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Abstract: In this article, we study necessary and sufficient conditions for the self-mobility
of point symmetric hexapods (PSHs). Specifically, we investigate orthogonal PSHs and
equiform PSHs. For the latter ones, we can show that they can have non-translational
self-motions only if they are architecturally singular or congruent. In the case of congruency,
we are even able to classify all types of existing self-motions. Finally, we determine a new
set of PSHs, which have so-called generalized Dietmaier self-motions. We close the paper
with some comments on the self-mobility of hexapods with global/local symmetries.
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1. Introduction

The geometry of a hexapod is given by the six base anchor points Mi with coordinates
Mi := (Ai, Bi, Ci)

T with respect to the fixed frame and by the six platform anchor points mi with
coordinates mi := (ai, bi, ci)

T with respect to the moving frame (for i = 1, . . . , 6). Each pair (Mi,mi) of
corresponding anchor points of the fixed body Σ0 (base) and the moving body Σ (platform) is connected
by an SPS-leg, where only the prismatic joint (P) is active and the spherical joints (S) are passive. Note
that for a hexapod, (Mi,mi) 6= (Mj,mj) holds for pairwise distinct i, j ∈ {1, . . . , 6}. Moreover, a hexapod
is called planar, if M1, . . . ,M6, as well as m1, . . . ,m6 are coplanar; otherwise, it is called non-planar.

If the geometry of this so-called parallel manipulator of the Stewart–Gough type is given, as well as
the lengthsRi ≥ 0 of the six legs, the hexapod is generically rigid. However, under particular conditions,
this body-bar framework can perform an n-dimensional motion (n > 0), which is called self-motion
(=continuous flexion).
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Note that these overconstrained motions are also solutions to the still unsolved problem posed by
the French Academy of Science for the “Prix Vaillant” of the year 1904, which is also known as the
Borel–Bricard problem (cf. [1–3]) and reads as follows: “Determine and study all displacements of a
rigid body in which distinct points of the body move on spherical paths.”

The necessary and sufficient condition for the infinitesimal flexibility of the hexapodal manipulator
is that the carrier lines of the six legs belong to a linear line complex [4,5]. The corresponding
configurations of the hexapod are called singular (or shaky). It is well known that hexapods, which are
singular in every possible configuration, possess self-motions in each pose (over the field C of complex
numbers). These so-called architecturally singular manipulators are well studied and classified (for
the planar case, we refer to [6–9], and for the non-planar case, see [10,11]). In contrast, only a few
self-motions of non-architecturally singular hexapods are known [12], as their computation is a very
complicated task.

In this article, we study a special class of hexapods, which is defined as follows:

Definition 1. A hexapod is called point-symmetric if it has the following properties (after a possible
necessary relabeling of anchor points):

1. Mi and Mi+3 are symmetric with respect to a point O of the fixed frame for i = 1, 2, 3;

2. mi and mi+3 are symmetric with respect to a point o of the moving frame for i = 1, 2, 3;

3. None of the following three distance conditions are satisfied for all distinct i, j ∈ {1, 2, 3} :

(a) OMi = OMj = 0; (b) omi = omj = 0; (c) OMi = omj = 0.

In the remainder of this article, we abbreviate “point-symmetric hexapod” as PSH. Item 3 of Definition 1
excludes trivial cases of architectural singularity; thus, only the following cases of architecturally
singular PSHs remain:

Corollary 2. A PSH is architecturally singular if and only if one of the following cases hold (after a
possible necessary renumbering of anchor points and the exchange of the platform and the base):

1. m1, . . . ,m6 are collinear;

2. m1,m2,m4,m5 are collinear, M1,M2,M4,M5 are collinear and CR(m1,m2,m4,m5) =

CR(M1,M2,M4,M5) holds, where CR denotes the cross-ratio;

3. The platform and base are planar, and there exists a regular affinity with Mi 7→ mi for i = 1, . . . , 6.

Proof. The corollary can directly be concluded from the literature on architecturally singularity (see,
e.g., Theorem 1 of [6] and Theorem 3 of [10]).

Definition 3. A PSH is called orthogonal if it fulfills the following conditions:

1. OM1, OM2, OM3 are pairwise orthogonal;

2. om1, om2, om3 are pairwise orthogonal.

In the remainder of this article, we abbreviate “orthogonal PSH” as OPSH. An OPSH is illustrated in
Figure 1. Moreover, note that an OPSH cannot be architecturally singular due to Corollary 2.
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Figure 1. Sketch of a so-called orthogonal point symmetric hexapod (OPSH).
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Remark 1. For better imagining the OPSH’s geometry (with OMi 6= 0 6= omi for i = 1, 2, 3), the
anchor points can be interpreted as the vertices of an ellipsoid in the fixed/moving space.

1.1. Results on OPSHs

Without loss of generality (w.l.o.g.), we can assume for any OPSH that M1 (resp. m1) is located on
the x-axis, M2 (resp. m2) on the y-axis and M3 (resp. m3) on the z-axis of the fixed frame (resp. moving
frame). Therefore, we get:

A := A4 = −A1, B := B5 = −B2, C := C6 = −C3 (1)

a := a4 = −a1, b := b5 = −b2, c := c6 = −c3 (2)

and

A2 = A3 = A5 = A6 = B1 = B3 = B4 = B6 = C1 = C2 = C4 = C5 = 0 (3)

a2 = a3 = a5 = a6 = b1 = b3 = b4 = b6 = c1 = c2 = c4 = c5 = 0 (4)

We can assume w.l.o.g. that A, a,B, b, C ≥ 0 holds, as the indices of the anchor points can be permuted
and the role of the platform and the base can be exchanged.

Under the assumption that the local symmetry of the platform and the base is extended to the legs in
the following way:

Ri = Ri+3 for i = 1, 2, 3 (5)

Dietmaier determined in Equation (13) of [13] the two necessary and sufficient conditions for the finite
mobility of the OPSH. The first condition reads as follows:

abc
(
A2B2 + A2C2 +B2C2

)
− ABC

(
a2b2 + a2c2 + b2c2

)
= 0 (6)

and therefore, it only depends on the geometry of the OPSH. In the second equation, which is given by:

(Abc− aBC)
(
B2c2 + b2C2

)
+Bb (ABc− abC)

(
R2

1 −R2
3 − A2 − a2

)
+Cc (AbC − aBc)

(
R2

1 −R2
2 − A2 − a2

)
= 0

(7)
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also the remaining free leg lengths R1, R2, R3 are involved. If these two conditions are fulfilled, the
OPSH has a one-dimensional flexion, which we call the Dietmaier self-motion.

It can easily be checked that the two conditions given in Equations (6) and (7) are fulfilled
independently of R1, R2, R3 if and only if A = a, B = b and C = c hold. As a consequence, there
exists an orientation preserving congruence transformation τ with:

τ : mi 7→ Mi for i = 1, . . . , 6 (8)

Therefore, hexapods, which possess this property, are called congruent.
All self-motions of congruent OPSHs were determined by Husty et al. in Example 3.3.8 of [14]. The

following three types can be distinguished: two-dimensional translatoric self-motion, one-dimensional
Schönflies self-motion and Dietmaier self-motion.

Remark 2. If τ of Equation (8) is an orientation reversing congruence transformation, we get a
so-called reflection-congruent hexapod. In the more general case of τ being an equiform transformation,
we name the hexapod an equiform one.

1.2. Outline of the Article

In Section 2, we give the basics of bond theory for hexapods and list some known results obtained
by this method, including two corollaries for PSHs. After this preparatory work, we give in Section 3
necessary conditions for OPSHs in order to have a self-motion, which are also sufficient over C.

In Section 4.1, we study the self-mobility of equiform PSHs in detail. Specifically, we classify all
self-motions of congruent PSHs, which generalizes the above cited result of Husty et al. In
Section 4.2, we determine a new set of PSHs with generalized Dietmaier self-motions.

We close the paper with some comments on the self-mobility of hexapods with global/local
symmetries and list some open problems in this context, which are dedicated to future research.

2. Bond Theory

In this section, we give a short introduction to the theory of bonds presented in [15], which was
motivated by the bond theory of overconstrained closed linkages with revolute joints given in [16]. We
start with the direct kinematic problem of hexapods and proceed with the definition of bonds.

Due to the result of Husty [17], it is advantageous to work with Study parameters (e0 : e1 : e2 :

e3 : f0 : f1 : f2 : f3) for solving the forward kinematics of hexapods. Note that the first four
homogeneous coordinates (e0 : e1 : e2 : e3) are the so-called Euler parameters. Now, all real points of
the Study parameter space P 7 (seven-dimensional projective space), which are located on the so-called
Study quadric Ψ :

∑3
i=0 eifi = 0, correspond to an Euclidean displacement, with the exception of the

three-dimensional subspace E of Ψ given by e0 = e1 = e2 = e3 = 0, as its points cannot fulfill the
condition N 6= 0 with N = e20 + e21 + e22 + e23. The translation vector t := 2(t1, t2, t3)

T and the rotation
matrix R of the corresponding Euclidean displacement x 7→ Rx + t are given by:

t1 = e0f1− e1f0 + e2f3− e3f2, t2 = e0f2− e2f0 + e3f1− e1f3, t3 = e0f3− e3f0 + e1f2− e2f1 (9)
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and

R =

e20 + e21 − e22 − e23 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e20 − e21 + e22 − e23 2(e2e3 − e0e1)
2(e1e3 − e0e2) 2(e2e3 + e0e1) e20 − e21 − e22 + e23

 (10)

if the normalizing condition N = 1 is fulfilled. All points of the complex extension of P 7, which cannot
fulfill this normalizing condition, are located on the so-called exceptional cone N = 0 with vertex E.

By using the Study parametrization of Euclidean displacements, the condition that the point mi is
located on a sphere centered in Mi with radius Ri is a quadratic homogeneous equation according to
Husty [17]. This so-called sphere condition Λi has the following form:

Λi : (a2i + b2i + c2i + A2
i +B2

i + C2
i −R2

i )N + 4(f 2
0 + f 2

1 + f 2
2 + f 2

3 )

− 2(aiAi + biBi + ciCi)e
2
0 − 2(aiAi − biBi − ciCi)e

2
1

+ 2(aiAi − biBi + ciCi)e
2
2 + 2(aiAi + biBi − ciCi)e

2
3

+ 4(ciBi − biCi)e0e1 − 4(ciAi − aiCi)e0e2 + 4(biAi − aiBi)e0e3

− 4(biAi + aiBi)e1e2 − 4(ciAi + aiCi)e1e3 − 4(ciBi + biCi)e2e3

+ 4(ai − Ai)(e0f1 − e1f0) + 4(bi −Bi)(e0f2 − e2f0) + 4(ci − Ci)(e0f3 − e3f0)
+ 4(ai + Ai)(e3f2 − e2f3) + 4(bi +Bi)(e1f3 − e3f1) + 4(ci + Ci)(e2f1 − e1f2) = 0

(11)

Now, the solution for the direct kinematics over C of a hexapod can be written as the algebraic variety
V of the ideal spanned by Ψ,Λ1, . . . ,Λ6, N = 1. In general, V consists of a discrete set of points, which
correspond with the (at most) 40 solutions of the forward kinematic problem.

We consider the algebraic motion of the mechanism, which are the points on the Study quadric that
the constraints define; i.e., the common points of the seven quadrics Ψ,Λ1, . . . ,Λ6. If the manipulator
has an n-dimensional self-motion, then the algebraic motion also has to be of this dimension. Now, the
points of the algebraic motion with N 6= 0 equal the kinematic image of V . However, we can also
consider the points of the algebraic motion, which belong to the exceptional cone N = 0. An exact
mathematical definition of these so-called bonds can be given as follows (cf. Remark 5 of [15]):

Definition 4. For a hexapod, the set B of bonds is defined as:

B := ZarClo (V ?) ∩
{

(e0 : . . . : f3) ∈ P 7 | Ψ,Λ1, . . . ,Λ6, N = 0
}

(12)

where V ? denotes the variety V after the removal of all components, which correspond to pure
translational motions. Moreover ZarClo(V ?) is the Zariski closure of V ?, i.e., the zero locus of all
algebraic equations that also vanish on V ?.

The restriction to motions, which are not pure translations (=non-translational motions) is caused
by the following approach used for the computation of bonds: in the first step, we project the algebraic
motion of the hexapod into the Euler parameter space P 3 by the elimination of f0, . . . , f3. This projection
is denoted by πf . In the second step, we determine those points of the projected point set πf (V ), which
are located on the quadric N = 0; i.e.,

Bf := ZarClo (πf (V )) ∩
{

(e0 : . . . : e3) ∈ P 3 | N = 0
}

(13)
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Note that this set of projected bonds, which is denoted by Bf , cannot be empty for a non-translational
self-motion. Moreover, it is important to note that the set of bonds only depends on the geometry of the
hexapod, and not on the leg lengths (cf. Theorem 1 of [15]).

Remark 3. A more sophisticated bond theory for pentapods and hexapods is based on a special
compactification of SE(3), where the sphere condition Λi is only linear in 17 motion parameters. This
approach, which was presented in [18], has many theoretical advantages compared to the method
described above, but it is not suited for direct computations due to the large number of motion
parameters. In contrast, the approach of the paper at hand was already successfully used for direct
computations in [15,19–21].

Clearly, the kernel of this projection πf equals the group of translational motions. As a consequence, a
component of V , which corresponds to a pure translational motion, is projected to a single point O (with
N 6= 0) of the Euler parameter space P 3 by the elimination of f0, . . . , f3. Therefore, the intersection
of O and N = 0 equals ∅, which warrants the exclusion of pure translational motions within this
approach. However, this does not cause any trouble, as all hexapods with pure translational self-motion
were already characterized by the author in [15] as follows:

A hexapod possesses a pure translational self-motion, if and only if the platform can be rotated
about the center m1 = M1 into a pose, where the vectors

−−−→
Mimi for i = 2, . . . , 6 fulfill the condition

rk(
−−−→
M2m2, . . . ,

−−−→
M6m6) ≤ 1. Moreover, all one-dimensional self-motions are circular translations, which

can easily be seen by considering a normal projection of the manipulator in the direction of the parallel
vectors

−−−→
Mimi for i = 2, . . . , 6. If all of these six vectors are zero-vectors, which corresponds with

the case that the platform and the base are congruent, we get the already mentioned two-dimensional
translational self-motion of a hexapod (cf. [19]).

The above given characterization of hexapods with translational self-motions can be
reformulated/tightened for PSH as follows:

Corollary 5. A PSH possesses a pure translational self-motion, if and only if the platform can be
rotated about the center o = O into a pose, where the vectors

−−−→
Mimi for i = 1, 2, 3 fulfill the condition

rk(
−−−→
M1m1,

−−−→
M2m2,

−−−→
M3m3) ≤ 1.

Proof. The proof follows directly from the fact that the midpoint property is invariant under
parallel projections.

Moreover, we have the following result on multidimensional self-motions of PSHs:

Corollary 6. A non-architecturally singular PSH can only have an n-dimensional self-motion with
n > 1 if it is congruent. The self-motion is the two-dimensional translation.

Proof. All non-architecturally singular hexapods with a two-dimensional (or higher-dimensional)
self-motion were determined in [22] and [21], respectively. Theorem 5 of [22] implies the result
immediately.
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3. OPSH With Self-Motions

Due to the above outlined computational approach of bonds, we divide the discussion of self-motions
into two sections; namely translational and non-translational ones.

3.1. Necessary Condition for Translational Self-Motions

Based on Corollary 5, the following statement can be proven for OPSH:

Theorem 7. A pure translational self-motion of an OPSH can only exist in one of the following
five cases:

(α) a− A = e2 = e3 = 0, (β) b−B = e1 = e3 = 0

(γ) c− C = e1 = e2 = 0, (δ) c+ C = e0 = e3 = 0

(ε) a− A = b−B = c+ C = e3 = 0

Therefore, a necessary condition on the geometry is that OMi = omi holds for at least one i ∈ {1, 2, 3}.

Proof. Due to Corollary 5, we compute the vectors
−−−→
Mimi by Rmi−NMi and express the condition for

their linear dependency by Kk = o, where o denotes the zero-vector and Kk is given by:

Kk = (Rmi −NMi)× (Rmj −NMj) (14)

for pairwise distinct i, j, k ∈ {1, 2, 3}. We denote the condition implied by the first, second and third
line of Kk = o by K1

k = 0, K2
k = 0 and K3

k = 0, respectively. Therefore, we have to show that this
resulting system of nine equations K1

1 = . . . = K3
3 = 0 can only be fulfilled in one of the five cases

α, . . . , ε. This can be done as follows:
Due to item 3(c) of Definition 1, we can assume that abc 6= 0 (after a maybe necessary exchange of

the platform and the base). Therefore, we can cancel the factors 2aN from K1
2 and K1

3 , 2bN from K2
1

and K2
3 , 2cN from K3

1 and K3
3 and only N from K1

1 , K2
2 and K3

3 , respectively. We denote the remaining
expressions by Gj

i ; e.g., K1
2 = 2aNG1

2. Then, we consider the following linear combinations:

w1 : G2
3 −G3

2 = 2e2e3(A+ a) = 0, w2 : G2
3 +G3

2 = 2e0e1(A− a) = 0 (15)

w3 : G1
3 −G3

1 = 2e0e2(b−B) = 0, w4 : G1
3 +G3

1 = 2e1e3(b+B) = 0 (16)

w5 : G2
1 −G1

2 = 2e1e2(c+ C) = 0, w6 : G2
1 +G1

2 = 2e0e3(c− C) = 0 (17)

As a, b > 0 and A,B ≥ 0 holds w1 and w4 can only be fulfilled in the following two cases:

1. e1 = e2 = 0: Then, w6 is either fulfilled for c = C (⇒ case γ) or for:

(a) e0 = 0: We get G3
3 = e23(B + b)(A+ a), which cannot vanish without contradiction (w.c.).

(b) e3 = 0: In this case, we get:

G1
1 = e20(B − b)(C − c), G2

2 = e20(A− a)(c− C), G3
3 = e20(A− a)(B − b) (18)

Therefore, a = A (⇒ case α), b = B (⇒ case β) or c = C (⇒ case γ) has to hold.
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2. e3 = 0: For the discussion of this case, we can assume that e1 = e2 = 0 does not hold. We distinguish
the following cases:

(a) e1e2 6= 0: Under this assumption, w5 yields c = −C. Then, we get:

G1
1 = 2e20(B − b)C, G2

2 = 2e20(a− A)C (19)

which implies either e0 = 0 (⇒ case δ) or the reflection-congruent OPSH (⇒ case ε).

(b) e1 = 0, e2 6= 0: Now, w3 can only vanish either for b = B (⇒ case β) or e0 = 0. In the latter
case, we get G3

3 = e22(B − b)(A+ a), which also implies b = B (⇒ case β).

(c) e2 = 0, e1 6= 0: This case can be discussed analogously to the last one, with the sole exception
that we always end up in the case α.

End of all cases.

We close this subsection by giving some comments on the cases α, . . . , ε:
Note that the conditions given in the cases α, . . . , δ are not sufficient for the existence of a real

translational self-motion, as in each case, one homogeneous quadratic equation in two Euler parameters
remains, which may have complex solutions. In the case of a real solution, the loop Mi,mi,mi+3,Mi+3

forms a parallelogram during the translatoric self-motion of case α (i = 1), β (i = 2), γ (i = 3) and δ
(i = 3).

Contrary, in case ε, we get for each orientation of the two-dimensional set determined by e3 = 0, a
real translatoric self-motion. For more details on this reflection-congruent case, we refer to [20].

Finally, it should again be noted that all translational self-motions are one-parametric circular
translations with the exception of the congruent OPSH, which has a two-dimensional translatoric
mobility. Note that the congruent OPSH belongs to all three cases α, β, γ simultaneously.

3.2. Necessary Condition for Non-Translational Self-Motions

Within this section, we prove the following main theorem:

Theorem 8. An OPSH can have a non-translational self-motion only if either Equation (6) is fulfilled
or abcABC = 0 holds.

Proof. The proof of this theorem is done by the bond theory presented in Section 2; i.e., we determine
the conditions for the existence of a projected bond. For the computational proof, we need the two
linear combinations:

G1 := Λ1 + Λ4 − Λ2 − Λ5, G2 := Λ1 + Λ4 − Λ3 − Λ6 (20)

which read in detail as follows:

G1 =2(A−B − a+ b)(A+B − a− b)e20 + 2(A−B − a− b)(A+B − a+ b)e21+

2(A+B + a− b)(A−B + a+ b)e22 + 2(A−B + a− b)(A+B + a+ b)e23−
(R2

1 +R2
4 −R2

2 −R2
5)N

(21)
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G2 =2(A− C − a+ c)(A+ C − a− c)e20 + 2(A− C − a− c)(A+ C − a+ c)e21+

2(A− C + a− c)(A+ C + a+ c)e22 + 2(A+ C + a− c)(A− C + a+ c)e23−
(R2

1 +R2
4 −R2

3 −R2
6)N

(22)

Note that G1 and G2 do not depend on f0, f1, f2, f3. Besides these two expressions, also the following
three equations:

∆1,4 := Λ4 − Λ1 = (R2
1 −R2

4)N + 8(A− a)(e0f1 − e1f0) + 8(A+ a)(e2f3 − e3f2) = 0 (23)

∆2,5 := Λ5 − Λ2 = (R2
2 −R2

5)N + 8(B − b)(e0f2 − e2f0) + 8(B + b)(e3f1 − e1f3) = 0 (24)

∆3,6 := Λ6 − Λ3 = (R2
3 −R2

6)N + 8(C − c)(e0f3 − e3f0) + 8(C + c)(e1f2 − e2f1) = 0 (25)

are of interest, as they are linear in f0, f1, f2, f3. Now, we split the proof up into a general case and a
special one.

General case: For this case, we assume that ν 6= 0 holds, where ν is given by:

ν :=(A− a)(B − b)(C − c)e20 + (A− a)(B + b)(C + c)e21+

(A+ a)(B − b)(C + c)e22 + (A+ a)(B + b)(C − c)e23
(26)

Under this assumption, we can solve the system Ψ,∆1,4,∆2,5,∆3,6, which is linear in f0, f1, f2, f3
for these variables. Plugging the obtained expressions in Λ1, we obtain in the numerator the expression
NG0[5064], where G0 is homogeneous of degree six in the Euler parameters. Note that the number in
the brackets gives the number of terms.

Therefore, a real self-motion can only exist if the sextic surface G0 = 0 and the two quadrics
G1 = G2 = 0 have a curve in common. If this is the case, there also has to exist at least one intersection
point (projected bond) of this curve with the exceptional quadric N = 0.

In the next step, we eliminate e0 by computing the resultant Hi of Gi and N for i = 0, 1, 2. We get:

H0 = 216a2A2(e22 +e23)
2
[
(A− a)(bC + cB)e21 + (B − b)(aC + cA)e22 + (C − c)(aB + bA)e23

]4 (27)

H1 = 26
[
aA(e22 + e23)− bB(e21 + e23)

]2 and H2 = 26
[
aA(e22 + e23)− cC(e21 + e22)

]2 (28)

Now, we proceed with the elimination procedure by calculating the resultant Lk of Hi and Hj for
pairwise distinct i, j, k ∈ {0, 1, 2}. Then, we eliminate e1 by computing the resultant Qk of Li and Lj

for pairwise distinct i, j, k ∈ {0, 1, 2}. Now, the necessary condition for the existence of a projected bond
is that the greatest common divisor of Q0, Q1, Q2 vanishes, which reads as follows (up to powers of the
given factors):

e2abcABC
[
abc
(
A2B2 + A2C2 +B2C2

)
− ABC

(
a2b2 + a2c2 + b2c2

)]
(29)

As the back-substitution of e2 = 0 implies e1 = e3 = e0 = 0 (a contradiction), the theorem is proven
for the general case.
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Special case: Now, we consider the special case ν = 0. Therefore, we have to determine the condition
for the existence of a common point of the four quadrics G1 = G2 = ν = N = 0.

If we replace G0 by ν, the same elimination procedure as in the general case yields the following
greatest common divisor (up to powers of the given factors) of the resulting final expressions:

e2
[
abc
(
A2B2 + A2C2 +B2C2

)
− ABC

(
a2b2 + a2c2 + b2c2

)]
(30)

As the back-substitution of e2 = 0 implies again e1 = e3 = e0 = 0 (a contradiction), the theorem
is proven.

Remark 4. A consequence of the Theorems 7 and 8 is that an OPSH with 0 6= OMi 6= omi 6= 0 for
i = 1, 2, 3, which does not fulfill Equation (6), is free of self-motions. This is of importance for practical
applications, as self-motions are dangerous, because they are uncontrollable and, thus, a hazard to man
and machine. Therefore, being able to avoid OPSH designs that engender self-motion is of interest to
engineers. Note that also the later given Theorem 4.1 should be read in this context.

Note that the condition abcABC = 0 is even sufficient for the existence of a real self-motion due
to the following two examples. For the description of these trivial examples, we can assume (after a
maybe necessary relabeling of anchor points and an exchange of platform and base) that a = 0 holds;
i.e., m1 = m4 = o:

• Butterfly self-motions: If the platform is located in a way that the y-axis (z-axis) of the moving
frame coincides with the z-axis (y-axis) of the fixed frame, then the platform can rotate freely
around this line.

• Spherical four-bar self-motion: If the platform is in a configuration where the centers of the moving
frame and fixed frame coincide (⇔ o = O), then the manipulator can perform a spherical four-bar
motion with center o = O.

If the condition given in Equation (6) is fulfilled, we will see later on (cf. Theorem 12 under
consideration of Remark 7) that this is already sufficient for the existence of a self-motion over C, namely
a Dietmaier self-motion. In the following, we want to take a closer look at the Dietmaier self-motion, in
order to clarify the algebraic reasoning for this mobility.

3.2.1. Dietmaier Self-Motions

Under the assumption that the leg lengths fulfill Equation (5), the equations ∆1,4,∆2,5,∆3,6 are
homogeneous linear equations in f0, . . . , f3. Therefore, we distinguish the following two cases:

ν 6= 0: In this case, we can solve Ψ,∆1,4,∆2,5,∆3,6 for f0, . . . , f3, which yields f0 = f1 = f2 = f3 = 0.
As a consequence, we can only have a pure spherical self-motion, as o = O holds.

By projecting the OPSH onto a sphere centered in o = O and identifying antipodal points, we get a
three-legged spherical three-dof RPR manipulator if abcABC 6= 0 holds. Due to Theorem 6 of [15], it is
known that such a spherical mechanism can only have a self-motion if two platform or base anchor points
coincide, which cannot be the case, due to the underlying OPSH structure. Therefore, abcABC = 0 has
to hold, and we get the above mentioned trivial solution of spherical four-bar self-motions (including
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special butterfly self-motions). Note that these are not Dietmaier self-motions, as for abcABC = 0, the
condition given in Equation (6) cannot be fulfilled without contradiction over R.

ν = 0: The above study shows that ν = 0 has to hold for a Dietmaier self-motion. Note that ν = G1 =

G2 = 0 are three homogeneous quadratic equations in the Euler parameters without mixed terms eiej for
i 6= j ∈ {0, . . . , 3}. Under the Dietmaier conditions given in Equations (6) and (7), the three quadrics
in the Euler parameter space are linearly dependent, which is already sufficient for the existence of a
self-motion over C. Based on this observation, we will determine a new set of PSH with non-translatoric
self-motions in Section 4.2.

Example 1. For a detailed example of a Dietmaier self-motion, please see [13]. We only want to note
in this context an example with rational coordinates fulfilling Equation (6):

a = 3, b = 2, c = 4, A =
11

12
, B = 5, C =

55

61
(31)

Remark 5. It is still an open problem to determine all non-translational self-motions of an OPSH
besides the known Dietmaier self-motion, spherical four-bar self-motion and the butterfly self-motion. It
is only known (cf. last paragraph of Section 1.1) that congruent OPSHs also have Schönflies self-motions.

In this context, it should finally be noted that equiform OPSHs, which are not congruent, cannot
possess non-translational self-motions, as Equation (6) has no solution over R. We will generalize this
result in the next section.

4. PSHs with Self-Motions

The geometric characterization of PSHs with translational self-motions was already done in
Corollary 5. Therefore, we focus on conditions for non-translational self-motions, where trivial examples
are again the butterfly self-motion (which exists if four anchor points are collinear) and the spherical
four-bar self-motion (which exists if OMi = 0 or omi = 0 holds). The procedure for the computation of
such necessary conditions is the same as the one given in the proof of Theorem 8, but due to the number
of involved variables and the resulting lengths and degrees of the obtained equations, the author failed to
compute the final expressions Q0, Q1, Q2 running Maple 17 on a computer with 12 GB RAM (not even
for planar PSHs). Therefore, we restrict ourselves to equiform/congruent PSHs, which are studied next.

4.1. Equiform/Congruent PSHs

Theorem 9. If an equiform PSH has a non-translational self-motion, then it is either congruent or
architecturally singular.

Proof. W.l.o.g., we can choose coordinate systems in the platform and the base in a way that we have:

ai+3 = −ai, bi+3 = −bi, ci+3 = −ci, Ai+3 = −Ai, Bi+3 = −Bi, Ci+3 = −Ci (32)

for i = 1, 2, 3 with b1 = c1 = c2 = B1 = C1 = C2 = 0 and the remaining coordinates are coupled by:

ai = µAi, bi = µBi, ci = µCi (33)
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where µ 6= 0 is the similarity factor.
We proceed with analogous computations as in the proof of Theorem 8, but now, ν is given by:

ν = A1B2C3(µ− 1)
[
(µ− 1)2e20 + (µ+ 1)2(e21 + e22 + e23)

]
(34)

For the general case (ν 6= 0), we end up with the following necessary condition:

µA1B2(B
2
3 + C2

3)
[
(A2B3 − A3B2)

2 + C2
3(A2

2 +B2
2)
]

(35)

µA1 = 0 contradicts the definition of a PSH, and B2 = 0 results in an architecturally singular design
(cf. Item 2 of Corollary 2). Moreover, B2

3 + C2
3 = 0 implies B3 = C3 = 0, and we get again Item 2 of

Corollary 2. The last factor can only be fulfilled for C3 = 0 and A2B3 − A3B2 = 0, which also implies
Item 2 of Corollary 2.

For the special case (ν = 0), we end up with the following necessary condition:

µ(µ− 1)A1B2C3F1F2F3F4 = 0 (36)

with

F1 : = [B2(A1 + A3)−B3(A1 + A2)]
2 + C2

3

[
B2

2 + (A1 + A2)
2
]

(37)

F2 : = [B2(A1 − A3) +B3(A1 + A2)]
2 + C2

3

[
B2

2 + (A1 + A2)
2
]

(38)

F3 : = [B2(A1 + A3) +B3(A1 − A2)]
2 + C2

3

[
B2

2 + (A1 − A2)
2
]

(39)

F4 : = [B2(A1 − A3)−B3(A1 − A2)]
2 + C2

3

[
B2

2 + (A1 − A2)
2
]

(40)

µA1 = 0 contradicts the definition of a PSH, µ = 1 yields a congruent PSH and B2 = 0 results in
Item 2 of Corollary 2. Therefore, we can assume B2 6= 0, which implies that Fi can only be fulfilled
over R for C3 = 0 for i = 1, 2, 3, 4. Therefore, C3 = 0 has to hold, which implies a planar equiform
hexapod. These manipulators were already studied in detail in [23,24] with the result that they cannot
have self-motions if they are not architecturally singular. This closes the proof of the theorem.

In the context with Theorem 9, it should be noted that equiform hexapods have a translational
self-motion if and only if they are reflection congruent or congruent (cf. [20]). In the latter case, we
get the already mentioned two-dimensional translation. The non-translational self-motions of congruent
PSHs, which were excluded from Theorem 9, are the content of the next theorem, which generalizes
the result of Husty et al., mentioned at the end of Section 1.1. For the formulation of this theorem, the
following definition is needed:

Definition 10. A self-motion of a PSH is called generalized Dietmaier self-motion, if Equation (5) holds
and the equations Ψ,∆1,4,∆2,5,∆3,6 are linearly dependent with respect to f0, . . . , f3.

Theorem 11. A congruent PSH, which is not architecturally singular, can have the following two types
of non-translation self-motions:

1. Line-symmetric self-motions (including Schönflies self-motions as a special case),

2. Generalized Dietmaier self-motions.
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Proof. We use the same coordinatization as in the proof of Theorem 9 under consideration of µ = 1.
Moreover, we can assume that the congruent PSH is non-planar, because it is well-known (cf. [24]) that
planar ones can only have translational self-motions, if they are not architecturally singular.

Within the proof, we distinguish the following two cases:

1. e3 6= 0: Under this assumption, we can solve Ψ,∆1,4,∆2,5 for f1, f2, f3. Plugging the obtained
expressions into ∆3,6 yields in the numerator N(e21 + e22 + e23)E with:

E :=B2C3(R
2
1 −R2

4)e1 − C3

[
A2(R

2
1 −R2

4)− A1(R
2
2 −R2

5)
]
e2+[

(A2B3 − A3B2)(R
2
1 −R2

4)− A1B3(R
2
2 −R2

5) + A1B2(R
2
3 −R2

6)
]
e3

(41)

Therefore, E = 0 has to hold. Beside this condition, we have again the linear combinations G1 and
G2 of Equation (20), which now read as follows:

G1 =8
[
B2

2e
2
1 + (A2

2 − A2
1)e

2
2 + (A2

2 +B2
2 − A2

1)e
2
3

]
+

(R2
1 +R2

4 −R2
2 −R2

5)N − 16A2B2e1e2
(42)

G2 =8
[
(B2

3 + C2
3)e21 + (A2

3 + C2
3 − A2

1)e
2
2 + (A2

3 +B2
3 − A2

1)e
2
3

]
+

(R2
1 +R2

4 −R2
3 −R2

6)N − 16(A3B3e1e2 − A3C3e1e3 −B3C3e2e3)
(43)

The last remaining condition results from Λ1 after plugging the expressions for f1, f2, f3 into
it. However, this condition is not of interest, as one can always solve it for f0 in case of a
non-translational self-motion. Therefore, the two quadrics G1 = G2 = 0 and the plane E = 0 in
the Euler parameter space have to have a curve s in common. We distinguish the following cases:

(a) E = 0 is not fulfilled identically: In this case, we consider the expression of E after replacing ei
by fi for i = 1, 2, 3. This yields:

F :=B2C3(R
2
1 −R2

4)f1 − C3

[
A2(R

2
1 −R2

4)− A1(R
2
2 −R2

5)
]
f2+[

(A2B3 − A3B2)(R
2
1 −R2

4)− A1B3(R
2
2 −R2

5) + A1B2(R
2
3 −R2

6)
]
f3

(44)

If we plug the obtained solutions for f1, f2, f3 into F , the numerator factors into two factors,
where one of it is E. Therefore, E = 0 implies F = 0; thus, we have two linear relations
between the Study parameters. According to [25], this is one possible characterization of
line-symmetric motions. In general, the curve s is a regular conic section, but it can also happen
that it consists of one or two straight lines, implying Schönflies self-motions.

Remark 6. Note that the geometric characterization of parallel manipulators with a Schönflies
self-motion was already done in [26], and therefore, this case can only be a special case of it.

(b) E = 0 is fulfilled identically: As A1B2C3 6= 0 holds, this can only be the case if Equation (5)
holds. Therefore, we get a generalized Dietmaier self-motion, which corresponds in the generic
case with a curve s of degree four in the Euler parameter space.

2. e3 = 0: Now, ∆1,4 and ∆2,5 do not depend on f0, f1, f2. Elimination of f3 implies that E = 0 has to
hold with:

E := B2(R
2
1 −R2

4)e1 −
[
A2(R

2
1 −R2

4)− A1(R
2
2 −R2

5)
]
e2 (45)
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If E = 0 is not fulfilled identically, it already determines a straight line in the Euler parameter space,
and therefore, we can only end up with a Schönflies self-motion.

For R1 = R4 and R2 = R5, the equation E = 0 is fulfilled identically. Now, ∆1,4 and ∆2,5 can
only vanish without contradiction for f3 = 0. Due to e3 = f3 = 0, we can only end up with a
line-symmetric self-motion.

This finishes the proof of Theorem 11.

Example 2. We give an example of a line-symmetric self-motion, which is not a Schönflies motion, as
this is the essential new possibility compared to the classification of congruent OPSHs. The geometry is
given by:

A1 = 5, A2 = 3, B2 = 2, A3 =
3

2
, B3 = 1, C3 =

5

2
(46)

We can compute f1, f2, f3 from Ψ,∆1,4,∆2,5. Moreover, for the choice:

R2
4 = R2

1 −
15

13
R2

2 +
15

13
R2

5, R2
3 =

13

8
R2

2 +
3

16
R2

5 −
13

16
R2

1, R2
6 =

9

8
R2

2 −
13

16
R2

1 +
11

16
R2

5 (47)

we get e1 = −2
3
e2 from the condition E = 0. Now, G2 is a real-valued multiple of G1, which determines

the conic s (and therefore, the self-motion) by the equation:

(117R2
1 + 9R2

5 − 126R2
2)e

2
0 + (169R2

1 + 13R2
5 − 182R2

2 − 2912)e22+

(117R2
1 + 9R2

5 − 126R2
2 − 5616)e23 = 0

(48)

This equation can be solved for e0 and plugged into Λ1. As this final equation is quadratic in f0, the
self-motion is in general not rational.

A real line-symmetric self-motion (cf. Figure 2) is, for example, obtained for the following values:
For R2

2 = 3, R2
5 = 4, R2

1 = 5 and e3 = 1, the self-motion is real if e2 is within the interval [−t, t] with:

t :=
3

54, 601

√
27, 191, 298 + 147, 422, 700

√
3 ≈ 0.9235421308 (49)

4.2. Generalized Dietmaier Self-Motions

In this section, we want to determine further PSHs (beside congruent PSHs), which have generalized
Dietmaier self-motions. Under the assumption of Equation (5), we see that the equations ∆1,4,∆2,5,∆3,6

are homogeneous linear in f0, . . . , f3. Therefore, a necessary and sufficient condition for a generalized
Dietmaier self-motion is that the three quadrics G1 = G2 = ν = 0 in the Euler parameter space have
a curve in common, where G1 and G2 are defined as in Equation (20) and ν is the remaining factor of
the determinant of the coefficient matrix of Ψ,∆1,4,∆2,5,∆3,6 with respect to f0, . . . , f3 after splitting
away N .
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Figure 2. The trajectories of the platform anchor points under (one branch of) the
line-symmetric self-motion of Example 2 are displayed. An animation of this motion is
provided as supplementary data (see Supplementary File S1).
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W.l.o.g., we can assume coordinate systems in the platform and the base in a way that o and O,
respectively, are their origins, m1 and M1 are on their x-axes and m2 and M2 are located in their xy-planes,
which implies:

b1 = c1 = c2 = B1 = C1 = C2 = 0, ai+3 = −ai, Ai+3 = −Ai

bi+3 = −bi, Bi+3 = −Bi, ci+3 = −ci, Ci+3 = −Ci

(50)

for i = 1, 2, 3. With respect to these coordinate systems, the three equations have the following numbers
of terms: G1[48], G2[68], ν[64]. The resultant of each of these two equations with respect to any Euler
parameter is a quartic in the remaining ones with more than 20,000 terms. Therefore, the author was not
able to compute the general conditions for the existence of a common curve s of G1 = G2 = ν = 0

(as the calculation of the resultant of two such quartics failed by Maple 17 on a computer with
12 GB RAM).

Therefore, we restrict to the following case: The quadrics G1 = G2 = ν = 0 are linearly dependent
as for the original Dietmaier self-motion (cf. Section 3.2.1); i.e., there exists a linear combination:

L : λν + λ1G1 + λ2G2 = 0 with (λ, λ1, λ2) 6= (0, 0, 0) (51)

As a consequence, the curve s in the Euler parameter space is of degree four.

Theorem 12. The following set D of non-architecturally singular PSHs with non-planar platform and
non-planar base has a generalized Dietmaier self-motion:

b3 =
A1B3c3
a1C3

, a2 =
a1A2b2C

3
3 + (B3a1b2C3 − A1c3B3B2)(A2B3 − A3B2)

c3C2
3B2a1

a3 =
A1B3A2a1b2C

3
3 − (c3B2a

2
1C

2
3 − A1B

2
3a1b2C3 + A2

1B
2
3B2c3)(A2B3 − A3B2)

C3
3B2a21b2

(52)
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and the following condition k6C6
3 − k5C5

3 + k4C
4
3 − k3C3

3 + k2C
2
3 − k1C3 + k0 = 0 remains with:

k6 = A1b
2
2a

2
1A

2
2, k5 = B2a

3
1b2c3(A

2
2 + A2

1 +B2
2)

k4 = A1a
2
1

[
a21B

2
2(c23 + b22) + b22(2B

2
3A

2
2 − 2A2B3B2A3 +B2

2c
2
3)
]

k3 = B2a1b2c3
[
A2

1(2B
2
3A

2
2 +B2

2a
2
1 +B2

3a
2
1 − 2A2B3B2A3) + a21(A2B3 − A3B2)

2
]

k2 = A1a
2
1

[
A2

1B
2
2B

2
3c

2
3 + (B2

3b
2
2 +B2

2c
2
3)(A2B3 − A3B2)

2
]

k1 = 2b2A
2
1a1B

2
3B2c3(A2B3 − A3B2)

2, k0 = B2
2A

3
1c

2
3B

2
3(A2B3 − A3B2)

2

(53)

with respect to the coordinate systems of Equation (50). Therefore,D is a seven-dimensional set of PSHs
(excl. similarities), where each design possesses at least a two-parametric set of generalized Dietmaier
self-motions over C. Only in the case of congruence we get a three-parametric set of generalized
Dietmaier self-motions.

Proof. Due to the non-planarity assumption of the platform and the base, we can assume
a1A1b2B2c3C3 6= 0. Moreover, we can even assume w.l.o.g. that a1, A1, b2, B2 > 0 holds.

For the computational proof, we denote the coefficient of ei0e
j
1e

k
2e

l
3 of L by Lijkl. Then, we consider

the following set of 10 necessary and sufficient equations:

w1 : L2000 + L0200 + L0020 + L0002 = 0, w2 : L2000 − L0200 − L0020 + L0002 = 0

w3 : L2000 − L0200 + L0020 − L0002 = 0, w4 : L2000 + L0200 − L0020 − L0002 = 0

w5 : L1100 + L0011 = 0, w6 : L1100 − L0011 = 0, w7 : L1010 + L0101 = 0

w8 : L1010 − L0101 = 0, w9 : L1001 + L0110 = 0, w10 : L1001 − L0110 = 0

(54)

In detail, these equations read as follows:

w1 : λ(A1B2C3 − a1b2c3) + λ1(a
2
2 + A2

2 + b22 +B2
2 − a21 − A2

1 +R2
1 −R2

2)+

λ2(a
2
2 + A2

2 + b22 +B2
2 + c23 + C2

3 − a21 − A2
1 +R2

1 −R2
3) = 0

w2 : λ(a1b2C3 − A1B2c3)− 2λ2c3C3 = 0

w3 : λ(a1c3B2 − A1C3b2)− 2λ1b2B2 − 2λ2b3B3 = 0

w4 : λ(b2c3A1 −B2C3a1) + 2λ1(a1A1 − a2A2) + 2λ2(a1A1 − a3A3) = 0

w5 : λA1(B3b2 −B2b3)− 2λ2b3C3 = 0

w6 : λa1(B2b3 −B3b2) + 2λ2B3c3 = 0

w7 : λ [A1(a2b3 − a3b2) + a1(A3b2 − A2b3)]− 2λ2A3c3 = 0

w8 : λ [A1(B2a3 −B3a2) + a1(A2B3 − A3B2)] + 2λ2a3C3 = 0

w9 : λC3(a1A2 − A1a2)− 2λ1a2B2 − 2λ2a3B3 = 0

w10 : λc3(A1a2 − a1A2) + 2λ1A2b2 + 2λ2A3b3 = 0

(55)

Note that only the equation w1 depends on the leg lengths R1, R2, R3. W.l.o.g., we can solve w2, w3 for
λ1 and λ2. As λ = 0 implies λ1 = λ2 = 0 a contradiction, we can set λ = 1. Then, w5 implies b3 of
Equation (52), and w8 can only vanish w.c. for:

a3 =
c3(A1B3a2 − A2B3a1 + A3B2a1)

a1b2C3

(56)
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Then, w9 implies a2 of Equation (52). Substituting this expression into Equation (56) yields the condition
for a3 given in Equation (52). Now, one condition on the geometry of the PSH remains, namely w3,
which is the equation given in Equation (53).

Remark 7. Note that w3 implies the condition of Equation (6) under the additional assumption
A2 = A3 = B3 = 0 of an OPSH. Note that therefore the original Dietmaier self-motion is included
as a special case.

Besides this condition, only w1 is not fulfilled, which has the following structure: q0 + q1R
2
1 + q2R

2
2 +

q3R
2
3 = 0. Therefore, each design of D has at least a two-parametric set of generalized Dietmaier

self-motions. We only get a three-parametric set if this linear relation in R2
1, R2

2 and R2
3 is fulfilled

identically, which is studied next.
The condition q3 = 0 implies c3 = b2a1C3

A1B2
. Then, q2 can only vanish w.c. for a1 = A1. Now, q1 = 0 is

already fulfilled identically, and we remain with the conditions w3 and q0 = 0. It can easily be seen that
w3 implies b2 = B2; i.e., the congruent PSH. Now, q0 = 0 is also fulfilled identically.

Remark 8. Finally, it should be noted that a geometric interpretation of the algebraic conditions
determining the set D is missing. This also includes the geometric meaning of Equation (6)
(cf. Remark 7).

Based on the set of equations w1, . . . , w10 used in the proof of Theorem 12, it can be shown by
a straightforward discussion of cases that a linear combination of Equation (51) does not exist for
non-architecturally singular PSHs, if the platform or the base or both are planar. Therefore, the only
missing cases yielding a generalized Dietmaier self-motion are those where s is a cubic curve, a conic
section or a straight line in the Euler parameter space. The latter case is of less interest, as it can only be
a special case of the manipulators given in [26] (cf. Remark 6).

Example 3. In the following, we give an example for a generalized Dietmaier self-motion. The PSH of
the set D is given by:

A1 = 5, A2 = c3 = a1 = 3, B2 = b3 = 2, B3 = 1

A3 =
3

2
, b2 =

4

3
, a2 =

5

3
, C3 = a3 =

5

2

(57)

Under consideration of Equation (5), the leg lengths are determined by:

R2
1 =

76

3
, R2

2 = 16, R2
3 = 17 (58)

The projection of the quartic curve s in the Euler parameter space onto the e1e2e3-plane by the
elimination of e0 yields the planar quartic curve s′ given by:

1, 131, 008e41 − 2, 583, 808e21e2e3 + 588, 819e22e
2
3 − 2, 187, 728e22e1e3 − 1, 503, 016e32e3+

3, 478, 718e23e1e2 + 890, 008e33e2 − 363, 296e31e2 − 2, 745, 696e31e3 + 1, 077, 168e33e1+

499, 406e32e1 + 212, 389e42 + 149, 462e43 + 1, 653, 813e21e
2
2 + 1, 028, 597e21e

2
3 = 0

(59)

which is illustrated in Figure 3. The red plotted part of s′ corresponds with the real self-motion illustrated
in Figure 4.
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Figure 3. We identify e3 = 0 with the line at infinity and illustrate the affine part of the
planar quartic s′; i.e., we set e3 = 1 and plot e2 horizontally and e1 vertically.
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Figure 4. The trajectories of the platform anchor points under a part of the self-motion of
Example 3 are displayed. An animation of this motion is provided as supplementary data
(see Supplementary File S2).
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5. Conclusions and Future Work

We formulated necessary conditions for the geometry of OPSHs in order to possess a self-motion
(cf. Theorems 7 and 8). Moreover, these conditions are also sufficient for the existence of such motions
over C. We also gave a full discussion of self-motions of equiform/congruent PSHs, which are not
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architecturally singular (cf. Section 4.1). Due to the large number of unknowns, a classification of
general PSHs with self-motions remains open. Even though not all PSHs with a generalized Dietmaier
self-motion (cf. Definition 10) could be determined, we were able to solve the most general case of
generalized Dietmaier self-motions (cf. Theorem 12), which implies new solutions to the more than
100-year-old Borel–Bricard problem.

This study also shows that even for PSHs, which have a simplified geometry due to the symmetry
assumptions, the computation of self-motions remains a very challenging/complicated task. This gives
us just an idea of the complexity of the still open Borel–Bricard problem.

5.1. Hexapodal Self-Motions Viewed under the Aspect of Symmetry

One can think of other local symmetries in the platform and the base, respectively, besides the
point-symmetry studied within this article; e.g., line-symmetry, plane-symmetry, 120◦-rotational
symmetry, etc. Results on self-motions of equiform/congruent plane-symmetric hexapods were already
given in [19,20], respectively. Moreover, a full discussion of self-motions of the original Stewart–Gough
hexapod (the platform and base both have a 120◦-rotational symmetry) was given by Karger and Husty
in [27]. Clearly, one can also study hexapods with mixed local symmetries; e.g., the platform is
point-symmetric and the base is plane-symmetric. The self-mobility of hexapods with local symmetries
is dedicated to future research.

Obviously, the local symmetries in the platform and base are preserved under a self-motion. However,
there also exist hexapods with self-motions, which preserve the global symmetry of the hexapod.
Examples for this phenomenon are the Bricard octahedra of Type 1 (=line-symmetric octahedron) and
Type 2 (=plane-symmetric octahedron; see, e.g., [28]), respectively, as they can also be seen as hexapods.

A generalization of the self-motions of Type 1 Bricard octahedra was obtained by the author in [29].
These planar hexapods with so-called Type 2 DM (=Darboux–Mannheim) self-motions do not possess
the global symmetry property any longer, but their self-motions are still line-symmetric ones (cf. [25]).
In this context, it should finally be noted that most of the known hexapodal self-motions (cf. [12]) are
line-symmetric motions.

Acknowledgments

This research is funded by Grant No. P 24927-N25 of the Austrian Science Fund FWF within the
project “Stewart–Gough platforms with self-motions”.

Conflicts of Interest

The author declares no conflict of interest.

References

1. Borel, E. Mémoire sur les déplacements à trajectoires sphériques. In Mém. Présent. Var. Sci. Acad.
Sci. Natl. Inst. Fr. TOME XXXIII; Imprimerie Nationale: Paris, France, 1908; pp. 1–128.



Symmetry 2014, 6 973
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