

b

b b

a

(c)

Figure 8. Logic gates for the three-color approach. Inputs are the colors on the left, and
outputs are colors on the right. (a) NOT gate; (b) AND gate; (c) multiplexer.

The construction is based on Barrington’s theorem [43,44]. Following [16], Appendix A of [17]
constructs a 132 crossing 14 strand braid colored by the conjugation quandle of the finite simple group
A5, which realizes the Toffoli gate that is a universal logic gate [45]. This braid is made a tangle machine
by interpreting each crossing as an interaction. Three of its registers are inputs; three are outputs; and it
contains a number of ancilla, which are what we called control registers.

5. Turing Machine Simulation

In this section, we show how to simulate a Turing machine using a tangle machine.

5.1. Turing Tangle Machine

In this section, we make use of the linear quandle whose underlying set of elements Q is the set of the
rational numbers and whose set of operations B is:

x .s y = (1− s)x+ sy s ∈ Q \ {1} . (16)

There are several sub-machines that recur in the construction of a Turing tangle machine,
the tangle machine analog of a Turing machine. To simplify our diagrams, we represent these
sub-machines graphically.

Multiplexer We indicate a multiplexer by splitting a strand.

b

b

b

b

b

(17)

The multiplexer is realized by composing diagrams of the form in Figure 6.
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Negation ¬x def
= 1− x.

a c

b

d

a cx

(18)

Addition

a

bs

0

d

a

c

b

c

(19)

Indicator If x ≥ 1 thenı(x) = 1, if 0 < x < 1, then ı(x) = x, otherwise ı(x) = 0.

x

a

0
x

0

b a by

(20)

Beta A function β(x), which satisfies β(0) = −1, β(1
2
) = 0 and β(1) = 1.

x

a

0

a by

s

0

s

d
b

(21)

Selector Depending on the color c of a control strand, either x or y emerges as the output, z. To be
precise, z = x if c = 0, and z = y if c = 1.

c

yx

y

0 0

s

s

d

d

g

d
z

a

b

a

zu
b

c

(22)

where s is an arbitrary constant whose value is greater than two.

Mask-generating machine This sub-machine is shown in Figure 9. Its input registers are a register
colored by an integer p ∈ Q, called a pointer, and a sequence of colored registers together, called a
mask. Its output registers are a register colored p, and one register colored zero for all other input
colored registers, except for a single register colored one in the p-th position of the output.
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Figure 9. A mask-generating machine.

5.2. Finite Control

The first step in realizing a Turing machine is to mimic the finite control unit, i.e., to simulate the
transition function:

δ(q(k), u(k)) = (q(k + 1), a, ε) (23)

Given the current machine state q(k) and the symbol currently under the R/W head u(k), the transition
function determines the next machine state q(k+1) together with a pair of tape instructions: the symbol to
be written a and an εmovement of the head to its next position along the tape. Without loss of generality,
we shall assume henceforth that the finite control states are all natural numbers and, in particular, that
S = {1, . . . , n}.

The basic building block of the finite control tangle machine is a hardwired transition, that is a function
δi,j : S × Σ→ Z3,

(q, u) 7→

{
(q̄ + 2, ā+ 2, ε̄+ 2), if q = i and u = j + 1;
(−q̄ − 2, −ā− 2, −ε̄− 2), otherwise.

(24)

where q̄, ā, ε̄ denote, respectively, the next assumed state and the tape instructions as specified in the
definition of δi,j . The parameters i, j and the respective output of δi,j , the triplet (q̄, ā, ε̄), are hardwired
into the tangle machine realization of δi,j through the quandle parameters. See Figure 10.
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Figure 10. Hardwired transition.

The hardwired transition is symbolically represented as:

q
k f

u

(25)

The transition function δ is constructed by combining several hardwired transitions. Note that there
are no more than 3n possible transitions in the finite control (n states multiplied by three input symbols).
Thus, the number of distinct binary operations in B does not exceed 9n +O(1), which accounts for 3n

triplets (.q̄+2, .ā+2, .ε̄+2) and a few other operations required for realizing the memory unit. A detailed
construction of the finite control sub-machine is shown in Figure 11.

2
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k

Figure 11. A tangle machine realization of a finite control unit.
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5.3. Memory Unit and One-Step Computation

The memory unit consists mainly of the tape logic. It accepts a finite, possibly unbounded set of
registers whose colors are manipulated in the basis of commands a and ε received from the finite control.
The majority of the registers of the memory unit correspond to tape cells whose content is represented
by colors from the set Σ.

We construct the memory (tape) reading and writing operations using a mask-generating machine
together with selector machines to output the color of the p(k)-th register, either as it originally appeared
or modified. See Figure 12.

p k

b

c

d

z

a

u

u

u

g

h

I

v

p

(a)

p k

b

c

d

z

p

0

s

0

1

s

j

(b)

Figure 12. Memory reading and writing sub-machines. Here, 1
2
< s < 1 is an arbitrary

parameter. (a) Write; (b) read.

Figure 13 illustrates the memory unit, connected to the finite control unit. Its inputs are:

1. An integer pointer register colored p(k), indicating the current head position.
2. A finite, possibly unbounded set of registers, each of which represents a single (memory) cell on a

tape. These tape registers are colored {ci(k)}i>0 ∈ Σ.
3. A pair of registers colored correspondingly by a pair instructions (a, ε), where a denotes the symbol

to be written in the current cell to which the head points (which is numbered p(k)), and ε denotes
the (possibly zero) increment to be added to p(k), so that p(k + 1) = p(k) + ε− 1.

The outputs of the memory unit are:

1. The updated pointer p(k + 1).
2. A finite, possibly unbounded set of registers whose colors {ci(k+1)}i>0 ∈ Σ have been all passed

unchanged, except for a single cell whose content may have been modified.
3. A strand colored by u(k + 1), the content of the cell to which the head points in its new location
p(k + 1)
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Figure 13. One-step computation of a Turing tangle.

To simulate the sequential operation of a Turing machine, copies of the finite control unit and of
the memory unit are to concatenated in the obvious manner. Concatenating N copies of the machine
in Figure 13 simulates N successive computations of a Turing machine (see Figure 14). This justifies
naming such a procedure iteration.
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Figure 14. Iterative computation in a Turing tangle machine.

5.4. Halting

A halting state is a state for which:

δ(qh, u) = (qh, u, 1) (26)

Once arriving at a halting state, further iterations do not alter the memory content of the machine.
The state qh represents an equilibrium, which may or may not be reached for a given input sequence
u(0), u(1), . . .. A machine whose input registers are colored by a halting state can be closed by
concatenating respective inputs and outputs, as shown in Figure 15.
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Figure 15. Closure of a Turing tangle machine in its halting state.

6. Interactive Proofs: Distribution of Knowledge by Deformation

The decision of a crowd can converge to a correct answer even when each individual has limited
knowledge. This phenomenon is known as the wisdom of the crowds [46]. In line with “the many being
smarter than the few”, we extend the notion of interactive proof systems [26] to a system in which a
collection of verifiers interact to prove a claim together. Might such a crowd of verifiers collaborate to
prove more than could be proven by any individual verifier in the crowd?

6.1. Deformation of a Single Interaction

Consider a family of verifiers, each with a belief concerning whether x ∈ L or x /∈ L. We model the
belief of each verifier W at time t as a Bernoulli random variable Wt whose realizations wt are either
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|True) or |False). We interpret wt = |True) as “W believes at time t that x ∈ L”, and we interpret
wt = |False) as “W believes at time t that x /∈ L”.

Consider an interaction at time t with agent V , one of whose patients is W . The realization wt+1 of
Wt+1 may equal either the belief of the agent vt or the belief of the patient wt. In other words, W either
retains her belief or is “convinced” by V to change her belief to that of V (we use female pronouns for
the verifiers, who are all “Alices”). Whether or not V “succeeds in convincingW ” depends on a message
ξt from a prover Π with access to an oracle.

Only the belief of patients changes at an interaction. The agents and the verifiers who do not
participate in the interaction do not change their beliefs, so in particular, vt+1 = vt always.

There are three constants associated with the agent V at an interaction at time t: a completeness
parameter ctV , a soundness parameter stV with 0 < stV < ctV ≤ 1, and a deformation parameter δtV ∈
Q ∩ (0, 1). For simplicity, we will assume that these three parameters are the same for all agents in the
network, and stv, c

t
V , δ

t
V will be written s, c, δ correspondingly.

Our basic requirement for an interaction is that the following pair of inequalities be satisfied:

(deformed completeness) x ∈ L −→ Pr(Wt+1 = vt | Vt = vt) ≥ cδ;

(deformed soundness) x /∈ L −→ Pr(Wt+1 = vt | Vt = vt) ≤ sδ.
(27)

Remark 6. The deformed completeness and soundness, cδ and sδ, may both be below 1
2

or may both be
above 1

2
and bounded away from one.

In the limit δ → 1, specific values of c and of s turn the pair of inequalities (27) into familiar pairs
of inequalities in interactive proof theory [47]. For example, for s = 2−|x|

a and c = 1 − 2−|x|
b , where

a, b > 0, we obtain the completeness and soundness constraints of an IP verification.

6.2. Statistics of Beliefs and Interactions

When keeping track of the beliefs of many different verifiers at many different times, it is cumbersome
to work directly with Equation (27). Instead, we introduce a shorthand to keep track of the belief of a
verifier, both if x ∈ L and also if x /∈ L, in a single expression.

The belief statistics |Wt) of verifier W at time t is written:

|Wt)
def
= a |True) + b |False) , (28)

where a ∈ [0, 1] denotes the greatest lower bound for the belief of W that x ∈ L at time t conditioned
on this belief indeed being true, and b ∈ [0, 1] denotes the greatest lower bound for the belief of W that
x /∈ L at time t conditioned on this opposite belief indeed being true. Note that a+ b need not equal one.
In particular:

x ∈ L −→ a ≤ Pr(Wt = |True));

x /∈ L −→ b ≤ Pr(Wt = |False)).
(29)

An interaction between W and V at time t concludes either with W accepting the belief of V or with
W sticking to her own belief. Denoting by h the probability (or more precisely, a lower bound on it) of
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W switching to the belief of V in the next time frame, the distribution of possible beliefs of W in the
next time frame is described by:

|Wt+1) = |Wt)
|Vt) def

= (1− h) |Wt) + h |Vt) . (30)

Remark 7. Belief statistics written as in Equation (28) facilitate calculations of probabilities across a
network. This tool is used throughout the remainder of this note (some examples will be given shortly).
Here, we explain how Equations (28) and (30) combine to give a compact way of representing two
entirely different interactions, one assuming x ∈ L and the other assuming x /∈ L. This may be slightly
confusing at first, so the reader’s attention is called to this point.

Owing to Equation (30), the probabilities anywhere in the network at time t > 0 depend on the
parameter h. We may do all calculations and treat it as a formal parameter. Having in mind that an
interaction is ultimately a procedure terminating with the statistics in Equation (27), the parameter h is
set either to cδ or to sδ depending on whether or not x is in L. To verify that a network decides L, we
repeat the computation twice, first for the case where x ∈ L and then for x /∈ L. In the former case, we
will be interested only in the coefficient of |True), whereas in the latter case, we will be interested only
in the coefficient of |False).

Here is an illustrative calculation for a single interaction. Let Wt = |False) and Vt = |True).
Invoke Equation (30) using the completeness and soundness parameters in Equation (27): first using
h = cδ and then using h = sδ. Hence,

|Wt+1) = cδ |True) + (1− sδ) |False) −→

{
cδ |True) + (· · · ) |False) , x ∈ L;

(· · · ) |True) + (1− sδ) |False) , x /∈ L.
(31)

This interaction is said to decide L only if cδ > 1
2

and 1− sδ > 1
2
.

6.3. Expressive Power of a Network: The Class BraidIP

Verifiers in our framework are assumed to be implemented as probabilistic polynomial-time Turing
machines whose beliefs are either internal states or are stored on tapes. Similarly, an interaction is a
polynomial-time procedure. Consider now a crowd of verifiers V 1, V 2, . . . , V µ whose initial beliefs
at time t = 0 are |V 1

0 ) , |V 2
0 ) , . . . , |V µ

0 ). Allow them to interact at times t = 0, 1, 2, . . . , χ, subject
to parameters 0 < c < s ≤ 1 and δ ∈ Q ∩ (0, 1). We write M for this sequence of interactions.
A language L ⊆ {0, 1}∗ is said to be decided by M if M contains a verifier V , whose belief at time χ is
|Vχ)

def
= a |True) + b |False), such that, for a fixed constant κ > 0, we have:

x ∈ L −→ a ≥ 1
2

+ |x|−κ ;

x /∈ L −→ b ≥ 1
2

+ |x|−κ .
(32)

This definition depends on the choice of κ > 0. The class braided interactive polynomial time
(BraidIP) consists of those languages that are decidable for any fixed κ > 0 by some network M in time
χ, polynomial in |x|. We denote this class BraidIP{δ, χ}, where χ is the number of interactions in M .

Remark 8. The definition of class BraidIP is similar in spirit to the class BPP. We will see below
that it includes class IP. Letting Equation (32) reflect the class PP (i.e., taking strict inequalities and
right-hand constants equal to 1

2
) will result in networks that decide any L ∈ IPP.
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6.4. Braid of Beliefs

Our networks admit a convenient diagrammatic description. We represent an interaction as a wire
cutting through other wires (see Figure 16). The overcrossing wire, which becomes slightly thickened in
an interaction, carries the belief statistics of an agent, whereas the undercrossing wires carry the belief
statistics of her patients. An example of many concatenated interactions is given in Figure 17.
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Figure 16. Diagrammatic representation of an interaction.
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Figure 17. A rumor-passing network and its respective diagram.

The diagram representing the rumor passing network in Figure 17 is a braid, which is a special
sort of tangle. Here, such diagrams represent the flow of beliefs within a network of interacting
machines (verifiers).

When many patients pass under a single agent, we define this to imply that for each patient, the belief
sampled from that patient is independent of the belief sampled from every other patient, and the belief
sampled from the agent to update that patient’s belief is independent of the belief sampled from the agent
to update every other agent’s belief. To say the same thing in a different way, multiple patients under
the same agent are independent and unsynchronized during that time frame. We will discuss this point
further in Section 10.2.
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6.5. An Example

The capacity of a network to prove or disprove a claim is an emergent property. Out of a number
of uncertain interactions, none of which prove the claim, the truth may eventually materialize. As an
example, consider the two pairs of two consecutive interactions pictured in Figure 18. Both sequences
involve three verifiers, designated X , Y and Z. Their initial beliefs are shown at the bottom.

c

df

e

e1

a
b

a
b

c

df t

g

Figure 18. Equivalent networks of interactions.

Set the parameters to s def
= 1

2
, c def

= 1 and δ def
= 1

2
. Allow the verifiers to interact in the left diagram.

At time t = 2, beliefs X0 and Y0 of X and of Y have been updated to X2 and to Y2 (Z does not change
his belief). The distributions are:

|X2) =
(
|X0)|Y0)

)|Z0)

−→

{
3
8
|False) + 5

8
|True) , x ∈ L;

21
32
|False) + 11

32
|True) , x /∈ L.

(33)

Hence,

|X2) =
(
|X0)|Y0)

)|Z0)

= 21
32
|False) + 5

8
|True) , (left network);

|X2) =
(
|X0)|Z0)

)(|Y0)|Z0))
= 21

32
|False) + 5

8
|True) , (right network).

(34)

Similarly,

|Y2) = |Y1) = |Y0)|Z0) =
3

8
|False) +

3

4
|True) . (35)

From this, we see that X decides correctly at time χ = 2 with probability at least 5
8

or 21
32

, depending
on whether x ∈ L or x /∈ L. Both of these are greater than 1

2
, so the pair of inequalities Equation (32)

for a suitable κ > 0, a protocol underlaid by the above interactions will succeed in deciding, at |X2),
whether or not x ∈ L.
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Table 1. A comparison between the meaning of a single interaction in IP and in BraidIP.

Description IP system Deformed IP system

Participants Verifier, prover Many verifiers (patient),
verifier (agent), prover

Verifier “state of mind” Accept/reject Belief true/false

Conclusion Verifier decides accept/reject If the two verifiers do
not agree, then the patient
may change her belief.

Completeness, soundness c, s cδ, sδ

Note again that:
|Y1) = |Y0)|Z0) = h |Z0) + (1− h) |Y0) , (36)

and we evaluate with h = 1
2

for the coefficient of |True) and with h = 1
4

for the coefficient of |False).
This is the same for all interactions in both diagrams.

Note that both diagrams in Figure 18 have the same initial beliefs |X0), |Y0) and |Z0), the
same terminal beliefs |X2), |Y2) and |Z2) and differ only in the belief of X at time t = 1.
Thus, these two diagrams underlie equivalent deformed interactive proofs, each of which can uniquely
be reconstructed from the other, which decide the same languages, but which differ at an intermediate
step. This equivalence is the topic of Section 10.

7. Deformation of an IP System

In this section, we show how we may deform an IP system with any soundness parameters
0 < s < 1

2
< c ≤ 1, for any deformation parameter δ ∈ Q ∩ (0, 1). The completeness and soundness

parameters of the deformed system will be sδ and cδ correspondingly. The deformation parameter δ
serves to introduce noise between the prover and the verifiers. In the δ → 1 limit, we recover IP, and the
information obtained by a verifier at each interaction shrinks as δ → 0. However, Theorem 4 proves that
we can recover IP from BraidIP by concatenating many consecutive deformed interactions.

Before describing how IP may be deformed, we outline the major differences between a single
interaction in IP and BraidIP in Table 1.

7.1. Two Approaches to Deform IP

We present two approaches to deform an IP protocol. The end result is the same, but the “story”
is different.

7.1.1. Agent and Patient as a Single Verifier

We may think of a patient W and an agent V of an interaction at time t as representing different
aspects of a single verifier. In this approach, we conceive of W and V as being a single unit (W,V ).
The verifier (W,V ) transmits to the prover Π the belief of both W and V . We may imagine W and V
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as litigants in a court case, presenting their claims to the judge Π, where W is the defendant and V is
the plaintiff. If both W and V make the same claim, then Π throws the case out (i.e., Wt+1 = wt and
Vt+1 = vt). On the other hand, if V disagrees with W , then (W,V ) query the prover Π according to the
original interactive protocol. If, according to the original protocol, W ’s claim should be accepted, then
Π rules in W ’s favor (i.e., Wt+1 = wt and Vt+1 = vt). However, if according to the original protocol,
W ’s claim should be rejected and V ’s claim should be accepted, then Π picks an integer uniformly at
random between one and N . If the number Π picked is less than δN , then Π rules in favor of V (i.e.,
Wt+1 = vt and Vt+1 = vt). Otherwise, he rules in favor of W .

Perhaps δ represents a chosen standard of “reasonable doubt”. Constants s and c perhaps represent
constants associated with the mechanics of the courthouse procedure. Note that as δ → 1, a single
interaction involving two verifiers with opposite beliefs recovers IP.

7.1.2. Verifiers Communicating Through a Noisy Channel

The following approach has an information-theoretic interpretation. Consider the prover Π as an
information source, the agent verifier V as an encoder and the patient verifier W as a decoder. The query
information transmitted from W to Π is relayed via a perfect communication channel (i.e., there is no
loss of information in this direction). The replies from Π are passed on to V , who encodes them and
transmits them back to W , this time through a noisy channel. This means that the prover replies emerge
corrupted on W ’s end, which consequently influences her decision.

Introducing a noisy channel into the formalism restricts the information obtained by the patient verifier
from the prover. It is tempting to state that the combination prover-agent-noisy channel behaves like a
mendacious agent, in that the agent V decided whether to “tell the truth” or to “lie” to W . However,
to think of V as a mendacious agent is inaccurate. For one thing, the agent’s strategy whether or not to
reliably relay Π’s replies to W must account for the beliefs of both V and W , either one of which may
not be correct. Her behavior does not stem from her being more knowledgeable; rather, we may think of
it as a manifestation of her own beliefs.

It is important to note that although V receives the replies from Π, she is not allowed to use this
information to update her own belief. One can think of protocols taking advantage of the fact that V is
not aware of W ’s queries, wherein this restriction follows naturally. For now, it is enough to assume that
V will not use the prover replies for her own benefit.

Here is how such a protocol may run. Upon disagreement between W and V , i.e., vt 6= wt, the patient
W sends her queries to Π. The replies to W ’s queries are then sent by Π to the agent V . At this point, V ,
who is a verifier, much like W , runs her own verification test on the prover replies. He obtains ξt = 1 for
accept/true and ξt = −1 for reject/false. In the case where ξt = 1, she tampers with the prover replies,
such that when they are received by W , her verification would indicate vt with probability δ. In the case
where ξt = −1, the agent V tampers with the prover replies, such that the test of W would indicate ¬vt.

Implicit in the above protocol is the fact that the capacity of V to deceive W is limited by V ’s own
belief. If her belief, vt, coincides with the true nature of the claim, then she may potentially have more
power to deceive W .

The protocol just described underlies a noisy symmetric channel between W and V . If ξt = 1, this
channel is characterized by δ and has a capacity of 1 − H2(δ), where H2(δ) is the Shannon entropy of
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a Bernoulli random variable with parameter δ. It induces a maximal loss of one bit of information for
δ = 1

2
. An illustration of the communication between the three parties patient-agent-prover is given in

Figure 19.
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Figure 19. Communication between W and V when vt 6= wt. The channels between W
and V are symmetric. The labels above edges indicate transition probabilities. The box of
V is divided into two sections representing her belief vt (left section) and the outcome of his
verification ξt (right section).

7.1.3. Further Metaphors for Deformed Interactions

The agents in our picture all receive messages from the same oracle. This essentially suggests that
a network of interactions is a construct quantizing the oracle knowledge. At every location within the
network, only a quanta of this knowledge is used by way of interaction between a patient and an agent.
Later on, we will show that although a single interaction may be limited in its capacity to prove the
claim, the proof may yet emerge somewhere in the network, depending on its topology.

The triple patients-agent-oracle brings to mind some basic models of reasoning and information
transfer. Perhaps a patient is an entity whose beliefs reflect both prior knowledge and observations.
The patient is exposed to a genuine phenomenon, which the patient has not seen before.
The phenomenon, which is the metaphor for an oracle, is beyond the comprehension of the patient,
and hence, a number of observations are collected in an attempt to reach a definitive conclusion.
These observations, however, may be distorted by limitations of the patient measuring apparatus or
perhaps they contradict prevailing explanations and beliefs. In either cases, observations contain, or
otherwise introduce, uncertainty. Observations are the metaphor for agents. What the patient tries to
accomplish underlies the Bayesian inference paradigm.

Here is another metaphor. A patient is a decoder; an oracle is an information source; and an
agent is an encoder who relays the encoded oracle message through a noisy communication channel.
Alternatively, an agent-patient pair is a verifier, and the oracle is a prover who relays a message through
a noisy communication channel. All metaphors reflect knowledge transfer subject to uncertainties.

7.2. Probabilistic Theorem Proving in Networks

The goal of this section is to prove Theorem 4, repeated below for convenience.
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Theorem 7. IP ⊆ BraidIP {δ, χ} where:

I(cδ) < χ <
1

I(1− sδ)
, (37)

with I(p)
def
= −p−1 log p. The growth rate of χ is O(1

δ
) as δ → 0.

Proof of Theorem 4. We explicitly construct a configuration of interactions that decide a language L in
IP. This configuration, which is illustrated in Figure 20 for the case χ = 4, is a scaled up version of that
in Figure 18. It involves χ+ 1 verifiers W and V 1, V 2, . . . , V χ and χ interactions. The parameters of all
interactions are the same and are c, s, δ.

a b c
d

e

g

Figure 20. An interactive BraidIP theorem proving network with five verifiers W , V 1, V 2,
V 3 and V 4 and four interactions.

Let L ∈ IP. The initial beliefs at time t = 0 are set to |W0)
def
= |False) and:

∣∣V i
0

) def
=

{
1
2
|False) + 1

2
|True) , 1 < i < χ;

|True) , i = χ.
(38)

Thus, at time zero, there are two verifiers with opposite beliefs and χ− 1 verifiers whose initial belief
is that the claim x ∈ L is 50% true and 50% false.

Calculating the output statistic |Wχ) (which occurs at time χ) yields:

|Wχ) −→

{
(1− cδ)χ |False) + [1− cδ − (1− cδ)χ]

(
1
2
|False) + 1

2
|True)

)
+ cδ |True) , x ∈ L;

(1− sδ)χ |False) + [1− sδ − (1− sδ)χ]
(

1
2
|False) + 1

2
|True)

)
+ sδ |True) , x /∈ L.

(39)
From Equation (39), we see that the configuration in Figure 20 decides L if and only if:

x ∈ L −→ (1− cδ)χ < cδ;

x /∈ L −→ (1− sδ)χ > sδ.
(40)

From here, we obtain the following bounds for χ:

log(cδ)

log(1− cδ)
< χ <

log(sδ)

log(1− sδ)
. (41)
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Equation (2) follows upon noting that log(1− p) < −p for any p ∈ (0, 1). Therefore:

− 1− p
log(1− p)

>
log p

log(1− p)
> − log p

p
. (42)

For χ within these bounds, the above configuration decides L.

Remark 9. Equation (2) tells us that χ has approximately the same growth rate in |x| as 1
δ
. By definition

of BraidIP, χ’s growth rate is polynomial in the word length |x|, and so, therefore, δ is asymptotically
bounded below by approximately one over a polynomial in |x|.

8. Efficient IP Strategies: Tangled IP

8.1. The Complexity Class TangIP

We may extend class BraidIP by allowing each verifier to have its own “local” time parameter, so
that a patient belief Wt may interact with an agent belief Vs for s 6= t and become updated to Wt+1.

a

b

c

(43)

We also allow verifiers to travel backwards or forwards in time and to update their previous or future
beliefs, so that Vt may be updated by agent Vs to become Vt+1, where Vt and Vs are beliefs of one
and the same verifier. Thus, each verifier may update their beliefs with past or future beliefs of itself
(via feedback loops) or of other verifiers. We write M for a network of such concatenated interactions,
subject to parameters 0 < c < s ≤ 1 and δ ∈ Q ∩ (0, 1). An example of such a network is given in
Section 8.2.

A language L ⊆ {0, 1}∗ is said to be decided by M if M contains a verifier V whose belief at time
χ is |Vχ)

def
= a |True) + b |False), such that for a fixed constant κ > 0, the inequalities Equation (32)

are satisfied.
The class “tangled interactive polynomial time” (TangIP) consists of those languages that are

decidable for any fixed κ > 0 by some networkM , which contains χ interactions, where χ is polynomial
in |x|. We denote this class TangIP{δ, χ}.

By Theorem 4, we know that:
IP ⊆ BraidIP ⊆ TangIP.

We wonder about the connection between our classes BraidIP and TangIP and multi-prover IP

(MIP) [27]. In particular, we wonder whether MIP ⊆ BraidIP or MIP ⊆ TangIP, particularly if
we allow different interactions to have different parameters (in this note, all interactions are required to
have the same parameters, because that is all we need, but there is no obstruction to considering the more
general case).
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8.2. The Hopf–Chernoff Configuration

Consider an IP system whose soundness s is nearly equal to its completeness c, but for a small
constant ε(|x|) that depends on the word length |x|, i.e., c − s = ε(|x|). As ε(|x|) → 0, the IP system
becomes inefficient in the sense that it accepts every word with probability nearly c regardless of its
membership in L. Yet, we can still construct a deformed IP system that decides L. One may wonder
how the number of interactions in such a system is affected by the decreasing gap ε(|x|).

The number of interactions in a network of the form given in Figure 20 is implicit in Theorem 4. Fix
δ ∈ Q∩(0, 1), and note from Equation (2) that, as ε(|x|) decreases, the values bounding χ become nearly
identical. However, χ is an integer, so the two bounds must have an integer between them. In general,
that means that the distance between them is at least one. Therefore, the number of interactions grows
as ε(|x|) decreases. We may need to take δ → 0 as ε(|x|) → 0. In fact, it can be shown that in this case
δ(|x|) = O(ε(|x|)), which means that we require χ = O(1/ε(|x|)) interactions.

Can fewer interactions decide L ? The configuration in Figure 21 decides L for any ε(|x|) using
substantially less thanO(1/ε(|x|)) interactions. This machine is a concatenation of a number of identical
smaller configurations of interactions, denoted M0,M1,M2, . . .. When concatenated to form a single
configuration, we require approximately χ = O(log(1/ε(|x|))) copies of M0 to decide L (the precise
argument is given below). If we were to trace its colors (probability-generating functions), we would
notice that it behaves much like a repetition of a binary random experiment (e.g., coin flipping), hence
the magnitude of χ. We have named this configuration the Hopf–Chernoff configuration, suggesting
both its structure and, to some extent, its functionality.

f

g

h

m

x

y

n k

o

u

v

1

2

Figure 21. Hopf–Chernoff configuration (open version).

Theorem 8 (Hopf–Chernoff configuration). Consider the configuration of interactions in Figure 21,
which underlies a deformed IP system with completeness cδ and soundness (c− ε)δ, where ε > 0. There
exists a pair of beliefs, α and β, independent of any other belief in the machine, such that for any given



Symmetry 2015, 7 1320

set of initial beliefs In0
j , the machine decides any L ∈ IP using χ = O(log(1/ε)) sub-machines (and 4χ

interactions). In particular, letting:

|α) =
(

1
4

+ 1
12
εδ
)
|True) +

(
3
4
− 1

12
εδ
)
|False) ;

|β) =
(
1− 1

2
cδ + 1

12
εδ
)
|True) +

(
1
2
cδ − 1

12
εδ
)
|False) .

(44)

yields:

Outχ1 −→

{ [
1
2

+ 1
12
εδ
]
|True) +

[
1
2
− 1

12
εδ
]
|False) , x ∈ L;[

1
2
− 1

12
εδ
]
|True) +

[
1
2

+ 1
12
εδ
]
|False) , x /∈ L.

(45)

namely, Outχ1 =
[

1
2

+ 1
12
εδ
]
|True) +

[
1
2

+ 1
12
εδ
]
|False).

Proof. Let us begin by writing down the relations between the outputs Outj and inputs Inj of this
machine. Note that:

Out1 =
(

In
|α)
1

)(In
|β)
2

)
, Out2 =

(
In
|β)
2

)(In
|α)
1

)
. (46)

Explicitly writing Equation (46) using the formal parameter h yields:[
Outi1
Outi2

]
=

[
(1− h)2 h(1− h)

h(1− h) (1− h)2

]
︸ ︷︷ ︸

def
=A(h)

[
Ini1
Ini2

]
+

[
h(1− h) h2

h2 h(1− h)

]
︸ ︷︷ ︸

def
=B(h)

[
|α)

|β)

]
. (47)

Letting Ini+1
j = Outij , j = 1, 2, Equation (47) underlies a linear dynamical system. It is easy to verify

that the eigenvalues of the transition matrix A(h) all are within the unit circle, i.e., |λ(A(h))| < 1 for
any h > 0. That means that the system Equation (47) reaches a steady state as i→∞. The steady state
can be obtained as follows. Rewrite Equation (47) as:[

Out1

Out2

]
= A(h)

[
Out1

Out2

]
+B(h)

[
|α)

|β)

]
, (48)

and solve for Out1 and Out2. Thus,[
Out1

Out2

]
= (I − A(h))−1B(h)

[
|α)

|β)

]
=

1

3− 2h

[
2(1− h) |α) + |β)

|α) + 2(1− h) |β)

]
. (49)

Define:
|α)

def
= a |True) + (1− a) |False) ;

|β)
def
= b |True) + (1− b) |False) .

(50)

For the network to decide L, we require the steady state of Out1 to satisfy:

Out1 −→

{
(1

2
+ σ) |True) + (1

2
− σ) |False) , x ∈ L;

(1
2
− σ) |True) + (1

2
+ σ) |False) , x /∈ L.

(51)

for some σ > 0. Using both Equations (49) and (50), this requirement translates into the following set
of equations:

(3− 2cδ)
(

1
2

+ σ
)

= 2(1− cδ)a+ b, x ∈ L;

(3− 2(c− ε)δ)
(

1
2
− σ

)
= 2(1− (c− ε)δ)a+ b, x /∈ L.

(52)
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where the fact that h = cδ for x ∈ L and h = (c − ε)δ for x /∈ L has been used. Solving Equation (52)
for the coefficients a and b while assuming σ = 1

12
εδ yields Equation (44). The underlying output

probabilities in Equation (45) are given by Equation (51).
To complete the argument, we need to show that the network converges within the stated number of

iterations. It is sufficient to consider the case where the output probabilities Equation (51) is attained to
within the order O(σ) = O(ε). The growth rate of the system Equation (47) is linear in |λ1(A(h))|χ

where λ1(A(h)) denotes the largest eigenvalue ofA(h). Simple calculation shows that λ1(A(h)) = 1−h,
which yields χ = O(log(1/ε)).

The Hopf–Chernoff configuration is a recursive structure, which is guaranteed to converge irrespective
of its initial beliefs In0

j . In fact, it represents a two-dimensional homogeneous irreducible Markov chain
whose rate of convergence is O(2−χ). Its stationary distribution, which depends on whether x ∈ L or
x /∈ L, is given by Equation (45). By virtue of its convergence properties, we may just let it run forever
(i.e., χ → ∞) knowing that it will eventually reach a stationary distribution not far from Equation (45).
For that reason, we may as well substitute the open network in Figure 21 with its closed counterpart in
Figure 22.

g

h

Figure 22. Hopf–Chernoff configuration (closed version).

9. PCP Networks

In this section, we specialize to non-adaptive three-bit verifiers, to exhibit that tangle machines may
exhibit better performance parameters than classical systems.

We deform the Håstad PCP verifier, which has c = 1 and s ≈ 0.75. Suppose the two verifiers
disagree, vt 6= wt, where vt, wt ∈ {|True) , |False)}. In this case, the interaction proceeds as follows.
The patient verifier W provides the addresses of three bits to Π. These bits are received by the agent
verifier V , which computes a certificate ξt, which is equal either to one, meaning “accept”, or to −1,
meaning “reject”. The agent then flips one out of the three bits with the following probabilities:

• (ξt = 1) ∧ (vt = |True)) −→ V flips a bit with probability 1− δ.
• (ξt = 1) ∧ (vt = |False)) −→ V flips a bit with probability δ.
• (ξt = −1) ∧ (vt = |True)) −→ V flips no bit.
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• (ξt = −1) ∧ (vt = |False)) −→ V flips a bit.

The corrupted set of bits is then sent back to W , who computes her own certificate. This protocol
realizes the communication channel in Figure 19.

9.1. A Better Than Classical PCP Verifier

In this section, we construct a tangle machine whose interactions are deformed Håstad verifiers, which
has perfect accuracy and a completeness of 2

3
+ σ ≈ 0.667. This is worse than the conjectured bound of

0.625, but better than the best-known classical non-adaptive three-bit PCP protocol, whose soundness is
only around 0.741. Thus, our machine behaves like a single very good verifier.

Our machine makes use of the Hopf–Chernoff configuration in Figure 21.

1. Choose input beliefs In0
j , j = 1, 2, arbitrarily from {|True) , |False)}. Assume c = 1, and fix δ.

2. Let α be a Bernoulli distribution with parameter 1
2
. Draw a belief from α for the top agent, and set

the bottom agent to the negation of that belief. We color the bottom agent as ¬α, which equals α
as a distribution, to diagrammatically signify what we are doing.

3. Do the following for i = 1, . . . , χ, where χ = O(1):

• Using the underlying deformed PCP verifier, perform the four interactions of the
Hopf–Chernoff configuration to propagate the beliefs of the two verifiers from Inij to Outij
according to the diagram below.

g

h

u

v

1

2

• Set Inij = Outi−1
j , j = 1, 2.

4. If the patient belief in the output Outχ1 = ¬α, then return |True); otherwise, return |False).

Theorem 9. The Hopf–Chernoff machine approaches perfect completeness and soundness at most 1
3−2s

as δ → 1. In particular, if we put deformed Håstad verifiers at interactions, its soundness is at most 2
3
.

Proof.

Completeness Assume that x ∈ L, and note that as δ → 1, so does h = cδ → 1. In the limit where
h = 1, note that by Equation (41), the Hopf–Chernoff swaps the beliefs α and ¬α, such that always
Out1 = ¬α and Out2 = α. Thus, Step (iv) of the algorithm concludes with |True).

Soundness The soundness of the algorithm bounds the probability that Out1 = ¬α in the case where
x /∈ L. This probability is given by:
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Pr(Out1 = ¬α) = Pr(Out1 = |True) | α = |False)) Pr(α = |False))

+ Pr(Out1 = |False) | α = |True)) Pr(α = |True)). (53)

Although not truly essential, the algorithm assumes Pr(α = |True)) = 1
2
. The conditional

probabilities above can be bounded using Equation (41) as follows. Take h = sδ → s and assume
that |α) = |False). In this case, Equation (41) implies:

Pr(Out1 = |True) | α = |False)) ≤ 1

3− 2s
. (54)

On the other hand, letting |α) = |True), the same equation reads:

Pr(Out1 = |False) | α = |True)) ≤ 1

3− 2s
. (55)

This follows from the fact that the algorithm decides x ∈ L if Out1 = ¬α irrespective of the
beliefs themselves. For that reason, these equations coincide, though for different values of α and
Out1. Both describe a failure of the algorithm to decide x /∈ L. The theorem now follows from
Equations (53)–(55).

10. Low-Dimensional Topology and Bisimulation

Definition 10. Tangle machines M and M ′, which each come equipped with a distinguished set of input
and output registers, are bisimilar if any computation that can be carried out on M can be carried out
on M ′ and vice versa.

Because computations are defined only with respect to the pre-chosen sets of input and of output
registers, Definition 10 encapsulates what may be thought of as a weak notion of bisimulation (no
requirement is made on “silent” or “internal” interactions).

In Section 10.1, we formulate a set of local moves, such that any two machines related by these local
moves are bisimilar. In Section 10.2, we discuss a feature of our formalism, that is the “unsplittability”
of our agent registers. In Section 10.3, we suggest an application of machine equivalence to define a
notion of zero knowledge for tangle machines and to utilize it to construct TangIP machines, which are
“more secure” in a specific sense. We give an example in Section 10.4. Finally, in Section 10.5, we
extend our notion of machine equivalence to machines that may have wyes.

10.1. Equivalence

The key property of tangle machines is that they admit a local notion of equivalence [1]. Two (quandle
colored, without wyes) tangle machines are equivalent if they are related by a finite sequence of the
moves in Figures 23 and 24. It is forbidden for these moves to involve input and output registers
of a computation.
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R

T

Q

S

C

Y

Figure 23. Cosmetic moves for machines. Directions are not indicated, meaning that the
moves are valid for any direction and the same for colorings.

A B

D

Figure 24. Reidemeister moves for machines, valid for any directions of the agents. It is
forbidden for these moves to involve input and output registers of a computation.

Two machines related by the local moves in Figure 23 carry out identical computations, and it
follows from the construction of an interaction that two machines related by R1 differ only by a trivial
computation at which “nothing happens”. Thus, the interesting moves for us are R2 and R3 in Figure 24,
about which we will say more later.

Remark 10. First note that, for R2 to make sense, all participating colors must be defined.
This requirement is non-trivial for a machine colored by a quandloid.

Remark 11. For a machine colored by a quagma, the R3 move is replaced by the following:
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a

b a

b

c

(56)

for all .,I∈ B satisfying (x . y) I z = (x I z) . (y I z) for all x, y, z ∈ Q.

If we choose input and output registers to be machine endpoints, then equivalent machines have
identical initial and terminal beliefs, which implies that both machines have the same computational
power in terms of deciding a language. Nevertheless, the local behavior of equivalence may be different,
in that the colors of intermediate interactions in between the same initial and terminal statistics may be
different in equivalent machines. As in the earlier example in Figure 18, equivalent machines may have
two different prover strategies arriving at the same proof.

To expand that example, Figure 25 features several equivalent prover strategies for the machine in
Figure 20, all of which are obtained by application of R3 moves.

a b c
d

e

g

a b c
d

e

g

a b c
d

e

g

Figure 25. Equivalent prover strategies for the machine in Figure 20.

10.2. The Single Agent in R2 and R3

In this section, we discuss the single agent that acts on numerous patients and cannot be split. Such an
agent features in Moves R2 and R3 and distinguishes our approach, e.g., from w-tangles [35].

The R2 move tells us that computations are reversible, in the sense that any operation . ∈ B has
an inverse operation / ∈ B, such that no information is computed from (x . y) / y for any x, y ∈ Q.
Because we are working not only with colors, but with realizations of belief statistics, we are saying
more than just (x . y) / y = x. We require that there be zero knowledge gain about realizations of
(x . y) / y from a realization of x.
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c

a

d

b

h

e

I

f (57)

Our formalism features agents that act on multiple patients. These actions are independent by
definition. Conversely, as we saw in Section 8.2, different agents may cooperate, for example, by
coordinating their realizations to be the same or to be opposed to one another.

We do not impose the following a priori reasonable generalization of R2.

(58)

One reason that we do not impose Equation (58) can be seen by considering the example in which
the two agents in the machine on the left-hand side adopt the strategy of always offering the same
realization. If the realization of the patient and of the agent coincide, we can compute the realizations of
both other patients. If not, then we cannot. Thus, we can compute the colors of the remaining patients
in Equation (58) for some realizations, but not for others. This behavior is not shared by the machine on
the right-hand side, in which colors of the realizations of patients can never be computed unless they are
already given. If the choice of realization is independent for both patients, i.e., if there is only a single
interaction, as in the case of “honest” R2, there is no such phenomenon, and no choice of realizations
for input registers is distinguished from any other. Note also that Equation (58) represents two distinct
computations, each of which can be considered separately and each of which is non-trivial, which is not
true for the right-hand side of the “honest” R2.

For the same reason, we do not impose the following “fake R3 move”:

(59)

10.3. Zero Knowledge

The theory of IP features the notion of a zero-knowledge proof [26,48]. In a zero-knowledge proof,
the information that may be gained by the verifier in the course of her interactions with the prover are
restricted. This is useful when the verifier may not always be trustworthy. The definition makes use of
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a simulator, which is an arbitrary feasible algorithm that is able to reproduce the transcript of such an
interaction without ever interacting with the prover.

We suggest the following definition as a TangIP analogue to the notion of zero knowledge.

Definition 11 (Zero-knowledge tangle machine). A tangle machine M that decides a language
L ∈ TangIP is said to be zero knowledge if the following is satisfied.

1. There are no intermediate interactions in M that decide L.
2. There exists an equivalent machine M ′, which decides L at one of its intermediate interactions.

Remark 12. The idea of zero-knowledge tangled IP parallels the authors’ model of fault-tolerant
information fusion networks, except that there, we wanted intermediate registers to “know as much
as possible”, whereas here, we want them to “know as little as possible” [4].

As a generic example, consider machines M ′ and M in Figure 26. Both share the same initial and
terminal belief statistics. The explicit structure of the machines is mostly irrelevant, except that they both
contain a sub-machine S, which we graphically represent by a blank disk, with the property that M , M ′,
and some of S’s terminal statistics |Yi) decide L. In M , the verifier Z is an agent to all initial states of S,
and the resulting beliefs from this interaction are |Xi), i = 1, 2, . . . In M ′, the same verifier is an agent
to the terminal states of S, and the resulting beliefs from this interaction are characterized by |Yi).

s

m

a b

c

d

s

n

a
b

d

e

Figure 26. Two equivalent machines. The machine M is zero knowledge. The proper
sub-machine S determines L.

That M is zero knowledge implies that the proof should not appear somewhere within it. Assuming
none of the In′s decide L and neither do any intermediate belief states of S, this requirement implies that
none of the |Xi) = (Ini)

|Z) decide L. On the other hand, the machine M ′ shows us that an interaction
between the terminal states of S, some of which decide L, with the agent Z are able to produce the
proof. That is, some of Outi = |Yi)|Z) decide L. These requirements completely characterize the belief
distribution |Z). Perhaps unsurprisingly, it turns out that |Z) = 1

2
|True) + 1

2
|False).

Ideally, we would require that S reproduces the proof as if it were produced by M itself.
This requirement translates into:

|Yi) = Outi, (60)
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for any Outi that decides L. As both sides of Equation (60) depend on the deformation parameter δ, this
equation may be used to determine δ, such that M is zero knowledge. Below, we give an example.

10.4. Example

Consider the two machines in Figure 27. Assume they both employ a deformed IP system whose
completeness and soundness are δ and 1

2
δ. Let |Z) = 1

2
|False) + 1

2
|True), and let us first see what the

value of δ is for the machine to decide L. The output |X2) of either machines is given by:

|X2) −→

{ [
(1− δ)2 + 1

2
δ
]
|False) +

[
δ(1− δ) + 1

2
δ
]
|True) , x ∈ L;[

(1− 1
2
δ)2 + 1

4
δ
]
|False) +

[
1
2
δ(1− 1

2
δ) + 1

4
δ
]
|True) , x /∈ L.

(61)

from which we conclude that δ > 1
2
. The machine on the right in this figure is zero knowledge, because

|X1) does not decide L:

|X1) −→

{ [
1− 1

2
δ
]
|False) + 1

2
δ |True) , x ∈ L;[

1− 1
4
δ
]
|False) + 1

4
δ |True) , x /∈ L.

(62)

and on the other hand, the sub-machine inside the small disk on the left decides L:

∣∣X̄1

)
−→

{
[1− δ] |False) + δ |True) , x ∈ L;[
1− 1

2
δ
]
|False) + 1

2
δ |True) , x /∈ L.

(63)

c

df

e

e1

a
b

a
b

c

df t

Figure 27. Example of a zero-knowledge machine.

If we further restrict the value of δ so as to satisfy Equation (60), namely,∣∣X̄1

)
= |X)2 −→ δ = δ(1− δ) +

1

2
δ, (64)

we obtain δ = 1
2
, which obviously contradicts the basic requirement of deciding L. If we slightly

relax this condition to allow a small discrepancy between the underlying distributions, then we may take
δ = 1

2
+ κ(x), where κ(x) is a statistical distance, which potentially depends on x.



Symmetry 2015, 7 1329

10.5. Equivalence for Machines with Wyes

Machines colored by quagmas as machines with wyes also have a notion of equivalence, giving them
a certain flexibility as a diagrammatic language. Two trivalent machines are equivalent if they are related
by a finite sequence of moves in Figures 23, 24 and 28.

a

b

c

Figure 28. Local moves for wyes. Note that YR3 may reverse the label on the wye (max to
min or vice versa), depending on what the colors are.

11. Conclusions

In this paper, we have suggested a Turing-complete diagrammatic model of computation, in
which computers are drawn as tangles of decorated colored strings. With bounded resources, our
“tangle machines” can decide any language in complexity IP, sometimes more efficiently than
known classical single-verifier models. Our machines admit a notion of equivalence that they
inherit from low-dimensional topology, with equivalent machines representing bisimilar computations.
Topological invariants of our machines would be characteristic quantities for these computations, which
are invariant over bisimilarity classes.
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