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Abstract:

 This paper investigates the d = 4, [image: there is no content] Abelian, global Super-Yang Mills system (SUSY-YM). It is shown how the [image: there is no content] Fayet Hypermultiplet (FH) and [image: there is no content] vector multiplet (VM) are embedded within. The central charges and internal symmetries provide a plethora of information as to further symmetries of the Lagrangian. Several of these symmetries are calculated to second order. It is hoped that investigations such as these may yield avenues to help solve the auxiliary field closure problem for d = 4, [image: there is no content], SUSY-YM and the d = 4, [image: there is no content] Fayet-Hypermultiplet, without using an infinite number of auxiliary fields.
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1. Introduction

The [image: there is no content] Super-Yang Mills (SUSY-YM) system is a very active area of study, and has become even more so over the past decade with the emergence of the AdS/CFT correspondence [1]. One very powerful aspect of this correspondence is that it relates a perturbation theory to a strongly coupled system. As [image: there is no content] SUSY-YM is a conformal field theory, an important undertaking has been to find dualities between string theory and theories that are more QCD-like. Klebanov and Strassler took a step in this direction in [2], where they unveiled a background which breaks the supersymmetry to [image: there is no content], while regulating the IR divergence behavior. Following this work, several other supersymmetry breaking backgrounds were discovered [3–6].

In parallel to the unveiling of these duality backgrounds, specific calculations were done showing duality to confining gauge theory calculations. Herzog and Klebanov showed duality in the tree level energy calculations between branes on the supergravity side and confining strings on the gauge theory side [7,8]. In this newly emerging gauge/gravity picture, Regge trajectories were resurrected from the old dual resonance models and reinvestigated by Pando Zayas, Sonnenschein, and Vaman in [9], including some one loop level calculations. Most recently, one loop corrections to the k-string energy have been investigated, the so-called Lüscher term. This emerges on the string theory side through the bosonic part of the D-brane energy, although in addition different one loop information of the fermionic part has also been unveiled [10–13]. A nice picture is developing which shows the dualities between objects on the string theory and gauge theory sides.

In this paper, we take a step back from this picture. Even though this is the best understood of the gauge/gravity dualities, the d = 4, [image: there is no content] SUSY-YM theory part of the correspondence itself still has unknown attributes. The most glaring issue is the auxiliary field closure problem: it is still unknown how to augment this theory with finite numbers of auxiliary fields such that the charges satisfy the following algebra:



[image: there is no content]



(1)




This is a problem which has been well known for at least thirty years. In 1981, Siegel and Rocek (SR) investigated a solution within the known framework that existed at the time and found a no-go theorem [14]. This result has been interpreted as the definitive statement on this issue.

However, there are some loose ends that challenge this conventional wisdom about the SR no-go theorem. The first of these is contained within the SR work itself. In an often overlooked final commentary in the work, the authors state a possible way to avoid the SR no-go theorem. It is also often overlooked that the derivation of the SR no-go theorem is based on a particular assumption of dynamics. In particular, the authors assume the gauge field is subject to the dynamics of the usual Yang-Mills action. It is simple to consider a different starting point. It is easy to negate this assumption.

Though mostly unknown, the action for the ABJM model [15] together with a discussion of 3D, [image: there is no content] superconformal invariance first appeared in works written in the period of 1991–1995 on the importance of Chern-Simons models [16–19]. So instead of considering the fields of a vector multiplet in 4D that realizes [image: there is no content] SUSY or a hypermultiplet in 4D that realizes [image: there is no content] SUSY, one could attempt to construct respective 3D Chern-Simons models with [image: there is no content] SUSY or [image: there is no content] SUSY that are based on the dimensional reduction of 4D multiplets. The SR no-go theorem cannot be applied to such constructions! Thus, the study of 3D Chern-Simons theories provides a new way to attack this very old problem.

The methods in harmonic [20,21] or projective [22,23] superspace absolutely offer solutions, however these add an infinite number of auxiliary fields. In this paper we offer an in-depth analysis of the Lagrangian symmetries generated by the central charges and internal symmetries of the algebra as a possible window into algebraic closure with a finite number of auxiliary fields. To the knowledge of the authors, these symmetries have never been discussed in this detail; almost certainly not in the 4-D Majorana component notation that is used in this paper. In short, we are trying to push the bounds of knowledge further to understand how the algebra fails to close with a finite number of auxiliary fields. Furthermore, this paper analyzes the central charges and internal symmetries, or lack thereof, of other SUSY systems embedded into the overarching d = 4 [image: there is no content] SUSY-YM system.

This paper is structured as follows. We begin by showing how the Abelian d = 4, N = 4 super Yang-Mills (SUSY-YM) system can be made to split into the N = 2 vector multiplet (VM), which closes, and the N = 2 Fayet Hypermultiplet (FH) systems, which does not [24]. Then we show the main result: the recovery of many first and second order supersymmetries from the central charges and internal symmetries of this algebra.

Unless otherwise specified throughout the document, our notation convention is as follows. Capital Latin indices are euclidean and go from one to three: I, J, K, … = 1, 2, 3. Lower case Latin indices i, j, k, m, ⋯ = 1, 2 are also Euclidean. This is not to be confused with the spinor indices, which are the other half of the lower case latin alphabet a, b, c, d, ⋯ = 1, 2, 3, 4, ranging from one to four. Greek indices are four dimensional Minkowski space-time indices and go from zero to three: µ, ν, α, β, ⋯ = 0, 1, 2, 3. Symmetrization and antisymmetrization are defined without normalization:



[image: there is no content]



(2)






[image: there is no content]



(3)






2. Materials and Methods

This section presents the algebra for d = 4. [image: there is no content] SUSY-YM is laid out in component notation. The Lagrangian is presented, which is globally invariant to these transformations. Next, the algebra is uncovered, which of course does not close. It is shown how this algebra splits into both the [image: there is no content] FH and [image: there is no content] VM multiplets; the latter closes while the former does not. It is commented on how after reduction to the FH system, certain central charges and internal symmetries are removed from the algebra. Of course, all central charges and internal symmetries are removed from the algebra under reduction to the [image: there is no content] VM multiplet. The central charges and internal symmetries present in the algebra for SUSY-YM and FH unveil Lagrangian symmetries. These symmetries and the method with which they are unveiled is the main result of the paper, and they are catalogued in Section 3. The calculations to find the transformation laws and algebra were performed with Mathematica, along with calculations by hand to check the Mathematica code. The calculations to find the symmetries of the Lagrangian from the algebra and transformation laws were performed by hand.


2.1.[image: there is no content]Transformation Laws

The Lagrangian for the Abelian d = 4, [image: there is no content] SUSY-YM system



L=−12(∂μAJ)(∂μAJ)−12(∂μBJ)(∂μBJ)+i12(γμ)abψaJ∂μψbJ+12(FJ)2+12(GJ)2−14FμvFμv+12i(γμ)cdλc∂μλd+12d2



(4)




is invariant with respect to the global supersymmetric transformations


DaAJ=ψaJ,DaBJ=i(γ5)abψbJ,DaψbJ=i(γμ)ab∂μAJ−(γ5γμ)ab∂μBJ−iCabFJ+(γ5)abGJ,DaFJ=(γμ)ab∂μψbJ,DaGJ=i(γ5γμ)ab∂μψbJ.



(5)






DaAμ=(γμ)abλb,Daλb=−12(σμv)abFμv+(γ5)abd,Dad=i(γ5γμ)ab∂μλb.



(6)






DaIAJ=δIJλa−ϵIJKψaK,DaIBJ=i(γ5)ab[δIJλb+ϵIJKψbK],DaIψbJ=δIJ[12(σμv)abFμv+(γ5)abd]−ϵIJK[−i(γμ)ab∂μAK−(γ5γμ)ab∂μBK+iCabFK+(γ5)abGK],DaIFJ=(γμ)ab∂μ[δIJλb−ϵIJKψbK],DaIGJ=i(γ5γμ)ab∂μ[−δIJλb+ϵIJKψbK].



(7)






DaIAμ=−(γμ)abψbI,DaIλb=i(γμ)ab∂μAI−(γ5γμ)ab∂μBI−iCabFI−(γ5)abGI,DaId=i(γ5γμ)ab∂μψbI,



(8)




where


σμv=i2[γμ,γv],Fμv=∂μAv−∂vAμ.



(9)




Our conventions for the gamma matrices are as in Appendix of [25]. Note here that Da and [image: there is no content] with I = 1, 2, 3 comprise a se of [image: there is no content] transformation laws.

These transformations are known as zeroth order symmetries of the Lagrangian. The main result of this paper will be the first and second order symmetries of the Lagrangian, and how they can be recovered from the algebra. We wish to return to the calculation of third order and higher symmetries in the future.



2.2. Algebra

In this section, we will discover the central charges and internal symmetries of this algebra which will lead us to the Lagrangian symmetries in Section 3. Using the shorthand



[image: there is no content]



(10)




the algebra can be written


{Da,Db}χ=2i(γμ)ab∂μχ,{Da,Db}Av=2i(γμ)abFμv



(11)




and


{DaI,DbJ}AK=2iδIJ(γμ)ab∂μAK−2ϵIJK(γ5)abd+−2ZIJKM[iCabFM+(γ5)abGM],{DaI,DbJ}BK=2iδIJ(γμ)ab∂μBK+2iϵIJKCabd,{DaI,DbJ}FK=2iδIJ(γμ)ab∂μFK+2ϵIJK(γ5γμ)ab∂μd++2ZIJKM[−iCab□AM+(γ5γμ)ab∂μGM]{DaI,DbJ}GK=2iδIJ(γμ)ab∂μGK−2ϵIJK(γ5γμ)ab∂vFμv+−2ZIJKM[(γ5)ab□AM+(γ5γμ)ab∂μFM]



(12)






{DaI,DbJ}d=2iδIJ(γμ)ab∂μd++2ϵIJK((γ5)ab□AK−iCab□BK+(γ5γμ)ab∂μFK){DaI,DbJ}Av=2iδIJ(γμ)abFμv++2ϵIJK(iCab∂vAK+(γ5)ab∂vBK−(γ5γv)abGK){DaI,DbJ}λc=2iδIJ(γμ)ab∂μλc+iϵIJK[−Cab(γμ)cd+(γ5)ab(γ5γμ)cd++(γ5γv)ab(γ5γvγμ)cd]∂μψdK{DaI,DbJ}ψcK=2iδIJ(γμ)ab∂μψcK−iϵIJK[−Cab(γμ)cd+(γ5)ab(γ5γμ)cd++(γ5γv)ab(γ5γvγμ)cd]∂μλd+−ZIJKM[Cab(γμ)cd+(γ5)ab(γ5γμ)cd++(γ5γv)ab(γ5γvγμ)cd]∂μψdM



(13)




and for the cross terms


{Da,DbI}AJ=2iϵIJKCabFK{Da,DbI}BJ=2iϵIJKCabGK{Da,DbI}FJ=2iϵIJKCab□AK{Da,DbI}GJ=2iϵIJKCab□BK{Da,DbI}λc=0



(14)






{Da,DbI}d=0{Da,DbI}Av=2iCab∂vAI−2(γ5)ab∂vBI{Da,DbI}ψcJ=2iϵIJKCab(γμ)cd∂μψdK



(15)




where


[image: there is no content]



(16)





2.2.1. Central Charges and Internal Symmetries

We will use the notation (AJ, FK) to indicate, for instance, the presence of a non-zero term involving the field FK on the right hand side of the anti-commutator [image: there is no content] and vice-versa. In this notation, we list the following fields which are coupled through a central charge or internal symmetry:



(AJ,FK),(AJ,GK),(BJ,GK),(AJ,d),(BJ,d),(GJ,Aμ),(FJ,GK),(FJ,d),(ψaJ,λb),(ψaJ,ψbK)}fields coupled by a central charge or internal symmetry



(17)




In addition, the algebra couples the following fields through a U(1) gauge symmetry



(Aμ,AK),(Aμ,BK),fields coupled through a gauge symmetry



(18)




In Section 3, we will show how these central charges and internal symmetries can be used to uncover several first and second order Lagrangian symmetries. We note that this algebra is absent of central charges and internal symmetries between



(FJ,Aμ),(Aμ,d),(BJ,FK),(BJ,AK),(GJ,d)}fieldsnotcoupled through a central charge or internal symmetry



(19)







2.3. Reduction to[image: there is no content]Systems

Before we fully investigate the first and second order Lagrangian symmetries, we will investigate how to split the [image: there is no content] system into the [image: there is no content] FH and VM systems. When we do this, some of the central charges and internal symmetries vanish. In fact, in the case of the [image: there is no content] VM system all of these vanish, and the algebra has no information on first and second order Lagrangian symmetries. This is of course because the [image: there is no content] VM algebra closes. It is important to note that for reduction, we are considering only one pair of the six possible pairs of D-transformations. We leave the consideration of the other five pairs to future research.

Dropping the [image: there is no content] and [image: there is no content] transformations and making the following definitions:



D˜a1≡Da,≡D˜a2≡Da1



(20)




where i = 1, 2 labels the two supersymmetries of the embedded systems, we next make field redefinitions to manifest the embedded systems. The embedded [image: there is no content] VM system is composed of half of the fields of the [image: there is no content] system:


A≡A1,B≡B1,F≡F1,G≡G1,Aμ,d,ζa1≡ψa1,ζa2≡λa



(21)




and the embedded [image: there is no content] FH system is composed of the other half


A˜1≡A2,A˜2≡A3,B˜1≡B2,B˜2≡B3,F˜1≡F2,F˜2≡F3,G˜1≡G2,G˜2≡G3,ψ˜a1≡ψa2,ψ˜a2≡ψa3



(22)





2.3.1. Reduction to [image: there is no content] VM

The resulting [image: there is no content] VM algebra is



D˜aiA=ζai,D˜aiB=i(γ5)abζbi,D˜aiF=(γμ)ab∂μζbi,D˜aiG=i(σ3)ij(γ5γμ)ab∂μζbj,D˜aiAμ=i(σ2)ij(γμ)abζbj,D˜aid=i(σ1)ij(γ5γμ)ab∂μζbj,D˜aiζbj=δij(i(γμ)ab∂μA−(γ5γμ)ab∂μB−iCabF)+(σ3)ij(γ5)abG+−i(σ2)ij12(σμv)abFμv+(σ1)ij(γ5)abd,



(23)




where


(σ1)ij=(0110),(σ2)ij=(0−ii0),(σ3)ij=(100−1),



(24)




and


ζb1=ψb,ζb2=λb.



(25)




The algebra reduces to



[image: there is no content]



(26)






[image: there is no content]



(27)




where


[image: there is no content]



(28)




So this algebra closes up to gauge transformations and all the central charges and internal symmetries from the overarching [image: there is no content] algebra have vanished, aside from the U(1) gauge symmetries. The algebra, therefore, contains no information on extra symmetries of the Lagrangian.



2.3.2. Reduction to [image: there is no content] FH

The transformation laws for the embedded [image: there is no content] FH system are



D˜aiA˜j=δijψ˜a1+i(σ2)ijψ˜a2,D˜aiB˜j=i(γ5)ab[(σ3)ijψ˜b1+(σ1)ijψ˜b2],D˜aiF˜j=(γμ)ab∂μ[δijψ˜b1+i(σ2)ijψ˜b2],D˜aiG˜j=i(γ5γμ)ab∂μ[(σ3)ijψ˜b1+(σ1)ijψ˜b2],D˜aiψ˜b1=i(γμ)ab∂μA˜i−iCabF˜i+(σ3)ij[(γ5)abG˜j−(γ5γμ)ab∂μB˜j],D˜aiψ˜b2=(σ2)ij[−(γμ)ab∂μA˜j+CabF˜j]++(σ1)ij[(γ5)abG˜j−(γ5γμ)ab∂μB˜j]



(29)




with algebra


{D˜ai,D˜bj}A˜k=2iδij(γμ)ab∂μA˜k−2iZ˜ijkmCabF˜m,{D˜ai,D˜bj}B˜k=2iδij(γμ)ab∂μB˜k−2iZ˜ijkmCabG˜m,{D˜ai,D˜bj}F˜k=2iδij(γμ)ab∂μF˜k−2iZ˜ijkmCab□A˜m,{D˜ai,D˜bj}G˜k=2iδij(γμ)ab∂μG˜k−2iZ˜ijkmCab□B˜m,{D˜ai,D˜bj}ψ˜ck=2iδij(γμ)ab∂μψ˜c1−2iZ˜ijkmCab(γμ)cd∂μψ˜dm



(30)




where


Z˜ijkm≡δimδjk−δikδjm,i,j,k,m=1,2.



(31)




So only the couplings (AJ, GK) and (F J, GK) have vanished from the overarching [image: there is no content] theory. Couplings still remain between [image: there is no content] and [image: there is no content] and [image: there is no content].




2.4. Uncovering First and Second Order Lagrangian Symmetries

This section shows the method with which we unveil first and second order Lagrangian symmetries. We show examples of how the procedure with more than one calculation will uncover the same symmetry. The full list of unique symmetries is unveiled in Section 3. The full list of calculations, including those unveiling redundant symmetries, are shown in Appendix. All such calculations were performed by hand.


2.4.1. First Order Bosonic Symmetries

Contracting the coupling from the anticommutator on AJ and FJ in Equation (14) with the Grassmann spinors εa and [image: there is no content] results in the first order bosonic symmetry of the Lagrangian



[image: there is no content]



(32)




Interestingly, contracting the coupling from the anticommutators on AK and FK in Equation (12) with the Grassmann spinors [image: there is no content] and [image: there is no content] results in a very similar first order bosonic symmetry of the Lagrangian



[image: there is no content]



(33)




In fact, these two symmetries are identical, and we can define them succinctly as:



[image: there is no content]



(34)




where


[image: there is no content]



(35)




This redundancy in the definition of TKM begs the question: could a notation that somehow combines the underlying [image: there is no content] vector multiplet and three copies of [image: there is no content] chiral multiplets that comprise the [image: there is no content] SUSY-YM multiplet result in a simplified definition of TKM? At present, it is unknown how to do this and we wish to revisit this question in the future. Furthermore, we will see that redundancies are present in our calculations of other symmetries which leads us to define the variables PK, QK, TKM, (Uµ)K, WKM, and (Vµ)KM as:



PK≡εIaχJbϵIJK(γ5)abQK≡εIaχJbϵIJKCab,TKM≡{εIaχJbZIJKMCaborεaχJbϵJKMCab,(Uμ)K≡εIaχJbϵIJK(γ5γμ)ab,WKM≡{εaχJbϵJKM(γ5)aborεIaχJbZIJKM(γ5)ab,(Vμ)KM≡{εaχJbϵJKM(γ5γμ)aborεIaχJbZIJKM(γ5γμ)ab



(36)






2.4.2. Second Order Bosonic Symmetries

By taking the commutators of each of the first order bosonic symmetries with each other, we reveal second order bosonic symmetries. This procedure will sometimes lead to redundant symmetries as in



[image: there is no content]



(37)




where


[image: there is no content]



(38)




We can succinctly write these three redundant symmetries as one



[image: there is no content]



(39)




where (Λ1)KJ is an arbitrary 3 × 3 matrix and [] denotes antisymmetrization:


[image: there is no content]



(40)






2.4.3. First Order Fermionic Symmetries

Analogous to how we found the second order bosonic symmetries, we can uncover first order fermionic symmetries through calculations such as:



[image: there is no content]



(41)




All such possible calculations are listed in the Appendix A2, some of which are redundant as in the second order bosonic case.





3. Results

We list the first order bosonic symmetries unveiled directly by the central charges and internal symmetries. We next calculate from these symmetries first order fermionic and second order bosonic symmetries of the Lagrangian. We will notice that certain symmetries of the Lagrangian exist which are not revealed by this procedure. This is due to the absence of certain central charges in the algebra. We discuss the unique symmetries of [image: there is no content] SUSY-YM in Sections 3.1, 3.2 and 3.3 and the unique symmetries of [image: there is no content] FH in Section 3.4. In Appendix we list all symmetries unveiled by the procedure, including redundancies: symmetries which are the same from the Lagrangian perspective but which arise from different terms in the algebra as described in Section 2.4. No non-gauge symmetries of the [image: there is no content] vector multiplet are uncovered through this procedure as there are no central charges in this algebra.


3.1. [image: there is no content] SUSY-YM: First Order Bosonic Symmetries

The unique first order bosonic symmetries revealed by all the central charges and internal symmetries in this way are:



δBS1(1)(P)(AKd)≡PK(−d□AK),δBS2(1)(Q)(BKd)≡QK(−d□BK)



(42)






[image: there is no content]



(43)






[image: there is no content]



(44)






[image: there is no content]



(45)






[image: there is no content]



(46)






[image: there is no content]



(47)






[image: there is no content]



(48)






δBS9(1)(Q)(λcψcK)≡QK(γμ)cd∂μ(ψdK−λd)



(49)






δBS10(1)(U)(λcψcK)≡(Uv)K(γ5γvγμ)cd∂μ(ψdK−λd)



(50)






δBS11(1)(P)(λcψcK)≡PK(γ5γμ)cd∂μ(ψdK−λd)



(51)






δBS12(1)(W)ψcK≡WKM(γ5γμ)cd∂μψdM



(52)






δBS13(1)(V)ψcK≡(Vv)KM(γ5γvγμ)cd∂μψdM



(53)






δBS14(1)(T)ψcK≡TKM(γμ)cd∂μψdM



(54)




along with the U(1) gauge symmetries


δGAv≡QK∂vAK,δGAv≡PK∂vBK,δAv≡εaχIbCab∂vAI,δAv≡εaχIb(γ5)ab∂vBI.



(55)




The following identity proves useful in directly verifying these as Lagrangian symmetries:



[image: there is no content]



(56)




where () denotes symmetrization, i.e., (γµ)(ab) = (γµ)ab + (γµ)ba.
It is interesting to note here that because of the absence of BJ to FJ coupling in the algebra, this method fails to uncover the first order bosonic symmetry of the Lagrangian



[image: there is no content]



(57)




In addition, Lagrangian symmetries such as



[image: there is no content]



(58)






[image: there is no content]



(59)




also are not manifest in the algebra. We will leave all such symmetries not manifested by the algebra out of the remaining calculations of second order bosonic and first order fermionic symmetries, as we are investigating how the absence of these symmetries fails to uncover further symmetries down the line.


3.2. Second Order Bosonic Symmetries

In Appendix A1, we list all the second order bosonic symmetries which are calculated in this way, including their redundancies. Here, we list only the unique symmetries, written in terms of the arbitrary matrices (Λ1)KJ, [image: there is no content], (Λ3)IJ, [image: there is no content], [image: there is no content], and [image: there is no content]:



δBS1(2)(Λ1)AK≡Λ1[KJ]□AJ,δBS2(2)(Λ1)BK≡Λ1[KJ]□BJδBS3(2)(Λ1)FK≡Λ1[KJ]□FJ,δBS4(2)(Λ1)GK≡Λ1[KJ]□GKδBS5(2)(Λ2)FJ≡(Λ2μv)[IJ]∂μ∂vFI,δBS6(2)(Λ2)GJ≡(Λ2μv)[IJ]∂μ∂vGIδBS7(2)(Λ2)Av≡ηvβ(Λ2[μβ])JJ∂αFμα



(60)






[image: there is no content]



(61)






[image: there is no content]



(62)






[image: there is no content]



(63)






[image: there is no content]



(64)






[image: there is no content]



(65)






[image: there is no content]



(66)






[image: there is no content]



(67)






[image: there is no content]



(68)






[image: there is no content]



(69)






[image: there is no content]



(70)






[image: there is no content]



(71)






[image: there is no content]



(72)




and


[image: there is no content]



(73)






δBS21(2)(Λ2)ψcK≡[(Λ2ρσ)KJ−(Λ2σρ)JK](γργμγσγv)cd∂μ∂vψdJ



(74)






δBS22(2)(Λ2)λc≡(Λ2[μv])KK(γμγαγvγβ)cd∂α∂βλd,



(75)






δBS23(2)(Λ3)ψcK≡(Λ3μ)[JK](γ5γμ)cd□ψdJ



(76)






δBS24(2)(Λ3)λc≡(Λ3v)KK(γ5γμ)cd∂μ∂vλd



(77)






δBS25(2)(Λ3)ψcK≡(Λ3μ)KJ(γ5γμ)cd∂μ∂vψdJ



(78)






δBS26(2)(Λ3)ψcK≡(Λ3μ)[JK](γμ)cd□ψdJ+2(Λ3μ)KJ(γv)cd∂μ∂vψdJ



(79)






δBS27(2)(Λ3)λc≡(Λ3μ)KK(γv)cd∂μ∂vλd



(80)






δBS28(2)(Λ1)ψcK≡Λ1KJ(γ5)cd□ψdJ



(81)






δBS29(2)(Λ1)λc≡Λ1KK(γ5)cd□λd



(82)






δBS30(2)(Λ5)(λcψcK)≡Λ5K(γ5)cd(□ψdK□λd)



(83)






[image: there is no content]



(84)






δBS32(2)(Λ4)(λcψcK)≡(Λ4α)K((γ5γvγαγv)cd∂μ∂vψdK(γ5γα)cd□λd)



(85)






δBS33(2)(Λ4)(λcψcK)≡(Λ4μ)K((γ5γμ)cd□ψdK(γ5γαγμγβ)cd∂α∂βλd)



(86)






δBS34(2)(Λ4)(λcψcK)≡(Λ4μ)K((γμ)cd□ψdK(γvγμγα)cd∂v∂βλd)



(87)






δBS35(2)(Λ4)(λcψcK)≡(Λ4μ)K((γαγμγβ)cd∂α∂βψdK(γμ)cd□λd),



(88)






δBS36(2)(Λ6)(λcψcK)≡(Λ6μv)K((γvγαγμγβ)cd∂α∂βψdK−(γμγαγvγβ)cd∂α∂βλd),



(89)




This analysis seems to not miss any second order bosonic symmetries which act on the fermions λa and [image: there is no content]. However, the missing first order bosonic symmetries alluded to previously which act on the bosons clearly manifest themselves here in missing second order bosonic symmetries. Basically, as the fields AJ and BJ enter the Lagrangian in the same way, they should have the same first and second order symmetries. The same should hold for FJ and GJ. But clearly since, for example, the algebra is not symmetric between exchange of AJ ↔ BJ or F J ↔ GJ, Lagrangian symmetries involving these field pairs will be missed when generated from the algebra in the manner presented here.



3.3. [image: there is no content] SUSY-YM: First Order Fermionic Symmetries

All such possible calculations are listed in the Appendix A2, some of which are redundant as in the second order bosonic case. Here is listed only the unique symmetries.



δFS1(1)(P)(AKψbJ)≡εJaPK(i(γ5γμ)ab∂μψbJ(γ5)ab□AK)



(90)






δFS2(1)(P)(AJλb)≡εaPJ(i(γ5γμ)ab∂μλb(γ5)ab□AJ)



(91)






δFS3(1)(Q)(BJλb)≡εaQJ(i(γ5γμ)ab∂μλb(γ5)ab□BJ)



(92)






δFS4(1)(Q)(BKψbI)≡εIaQK(i(γ5γμ)ab∂μψbI(γ5)ab□BK)



(93)






δFS5(1)(P)(BKλb)≡εaPK(i(γμ)ab∂μλbCab□BK)



(94)






δFS6(1)(P)(BJψbK)≡εJaPK(i(γμ)ab∂μψbKCab□BJ)



(95)






δFS7(1)(Q)(AJλb)≡εaQJ((γμ)ab∂μλb−iCab□AJ)



(96)






δFS8(1)(Q)(AIψbK)≡εaQK((γμ)ab∂μψbK−iCab□AI)



(97)




and


δFS9(1)(P)(FKλb)≡εaPK((γ5)ab□λbi(γ5γμ)ab∂μFK)



(98)






δFS10(1)(P)(FJψbK)≡εJaPK((γ5)ab□ψbKi(γ5γμ)ab∂μFJ)



(99)






δFS11(1)(Q)(GJλb)≡εaQJ((γ5)ab□λbi(γ5γμ)ab∂μGJ)



(100)






δFS12(1)(Q)(GIψbK)≡εIaQK((γ5)ab□ψbKi(γ5γμ)ab∂μGI)



(101)






δFS13(1)(Q)(dψbJ)≡εaQJ(i(γ5)ab□ψbJ−(γ5γμ)ab∂μd)



(102)






δFS14(1)(Q)(dλb)≡εIaQI(i(γ5)ab□λb−(γ5γμ)ab∂μd)



(103)




and


[image: there is no content]



(104)






[image: there is no content]



(105)






[image: there is no content]



(106)






[image: there is no content]



(107)






[image: there is no content]



(108)






[image: there is no content]



(109)




and


δFS21(1)(T)(AJψbJ)≡εaTJM((γμ)ab∂μψbMiCab□AM)



(110)






δFS22(1)(W)(BJψbJ)≡εaWJM((γμ)ab∂μψbMiCab□BM)



(111)






δFS23(1)(T)(AKλb)≡εIaTIK(i(γμ)ab∂μλbCab□AK)



(112)






δFS24(1)(T)(AMψbJ)≡εIaεIJKTKM(i(γμ)ab∂μψbJCab□AM)



(113)






δFS25(1)(T)(AJψbM)≡εIaεIJKTKM(i(γμ)ab∂μψbMCab□AJ)



(114)






δFS26(1)(W)(BJψbM)≡εIaεIJKWKM(i(γμ)ab∂μψbMCab□BJ)



(115)




and


δFS27(1)(W)(AJψbJ)≡εaWJM((γ5γμ)ab∂μψbMi(γ5)ab□AM)



(116)






δFS28(1)(T)(BJψbJ)≡εaTJM((γ5γμ)ab∂μψbMi(γ5)ab□BM)



(117)






δFS29(1)(W)(AMλb)≡εIaWIM(i(γ5γμ)ab∂μλb(γ5)ab□AM)



(118)






δFS30(1)(W)(AJψbM)≡εIaεIJKWKM(i(γ5γμ)ab∂μψbM(γ5)ab□AJ)



(119)






δFS31(1)(W)(AMψbJ)≡εIaεIJKWKM(i(γ5γμ)ab∂μψbJ(γ5)ab□AM)



(120)






δFS32(1)(T)(BKλb)≡εIaTIK(i(γ5γμ)ab∂μλb(γ5)ab□BK)



(121)






δFS33(1)(T)(BJψbM)≡εIaεIJKTKM(i(γ5γμ)ab∂μψbM(γ5)ab□BJ)



(122)






δFS34(1)(T)(BMψbJ)≡εIaεIJKTKM(i(γ5γμ)ab∂μψbJ(γ5)ab□BM)



(123)




and


δFS35(1)(T)(GJψbJ)≡εaTJM(i(γ5)ab□ψbM(γ5γμ)ab∂μGM)



(124)






δFS36(1)(W)(FJψbJ)≡εaWJM(i(γ5)ab□ψbM(γ5γμ)ab∂μFM)



(125)






δFS37(1)(W)(FJψbM)≡εIaεIJKWKM((γ5)ab□ψbMi(γ5γμ)ab∂μFJ)



(126)






δFS38(1)(T)(GKλb)≡εIaTIK((γ5)ab□λbi(γ5γμ)ab∂μGK)



(127)






δFS39(1)(T)(GKψbJ)≡εIaεIJKTKM((γ5)ab□ψbNi(γ5γμ)ab∂μGM)



(128)






δFS40(1)(T)(GJψbM)≡εIaεIJKTKM((γ5)ab□ψbMi(γ5γμ)ab∂μGJ)



(129)






δFS41(1)(T)(dψbM)≡εIaTIM((γ5)ab□ψbMi(γ5γμ)ab∂μd)



(130)




and


δFS42(1)(V)(FJψbJ)≡εa(Vμ)JM(i(γ5γv)ab∂μ∂vψbM(γ5)ab∂μFM)



(131)






δFS43(1)(V)(FJψbJ)≡εa(Vρ)JM((γ5γvγργμ)ab∂μ∂vψbMi(γ5γργμ)ab∂μFM)



(132)






δFS44(1)(V)(FMλb)≡εIa(Vμ)IM((γ5γv)ab∂μ∂vλbi(γ5)ab∂μFM)



(133)






δFS45(1)(V)(FMψbJ)≡εIaεIJK(Vμ)KM((γ5γv)ab∂μ∂vψbJi(γ5)ab∂μFM)



(134)






δFS46(1)(U)(FJλb)≡εa(Uμ)J((γ5γv)ab∂μ∂vλbi(γ5)ab∂μFJ)



(135)






δFS47(1)(U)(FKψbI)≡εIa(Uμ)K((γ5γv)ab∂μ∂vψbIi(γ5)ab∂μFK)



(136)






δFS48(1)(V)(FJψbM)≡εIaεIJK(Vρ)KM((γ5γμγργv)ab∂μ∂vψbM−i(γ5γργμ)ba∂μFJ)



(137)






δFS49(1)(U)(FKλb)≡εa(Uρ)K((γ5γμγργv)ab∂μ∂vλb−i(γ5γργμ)ba∂μFK)



(138)






δFS50(1)(U)(FJψbK)≡εJa(Uρ)K((γ5γμγργv)ab∂μ∂vψbK−i(γ5γργμ)ba∂μFJ)



(139)




and


δFS51(1)(U)(GJλb)≡εa(Uμ)J(∂v∂[v(γv])abλb(σvμ)ab∂vGJ)



(140)






δFS52(1)(U)(GKψbI)≡εIa(Uμ)K(∂v∂[μ(γv])abψbI(σvμ)ab∂vGK)



(141)






δFS53(1)(U)(GKλb)≡εa(Uρ)K(i(γμγργv)ab∂μ∂vλb(γργμ)ba∂μGK)



(142)






δFS54(1)(U)(dψbJ)≡εa(Uμ)J((γv)ab∂μ∂vψbJiCab∂μd)



(143)






δFS55(1)(U)(dλb)≡εa(Uμ)J((γv)ab∂μ∂vλbiCab∂μd)



(144)






δFS56(1)(V)(GJψbJ)≡εa(Vρ)JM(i(γμγργv)ab∂μ∂vψbM−(γργμ)ba∂μGM)



(145)






δFS57(1)(V)(GJψbJ)≡εa(Vμ)JM((γv)ab∂μ∂vψbM−iCab∂μGM)



(146)






δFS58(1)(U)(GJψbK)≡εJa(Uρ)K(i(γμγργv)ab∂μ∂vψbK(γργμ)ba∂vGJ)



(147)






δFS59(1)(V)(GMλb)≡εIa(Vμ)IM((γv)ab∂μ∂vλbiCab∂μGM)



(148)






δFS60(1)(V)(GMψbJ)≡εIaεIJK(Vμ)KM((γv)ab∂μ∂vψaNiCab∂μGM)



(149)






δFS61(1)(V)(GJψbM)≡εIaεIJK(Vρ)KM(i(γμγργv)ab∂μ∂vψbM(γργμ)ba∂μGJ)



(150)






δFS62(1)(U)(dλb)≡εIa(Uρ)I(i(γμγργv)ab∂μ∂vλb(γργμ)ba∂μd)



(151)






δFS63(1)(V)(dψbM)≡εIa(Vρ)IM(i(γμγργv)ab∂μ∂vψbM(γργμ)ba∂μd)



(152)




and


δFS64(1)(P)(Aμλb)≡εIaPI((γ5γμγv)ab∂vλb−i(γ5γβ)ab∂αFαβ)



(153)






δFS65(1)(P)(AμψbK)≡εaPK((γ5γμγv)ab∂vψbK−i(γ5γβ)ab∂αFαβ)



(154)






δFS66(1)(Q)(AμψbJ)≡εaQJ(−(γμγv)ab∂vψbJ12(γασμv)ba∂αFμv)



(155)






δFS67(1)(Q)(Aμλb)≡εIaQI(−(γμγv)ab∂vλb12(γασμv)ba∂αFμv)



(156)






δFS68(1)(T)(AμψbM)≡εIaTIM((γμγv)ab∂vψbM−12(γασμv)ba∂αFμv)



(157)






δFS69(1)(W)(AμψbM)≡εIaWIM(−(γ5γμγv)ab∂vψbM−12(γ5γασμv)ba∂αFμv)



(158)






δFS70(1)(U)(AμψbJ)≡εa(Uμ)J(i(γ5γv)ab∂vψbJ−(γ5)ab∂vFμv)



(159)






δFS71(1)(U)(Aμλb)≡εIa(Uμ)I(−i(γ5γv)ab∂vλb−(γ5)ab∂vFμv)



(160)






δFS72(1)(U)(Aμλb)≡εIa(Uρ)I((γ5γμγργv)ab∂vλb12(γ5γργvσαβ)ba∂vFαβ)



(161)






δFS73(1)(V)(AμψbM)≡εIa(Vρ)IM((γ5γμγργv)ab∂vψbM12(γ5γργvσαβ)ba∂vFαβ)



(162)




and


δFS74(1)(U)(AJψbK)≡εJa(Uρ)K(−(γ5γργμ)ab∂μψbKi(γ5γρ)ab□AJ)



(163)






δFS75(1)(V)(AJψbM)≡εIaεIJK(Vρ)KM(−(γ5γργμ)ab∂μψbMi(γ5γρ)ab□AJ)



(164)






δFS76(1)(V)(AJψbJ)≡εa(Vρ)JM((γ5γργμ)ab∂μψbMi(γ5γρ)ab□AM)



(165)






δFS77(1)(U)(AKλb)≡εa(Uρ)K((γ5γργμ)ab∂μλb−i(γ5γρ)ab□AK)



(166)






δFS78(1)(U)(BKλb)≡εa(Uρ)K(i(γργμ)ab∂μλb(γρ)ab□BK)



(167)






δFS79(1)(V)(BJψbM)≡εIaεIJK(Vρ)KM(i(γργμ)ab∂μψbM(γρ)ab□BJ)



(168)






δFS80(1)(U)(BJψbK)≡εJa(Uρ)K(i(γργμ)ab∂μψbK(γρ)ab□BJ)



(169)






δFS81(1)(V)(BJψbJ)≡εa(Vρ)JM(−i(γργμ)ab∂μψbM(γρ)ab□BM)



(170)




and


[image: there is no content]



(171)






[image: there is no content]



(172)






[image: there is no content]
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[image: there is no content]
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[image: there is no content]
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[image: there is no content]
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[image: there is no content]



(177)






[image: there is no content]



(178)






[image: there is no content]



(179)






3.4. Symmetries of the [image: there is no content] FH Lagrangian

The symmetries of the [image: there is no content] FH system follow analogously from the [image: there is no content] calculations. The first order bosonic symmetries of the [image: there is no content] FH system calculated from the central charges and internal symmetries are



[image: there is no content]



(180)






[image: there is no content]



(181)






δ˜BS3(1)([image: there is no content])ψ˜ck≡[image: there is no content]km(γμ)cd∂μψ˜dm



(182)




with


[image: there is no content]



(183)




where i, j, k, m = 1, 2, and [image: there is no content] and [image: there is no content] are once again infinitesimal Grassmann spinors. Here, we clearly notice the absence of symmetries between AJ ↔ BJ, AJ ↔ GJ, BJ ↔ FJ, and GJ ↔ FJ. As in the [image: there is no content] case, this is a direct result of the absence of coupling terms between these fields in the algebra.
Interestingly, we find that the second order bosonic symmetries calculated from these first order symmetries all vanish identically



[image: there is no content]



(184)






[image: there is no content]
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[image: there is no content]



(186)






[image: there is no content]



(187)






[image: there is no content]



(188)




as


Λ˜1,1jk([image: there is no content]1,[image: there is no content]2)≡[image: there is no content][1jm[image: there is no content]2]mk=0,j,k,m=1,2



(189)




even though for a general matrix [image: there is no content],


[image: there is no content]



(190)




is still a symmetry of the [image: there is no content] FH Lagrangian.
On the other hand, several first order fermionic symmetries still remain after reduction to the [image: there is no content] FH system:



δ˜FS1(1)([image: there is no content])(A˜kψ˜b1)≡εia[image: there is no content]ik((γμ)ab∂μψ˜b1iCab□A˜k)δ˜FS2(1)([image: there is no content])(F˜kψ˜b1)≡εia[image: there is no content]ik(□ψ˜a1i(γμ)ab∂μF˜k)δ˜FS3(1)([image: there is no content])(A˜kψ˜b2)≡εia(σ2)ij[image: there is no content]jk(i(γμ)ab∂μψ˜b2Cab□A˜k)δ˜FS4(1)([image: there is no content])(F˜kψ˜b2)≡εia(σ2)ijTjk(−i□ψ˜a2(γμ)ab∂μF˜k)δ˜FS5(1)([image: there is no content])(B˜kψ˜b1)≡εia(σ3)ij[image: there is no content]jk(i(γ5γμ)ab∂μψ˜b1(γ5)ab□B˜k).δ˜FS6(1)([image: there is no content])(G˜kψ˜b1)≡εia(σ3)ij[image: there is no content]jk(−i(γ5)ab□ψ˜b1(γ5γμ)ab∂μG˜k)δ˜FS7(1)([image: there is no content])(B˜kψ˜b2)≡εia(σ1)ij[image: there is no content]jk(i(γ5γμ)ab∂μψ˜b2(γ5)ab□B˜k)δ˜FS8(1)([image: there is no content])(G˜kψ˜b2)≡εia(σ1)ij[image: there is no content]jk(−i(γ5)ab□ψ˜b2(γ5γμ)ab∂μG˜k)



(191)




These are only the unique symmetries uncovered via this method, the redundant calculations being shown once again in Appendix A3. Here we notice as in the bosonic case, that these fermionic symmetries are not themselves symmetric with respect to AJ ↔ BJ and FJ ↔ GJ. Again, this is a direct result of the absence of the corresponding central charge or internal symmetry in the algebra.




4. Discussion

The d = 4, [image: there is no content] SUSY-YM system is important to many theoretical models in physics today. As it is a conformal field theory, it’s possible that its study can lead to further understanding of “walking” theories such as technicolor. In string theory, the AdS/CFT correspondence relates calculations of d = 4, [image: there is no content] SUSY-YM to classical supergravity calculations on AdS5×S5, where the correspondence is weak to strong and vice versa. In an effort to more accurately describe the standard model, this has been taken further to include correspondences to gauge theories with running couplings. Even so, the problem of how to augment the dynamical theory of d = 4, [image: there is no content] SUSY-YM with a finite number of auxiliary fields such that the algebra closes has been unsolved for quite some time. A solution to this problem would be helpful to more fully understand these aforementioned theories relating to conformal field theories.

In this paper, we chose a particular set of auxiliary fields for d = 4, [image: there is no content] SUSY-YM and catalogued the Lagrangian symmetries manifest in the central charges and internal symmetries of the resulting algebra. It was noted how not all possible Lagrangian symmetries can be uncovered this way, as certain central charges and internal symmetries are missing from the algebra. We reinforce here that all results presented are from straightforward, actual calculations with no assumptions of centrality. For instance, we have directly calculated that the SUSY-YM Lagrangian in Equation (4) is invariant with respect to the transformation laws in Equations (5)–(8). We have directly calculated that these transformation laws satisfy the anti-commutation relations in Equations (11)–(15). The main result of this paper is how these transformation laws and anti-commutators lead by direct calculation to the first and second order Lagrangian symmetries presented in Section 3.

Furthermore, reduction of this particular [image: there is no content] system to the [image: there is no content] Fayet hypermultiplet and [image: there is no content] vector multiplet was shown to follow from our direct calculations. Here it was noticed how in this reduction, central charges and internal symmetries are lost from the algebra. In the case of the vector multiplet, all charges and internal symmetries are lost as the algebra closes. In the case of the Fayet hypermultiplet, some central charges and internal symmetries remain, as this algebra does not close.

Finally, we make a note on quantization of non-closed systems such as the [image: there is no content] SUSY-YM system investigated in detail in this paper. In general, non-closure of an algebra leads to an added difficulty in the quantization procedure. Perhaps the most ubiquitous example is the criticality of string theory. For quantum non-critical strings, one must solve the Liouville theory. This is not necessary in the case of critical strings [26,27]. In the case of our results of the [image: there is no content] SUSY-YM system, we have laid out our results in the hopes of eventually obtaining a closed system, in the sense of Equation (1), without an infinite number of auxiliary fields. For instead quantization of the non-closed system presented, the specific forms of the non-closure terms we calculated are important in the same vein as the Liouville theory for non-critical strings. We leave this quantization as a future project.


“It is while you are patiently toiling at the little tasks of life that the meaning and shape of the great whole of life dawn on you.”

—Phillips Brooks
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A. Explicit Calculation of Symmetries, Including Redundancies

This section explains in more detail the procedure which led us to the symmetries presented in the body of the paper. Many symmetries found in this manner are redundant, and those presented in the paper are the unique symmetries found through this procedure.


A1. [image: there is no content] SUSY-YM: Second Order Bosonic Symmetries

In this section, we explicitly show how the second order bosonic symmetries are discovered through the [image: there is no content] algebra. Several are redundant, and in the body of the paper, only the unique symmetries were listed.



[image: there is no content]



(A1)
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with


[image: there is no content]
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and


[image: there is no content]
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with


[image: there is no content]
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and


δBS30(2)(Q,W)(λcψcK)≡[δBS9(1)(Q),δBS12(1)(W)](λcψcK)=Λ9,12K(Q,W)(γ5)cd(□ψcK□λd)δBS32(2)(Q,V)(λcψcK)≡[δBS9(1)(Q),δBS13(1)(V)](λcψcK)=(Λ9,13α)K(Q,V)((γ5γμγαγν)cd∂μ∂νψdK(γ5γα)cd□λd)δBS31(2)(Q,T)(λcψcK)≡[δBS9(1)(Q),δBS14(1)(T)](λcψcK)=Λ9,14K(Q,T)(−□ψcK□λc)δBS26(2)(W,V)ψcK≡[δBS12(1)(W),δBS13(1)(V)]ψcK=(Λ12,13μ)[JK](γμ)cd□ψdJ++2(Λ12,13μ)KJ(γν)cd∂μ∂νψdJδBS28(2)(W,T)ψcK≡[δBS12(1)(W),δBS14(1)(T)]ψcK=−Λ12,14KJ(W,T)(γ5)cd□ψdJδBS23(2)(V,T)ψcK≡[δBS13(1)(V),δBS14(1)(T)]ψcK+δBS25(2)(V,T)ψcK=(Λ13,14α)[JK](V,T)(γ5γα)cd□ψdJδBS20(2)(Q1,Q2)ψcK≡[δBS9(1)(Q1),δBS9(1)(Q2)]ψcK=−Λ11,11JK(Q1,Q2)□ψcJδBS20(2)(W1,W2)ψcK≡[δBS12(1)(W1),δBS12(1)(W2)]ψcK=Λ12,12KJ(W1,W2)□ψcJδBS21(2)(V1,V2)ψcK≡[δBS13(1)(V1),δBS13(1)(V2)]ψcK=−(Λ13,13ρσ)KJ(V1,V2)(γργμγσγν)cd∂μ∂νψdJδBS20(2)(T1,T2)ψcK≡[δBS10(1)(T1),δBS10(1)(T2)]ψcK=−Λ14,14KJ(T1,T2)□ψcJ



(A13)




with


[image: there is no content]



(A14)




and


δBS1(2)(W1,W2)AJ≡[δBS5(1)(W1),δBS5(1)(W2)]AJ=Λ5,5IJ(W1,W2)□AIδBS4(2)(W1,W2)GJ≡[δBS5(1)(W1),δBS5(1)(W2)]GJ=Λ5,5IJ(W1,W2)□GIδBS5(2)(V1,V2)FJ≡[δBS6(1)(V1),δBS6(1)(V2)]FJ=−(Λ6,6μν)IJ(V1,V2)∂μ∂νFIδBS6(2)(V1,V2)GJ≡[δBS6(1)(V1),δBS6(1)(V2)]GJ=−(Λ6,6μν)IJ(V1,V2)∂μ∂νGI



(A15)






[image: there is no content]



(A16)




with


[image: there is no content]



(A17)




and


δBS24(2)(Q,U)λc≡[δBS9(1)(Q),δBS10(1)(U)]λc=−2(Λ9,10μ)KK(Q,U)(γ5γν)cd∂μ∂νλd,δBS25(2)(Q,U)ψcK≡[δBS9(1)(Q),δBS10(1)(U)]ψcK=−2(Λ9,10μ)KJ(Q,U)(γ5γν)cd∂μ∂νψdJ,δBS34(2)(W,U)(λcψcK)≡[δBS12(1)(W),δBS10(1)(U)](λcψcK)=−(Λ12,10μ)K(W,U)((γμ)cd□ψdK(γνγμγα)cd∂ν∂αλd)δBS36(2)(V,U)(λcψcK)≡[δBS13(1)(V),δBS10(1)(U)](λcψcK)=(Λ13,10μν)K(V,U)(−(γνγαγμγβ)cd∂α∂βψdK(γμγαγνγβ)cd∂α∂βλd)δBS33(2)(T,U)(λcψcK)≡[δBS14(1)(T),δBS10(1)(U)](λcψcK)=−(Λ14,10μ)K(T,U)((γ5γμ)cd□ψdK(γ5γαγμγβ)cd∂α∂βλd)










δBS22(2)(U1,U2)λc≡[δBS10(1)(U1),δBS10(1)(U2)]λc=(Λ10,10μν)KK(U1,U2)(γμγαγνγβ)cd∂α∂βλdδBS21(2)(U1,U2)ψcK≡[δBS10(1)(U1),δBS10(1)(U2)]ψcK=(Λ10,10μν)KJ(U1,U2)(γμγαγνγβ)cd∂α∂βψdJδBS27(2)(U,P)λc≡[δBS10(1)(U),δBS11(1)(P)]λc=2(Λ10,11μ)KK(U,P)(γν)cd∂μ∂νλdδBS26(2)(U,P)ψcK≡[δBS10(1)(U),δBS11(1)(P)]ψcK=(Λ10,11μ)JK(U,P)(γαγμγβ)cd∂α∂βψdJ+(Λ10,11μ)KJ(U,P)(γμ)cd□ψdJδBS29(2)(Q,P)λc≡[δBS9(1)(Q),δBS11(1)(P)]λc=−Λ9,11KK(Q,P)(γ5)cd□λd



(A18)






δBS28(2)(Q,P)ψcK≡[δBS9(1)(Q),δBS11(1)(P)]ψcK=−Λ9,11KJ(Q,P)(γ5)cd□ψdJδBS31(2)(W,P)(λcψcK)≡[δBS12(1)(W),δBS11(1)(P)](λcψcK)=Λ9,11K(W,P)(□ψcK−□λd)δBS35(2)(V,P)(λcψcK)≡[δBS13(1)(V),δBS11(1)(P)](λcψcK)=(Λ13,11μ)K(V,P)((γαγμγβ)cd∂α∂βψdK(γμ)cd□λd)δBS30(2)(T,P)(λcψcK)≡[δBS14(1)(T),δBS11(1)(P)](λcψcK)=−(Λ14,11μ)K(T,P)((γ5)cd□ψdK(γ5)cd□λd)δBS20(2)(P1,P2)ψcK≡[δBS11(1)(P1),δBS11(1)(P2)]ψcK=−Λ11,11KJ(P1,P2)□ψcJ,



(A19)




with


(Λ9,10μ)JK(Q,U)≡QJ(Uμ)K,(Λ12,10μ)K(W,U)=WKM(Uμ)M,(Λ13,10μν)K(V,U)≡(Vμ)KM(Uν)M,(Λ14,10μ)K(T,U)=TKM(Uμ)M,(Λ10,10μν)KJ(U1,U2)≡(U[1μ)K(U2]ν)J,(Λ10,11μ)KM(U,P)≡(Uμ)KPM,Λ9,11KJ(Q,P)≡Q(KPJ),Λ12,11K(W,P)≡WKMPM,(Λ13,11μ)K(V,P)≡(Vμ)KMPM),Λ14,11K(T,P)≡TKMPM,Λ11,11KM(P1,P2)≡P[1KP2]M



(A20)




where [ ] denotes antisymmetry, i.e., [image: there is no content].


A2. [image: there is no content] SUSY-YM: Fermionic Symmetries

Taking the commutators or Da and [image: there is no content] with the first order bosonic symmetries for the [image: there is no content] SUSY-YM system, we find several first order fermionic symmetries, some of which are redundant. The symmetries calculated below which involve [image: there is no content], and [image: there is no content] are redefined through



[image: there is no content]



(A21)




as symmetries defined either way are equivalent for the Lagrangian. In Section 2.4.3, all symmetries are listed using this redefinition where applicable.


δFS19(1)(P)(dψbJ)≡εaPJ(□ψaJi(γμ)ab∂μd)=−εa[Da,δBS1(1)(P)](dψbJ)δFS13(1)(Q)(dψbJ)≡εaQJ(i(γ5)ab□ψbJ−(γ5γμ)ab∂μd)=εa[Da,δBS2(1)(Q)](dψbJ)δFS54(1)(U)(dψbJ)≡εa(Uμ)J∂μ((γν)ab∂νψbJiCabd)=εa[Da,δBS7(1)(U)](dψbJ)δFS70(1)(U)(AμψbJ)≡εa(Uμ)J∂ν(i(γ5γν)abψbJ−(γ5)abFμν)=εa[Da,δBS8(1)(U)](AμψbJ)δFS2(1)(P)(AJλb)≡εaPJ(i(γ5γμ)ab∂μλb(γ5)ab□AJ)=εa[Da,δBS1(1)(P)](AJλb)δFS3(1)(Q)(BJλb)≡εaQJ(i(γ5γμ)ab∂μλb(γ5)ab□BJ)=−εa[Da,δBS2(1)(Q)](BJλb)δFS51(1)(U)(GJλb)≡εa(Uμ)J(∂ν∂[μ(γν])abλb(σνμ)ab∂νGJ)=εa[Da,δBS8(1)(U)](GJλb)δFS46(1)(U)(FJλb)≡εa(Uμ)J((γ5γν)ab∂μ∂νλbi(γ5)ab∂μFJ)=−iεa[Da,δBS7(1)(U)](FJλb)



(A22)




and from [Da, [image: there is no content]] we have


δFS21(1)(T)(AJψbJ)≡εaTJM((γμ)ab∂μψbMiCab□AM)δFS82(1)(T)(FJψbJ)≡εaTJM(□ψaM−i(γμ)ab∂μFM)



(A23)




and from [Da, [image: there is no content]]


δFS28(1)(T)(BJψbJ)≡εaTJM((γ5γμ)ab∂μψbMi(γ5)ab□BM)δFS35(1)(T)(GJψbJ)≡εaTJM(i(γ5)ab□ψbM(γ5γμ)ab∂μGM)



(A24)




and from [Da, [image: there is no content]]


δFS66(1)(Q)(AμψbJ)≡εaQJ(−(γμγν)ab∂νψbJ12(γασμν)ba∂αFμν)δFS13(1)(Q)(dψbJ)≡εaQJ(i(γ5)ab□ψbJ−(γ5γμ)ab∂μd)



(A25)




and from [Da, [image: there is no content]]


δFS27(1)(W)(AJψbJ)≡εaWJM((γ5γμ)ab∂μψbMi(γ5)ab□AM)δFS22(1)(W)(BJψbJ)≡εaWJM((γμ)ab∂μψbMCab□BM)δFS36(1)(W)(FJψbJ)≡εaWJM(i(γ5)ab□ψbM(γ5γμ)ab∂μFM)δFS83(1)(W)(GJψbJ)≡εaWJM(i□ψaM(γμ)ab∂μGM)



(A26)




and from [Da, [image: there is no content]]


.δFS76(1)(V)(AJψbJ)≡εa(Vρ)JM((γ5γργμ)ab∂μψbMi(γ5γρ)ab□AM)δFS81(1)(V)(BJψbJ)≡εa(Vρ)JM(−i(γργμ)ab∂μψbM(γρ)ab□BM)δFS43(1)(V)(FJψbJ)≡εa(Vρ)JM((γ5γνγργμ)ab∂μψbMi(γ5γργμ)ba∂μFM)δFS56(1)(V)(GJψbJ)≡εa(Vρ)JM(i(γμγργμ)ab∂μ∂νψbM−(γργμ)ba∂μGM)



(A27)




and from [Da, [image: there is no content]]


δFS21(1)(T)(AJψbJ)≡εaTJM((γμ)ab∂μψbMiCab□AM)δFS28(1)(T)(BJψbJ)≡εaTJM((γ5γμ)ab∂μψbMi(γ5)ab□BM)



(A28)






δFS82(1)(T)(FJψbJ)≡εaTJM(i□ψaM(γμ)ab∂μFM)δFS35(1)(T)(GJψbJ)≡εaTJM(i(γ5)ab□ψbM(γ5γμ)ab∂μGM)



(A29)




and from [Da, [image: there is no content]]


δFS27(1)(W)(AJψbJ)≡εaWJM((γ5γμ)ab∂μψbMi(γ5)ab□AM)δFS83(1)(W)(GJψbJ)≡εaWJM(i□ψbM(γμ)ab∂μGM)



(A30)




and from [Da, [image: there is no content]]


δFS42(1)(V)(FJψbJ)≡εa(Vμ)JM(i(γ5γν)ab∂μ∂νψbM(γ5)ab∂μFM)δFS57(1)(V)(GJψbJ)≡εa(Vμ)JM((γν)ab∂μ∂νψbM−iCab∂μGM)



(A31)




and from [Da, [image: there is no content]]


δFS7(1)(Q)(AJλb)≡εaQJ((γμ)ab∂μλb−iCab□AJ)δFS3(1)(Q)(BJλb)≡εaQJ(i(γ5γμ)ab∂μλb(γ5)ab□BJ)δFS16(1)(Q)(FJλb)≡εaQJ(□λai(γμ)ab∂μFJ)δFS11(1)(Q)(GJλb)≡εaQJ(i(γ5)ab□λb−(γ5γμ)ab∂μGJ)



(A32)




and and from [image: there is no content]


δFS1(1)(P)(AKψbJ)≡εIaPK(i(γ5γμ)ab∂μψbIδIJ(γ5)ab□AK)δFS20(1)(P)(dλb)≡εIaPI(□λai(γμ)ab∂μd)



(A33)






[image: there is no content]



(A34)




and from [image: there is no content]


δFS24(1)(T)(AMψbJ)≡εIaϵIJKTKM(i(γμ)ab∂μψbJCab□AM)δFS86(1)(T)(FMψbJ)≡εIaϵIJKTKM(□ψaJi(γμ)ab∂μFM)δFS23(1)(T)(AKλb)≡εIaTIK(i(γμ)ab∂μλbCab□AK)δFS84(1)(T)(FKλb)≡εIaTIK(□λai(γμ)ab∂μFK)



(A35)




and from [image: there is no content]


δFS4(1)(Q)(BKψbJ)≡εIaQK(i(γ5γμ)ab∂μψbIδIJ(γ5)ab□BK)δFS13(1)(P)(dψbK)≡εIaQJϵIJK(i(γ5)ab□ψbK−(γ5γμ)ab∂μd)→εaQK(i(γ5)ab□ψbK−(γ5γμ)ab∂μd)δFS14(1)(Q)(dλb)≡εIaQJ(i(γ5)ab□λb−(γ5γμ)ab∂μd)



(A36)




and from [image: there is no content]


δFS34(1)(T)(BMψbJ)≡εIaϵIJKTKM(i(γ5γμ)ab∂μψbJ(γ5)ab□BM)δFS39(1)(T)(GKψbJ)≡εIaϵIJKTKM((γ5)ab□ψbNi(γ5γμ)ab∂μGM)δFS32(1)(T)(BKλb)≡εIaTIK(i(γ5γμ)ab∂μλb(γ5)ab□BK)δFS38(1)(T)(GKλb)≡εIaTIK((γ5)ab□λbi(γ5γμ)ab∂μGK)



(A37)




and from [image: there is no content]


δFS47(1)(U)(FKψbI)≡εIa(Uμ)K∂μ((γ5γν)ab∂νψbIi(γ5)abFK)δFS54(1)(U)(dψbJ)≡εIa(Uμ)KϵIJK((γν)ab∂μ∂νψbJiCab∂μd)→εa(Uμ)J((γν)ab∂μ∂νψbJiCab∂μd)δFS55(1)(U)(dλb)≡εIa(Uμ)I∂μ((γν)ab∂νλbiCabd)



(A38)




and from [image: there is no content]


δFS52(1)(U)(GKψbI)≡εIa(Uμ)K(∂ν∂[μ(γν])abψbI(σνμ)ab∂νGK)δFS70(1)(U)(AνψbJ)≡εIa(Uν)KϵIJK(i(γ5γμ)ab∂μψbJ−(γ5)ab∂μFνμ)→εa(Uν)J(i(γ5γμ)ab∂μψbJ−(γ5)ab∂μFνμ)δFS71(1)(U)(Aνλb)≡εIa(Uν)I(−i(γ5γμ)ab∂μλb(γ5)ab∂μFνμ)



(A39)




and from [image: there is no content]


δFS8(1)(Q)(AIψbK)≡εIaQK((γμ)ab∂μψbK−iCab□AI)δFS4(1)(Q)(BIψbK)≡εIaQK(i(γ5γμ)ab∂μψbK(γ5)ab□BI)δFS15(1)(Q)(FIψbK)≡εIaQK(□ψaKi(γμ)ab∂μFI)δFS12(1)(Q)(GIψbK)≡εIaQK((γ5)ab□ψbKi(γ5γμ)ab∂μGI)



(A40)




and from [image: there is no content]


δFS67(1)(Q)(Aνλb)≡εIaQI(−(γνγμ)ab∂μλb12(γαγμν)ba∂αFμν)δFS14(1)(Q)(dλb)≡εIaQI(i(γ5)ab□λb−(γ5γμ)ab∂μd)δFS7(1)(Q)(AJλb)≡εIaQKϵIJK((γμ)ab∂μλb−iCab□AJ)→εaQJ((γμ)ab∂μλb−iCab□AJ)δFS3(1)(Q)(BJλb)≡εIaQKϵIJK(i(γ5γμ)ab∂μλb(γ5)ab□BJ)→εaQJ(i(γ5γμ)ab∂μλb(γ5)ab□BJ)δFS16(1)(Q)(FJλb)≡εIaQKϵIJK(□λa−i(γμ)ab∂μFJ)→εaQJ(□λa−i(γμ)ab∂μFJ)δFS11(1)(Q)(GJλb)≡εIaQKϵIJK((γ5)ab□λbi(γ5γμ)ab∂μGJ)→εaQJ((γ5)ab□λbi(γ5γμ)ab∂μGJ)



(A41)




and from [image: there is no content]


.δFS30(1)(W)(AJψbM)≡εIaϵIJKWKM(i(γ5γμ)ab∂μψbM(γ5)ab□AJ)δFS26(1)(W)(BJψbM)≡εIaϵIJKWKM(i(γμ)ab∂μψbMCab□BJ)δFS37(1)(W)(FJψbM)≡εIaϵIJKWKM((γ5)ab□ψbMi(γ5γμ)ab∂μFJ)δFS88(1)(W)(GJψbM)≡εIaϵIJKWKM(□ψaMi(γμ)ab∂μGJ)δFS69(1)(W)(AνψbM)≡εIaWIM(−(γ5γνγμ)ab∂μψbM−12(γ5γμσαν)ba∂μFαν)δFS90(1)(W)(dψbM)≡εIaWIM(□ψaMi(γμ)ab∂μd)



(A42)




and from [image: there is no content]


δFS75(1)(V)(AJψbM)≡εIaϵIJK(Vρ)KM(−(γ5γργμ)ab∂μψbMi(γ5γρ)ab□AJ)δFS79(1)(V)(BJψbM)≡εIaϵIJK(Vρ)KM(i(γργμ)ab∂μψbM(γρ)ab□BJ)δFS48(1)(V)(FJψbM)≡εIaϵIJK(Vρ)KM((γ5γμγργν)ab∂μ∂νψbM−i(γ5γργμ)ba∂μFJ)δFS61(1)(V)(GJψbM)≡εIaϵIJK(Vρ)KM(i(γμγργν)ab∂μ∂νψbM(γργμ)ba∂μGJ)δFS73(1)(V)(AνψbM)≡εIa(Vρ)IM((γ5γνγργμ)ab∂μψbM12(γ5γργμσαν)ba∂μFαν)δFS63(1)(V)(dψbM)≡εIa(Vρ)IM(i(γμγργν)ab∂μ∂νψbM(γργμ)ba∂μd)



(A43)




and from [image: there is no content]


δFS25(1)(T)(AJψbM)≡εIaϵIJKTKM(i(γμ)ab∂μψbMCab□AJ)δFS33(1)(T)(BJψbM)≡εIaϵIJKTKM(i(γ5γμ)ab∂μψbM(γ5)ab□BJ)δFS85(1)(T)(FJψbM)≡εIaϵIJKTKM(□ψaMi(γμ)ab∂μFJ)δFS40(1)(T)(GJψbM)≡εIaϵIJKTKM((γ5)ab□ψbMi(γ5γμ)ab∂μGJ)δFS68(1)(T)(AνψbM)≡εIaTIM((γνγμ)ab∂μψbM−12(γμσαν)ba∂μFαν)δFS41(1)(T)(dψbM)≡εIaTIM((γ5)ab□ψbMi(γ5γμ)ab∂μd)



(A44)




and from [image: there is no content]


δFS31(1)(W)(AMψbJ)≡εIaWKMϵIJK(i(γ5γμ)ab∂μψbJ(γ5)ab□AM)δFS89(1)(W)(GMψbJ)≡εIaWKMϵIJK(□ψaNi(γμ)ab∂μGM)δFS29(1)(W)(AMλb)≡εIaWIM(i(γ5γμ)ab∂μψbJ(γ5)ab□AM)δFS87(1)(W)(GMλb)≡εIaWIM(□λai(γμ)ab∂μGM)



(A45)




and from [image: there is no content]


δFS45(1)(V)(FMψbJ)≡εIa(Vμ)KM∈IJK((γ5γv)ab∂μ∂vψbJi(γ5)ab∂μFM)δFS60(1)(V)(GMψbJ)≡εIa(Vμ)KM∈IJK((γv)ab∂μ∂vψaNiCab∂μGM)δFS44(1)(V)(FMλb)≡εIa(Vμ)IM((γ5γv)ab∂μ∂vλbi(γ5)ab∂μFM)δFS59(1)(V)(GMλb)≡εIa(Vμ)IM((γv)ab∂μ∂vλbiCab∂μGM)



(A46)




and from [image: there is no content]


δFS63(1)(U)(dψbK)≡εa(Uρ)K(i(γuγργv)ab∂μ∂vψbK(γργμ)ba∂μd)δFS73(1)(U)(AμψbK)≡εa(Uρ)K((γ5γμγργv)ab∂vψbK12(γ5γργμσαβ)ba∂μFαβ)



(A47)




and from [image: there is no content]


δFS77(1)(U)(AKλb)≡εa(Uρ)K((γ5γργμ)ab∂μλb−i(γ5γρ)ab□AK)δFS78(1)(U)(BKλb)≡εa(Uρ)K(i(γργμ)ab∂μλb(γρ)ab□BK)δFS49(1)(U)(FKλb)≡εa(Uρ)K((γ5γμγργv)ab∂μ∂vλb−i(γ5γργμ)ab∂μFK)δFS53(1)(U)(GKλb)≡εa(Uρ)K(i(γμγργv)ab∂μ∂vλb(γργμ)ba∂μGK)



(A48)




and from [image: there is no content]


δFS74(1)(U)(AIψbM)≡εIa(Uρ)M(−(γ5γργμ)ab∂μψbMi(γ5γρ)ab□AI)δFS80(1)(U)(BIψbM)≡εIa(Uρ)M(i(γργμ)ab∂μψbM(γρ)ab□BI)δFS50(1)(U)(FIψbM)≡εIa(Uρ)M((γ5γμγργv)ab∂μ∂vψbM−i(γ5γργμ)ab∂μFI)δFS58(1)(U)(GIψbM)≡εIa(Uρ)M(i(γμγργv)ab∂μ∂vψbM(γργμ)ba∂μGI)



(A49)




and from [image: there is no content]


δFS77(1)(U)(AJλb)≡εIa(Uρ)KεIJK((γ5γργμ)ab∂μλb−i(γ5γρ)ab□AJ)→εa(Uρ)J((γ5γργμ)ab∂μλb−i(γ5γρ)ab□AJ)δFS78(1)(U)(BJλb)≡εIa(Uρ)K∈IJK(i(γργμ)ab∂μλb(γρ)ab□BJ)→εa(Uρ)J(i(γργμ)ab∂μλb(γρ)ab□BJ)δFS49(1)(U)(FJλb)≡εIa(Uρ)K∈IJK(−(γ5γμγργv)ab∂μ∂vλbi(γ5γργμ)ba∂μFJ)→εa(Uρ)J(−(γ5γμγργv)ab∂μ∂vλbi(γ5γργμ)ba∂μFJ)δFS53(1)(U)(GJλb)εIa(Uρ)K∈IJK(i(γμγργv)ab∂μ∂vλb(γργμ)ba∂μGJ)→εa(Uρ)J(i(γμγργv)ab∂μ∂vλb(γργμ)ba∂μGJ)δFS62(1)(U)(dλb)≡εIa(Uρ)I(i(γμγργv)ab∂μ∂vλb(γργμ)ba∂μd)δFS72(1)(U)(Aμλb)≡εIa(Uρ)I((γ5γμγργv)ab∂vλb12(γ5γργvσαβ)ba∂vFαβ)



(A50)




and from [image: there is no content]


δFS19(1)(U)(dψbK)≡εaPK(i□ψbk−(γμ)ab∂μd)δFS65(1)(U)(AμψbI)≡εaPK((γ5γμγv)ab∂vψbK−i(γ5γv)ab∂μFμv)



(A51)




and from [image: there is no content]


δFS2(1)(P)(AKλb)≡εaPK(i(γ5γμ)ab∂μλb(γ5)ab□AK)δFS5(1)(P)(BKλb)≡εaPK(i(γμ)ab∂μλbCab□BK)δFS9(1)(P)(FKλb)≡εaPK((γ5)ab□λbi(γ5γμ)ab∂μFK)δFS17(1)(P)(GKλb)≡εaPK(□λai(γμ)ab∂μGK)



(A52)




and from [image: there is no content]


δFS1(1)(P)(AIψbM)≡ε1aPM(−(γ5γμ)ab∂μψbMi(γ5)ab□AI)δFS6(1)(P)(BIψbM)≡ε1aPM(i(γμ)ab∂μψbMCab□BI)δFS10(1)(P)(FIψbM)≡ε1aPM((γ5)ab□ψbMi(γ5γμ)ab∂μF1)δFS18(1)(P)(GIψbM)≡ε1aPM(□ψaMi(γμ)ab∂μGI)



(A53)




from [image: there is no content]


δFS20(1)(P)(dλb)≡ε1aPI(−i□λb(γμ)ab∂μd)δFS64(1)(P)(Aμλb)≡ε1aPI((γ5γμγv)ab∂vλb−i(γ5γv)ab∂μFμv)δFS2(1)(P)(AJλb)≡ε1aPKϵIJK(i(γ5γμ)ab∂μλb(γ5)ab□AJ)→εaPJ(i(γ5γμ)ab∂μλb(γ5)ab□AJ)δFS5(1)(P)(BJλb)≡ε1aPKϵIJK(i(γμ)ab∂μλbCab□BJ)→εaPJ(i(γμ)ab∂μλbCab□BJ)δFS9(1)(P)(FJλb)≡ε1aPKϵIJK((γ5)ab□λbi(γ5γμ)ab∂μFJ)→εaPJ((γ5)ab□λbi(γ5γμ)ab∂μFJ)δFS17(1)(P)(GJλb)≡ε1aPKϵIJK(−i□λa(γμ)ab∂μGJ)→εaPJ(−i□λa(γμ)ab∂μGJ)



(A54)






A3. [image: there is no content]FH

In this section, we list all of the [image: there is no content] FH fermionic first order symmetries uncovered via our method, including the redundant ones. Only the unique symmetries were listed in the body of the paper. From from [image: there is no content] we find the symmetries



δ˜FS1(1)([image: there is no content])(A˜kψ˜b1)≡εia[image: there is no content]ik(−(γμ)ab∂μψ˜b1iCab□A˜k)δ˜FS2(1)([image: there is no content])(F˜kψ˜b1)≡εia[image: there is no content]ik(□ψ˜a1i(γμ)ab∂μF˜k)δ˜FS3(1)([image: there is no content])(A˜kψ˜b2)≡εia(σ2)ij[image: there is no content]jk(i(γμ)ab∂μψ˜b2Cab□A˜k)δ˜FS4(1)([image: there is no content])(F˜kψ˜b2)≡εia(σ2)ijTjk(−i□ψ˜a2(γμ)ab∂μF˜k)



(A55)




and from [image: there is no content]


δ˜FS5(1)([image: there is no content])(B˜kψ˜b1)≡εia(σ3)ij[image: there is no content]jk(i(γ5γμ)ab∂μψ˜b1(γ5)ab□B˜k)δ˜FS6(1)([image: there is no content])(G˜kψ˜b1)≡εia(σ3)ij[image: there is no content]jk(−i(γ5)ab□ψ˜b1)δ˜FS7(1)([image: there is no content])(B˜kψ˜b2)≡εia(σ1)ij[image: there is no content]jk(i(γ5γμ)ab∂μψ˜b2(γ5)ab□B˜k)δ˜FS8(1)([image: there is no content])(G˜kψ˜b2)≡εia(σ1)ij[image: there is no content]jk(−i(γ5)ab□ψ˜b2(γ5γμ)ab∂μG˜k)



(A56)




Calculation of [image: there is no content] uncovers no new symmetries, just these same eight again:


δ˜FS1(1)([image: there is no content])(A˜kψ˜b1)≡εia(σ2)ik[image: there is no content]12(i(γμ)ab∂μψ˜b1Cab□A˜k)δ˜FS2(1)([image: there is no content])(F˜kψ˜b1)≡εia(σ2)ij[image: there is no content]12(i□ψa1−(γμ)ab∂μF˜k)δ˜FS3(1)([image: there is no content])(A˜kψ˜b2)≡εka[image: there is no content]12(−(γμ)ab∂μψ˜b2iCab□A˜k)δ˜FS4(1)([image: there is no content])(F˜kψ˜b2)≡εka[image: there is no content]12(□ψ˜a2i(γμ)ab∂μF˜k)δ˜FS5(1)([image: there is no content])(B˜kψ˜b1)≡εia(σ1)ik[image: there is no content]12(i(γ5γμ)ab∂μψ˜b1(γ5)ab□B˜k)δ˜FS6(1)([image: there is no content])(G˜kψ˜b1)≡εia(σ1)ik[image: there is no content]12(i(γ5)ab□ψ˜b1−(γ5γμ)ab∂μG˜k)δ˜FS7(1)([image: there is no content])(B˜kψ˜b2)≡εia(σ3)ik[image: there is no content]12(i(γ5γμ)ab∂μψ˜b2(γ5)ab□B˜k)δ˜FS8(1)([image: there is no content])(G˜kψ˜b2)≡εia(σ3)ik[image: there is no content]12(−i(γ5)ab□ψ˜b2(γ5γμ)ab∂μG˜k)



(A57)




under redefinitions of [image: there is no content].
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