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Abstract: We present the first provably-secure three-party password-only authenticated key
exchange (PAKE) protocol that can run in only two communication rounds. Our protocol
is generic in the sense that it can be constructed from any two-party PAKE protocol. The
protocol is proven secure in a variant of the widely-accepted model of Bellare, Pointcheval
and Rogaway (2000) without any idealized assumptions on the cryptographic primitives
used. We also investigate the security of the two-round, three-party PAKE protocol of
Wang, Hu and Li (2010) and demonstrate that this protocol cannot achieve implicit key
authentication in the presence of an active adversary.
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1. Introduction

Protocols for password-only authenticated key exchange (PAKE) enable two or more parties to
generate a shared, cryptographically-strong key (called a session key) from their easy-to-remember
passwords. PAKE protocols are increasingly popular, and perhaps, due to the popularity of passwords,
as explained by Herley and van Oorschot, “despite countless attempts to dislodge passwords (in the past
20 years), they are more widely used and firmly entrenched than ever” [1]. There has been an enormous
amount of research effort expended on the design and analysis of PAKE protocols, and yet, there are
still worthwhile contributions to be made even in the simple scenario of two protocol participants (also
known as clients) with an online trusted server. In such a three-party model, the server provides its
registered clients with a centralized authentication service, which allows each client to remember and
manage only a single password. Password guessing attacks (also known as dictionary attacks) present a
more subtle threat in the three-party model (compared to a two-party model), as a malicious client can
attempt to mount such an attack against another client; see [2–6].

It is generally considered that the design of secure, yet efficient key exchange protocols (including
password-based protocols) is notoriously difficult, and performing a security analysis for such protocols
is complicated and error-prone; see, e.g., [7–9]. The many vulnerabilities identified in published
protocols have highlighted the importance of rigorous security proofs in a well-defined formal model. In
the provable-security paradigm for key exchange protocols, a reductionist proof approach is adopted to
show that an efficient algorithm for breaking the protocol implies an efficient algorithm for solving
another problem believed to be (computationally) hard. A complete mathematical proof under a
well-established cryptographic assumption offers a strong assurance to protocol implementers that the
protocol in hand achieves the desired security properties. The provable-security paradigm for key
exchange protocols was made popular by Bellare and Rogaway [10], who introduced the first formal
model of adversary capabilities with an associated definition of session-key security. Since then, it
has been standard practice for protocol designers to provide proofs of security for their protocols in a
widely-accepted security model.

A number of three-party PAKE protocols have been proposed over the last decade [2,3,5,6,11–25].
Many of these protocols have never been proven secure in any model [3,13,17–21] and/or have been
found to be vulnerable to some attack(s) [2,3,5,6,8,18–20,23,26–32]. Some protocols [2,11,12,15,23,24]
have been proven secure only in a restricted model, in which the adversary is not allowed to corrupt
protocol participants, and thus, no attacks by malicious clients can be captured.

Reducing the number of communication rounds is an important practical consideration in designing
key exchange protocols. Adopting the usual convention in the three-party (and multi-party) setting, we
let a round consist of all protocol messages that can be sent in parallel; note that messages in the same
round cannot be dependent on one another. So far, there have been several two-round key exchange
protocols presented in the three-party setting.

• The protocols of [15,24] are the only two-round, three-party PAKE protocols published with a
claimed security proof (although the two protocols presented by Lee and Hwang [23] can run
in two rounds (without key confirmation), and they are insecure in the presence of a malicious
client [31]; both protocols are susceptible to a man-in-the-middle attack, as well as an offline
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dictionary attack). However, it was later found that both protocols are not secure against an
active adversary, and their associated claims of provable security are invalid (see [2,8,32,33] and
Section 3 of this paper).
• The protocols of [34,35] were proven secure and require only two rounds, but these protocols

assume a “hybrid” three-party setting where a server’s public key is required in addition to
passwords.
• The recent protocol of Tsai and Chang [30] can run in two rounds (without key confirmation), but

this protocol only works in a hybrid setting that requires both a cryptographic key and a password
pre-established between each client and the server (see [4,29,36–44] for other protocols designed
to work in a hybrid setting).

Table 1 summarizes the security properties and known weaknesses of published two-round three-party
PAKE protocols with (claimed) proofs of security. To the best of our knowledge, there exists no
(provably) secure three-party PAKE protocol running in only two rounds.

Table 1. A summary of security results for existing two-round, three-party PAKE protocols.

Protocol Major Weaknesses Communication Model Security Proof

3PAKE [15] Vulnerable to an offline dictionary
attack [32]

Based on an invalid
assumption [33]

NWPAKE-2 [24] Fails to achieve implicit key
authentication (see Section 3)

The adversary is
restricted from
corrupting protocol
participants

Invalidated by an active
attack (see Section 3)

S-IA-3PAKE,
S-EA-3PAKE [23]

Vulnerable to an offline dictionary
attack and a man-in-the-middle
attack [31]

Invalidated by a passive
attack (see Section 3.3
of [31])

We regard our contributions of this paper to be two-fold:

1. We present the first two-round, three-party PAKE protocol that is provably secure in a well-defined
communication model; see Section 4. The communication model in which we work allows the
adversary to corrupt protocol participants and, therefore, captures not only the notion of forward
secrecy, but also attacks by malicious clients. We make no idealizing assumptions in our security
proof. Similar to the protocols of [2,11,12,19,24], our protocol is generic in the sense that it
can be constructed from any two-party PAKE protocol. If the underlying two-party protocol is
round-optimal [45–47], then our three-party protocol runs in only two communication rounds.

2. We also present a previously unpublished flaw in an existing two-round, three-party PAKE
protocol proposed by Wang, Hu and Li [24]; see Section 3.2. The Wang–Hu–Li protocol (named
NWPAKE-2) was claimed to be provably secure in a variant of the Real-Or-Random (ROR) model.
We reveal that the NWPAKE-2 protocol fails to achieve implicit key authentication in the presence
of an active adversary who is not even registered with the server, which invalidates the “claimed”
security proof.

The remainder of this paper is structured as follows: Section 2 describes a communication model
along with the associated security definition. In Section 3, we revisit the NWPAKE-2 protocol of Wang,
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Hu and Li [24] and reveal a previously unpublished flaw in the protocol. We then present our proposed
two-round, three-party PAKE protocol and prove its security in Section 4. The last section concludes
the paper.

2. The Communication Model

We now describe a communication model adapted from the widely-accepted
indistinguishability-based model of Bellare, Pointcheval and Rogaway [45]. This will be the model that
is used to prove the security of our proposed three-party PAKE protocol.

2.1. Participants and Long-Term Keys

Let S be a trusted authentication server and C the set of all clients registered with S. During
registration, each client C ∈ C selects a password pwC from dictionary D and shares pwC with S

via a secure/authenticated channel. The password pwC is used as the long-term secret key between C
and S. Any two clients C,C ′ ∈ C may run a three-party PAKE protocol π with S at any point in time
to establish a session key. Let U = C ∪ {S}. A user U ∈ U may execute the protocol multiple times
(including concurrent executions) with the same or different participants. Thus, a single user could have
many instances of it at a point of time. We denote instance i of user U by Πi

U . We say that a client
instance Πi

C accepts when it successfully computes its session key skiC in an execution of the protocol.

2.2. Partnering

Intuitively, two instances are partners if they participate in a protocol execution and establish a
(shared) session key. Formally, partnering between instances is defined in terms of the notions of
session identifiers and partner identifiers (see [48] on the role and the possible construct of session and
partner identifiers as a form of partnering mechanism that enables the right session key to be identified in
concurrent protocol executions). A session identifier (sid) is a string that uniquely identifies a protocol
session and is usually defined as a function of the messages transmitted in the session. Let sidiU denote
the sid of instance Πi

U . A partner identifier (pid) is a sequence of identities of participants of a specific
protocol session. Instances are given as input a pid before they can run the protocol. pidiU denotes the
pid given to instance Πi

U . In a typical session, there will be three participants, namely two clients C and
C ′ and the server S. We say that two instances Πi

C and Πj
C′ are partners if all of the following conditions

are satisfied: (1) both Πi
C and Πj

C′ have accepted; (2) sidiC = sidjC′; and (3) pidiC = pidjC′ .

2.3. Adversary Capabilities

The probabilistic polynomial-time (PPT) adversary A is in complete control of all communications
between users, and its capabilities are modeled via a pre-defined set of oracle queries, as described below.

• Execute(Πi
C ,Π

j
C′ ,Πk

S): This query models passive attacks against the protocol. It prompts an
execution of the protocol between the instances Πi

C , Πj
C′ and Πk

S and returns the transcript of the
protocol execution to A.
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• Send(Πi
U ,m): This query sends a message m to instance Πi

U , modeling active attacks against the
protocol. Upon receiving m, the instance Πi

U proceeds according to the protocol specification.
The message output by Πi

U , if any, is returned to A. A query of the form Send(Πi
C ,

start:(C,C ′, S)) prompts Πi
C to initiate the protocol with pidiC = (C,C ′, S).

• Reveal(Πi
C): This query captures the notion of known key security (it is often reasonable to suppose

that the adversary can obtain session keys from any sessions other than the one under attack) and,
if Πi

C has accepted, returns the session key skiC back to A. However, this session (key) will be
rendered unfresh (see Definition 1).
• Corrupt(U ): This query returns U ’s password pwU to A. If U = S (i.e., the server is corrupted),

all clients’ passwords stored by the server are returned. This query captures not only the notion of
forward secrecy, but also attacks by malicious clients.
• Test(Πi

C): This query is used to define the indistinguishability-based security of the protocol.
If Πi

C has accepted, then depending on a randomly-chosen bit b, A is given either the real session
key skiC (when b = 1) or a random key drawn from the session-key space (when b = 0). A is
allowed to ask as many test queries as it wishes. All test queries are answered using the same
value of the hidden bit b. Namely, the keys output by the test oracle are either all real or all
random. However, we require that for each different set of partners, A should access the test
oracle only once.

Although Execute and Reveal oracles can be simulated by accessing Send and Test oracles,
respectively, multiple times, the former (i.e., Execute and Reveal oracles) often makes it easier to prove
the security of protocols and to understand the proofs, and for this reason, we allow both Execute and
Reveal queries in our model. The number of queries asked by an adversary is referred to as the query
complexity of the adversary (Q) and is represented as an ordered sequence of five non-negative integers,
Q = (qexec, qsend, qreve, qcorr, qtest). These five non-negative integers are the numbers of queries that the
adversary asked, respectively, of the Execute, Send, Reveal, Corrupt and Test oracles.

2.4. Security Definition

We define the security of a three-party PAKE protocol via the notion of freshness. Intuitively, a fresh
instance is one that holds a session key that should not be known to the adversary A, and an unfresh
instance is one whose session key (or some information about the key) can be known by trivial means.
The formal definition of freshness is explained in Definition 1.

Definition 1. An instance Πi
C is fresh if none of the following occurs: (1) A queries Reveal(Πi

C) or
Reveal(Πj

C′), where Πj
C′ is the partner of Πi

C; and (2)A queries Corrupt(U), for some U ∈ pidiC , before
Πi
C or its partner Πj

C′ accepts.

The security of a three-party PAKE protocol π is defined in the context of the following experiment:

Experiment Exp0:

Phase 1. A makes any oracle queries at will as many times as it wishes, except that:

• A is not allowed to ask the Test(Πi
C) query if the instance Πi

C is unfresh.
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• A is not allowed to ask the Reveal(Πi
C) query if it has already made a Test query to Πi

C or
Πj
C′ , where Πj

C′ is the partner of Πi
C .

Phase 2. OnceA decides that Phase 1 is over, it outputs a bit b′ as a guess on the hidden bit b chosen by
the Test oracle. A is said to succeed if b = b′.

Let Succ0 be the event that A succeeds in the experiment Exp0. The advantage of A in breaking the
security of the authenticated key exchange protocol π is Advake

π (A) = 2 · Prπ,A[Succ0]− 1.

Definition 2. A three-party PAKE protocol π is AKE-secure if, for any PPT adversary A asking at most
qsend Send queries, Advake

π (A) is only negligibly larger than c · qsend/|D|, where c is a constant.

To represent the security of protocol π in terms of the amount of resources used by adversaries, we
let Advake

π (t, Q) be defined as:

Advake
π (t, Q) = max

A
{Advake

π (A)}

where the maximum is taken over all PPT adversaries A with time complexity at most t and query
complexity at most Q.

3. Revisiting Wang, Hu and Li’s (2010) NWPAKE-2 Protocol

Implicit key authentication is among the fundamental security properties that should be achieved by
key exchange protocols. In this section, we show that the NWPAKE-2 protocol of Wang, Hu and Li [24]
does not achieve implicit key authentication.

3.1. Protocol Description

Assume two clients A and B who want to establish a session key. Let S be the trusted server
with which A and B shared their passwords pwA and pwB, respectively. The public parameters
of the NWPAKE-2 protocol include: (1) a cyclic group G of prime order q and a generator g of
G; (2) a two-party PAKE protocol, 2PAKE; and (3) a pair of message authentication code (MAC)
generation/verification algorithms (Mac,Ver), where Ver outputs a bit, with 1 meaning accept and
0 meaning reject. If the underlying two-party protocol, 2PAKE, is round-optimal, NWPAKE-2
completes in two communication rounds, as depicted in Figure 1. The protocol description is as follows:

Step 1. A and S establish a secret key kA by running the two-party protocol, 2PAKE. Likewise, B and
S establish a secret key kB.

Step 2. A (resp. B) selects a random x ∈ Z∗q (resp. y ∈ Z∗q) and sends X = gx (resp. Y = gy) to S.
Step 3. S chooses a random z ∈ Z∗q , computes:

X = Xz, Y = Y z

ρA = MackA(X‖Y ‖B‖A), ρB = MackB(Y ‖X‖A‖B)

and sends 〈Y , ρA〉 and 〈X, ρB〉 to A and B, respectively.
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Step 4. A and B abort if their received MAC is invalid. Otherwise, they will compute their respective
session keys, skA = Y

x
and skB = X

y
.

A S B
(pwA) (pwA, pwB) (pwB)

Round 1

x ∈R Z∗
q , X = gx y ∈R Z∗

q , Y = gy

Round 2

z ∈R Z∗
q

X = Xz, Y = Y z

ρA = MackA(X‖Y ‖B‖A)
ρB = MackB (Y ‖X‖A‖B)

VerkA
(X‖Y ‖B‖A, ρA) ?

= 1 VerkB (Y ‖X‖A‖B, ρB)
?
= 1

skA = Y
x

skB = X
y

2PAKE(pwA) −→ kA 2PAKE(pwB) −→ kB

X Y

〈Y , ρA〉 〈X, ρB〉

Figure 1. Wang et al.’s two-round, three-party PAKE protocol (NWPAKE-2) [24].

At the end of the protocol execution, A and B will compute the same session key skA = skB = gxyz.

3.2. Violating Implicit Key Authentication

We now assume that there exists an adversary C who is not registered with the server and demonstrate
how C can easily violate the implicit key authentication property of NWPAKE-2.

1. C chooses a random x′ ∈ Z∗q , computes X ′ = gx
′ and replaces X (sent by A to S) with X ′.

2. Upon receipt of the “replaced” message, S will computeX asX = X ′z, and therefore,B’s session
key skB will be set to gx′yz.

3. C intercepts the message 〈Y , ρA〉 sent by S to A and then computes skC = Y
x′

= gx
′yz = skB. In

other words, C is able to compute B’s session key even though C is not B’s partner.

The design flaw exploited by the adversary is that the server S is provided with no means of
authenticating the public values X and Y . Note that NWPAKE-2 exhibits a security weakness no matter
which protocol is used for the instantiation of 2PAKE. Wang, Hu and Li [24] provide a proof sketch
for the security of NWPAKE-2 in a model that allows Send queries. Any protocol proven secure in
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such a model should be secure against our above attack, and therefore, the security proof (sketch) for
NWPAKE-2 is invalidated.

4. Our Proposed Protocol

This section presents our two-round, three-party PAKE protocol, which we denote as 2R3PAKE (“R”
is for round) and proves its security in the communication model described in Section 2. The 2R3PAKE
protocol can be viewed as a combined variant of the NWPAKE-2 protocol of Wang, Hu and Li [24]
and the 3PKD protocol of Bellare and Rogaway [49]. 2R3PAKE is generic in the sense that it can be
constructed from any secure two-party PAKE protocol. Our generic construction takes only one round
of communication in addition to the number of rounds required to perform the underlying two-party
protocol. Hence, applying our construction to a round-optimal two-party PAKE protocol immediately
yields a three-party PAKE protocol running in two communication rounds.

4.1. Preliminaries

The security of 2R3PAKE is based on the decisional Diffie–Hellman assumption, the security of a
message authentication code scheme, a two-party PAKE protocol, and a symmetric encryption scheme.

4.1.1. Decisional Diffie–Hellman Assumption

Consider a cyclic group G having prime order q. Let g be a random generator of G. Informally
speaking, the Decisional Diffie–Hellman (DDH) problem for G is to distinguish between two
distributions (ga, gb, gab) and (ga, gb, gc), where a, b and c are chosen at random from Z∗q . We say
that the DDH assumption holds in G if it is computationally intractable to solve the DDH problem
for G. More formally, we define the advantage of an algorithm A in solving the DDH problem for
G to be Advddh

G (A) = |Pr[A(G, g, ga, gb, gab) = 1] − Pr[A(G, g, ga, gb, gc) = 1]|. We say that the
DDH assumption holds in G if Advddh

G (A) is negligible for all PPT algorithms A. Advddh
G (t) denotes

the maximum value of Advddh
G (A) over all algorithms A running in time at most t. A typical way

of generating G where the DDH assumption is believed to hold is to select two primes p, q, such that
p = δq + 1 for some small δ ∈ N (e.g., δ = 2), and let G be the subgroup of prime order q in Z∗p.

4.1.2. Message Authentication Codes

A message authentication code (MAC) scheme Σ is a triple of efficient algorithms (Gen, Mac, Ver),
where: (1) the key generation algorithm Gen takes as input a security parameter 1` and outputs a key
k chosen uniformly at random from {0, 1}`; (2) the MAC generation algorithm Mac takes as input a
key k and a message m and outputs a MAC (also known as a tag) σ; and (3) the MAC verification
algorithm Ver takes as input a key k, a message m and a MAC σ and outputs 1 if σ is valid for m
under k or outputs 0 if σ is invalid. Let Advsuf−cma

Σ (A) be the advantage of an adversary A in violating
the strong existential unforgeability of Σ under an adaptive chosen message attack. More precisely,
Advsuf−cma

Σ (A) is the probability that an adversary A, who mounts an adaptive chosen message attack
against Σ with oracle access to Mack(·) and Verk(·), outputs a message/tag pair (m,σ), such that: (1)
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Verk(m,σ) = 1; and (2) σ was not previously output by the oracle Mack(·) as a MAC on the message m.
We say that the MAC scheme Σ is secure if Advsuf−cma

Σ (A) is negligible for every PPT adversary A. Let
Advsuf−cma

Σ (t, qmac, qver) denote the maximum value of Advsuf−cma
Σ (A) over all adversaries A running in

time at most t and asking at most qmac and qver queries to Mack(·) and Verk(·), respectively.

4.1.3. Two-Party PAKE Protocols

2R3PAKE takes as input a two-party PAKE protocol, 2PAKE. We assume that the given two-party
protocol, 2PAKE, outputs session keys distributed in {0, 1}n, where n = 2`, and is AKE-secure against
an adversary who is given access to all of the oracles: Execute, Send, Reveal, Corrupt and Test. Let
Advake

2PAKE(A) be the advantage of an adversary A at breaking the AKE security of 2PAKE. We require
that, for any PPT adversary A asking at most qsend Send queries, Advake

2PAKE(A) is only negligibly larger
than qsend/|D|. Advake

2PAKE(t, Q) denotes the maximum value of Advake
2PAKE(A) over all adversariesAwith

time complexity at most t and query complexity at most Q.

4.1.4. Symmetric Encryption Schemes

A symmetric encryption scheme Ω is a triple of efficient algorithms (Gen, Enc, Dec) where: (1)
the key generation algorithm Gen takes as input a security parameter 1` and outputs a key k chosen
uniformly at random from {0, 1}`; (2) the encryption algorithm Enc takes as input a key k and a plain
text messagem and outputs a ciphertext c; and (3) the decryption algorithm Dec takes as input a key k and
a ciphertext c and outputs a message m. We require that Deck(Enck(m)) = m holds for all k ∈ {0, 1}`
and all m ∈ M, where M is the plain text space. For an eavesdropping adversary A against Ω and
for a random bit b ∈R {0, 1}, consider the following experiment, Expind−seav

Ω (A, b), where “ind-seav”
denotes indistinguishability against single eavesdropping:

Experiment Expind−seav
Ω (A, b)

k ← Gen(1`)

(m0,m1)← A(Ω), where |m0| = |m1|
c← Enck(mb)

b′ ← A(c), where b′ ∈ {0, 1}
return b′

For simplicity, we assume, in this experiment, that the security parameter 1` is implicit in the
description of Ω. Note that in the experiment, the adversary A generates the plain text pair (m0,m1)

and is given the ciphertext c, which is the encryption of either m0 or m1. Let Advind−seav
Ω (A) be the

advantage of an eavesdropper A in breaking the indistinguishability of Ω, and let it be defined as:

Advind−seav
Ω (A) = |Pr[Expind−seav

Ω (A, 0) = 1]− Pr[Expind−seav
Ω (A, 1) = 1]|

We say that the symmetric encryption scheme Ω is secure (with respect to a single encryption) if
Advind−seav

Ω (A) is negligible for every PPT adversary A. We use Advind−seav
Ω (t) to denote the maximum

value of Advind−seav
Ω (A) over all adversaries A running in time at most t.

We now claim that if a symmetric encryption scheme is secure with respect to a single encryption, then
it is also secure with respect to multiple encryptions under different keys. For an integer n ≥ 1, consider
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the following experiment, Expind−meav
Ω (A, b, n), where “ind-meav” denotes indistinguishability against

multiple eavesdropping:

Experiment Expind−meav
Ω (A, b, n)

for i = 1 to n
ki ← Gen(1`)

(m0,i,m1,i)← A(Ω), where |m0,i| = |m1,i|
ci ← Encki(mb,i)

A(ci)

b′ ← A, where b′ ∈ {0, 1}
return b′

Then, we define Advind−meav
Ω (A) and Advind−meav

Ω (t), respectively, as:

Advind−meav
Ω (A) = |Pr[Expind−meav

Ω (A, 0, n) = 1]− Pr[Expind−meav
Ω (A, 1, n) = 1]|

and:
Advind−meav

Ω (t) = max
A
{Advind−meav

Ω (A)}
where the maximum is over all A running in time at most t.

Lemma 1. For any symmetric encryption scheme Ω,

Advind−meav
Ω (t) ≤ n · Advind−seav

Ω (t),

where n is as defined for experiment Expind−meav
Ω (A, b, n).

Proof. Let A be a multiple eavesdropper attacking the indistinguishability of Ω, with advantage
Advind−meav

Ω (A) and time complexity t. The proof proceeds with a standard hybrid argument [50].
Consider a sequence of n + 1 hybrid experiments Expind−meav

Ω,ξ (A, b, n), 0 ≤ ξ ≤ n, where each
Expind−meav

Ω,ξ (A, b, n) is different from Expind−meav
Ω (A, b, n) only in that each ci is set as follows:

ci ←
{

Encki(m1,i) if i ≤ ξ

Encki(m0,i) otherwise

The experiments Expind−meav
Ω,0 (A, b, n) and Expind−meav

Ω,n (A, b, n) at the extremes of the sequence
are identical to Expind−meav

Ω (A, 0, n) and Expind−meav
Ω (A, 1, n), respectively. As we move from

Expind−meav
Ω,ξ−1 (A, b, n) to Expind−meav

Ω,ξ (A, b, n) in the sequence, we change the ξ-th ciphertext cξ from the
encryption of m0,ξ to the encryption of m1,ξ. Since there are n such moves from Expind−meav

Ω,0 (A, b, n) to
Expind−meav

Ω,n (A, b, n), the inequality of the lemma follows immediately if we prove that the difference
between the probabilities thatA outputs 1 in any two neighboring experiments Expind−meav

Ω,ξ−1 (A, b, n) and
Expind−meav

Ω,ξ (A, b, n) is at most Advind−seav
Ω (t). To complete the proof, it suffices to show that for any

1 ≤ ξ ≤ n,

|Pr[Expind−meav
Ω,ξ−1 (A, b, n) = 1]− Pr[Expind−meav

Ω,ξ (A, b, n) = 1]| ≤ Advind−seav
Ω (t) (1)

Let ε = |Pr[Expind−meav
Ω,ξ−1 (A, b, n) = 1]− Pr[Expind−meav

Ω,ξ (A, b, n) = 1]|. We will prove Equation (1)
by constructing, from A, a single eavesdropper Aξ who breaks the indistinguishability of Ω with
advantage ε and time complexity t.
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Aξ begins by invoking adversary A, then proceeds to simulate the indistinguishability experiment
for A and, finally, ends by outputting whatever bit A eventually outputs. In the simulated experiment,
Aξ generates the ciphertexts exactly as in the hybrid experiment Expind−meav

Ω,ξ (A, b, n), except that it
generates the ξ-th ciphertext cξ as follows:

When A outputs the ξ-th plain text pair (m0,ξ,m1,ξ), Aξ outputs this as its own plain text
pair in experiment Expind−seav

Ω (Aξ, b), receives in return a ciphertext c and sets cξ = c.

It follows that:

• The probability that Aξ outputs 1 when the given ciphertext c is the encryption of m0,ξ is equal to
the probability that A outputs 1 in the experiment Expind−meav

Ω,ξ−1 (A, b, n).
• The probability that Aξ outputs 1 when the given ciphertext c is the encryption of m1,ξ is equal to

the probability that A outputs 1 in the experiment Expind−meav
Ω,ξ (A, b, n).

This means that:

Advind−seav
Ω (Aξ) = |Pr[Expind−meav

Ω,ξ−1 (A, b, n) = 1]− Pr[Expind−meav
Ω,ξ (A, b, n) = 1]|

Since Aξ has time complexity t, it follows that Advind−seav
Ω (Aξ) ≤ Advind−seav

Ω (t) by definition.
This completes the proof of Equation (1) and, hence, the proof of Lemma 1.

4.2. The 2R3PAKE Protocol

We assume that the following information has been pre-established and is known to all parties in
the network: (1) a cyclic group G of prime order q and a generator g of G; (2) a MAC scheme
Σ = (Gen,Mac,Ver); (3) a two-party PAKE protocol 2PAKE; and (4) a symmetric encryption scheme
Ω = (Gen,Enc,Dec). These public parameters can be determined by the server and broadcast to
all registered clients. Let A and B be two clients who wish to establish a session key and S be
the trusted server with which A and B have registered their passwords pwA and pwB, respectively.
The partner identifier assigned to (an instance of) A (resp. B) is pidA (resp. pidB). Recall that pid is a
sequence of identities of protocol participants; for simplicity, we assume that pidA = pidB = (A,B, S).
Our 2R3PAKE protocol is depicted in Figure 2 and its description is as follows:

Step 1. A (resp. B) selects a random x ∈ Z∗q (resp. y ∈ Z∗q), computes X = gx (resp. Y = gy) and
sends 〈A, pidA, X〉 (resp. 〈B, pidB, Y 〉) to S.

Step 2. A and S establish a 2`-bit key kA by running the two-party protocol, 2PAKE. Likewise, B and
S establish a 2`-bit key kB. Let kA = kencA ‖kmacA and kB = kencB ‖kmacB .

Step 3. A computes σA = Mackmac
A

(A‖pidA‖X) and sends 〈A, σA〉 to S. Similarly, B computes
σB = Mackmac

B
(B‖pidB‖Y ) and sends 〈B, σB〉 to S.

Step 4. S sets pidS = pidA, chooses a random z ∈ Z∗q and computes:

X = Xz, Y = Y z,

αA = Enckenc
A

(Y ), αB = Enckenc
B

(X),

ρA = Mackmac
A

(S‖pidS‖αA‖αB), ρB = Mackmac
B

(S‖pidS‖αA‖αB).

S then sends 〈S, αA, αB, ρA〉 and 〈S, αA, αB, ρB〉 to A and B, respectively.
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Step 5. A sets the session identifier, sidA = αA‖αB, and verifies that Verkmac
A

(S‖ pidA‖sidA, ρA) = 1.
If the verification fails, A aborts the protocol. Otherwise, A recovers Y as Y = Deckenc

A
(αA)

and computes the session key, skA = Y
x
. B proceeds correspondingly; it aborts

if Verkmac
B

(S‖pidB‖sidB, ρB) = 0, where sidB = αA‖αB, and, otherwise, computes
X = Deckenc

B
(αB) and skB = X

y
.

Step 6. S checks that Verkmac
A

(A‖pidS‖X, σA) = 1. If the check fails, S marks this transaction as
invalid. For MAC σB, S checks its validity in the same way. (To prevent online dictionary attacks
(unlike offline dictionary attacks, where password guesses can be verified offline, online dictionary
attacks are the ones where the attacker verifies each password guess via an online transaction with
the server), S may lock out a problematic client after a certain number of invalid transactions.)

A S B
(pwA) (pwA, pwB) (pwB)

pidA = (A,B, S) pidB = (A,B, S)

Round 1

x ∈R Z∗
q , X = gx y ∈R Z∗

q , Y = gy

Round 2

σA = Mackmac
A

(A‖pidA‖X) pidS = pidA, z ∈R Z∗
q σB = Mackmac

B
(B‖pidB‖Y )

X = Xz, Y = Y z

αA = Enckenc
A

(Y )

αB = Enckenc
B

(X)

ρA = Mackmac
A

(S‖pidS‖αA‖αB)

ρB = Mackmac
B

(S‖pidS‖αA‖αB)

sidA = αA‖αB Verkmac
A

(A‖pidS‖X, σA)
?
= 1 sidB = αA‖αB

Verkmac
A

(S‖pidA‖sidA, ρA) ?
= 1 Verkmac

B
(B‖pidS‖Y, σB)

?
= 1 Verkmac

B
(S‖pidB‖sidB, ρB) ?

= 1

Y = Deckenc
A

(αA) X = Deckenc
B

(αB)

skA = Y
x

skB = X
y

2PAKE(pwA) −→ kA = kencA ‖kmac
A 2PAKE(pwB) −→ kB = kencB ‖kmac

B

〈A, pidA, X〉 〈B, pidB, Y 〉

〈S, αA, αB, ρA〉 〈S, αA, αB, ρB〉

〈A, σA〉 〈B, σB〉

Figure 2. Our proposed two-round, three-party PAKE (2R3PAKE) protocol.

Steps 1 and 2 constitute the first round of communication, while Steps 3 and 4 constitute the second
communication round. It is trivial to note that in the presence of a passive adversary, A and B will
compute session keys of the same value gxyz. We do not require 2PAKE to be instantiated with a
protocol that provides either unilateral or mutual authentication, as 2R3PAKE already provides mutual
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authentication between the server and the clients (via the MAC values exchanged in the second round).
Hence, any two-party protocol that provides implicit key authentication, including one-round protocols,
will be a suitable candidate to instantiate 2PAKE. We emphasize that sending X and Y in an encrypted
form is necessary for the security of the protocol, as evidenced by the flaws discovered in previous
two-round PAKE protocols (see Section 3 and [32]).

4.3. Security Proof

Theorem 1. For any adversary who has time complexity at most t and query complexity at
most Q = (qexec, qsend, qreve, qcorr, qtest), its advantage in breaking the AKE security of 2R3PAKE is
bounded by:

Advake
2R3PAKE(t, Q) ≤ 2 · Advake

2PAKE(t′, Q′)

+ 2 · qsend · Advsuf−cma
Σ (t′, 2, 2)

+ 2 · qsend · Advind−seav
Ω (t′)

+ 2 · Advddh
G (t′)

where Q′ = (2qexec, qsend, qsend, qcorr, 2qexec + qsend) and t′ is the maximum time required to perform the
experiment Exp0 involving an adversary who attacks 2R3PAKE with time complexity t.

Proof. Let A be a PPT adversary who attacks the AKE security of 2R3PAKE with time complexity t
and query complexity Q = (qexec, qsend, qreve, qcorr, qtest). We prove the theorem by making a series
of modifications to the experiment Exp0, bounding the difference in A’s success probability between
two consecutive (modified) experiments and ending up with an experiment in which A has a success
probability of 1/2 (i.e., A has no advantage). By Succi, we denote the event that A correctly guesses the
hidden bit b in experiment Expi.

Before presenting the first modified experiment, we define the notion of a clean instance.

Definition 3. We say an instance Πi
U is unclean if A has queried Corrupt(U ′) for some U ′ ∈ pidiU .

Otherwise, we say it is clean.

Experiment Exp1. We modify the experiment by replacing each different 2`-bit key (established by
an execution of 2PAKE) with a random key drawn uniformly from {0, 1}2` for all clean instances.
The difference in A’s success probability between Exp0 and Exp1 is bounded by:

Claim 1.
∣∣Pr2R3PAKE,A[Succ1]− Pr2R3PAKE,A[Succ0]

∣∣ ≤ Advake
2PAKE(t′, Q′).

Proof. We prove the claim by constructing an adversary A′ who attacks the AKE security of 2PAKE
with advantage equal to

∣∣Pr2R3PAKE,A[Succ1]− Pr2R3PAKE,A[Succ0]
∣∣. Let kiU denote the 2`-bit key held

by instance Πi
U .

A′ chooses a random bit b ∈ {0, 1} and invokes the adversary A. A′ then simulates the oracles for A
as follows:

Execute queries. When an Execute(Πi
A,Π

j
B,Π

k
S) query is asked, A′ first checks if A, B or S was

previously corrupted.
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• If so, A′ answers the Execute query as in experiment Exp0.
• Otherwise, A′ answers the query using its own oracles. A′ first asks two queries
Execute(Πi

A,Π
k
S) and Execute(Πj

B,Π
k′
S ). Let T2PAKE and T′2PAKE be two transcripts returned

in response to the Execute queries. Next, A′ makes the queries Test(Πi
A) and Test(Πj

B) and
receives in return two keys k

i

A and k
j

B (either real or random). A′ then generates the rest of
the protocol messages, using k

i

A and k
j

B as kiA and kjB, respectively. Finally, A′ returns these
messages together with T2PAKE and T′2PAKE after ordering them properly.

Send queries. For each Send(Πi
U ,m) query, A′ checks if m is a message for initiating a new session

(of 2R3PAKE) or the Send query belongs to an execution of 2PAKE.

1. If both are untrue, A′ responds to the query as in experiment Exp0.
2. Otherwise, A′ answers it by making the same query to its own Send oracle. If the query

prompts Πi
U to accept, then A′ checks if Πi

U is clean.

(a) If so, A′ makes a Test(Πi
U ) query (unless the partner of Πi

U has already been tested) and
sets kiU to be the output of this Test query.

(b) Otherwise, A′ makes a Reveal(Πi
U ) query and sets kiU to be the output of this

Reveal query.

Reveal queries. A′ responds to the queries as per the protocol specification.
Corrupt queries. A′ answers these queries using its own Corrupt oracle.
Test queries. A′ responds to these queries based on the randomly chosen bit b at the beginning of the

simulation. A′ will return the real session key if b = 1 and a random key chosen uniformly at
random from G if b = 0.

At some point in time, A will terminate and output its guess b′. When this happens, A′ outputs 1 if
b = b′ and 0 otherwise.

From the simulation, it is clear that:

• The probability that A′ outputs 1 when its Test oracle returns real session keys is equal to the
probability that A correctly guesses the bit b in experiment Exp0.
• The probability that A′ outputs 1 when its Test oracle returns random keys is equal to the

probability that A correctly guesses the bit b in experiment Exp1.

That is, Advake
2PAKE(A′) =

∣∣Pr2R3PAKE,A[Succ1] − Pr2R3PAKE,A[Succ0]
∣∣. Since A′ has at most time

complexity t′ and query complexity Q′ = (2qexec, qsend, qsend, qcorr, 2qexec + qsend), it follows, by
definition, that Advake

2PAKE(A′) ≤ Advake
2PAKE(t′, Q′). This completes the proof of Claim 1.

Experiment Exp2. This experiment is different from Exp1, only in that it is aborted and the adversary
does not succeed if the following event Forge occurs.

Forge: The event that the adversary A makes a Send query of the form Send(Πi
U , V ‖msg) for

uncorrupted U and V , such that msg contains a MAC forgery.

Then, we have:
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Claim 2.
∣∣Pr2R3PAKE,A[Succ2]− Pr2R3PAKE,A[Succ1]

∣∣ ≤ qsend · Advsuf−cma
Σ (t′, 2, 2).

Proof. Assuming that the event Forge occurs, we construct a forgerF who outputs, with a non-negligible
probability, a forgery against the MAC scheme Σ. The forger F is given oracle access to Mack(·) and
Verk(·). The goal of F is to produce a message/tag pair (m,σ), such that: (1) Verk(m,σ) = 1; and (2) σ
was not previously output by the Mack(·) oracle on input m.

Let n be the number of all different MAC keys established via a Send query made by A.
Clearly, n ≤ qsend. F begins by choosing a random α ∈ {1, . . . , n}. Let kmacα denote the α−th key
among all of the n MAC keys and Sendα be a Send query that should be answered and/or verified using
kmacα . F invokes A as a subroutine and handles the oracle calls of A as in experiment Exp1, except that:
it answers all Sendα queries by accessing its MAC generation and verification oracles. As a result, the
α−th MAC key kmacα is never used during the simulation. If Forge occurs against an instance that holds
kmacα , F halts and outputs the message/tag pair generated by A as its forgery. Otherwise, F halts and
outputs a failure indication.

If the guess α is correct, then the simulation is perfect, and F achieves its goal. Namely,
Advsuf−cma

Σ (F) = Pr[Forge]/n. Since n ≤ qsend, we get Pr[Forge] ≤ qsend · Advsuf−cma
Σ (F). As F

has at most time complexity t′ and makes at most two queries to Mack(·) and Verk(·), it follows, by
definition, that Advsuf−cma

Σ (F) ≤ Advsuf−cma
Σ (t′, 2, 2). This completes the proof of Claim 2.

Experiment Exp3. We further modify the experiment so that Execute and Send oracles are simulated
as in “the Exp3 modification” described below.

The Exp3 modification

WhenA asks an Execute or Send query, the simulator answers it exactly as in experiment
Exp2, except that it modifies the way of generating the ephemeral public values (denoted
as X and Y in the protocol) as follows:

• The simulator chooses two random v1, v2 ∈ Z∗q and computes V1 = gv1 and V2 =

gv2 .

• For each instance Πi
C , the simulator chooses a random r ∈ Z∗q , computes:

R =

{
V1

r if C appears first in pidiC
V2

r if C appears second in pidiC ,

and uses R as the ephemeral public value (i.e., as X or Y ) of Πi
C .

Since the view of A is identical between Exp2 and Exp3, it is straightforward to see that:

Claim 3. Pr2R3PAKE,A[Succ3] = Pr2R3PAKE,A[Succ2].

Experiment Exp4. In this experiment, each X and Y is computed as X = X and Y = Y (instead
of as X = Xz and Y = Y z) if they are expected to be encrypted with a key held by a clean (server)
instance. This is the only difference from Exp3.
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Claim 4.
∣∣Pr2R3PAKE,A[Succ4]− Pr2R3PAKE,A[Succ3]

∣∣ ≤ qsend · Advind−seav
Ω (t′).

Proof. We prove the claim by constructing a multiple eavesdropper Ameav who attacks the
indistinguishability of Ω with advantage equal to

∣∣Pr2R3PAKE,A[Succ4]− Pr2R3PAKE,A[Succ3]
∣∣.

Ameav chooses a random bit b ∈ {0, 1} and invokes the adversary A. Ameav then handles all of the
oracle queries of A as in experiment Exp3, except that it generates αA and αB for each clean server
instance as follows:

Ameav outputs (X,X = Xz) and (Y, Y = Y z) as its own (two) plain text pairs (in the
indistinguishability experiment Expind−meav

Ω ), receives in return two ciphertexts c1 and c2

and sets αA = c2 and αB = c1. (Note, here, that c1 and c2 are encryptions of either X and
Y or X and Y .)

When A outputs its guess b′, Ameav outputs 1 if b = b′ and 0 otherwise. It easily follows that:

• The probability that Ameav outputs 1 when the first plain texts are encrypted in experiment
Expind−meav

Ω is equal to the probability that A succeeds in experiment Exp4.
• The probability that Ameav outputs 1 when the second plain texts are encrypted in experiment
Expind−meav

Ω is equal to the probability that A succeeds in experiment Exp3.

Therefore, Advind−meav
Ω (Ameav) =

∣∣Pr2R3PAKE,A[Succ4] − Pr2R3PAKE,A[Succ3]
∣∣. Since Ameav

eavesdrops at most qsend encryptions and has time complexity at most t′, Claim 4 follows immediately
from Lemma 1 of Section 4.1.

Experiment Exp5. We now modify the way session keys are computed. For each clean instance and
its partner instance, the shared session key is chosen uniformly at random from G.

Claim 5.
∣∣Pr2R3PAKE,A[Succ5]− Pr2R3PAKE,A[Succ4]

∣∣ ≤ Advddh
G (t′).

Proof. We prove the claim by constructing an algorithm Addh that solves the DDH problem in G with
advantage equal to

∣∣Pr2R3PAKE,A[Succ5]− Pr2R3PAKE,A[Succ4]
∣∣.

On input, a DDH-problem instance (W1 = gw1 ,W2 = gw2 ,W3) ∈ G3, Addh chooses a random bit
b ∈ {0, 1}, invokes the adversaryA and simulates the oracles on its own. Addh handles all of the queries
of A as in experiment Exp4, except for the following:

• Addh uses W1 and W2 in place of V1 and V2 (see “the Exp3 modification”).
• For each clean instance Πi

C who sends X = W1
r and receives Y = W2

r′ , or vice versa, Addh sets
the session key skiC to be W rr′

3 .

Later, when A outputs its guess b′, Addh outputs 1 if b = b′ and 0 otherwise.
The simulation above clearly shows that:

• The probability that Addh outputs 1 on a true Diffie–Hellman triple is equal to the probability that
A correctly guesses the bit b in experiment Exp4.
• The probability that Addh outputs 1 on a random triple is equal to the probability that A correctly

guesses the bit b in experiment Exp5.
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Hence, Advddh
G (Addh) =

∣∣Pr2R3PAKE,A[Succ5] − Pr2R3PAKE,A[Succ4]
∣∣. From this and since

Advddh
G (Addh) ≤ Advddh

G (t′), we obtain the inequality of Claim 5.

In experiment Exp5, the session keys of all fresh instances are chosen uniformly at random from G,
and thus, the adversary A obtains no information on the bit b chosen by the Test oracle. Therefore,
it follows that Pr[Succ5] = 1/2. This result combined with Claims 1–5 yields the statement of
Theorem 1.

5. Concluding Remarks

In this paper, we have proposed an efficient and secure three-party password-only authenticated key
exchange protocol that requires only two communication rounds. We have rigorously proven the security
of the protocol in a widely-accepted adversary model. Since our proof of security requires no idealizing
assumptions, our proposed protocol would be considered equivalent to being provably secure in the
standard model, as long as the building blocks are also instantiated with schemes proven secure in the
standard model. For a more efficient implementation of our proposed protocol, Steps 3 and 6 (see the
protocol description in Section 4.2) can be omitted if security against undetectable online dictionary
attacks is not required. This simplified protocol would still be AKE-secure in the sense of Definition 2
(i.e., Theorem 1 also holds for the simplified protocol). We finally note that it seems impossible to design
an AKE-secure, one-round key exchange protocol in the password-only, three-party setting, although we
are unable to prove this statement formally.
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